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II
Outftow radiation conditions ba~ ~~tJy been used at Opal bouOOaries in oceaDO-

araphyand meteorology. A new implcnxntation of Orlanski's !onnulation for problems
~UiriOI a radiation open boundary has been developed. Three dift"erent cases in wbkh
R(8by and Kelvin waves are preIaIt are studied. ]n all these t~ the ~ open
boundary condition sbows no ~ at the outflow 0( tbe Kdvin wa~ Howeva-, ~
reflection ~t the outflow of the RC»Sby wave is oblerved.
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This paper seeks to give some insight into the role open boundary"conditions play
in the numerical simulation of geophysical 1I.uid motion. The question we seek to
answer is: In what way can we accurately simulate the outflow of Rossby and Kelvin
waves from a domain with open boundaries?

Fine-mesh grids are used to achieve an adequate resolution in meteorological
problems. The domain to be modelled has to satisfy the constraints imposed by the
computer speed and capacity. For this reason.1I.uids with open boundaries have to be
considered in order to achieve the physically desired resolution.

An open boundary condition is a computational boundary that allows phenomena
generated in the interior domain to pass through the artificial boundary without
distortion aDd without affecting the interior solution. The study of this problem is of
fundamental importance in fluid dynamics. This is especially true in the areas ~r
oceanography (ocean circulation. eddies, etc.) and mcteorology (convection. weatho:r
prediction, air pollution modelling. etc.). Background referenccs are Haltincr [5] for
meteorology and Reid et al. (IS] for oceanography. The importance of open boundary
conditions has been recognized since the beginnings of the computer era. The first
realistic study \vas made by Charney et al. [I]. when they studied the limited-area
integration of the barotropic vorticity equation. They computed the vorticity at
outflow boundaries by a linear extrapolation formula and specified the vorticity at
in1I.ow boundaries. Unfortunately. the extrapolation formula they used to compute
the vorticity caused the scheme to become unstable (Platzman. [14D.

Nitta [10] and Matsuno (8] specified the out1l.ow boundary conditions by extra-
polating the interior solution to the boundary. However, improper extrapolations
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tended to cause numerical instabilities in the solutions. Hill (1968) integrated a two-
level baroclinic model over a series of nested grids in such a way that the final grid
size was as small as desired. Wang and Halpern [17] obtained conditions for a limited
area barotropic primitive equation model from a coarse-mesh hemispheric model.
This study revealed the generation of small-scale spatial oscillations in the interior
solution. These oscillations may not be attributed to numerical instabilities (Shapiro
and O'Brien [16)), but rather to the overspecification of the boundary conditions.
In order to suppress these oscillations, an artificial diffusion coefficient is introduced.
The trouble is that the larger this coefficient, the smoother the interior solution, with
a consequent distortion of the physical modes. In other words, the viscosity removes
the small scale flow which the fine mesh is designed to handJe and the solution may be
more unrealistic than a coarse-grid model in a closed domain without open boundaries.

As the computational models become more sophisticated, the problem of specifying
the correct boundary becomes more critical. For this reason, this problem is attracting
considerable interest in the scientific community.

A more practical and realistic formUlation is the work of Orlanski [13]. He used
Sommerfeld radiation conditions for problems requiring a prescribed open boundary.
The equations he used were, of course, hyperbolic in nature. He integrated two models
to demonstrate the applicability of his set of open boundary conditions: the collapsing
bubble and the spatially growing Kelvin-Helmholtz instability. An ingeJ:tious method
that minimizes the computational (artificial) refiections which occur at the boundaries,
has been developed by Engquist and Majda [4]. However, as the scope of the present
research is focussed in open boundary conditions and not on absorbing boundary
conditions, their particular method is not implemented.

Our principal interest is rotating stratified fluid models of the atmosphere and ocean.
In particular, we are interested in solutions which contain Rossby waves as an
important mechanism. Our intention is to investigate a set of open boundary con-
ditions in which these waves are present. There arc many model problems which one
can choose, but in numerical experimentation, one would like to address a pertinent
problem which at the same time has only few degrees of freedom. By separating the
equations of motion into vertical modes, we can reduce the number of degrees of
freedom in the vertical to one. For a set of open boundary conditions to work for a
non-linear problem, it is essential that they must also satisfy the linear problem.
Thus, we restrict our initial examination to the linear case.

Additional wave modes can be excited because of the fact that the Coriolis acceler-
ation is zero at the equator. For this reason, the equatorial case was chosen. If we
consider the set of primitive equations on an equatorial .B-plane, it is straightforward
to design a problem in which the Rossby, gravity, and Kelvin waves are present.
Following Moore f9] it is possible to excite these waves with a variety of forcing
functions. We run a series of experiments exciting these waves and studying their
propagation in a basin in which one of the boundaries is not a rigid wall.

This investigation studies the evolution of Rossby and Kelvin waves through a set
of open boundaries and also addresses the free and forced wave problem in three
experiments. A new simple implementation of Orlanski's scheme is rather useful.
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In the methods considered in this study, the local phase speed close to the boundary
is evaluated for each variable. If the local phase speed is poSitive, an outflow condition
is extrapolated from the interior solution according to the Sommerfeld radiation
condition. On the other hand, if the local phase speed is negative, an inAow condition
is specified. It is not correct to state that these methods overspecify the solution at
infiow points, or underspecify the solution at outftow points. A local adjustment allows
non-dispersive or dispersive waves which are well-resolved to propagate from the
interior domain through the boundary.

2. THE MODEL

Let us consider the linear shallow-water wave equations on an equatorial .8-plane.
For a model consisting of two layers of density, p, , and depth, H4 (i = 1,2 for upper
and lower layers, respectively) there are two vertical modes. The barotropic wave
modes are characterized by a very large propagational speed compared with that of
the baroclinic wave mod~. Assuming that the lower layer is infinitely deep (HI» HJ,
will allow us to consider it of constant density and at rest for all x, y and t. With this
constraint, we automatically filter out the barotropic mode of motion..

If we do not consider turbulent mixing between the ocean layers, i.e., PI being a
constant, we can define the reduced gravity, I', as:

,,_Pl-PiPI g.

With these assumptions. the forced linear shallow-water wave equations for the
first baroclinic mode can be written as follows:

au 8hat = .BJID - g' -ax + A V'u + "'/pH

8u 8hat = -pyu - g' a; + ..4 ~ + "'/pH

~ = -H (~ + ~ ) .

8t ax ay

The parameters for these case studies are: A. = 101 m1sec-1, g' = 2.10-1 m sec-I,
H = 200 m and fJ = 2.10-u m-1 sec-1.

It is convenient to nonoodimensionalizc the equations. Let C be the scaling velocity
for u and v. Let L. and L, be the horizontal and meridional length s<:a1cs, respectively.
Let T be the characteristic time scale, and H, the characteristic height scale. We then
introduce the nondimensional variables, denoted by primes, as follows:
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(II. V) "" C(u', V')

x=v
y = L.y'

h =Hu'
1= TI'.

The appropriate scaling is: L.. =.., CIPW(where Wis the width of the basin), internal
radius of deformation (x-scale); L, = (CIP)I/1, equatorial radius or deformation
(y-scaJe); C = (g' H)'/I, phase speed of the first baroclinic mode; and T ,.'" (.8L.)-l,

characteristic time scale.
The nondimensional coordinates, x and y, and the corresponding velocity com-

ponents, II and v, are positive eastward and northward. The nondimen~ional forms of
Eqs. (2.2).yieJd:

~*'¥

~

~~;~~\~~~~~~~~
I '"' .

..~.~..,.\,..~~ ~..\",-",~".".,~. !
,,~...,.,..,y,,"""'" -"""",,'\""".

"o;~'~"\\~~'!.\\;""~""~~~~~~""\""""'A','!i:;~"~~~i.~~.'..' :'" ,~'~~'b~..

~~ ~;..~~ I + 3(.,./p)

au Bh, ( aau aau- = J'l' - IX - + A cxI - + -:a::i""
8, ax 8.-c& By-

Bv 8h ~, ( -~ Cll' 8f,p ,
- = -yu - - + 4 m-- + -:;::1""

)8, ~)' c.-c& "y-

~=- (IX~-I-~8, B.Y . By'.
~:;f

Primes have been dropped from the nondimensional quantities. The nondimensional
parameters, IX, ~, and A', have been naturally introduced into the dimensionless
mathematical problem.

With the particular scaling used in our experiments, it can be deduced that:

(2.5)

(2.6)

(2.7)

~ = WIL.
8 = aH-7/t

.4' = bH-t/t

wh~ the constants Q and b. are defined as

a - (g')l/~ .B-1/! (2.8)

b - A,B1"(g')-3,~. (2.9)

When the equivalent depth, H, increases (decreases), the coefficients A' and 0
\vill tend to decrease (increase). The contribution of A' is almost negligible. due to the
small lateral eddy viscosity chosen in our problem. Moreover, the value of (X will
depend on the number of internal equatorial Rossby radii of deformation contained
in the ~idth of the basin.

Comparing the three nondimensional parameters, it is obvious that 0 is the leading
tern1 by two or three orders of magnitude. The role of O. the most important non-
dim~nsional parameter. is to excite the free and fon;ed waves. ~use of the linearity
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of the problem under considerationt the waves cannot grow in amplitude, and the
size of the forcing is rather arbitrary. Furthermore, the boundary conditions will not
depend on the size of 8.

From these results it can be concluded that the three nondimensional parameters
play no important role in the physics of the problem. For this reason, this is an ideal
problem for testing different sets of open boundary conditions.

The model geometry is a rectangular flat-bottomed ~. Its southern boundary
extends 25 internal radii of deformation along the equator (L = 2SLJ, while its
meridional boundary extends 5 equatorial radii of deformation in the north-south
direction (W = SL,). Although the width of the basin does not play any fundamental
role in this study, the particular length scale chosen in the oX direction will give us a
good resolution of the trapped coastal Kelvin wave travelling .along the eastern
boundary. On the other hand, the choice of the length scale in the ydirection ensures
a good resolution of the trapped equatorial Kelvin (coastal Kelvin) wave travelling
along the southern (~orth~) boundary. In the different txperiments to be conducted,
the boundaries will be solid walls of zero slip or open boundaries. In the next section,
we win discuss the different sets of open boundary conditions in further detail.

A staggered grid in space is used to avoid the noise produced by the high wave
numbers. The grid is also staggered in time to reduce the amount of computer work
involved when solving these equations. This staggered grid in space and time can be
considered as the superposition of two elementary subgrids (Fig. I). The truncation

(n+I)6tl ~

u u

~Z5~7~ v r- -
.~ /'/ /,¥/ .-'"'

-~ ,,/ v/ftAt~

"---

\J~::' ~

~- .
Description of the height, zonal, and meridional velocitY for both lattices,~.l

error and the computational modes are the same as in the non-staggered grid. Let the
continuous variables be replaced by the discrete variables j, k, and n. These new
variables are defined by the relations:

x = j ~x
y = k ~y
I = n ~t

(2.10)
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where .dx, .dy and iJt are the finite-difference intervals with respect to space (i.e., x
and y) and time.

A leapfrog scheme in time and a centered space difference are applied for all x and y
derivatives in the system. The leapfrog scheme has the property of introducing no
computational damping of the physical solutions of the system.

The representation of the velocity and height fields in the time-space domain will
then be:

h:~ = h'(U - 1/2) 2dx. (k ..:.- .1/2) 2.dY. n .dt)

~,~\~
~fi,~~r~~
,..~",.,!",,~,'.~:'

;ff(;;~~tif~g~~i{~~~;~~~;
"._":~~,1".\\~.~~\'.:..\\'.~,\\"
~~~{~~;~f;~~~:~ ~~~~~~~~~~

~ = r/(U - 3/2) 2dx, (k ,-- 1) lAy, n ~t)

11~ =11'(U - 1) 24x, (k - 3/2) 2Ay, n ~t)

(2.11)

i:)),:

~

h;t = h(U - I) 2.dx, (k - I) ~y, n At)

u~ = u(U - I) ~x, (k - 3/2) ~Y.. n At)

oft = V<U - 3/2) ~-'"' (k - I) ~y, n At)

where the prUned quantities correspond to variables defined at odd time levels.
The staggered grid in space and time is constructed in such a way that the variables

u', v, and h, are defined at the equator (southern boundary), which will be symmetric
during the whole ex~ent. However, because the viscous terms have to be computed
an extra row of velocity variables has to be defined outside the physical boundary.
The value of the velocity outside the domain is determined by applying the no-slip
condition at the boundary.

The time step of At = 1/28, used in this study, will satisfy the CFL stability
criterion. The values of Ax = Lc/4 and Ay = L./IS will give us a good resolution
of the boundary layers associated with both the coastaJ and equatorial Kelvin waves,
respectively.

In numerical modelling of geophysical systems, the application of a realistic forcing
function to the governing equations is of critical importance. The model is started
from rest by applying an easterly wind stress of the form.,.' = 0, (rip) = T(t) G(x),
where

T(t) = tanh(n~t) - tanh«n - m) ~t)-
G(x) = - B/[I + exp(y(x - .X"o))J.

(2.12)

(2.13)

In our case, y = 2, Xo = L/3, B = 0.1, and m is equal to 4/.dt (15/.dt) for the first
(the other) experiment(s).

Figure 2a represents the function G(x) for the first two experiments. This figure
shows that a uniform easterly wind stress is applied to the western third L/3 of the
basin. For the third experiment, the function G(x) is set equal to a constant
(-0.) N m-1) during the whole period of integration of aU grid points.

Figure 2b represents the function T(t) for the second and third experiments. For
the first case, the uniform easterly wind is maintained until time 4.0, at which time the
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equatorial Kelvin wave, fully developed, is in the middle of the basin, travelling
towards the eastern boundary (Figs. Sa,b, and c). Zero wind stress forcing is main-
tained from time 4.0 to the end of the model integration, at time 12.0.. For the other
two experiments, while the function G(x) differs (as we have discussed abOve), the
ea~terly wind is maintained to the end of the model integration. With the initial
conditions. U~k = V~k = h1t = 0, for all grid points, this results in V:t = h}t = 0, and
~~ = ~t(i'u/&t)1~ = ~t(r/pH).

3. OPEN BoUNDARY CoNDITIONS

The shallow-water wave equations are hyperbolic in nature. The most accurate way
to prescribe the outflow at a certain boundary for the hyperbolic system is to use at
the boundary a Sommerfeld radiation condition:

(3.1)0

where 1/1 is any variable, and F, the phase speed. There are many methods for im-
plementing (3.1). The experiments here are conducted using the open boundary
conditions from Orlanski [13]. Tn addition, a modified version of Orlan ski's boundary
condition is implemented.

Boundary Condition J: Or/anski's Method

In this method the phase speed is numerically evaluated for the interior points close
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to the open boundary. By using a leapfrog representation ofEq. (3.1) for each variable,
the evaluated phase speed, F.., yields:

.l.ft .1.--1[""'-1 - "'.-1
2dt ~...&

where the index, D, denotes a point at the boundary, D - I, the first interior point, etc.

J n other words, values of'" near the boundary and previous in time are used to estimate
F.. for each variable at each time step. Equation (3.1) is used again to evaluate the
extrapolated value of ",;+1 as a function of F. The final formulation for the phase
speed then is:;*~

if F. ~ 0r;'

if F. > AxlAt

~..=o.
AxF.=-At

F. = -.."'JI/I. if 0 < F. < ~x/~t

where the approximation (3.2) is implied. HoweYer, because a staggered grid in space
and time is used, the specific numerical formulation of F. is 'slightly different at
different boundaries. Equation (3.4) represents the numerical evaluation of the phase
speed at the northern boundary while Eq. (3.13) represents the evaluation of Fit at the
western boundary.

~~~~
,,~;,~.;

Boundary Condition II: Variation of Or/anski's Method

A new formulation, involving a variation of Orlanski's Condition, is tested. rn this
formulation, the local phase speed, F., is evaluated as suggested by Orlanski but with
the following difference: when the local phase speed is outward (inward), an outflow
(inflow) boundary condition is prescribed. The outflow (inflow) boundary condition is
set equal to il.y/ilt (zero) for western open boundary, and ily/ilt (zero) for a northern
open boundary. These two cases are represented by Eqs. (3.8) and (3.10), respectively.

This variation of Orlan ski's boundary condition is somewhat arbitrary, but because
of the lack of a practical theoretical guidance, a pragmatic approach is adopted.

Three experiments are conducted by using the open boundary conditions outlined
above. As a consequence; different solutions are obtained for each set of o~n
boundary conditions. The ideal solution is one in which the interior flow is essentially
identical to the solution in a larger enclosed basin, i.e., a minimum distortion of the
interior flow.

In the first experiment, the northern boundary is oPen, and the staggered grid is
implemented in such a way that 'the variable, 1/1, has the values of v, u', h at the
northern boundary. The numerical evaluation of the p~ase speed following Orlanski's
method yields to:

E;.. - £;,.1
r. + E"-I -"" - DA-I, .:.,-;. ,.. .&-',~. i..

2d.v
~ (3.4)
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where
(3.5)

(3.6)

Et.. = (';t-l..-l + "'t+l.~J/2

Dt.. = (y,t-l..-a + ';'+I..-a)/2

and ; denotes an arbitrary grid point in the x direction. The extrapolated value of
.L-+l then is."",B .

.1,-+1 - [1 - F,.(.dt/.dy») ",~1 + 2F~.<.dt/.dy)."f.. - - - i + F,.(..dtl..dy)

\~\1
"",'.'.' , In the new implementation of Orlanski's method, the value of 1/1:'.-:'1 is:

",~1 = E't... at the outflow points.

= ",...1 at the inflow points.

Equation (3.8) can be looked upon as a zeroth order approximation to Eq. (3.1)
as opposed to Orlanski's first order approximation (Eq. (3.7)). Figure 3 shows the
representation of the variable. t/t. in the x - y plane for these methods.~~~;;;'

j-l i i +:.
F(o. 3. Representation of an arbitrary variable ¥' in the (x. y) plane for Orlanski's method and

the new implementation applied to a DOrtban boundary condition.

In the last. two experiments, the integration of the model is started in a closed
domain. After a certain time, an open boundary is implemented in the middle of the
basin, and the time integration is continued in the eastern half of the basin. As the
physics of these two experiments differ, the times in. which we decide to place our set
of new boundary conditions are also different. The open boundary is implemented in
such a way that the variable, .p, has the value of u, v', and h at that boundary.

Following the same proCedure outlined before, the extrapolated variable, -/1;'+:-

(where W denotes an arbitrary grid point in the y direction1 has a value of:

.1._1 - :(1 - F,<~t/A:x» ",;:-J. + m..,{~t/.dx).,...r :- ' -. -I + FJAt/4.x)
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in the Orlanski method;

+.7.1- = p..w at the outflow points

(3.10)= I{I;:-.} at the inflow points

in the new implementation of Orlan ski's method, where

p - (;~1."-1 + "'.-I...+t>/2.

R ,,;,. (; 1 + "'--a...+.>/2.
(3.11)

(3.12)
The value of F. is:

P. P.-I ... A..W - ..W ~X
(3 13)F. = - ~ + p.-1 - ~ - PtI-I' ~ . .

..w ..W B.W .".w

Figure 4 shows the representation of the variable, .fI, in the y, t plane for these
methods.

"',.",',",,',",' """'~:'~"'~"::~~:-"."f::"""";W",,,
t

ft+1

..n-,
8 8-1 B-2 B-3 - Y

FIG. 4. Representation of an arbitrary variable" in the (y, t) plane for OrJanski's mctbod and
the MW implementation applied to a western boundary ~ditiOD.

4. RPSUL 13

In the first experiment at time I = O. we impose an easterly wind in the western
third of the basin. up to time 4.0 (Eqs. (2.12) and (2.13». The east-west stress is zero
in the remaining two-thirds of the basin. while the north-south stress is zero every-
where. This impulsive wind stress excites an internal equatorial Kelvin wave. which
travels eastward along the equator. After reaching the eastern boundary. this wave
travels poleward along that boundary.

This first experiment is designed in such a way that the outflow of an isolated
nondispersive wave can be studied in full detail. In this case. the nondispersive wave is
the eastern coastal Kelvin wave. A first run in a closed basin of solid walls of zero slip
preceeded the experiments with the northern open boundary.

The closed basin solution (Figs. Sa. b. and c) shows the equatorial Kelvin wave
in the middle of the basin along the equator. The velocity. u. associated with this
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FIG. 5. (a) Zonal velocity, (b) meridional velocity, and (c) height fields at time 4.0, for the closed
domain, for the first experiment. The plotting frequency is 1000 units of dimensionless velocity and
height, respectively.
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FIG. 6. Same as Fig. S. but at time 8.0.
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wave has a maximum am~tude at the equator, and decays as exp(-(I/2(y)l) away
from the equator (Fig. 5a). On the other hand, the north-south velocity, 11, is identically
zero, as expected (Fig. 5b) (O'Brien. et aJ. [II D.

Upon reaching the eastern boundary, part of the equatorial Kelvin wave travels
poleward as a coastal Kelvin wave, and another part of it is reftectcd as a Rossby wa'Ye
train. It is interesting to point out that, while the meridional Kelvin wave is travelling
along the eastern boundary, the velocity, u, is identically zero (Fig. 6&). Furthermore,
the velocity, 11, has a maximum near that boundary and decays as exp( -xyfm) away
from that boundary (Fig. 6b). Figure 6a also shows the propaption of the internal
Rossby wave, centered at x = 20, towards the western boundary along the equator.

The downwelled region obServed in Figs. 6& and c in the western portion of the
basin corresponds to an internal Kelvin wave front excited by the sudden cessation
of the wind stress.

The ftow along the eastern boW)dary may be represented approximately by the
y-momentum balance:

a., 8.
-~-YII--

8t 8y'

.;t~:\~'i,~.
""""',' 1\,;\~,.\\\.\

'..\\~~,\'

(4. i)

. ..
0 5 10 IS 2D 25

fm. 7. Hcilht field, at time 10.0, for the closed domain. for the first aperimenL
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Because u is almost negligible along the boundary, it is accurate to state that.:

au an
at~F, (4.2;

",,"\
~;:;:;!

~

~!?~~~

"~~'\1,,,,;,\,,"~,~:'\""":\\I:\"~""'\\""~~'~i~;'~\"~",~":

along the eastern bounda~
Figure 1 shows the upwelled region of the internal Kelvin wave front arrivin~ a;

the northern boundary at time 10.0. While the coastal Kelvin wave front is movIng
northward, it is also transferring energy to a Rossby wave, which moves to the west
(Figs. 6c and 7) at a speed of (X/3 for the gravest latitudinal mode (Hurlburt, et al. [7D,
At time 12.0, this internal Kelvin wave front is already confined to a narrow boun<i~"
layer at the northern boundary (Fig. 8). Another interesting feature to observe at the
eastern boundary at this same time is the poleward evolution of the downwelled regJoc
associated with the other internal Kelvin wave fron',.

rn the open basin experiment, we are interested in studying the outfiow of the first
eastern coastal Kelvin wave front as It moves away from the equator. The three:
different sets of northern open boundary conditions described in the previous sectioc
are tested. rn order to compare these cases with the closed basin solution, the meri.
dional extension of the basin is shortened to 4L.

The open boundary conditions rand rr are tested. At time 8.0, the leading edge of

~
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the coastal Kelvin wave front reaches the northern open boundary (Figs. 9a and b).
A very close similarity to the closed basin solution is observed (Fig. 6c). At time 10.0,
the evolution of this wave front through the open boundary (Figs. lOa and b) shows a
perfect agreement with the closed basin solution (Fig. 7). At time 12.0, also in perfect
agreement with the closed basin solution (Fig. 8), the coastal Kelvin wave front has
already passed through the northern open boundary (Figs. Ila and b).

The other coastal Kelvin wave front, produced by the sudden cessation of the wind
stress at time 4.0, is arriving at the northern boundary at time 12.0, in perfect
agreement with the closed basin solution. We can conclude that in this experiment no
contamination of the interior solution nor computational reflection of nondispersiv~
waves is observed at the artificial boundary with the application of the open boundary
conditions r and Jr. Thus, the outflow of a nondispersive wave has been successfully
implemented. Both Orlanski's method and the modified technique are useful.

Tn the second experiment, the easterly wind imposed in the western third of th~
basin is applied continuously. Upon reaching the northern boundary, the meridiona:
Kelvin wave travels along that boundary toward the west. Conservation of ener~'
dictates that an increase in the amplitude of the coastal Kelvin wave must take place.
This is related to the change of the trapping scale, which along the northern boundary
is of the order of Ij5.

The aim of this second experiment is to simulate the outflow of the Rossby and the
meridionaf Ke)vin waves for the free wave problem. The closed basin solution shows
the leading edg;e of the. internal coastal Kelvin wave front, at x = 17, moving west-
ward along the northern boundary (Fig. 12). The downwelled region observed in thf'
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western half of the basin is caused by downwelling along the northern boundary
due to the easterly wind and coastal Kelvin waves which propagate counterclockwise.
At time 14.0, the leading edge of the coastal Kelvin wave (Fig. 13) is located at x = 17.
We can observe the Rossby wave, fully developed, in the eastern half of the basin.
As of time 15.0, the wind is suddenly shut off, and the downweJled region starts to
move eastward as an equatorial Kelvin wave. At time 16.0, we can verify this effect
(Fig. 15). Meanwhile, the leading edge of the northern coastal Kelvin wave is reaching
the western boundary (Fig. I 5).

In the open basin case, our integration is carried out in a closed basin of solid walls
of zero slip up to time 11.5. At this time. we place an open boundary in the center of
the basin at .\" = Lj2. Boundary conditions I and fl are our new "western" boundary
conditions. From t = 11.5. the time-integration is carried on the rectangle 0 ~ y ~ W;
LJ2 ~ .\" ~ L and compared to the larger enclosed domain.

As the effects of the remote forcing are no longer present in our foreshortened basin.
one can expect a slightly different solution in these two cases as compared to those of
the closed basin solution. At time 14.0, the two sets of open boundary conditions
show a good agreement with the closed basin solution (Fias. 14a and b). The outflow
of the coastal Kelvin wave seems to progress naturally with the implemented variation,
II, of Orlan ski's procedure (Fig. 16b). However, the new implemented variation, II of
Orlanski's procedure shows an increasing reflection at the outflow of the Rossby wave.
At this same time, the implementation of Orlanski's original boundary condition, f,
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shows an unacceptable reflection at the outflow of the coastal Kelvin wave region
(Fig. 16a). With the new implementation of Orlanski's boundary condition, we have
successfully simulated the outflow of the Kelvin wave for the free wave problem.
The new method is better but does not have the long-time stability that a perfect
boundary condition should have.

After simulating the outflow of the Kelvin wave for the free wave problem, a more
general experiment is devised. In this case, we attempt to simulate the outflow of the
Kelvin wave for the forced wave problem. Only the new implementation, n, of
Orlanski's boundary condition is used. For this purpose, we impose.a steady (constant)
stress for all the grid points during the whole period of integration. This wind stress
simulates the zonal wind stress in an equatorial region. The sudden imposition of the
easterly wind over all the grid points generates a different kind of physics as compared
with the two previous experiments. The closed basin solution shows that along the
northern boundary a downwelled region, associated with a coastal Kelvin wave front,
is generated (Fig. 17). This wave front travels to the west.

The imposed stress plays a somewhat different role in the physics of the problem
at the eastern boundary along the equator. Initially, a Rossby wave is excited and
travels toward the west along the equator. Also, a meridional Kelvin wave front is
excited. The trapping scale of this coastal Kelvin wave front changes by the factor

0 5 10 is 20 25

FIG. 17. Height field for the closed domain, at time 6.0, for the third experiment.
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1/)' as it propagates northward. In other words, as the coastal Kelvin wave moves
poleward, it tends to conserve energy. This has a double effect. On one hand, a Rossby
wave is constantly generated; on the other hand, a decrease in the trapping scale takes
place. The increase of the amplitude of the coastal Kelvin wave front, as it moves
northward, is related to the la-tier effect. The maximum amplitude is located along that
eastern boundary.

On the western side of the basin, along the equator, an internal Kelvin wave is
excited, as in the previous experiments. The dynamics of this experiment differs
somewhat from the previous ones. In this, case, the flow along the equator is repre-
sented by the u-momentum equation:""\'i'~\'i?:,\...;;.;',i!.';';"

~""';"~',:.I,"'.\i""""
~~~'l~.~.t~~~:

au
at~

In the region between the Rossby and Kelvin wave fronts, we have:
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and, consequently:

i.e., an easterly acceleration of the equatorial jet (Yoshida, [18D. Now, in regions
where one of the two wave fronts has passed we have:

au
"8i"~O

and consequently:

oh
(lax ~ 8(~/p).

At time 5.0, the equatorial Kelvin wave front has reached the eastern boundary.
Its reflection generates a Rossby wave, which travels westward, and a coastal Kelvin
wave front, which moves poleward. At time 6.0, the positions of both the coastal and
meridional Kelvin wave fronts are clearly depicted (Fig. 17). The shape of the pressure
gradient near the equator gives us a fairly good idea of the existence of these Rossby
waves.

According to calculations, at time 6.0, the leading edge of the first Rossby wave
travelling along the equator is located at.'t" = L{2. Bearing this in mind. we place the
new implementation of Orlanski's boundary conditions, at this point, at time 6.5.
This particular time is chosen because we want to determine whether the 1nclusion
of this computational boundary condition will in some way distort the outflow of
the Rossby wave already under process.
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Although the rectangle in which the time integration is carried on is the same as
1n the second experiment, a constant easterly wind blows towards the "new" western
open boundary during the whole period of integration. The feature we are interested
m simulating in this experiment is the outflow of the northern coastal Kelvin wave.

At time 7.0, the outflow of the coastal Kelvin wave front in the open basin solution
(Fig. 18b) shows a perfect agreement with that of the closed basin solution (Fig; 18a).
Comparison of time ] 1.0 (Fig. 19b) and time 7.0 (Fig. 18b) shows that the outflow of
!he first northern coastal Kelvin wave front is completed in perfect agreement with
the closed basin solution. At time 15.0, the open basin solution (Fig. 20b) shows
that the outflow of the second northern coastal Kelvin wave is progressing normally,
whi]e the interior solution is contaminated by partial reflection of the Rossby wave
at the artificial boundary.

~

~

I~~
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5. CoNCLUSIONS

The aim of this investigation was to simulate the outflow of dispersive and non-
dispersive waves. Tn our study, these waves were the Rossby and Kelvin waves,
respectively. For the purpose of this investigation, the experiments were conducted
with different sets of open boundary conditions. Because the linear shallow water wave
equations are hyperbolic in nature, a Sommerfeld radiation condition was
implemented as a prescribed open boundary.

Three severe tests were conducted to cover the whole spectrum of both the free and
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forced wave problem. In the first two experiments, the free wave problem was studied,
whi]e in the third experiment the forced wave problem was studied. In the first
experiment, the outflow of the eastern coastal Kelvin wave, which moves away from
the equator, was successfuJly simulated. In the second and third experiments, the
new variation, rr, of Orlanski's procedure showed almost no reflection at the outflow
of the northern coastal Kelvin wave. However, some reflection at the outflow of the
Rossby wave w~s observed in both experiments with this open boundary condition.
On the other hand, in the second experiment, the implementation of Orlanski',..
original boundary condition showed an unacceptable reflection at the outflow of the
northern coastal Kelvin wave and noise in the Rossby wave region.
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