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ABSTRACT

The seasonal predictability of mean temperature and precipitation is evaluated for
the operational National Centers for Environmental Prediction (NCEP) climate prediction
model (see appendix). Hindcasts of 3-month climate forecasts with a 10-member
ensemble are made during 1979-1999. Initial conditions are updated yearly. A simple
diagnostic approach is taken to determine the ability of the model to predict seasonal
temperature and precipitation patterns. Special attention is given to the ability to forecast
patterns associated with E1 Nino Southern Oscillation (ENSQ) and Arctic Oscillation
(AO).

The 21-year mean of ensemble mean temperature for the January-March (JFM)
season is shown to have a cold bias in the eastern United States, especially around the
Great Lakes and Northeast, and there are cold biases in the Southwest. Model
precipitation rates are higher than observations throughout the country. The only
exceptions are along the northern Gulf coast and a narrow strip along the Pacific coast.

Prediction of temperature and precipitation anomalies associated with ENSO was
poor but better for cold than for warm events. For cold events, temperature anomalies
were forecasted well, although the magnitude of the anomaly differed in different
regions. Precipitation anomaly predictions were poor for some events but improved over
warm events for others. For warm events, anomaly patterns for both parameters on

average were poorly represented in the model, although for some individual events
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anomalies were predicted accurately. With regard to the Arctic Oscillation, the model
showed no skill in predicting patterns associated with negative and positive events. This
result suggests the model is unable to predict or maintain low frequency modes in the
atmosphere.

Finally, anomaly correlations for both seasonal mean temperature and
precipitation were low with no regions of correlations greater than 0.5. Skill scores
calculated in comparison with climatology are negative almost everywhere, indicating
that model forecasts for both parameters are not an improvement over climatology.
However, skill scores calculated in comparison with persistence show improvements in

the Great Plains and Pacific Northwest for temperature and the northern Gulf states and

California for precipitation.
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1. INTRODUCTION

The climate of the U.S. varies on time scales ranging from monthly to decadal and
longer. The ability to predict these changes is a challenge presented to the climate
community. The goal is to create models that can accurately forecast climate variations.
A consistently high degree of accuracy in seasonal forecasting is needed if a global
climate model is to be a useful tool. Previous studies (e.g., Kumar et al. 1996) have
shown that given accurate forecasts of certain long-lived boundary forcings useful
seasonal climate predictions can be made for both the tropics and extratropics.

The difficulty in seasonal predictions is that given a particular state of ocean sea
surface temperatures more than one atmospheric state is possible. Therefore, small
changes in physical parameterizations in a General Circulation Model (GCM) can yield
significantly different large-scale flows and model sensitivity to boundary forcing as
shown in previous studies (e.g., Palmer and Mansfield 1986; Meehl and Albrecht 1991).
From this fact, the claim can be made that a GCM containing improved sensitivity to
boundary forcing offers the best chance for accurate climate predictions (Kumar et al.
1996).

Before implementation of a GCM, its accuracy in predicting seasonal variability
should be investigated. - This investigation uses climate simulations and hindcasts, which
are compared to observations. In order to achieve an accurate comparison, a large enough

sample size must be used to decrease internal variability and model noise. Because
1



seasonal atmospheric responses are sensitive to initial conditions, an ensemble of model
integrations is made with identical boundary forcings as done in Kumar et al. (1996).
Evaluating a GCM’s ability is not straightforward; therefore only through averaging over
many cases of similar boundary forcing can the predictable signal be identified (e.g.
Kumar et al. 1996). Ensemble averaging acts to reduce the influence of random internal
variability, and the ensemble mean shows the region where the observed anomalies are
more likeiy to occur (Kumar and Hoerling 1995, 2000).

In this study, a 10-member ensemble of the NCEP operational climate model is
investigated in order to determine skill in predicting winter (JEM) mean temperature and
precipitation patterns over the U.S. The goal of the study is to examine the model’s
ability to predict seasonal patterns, not to investigate the model’s physical
parameterization or to suggest possible changes. Comparisons are made for seasonal
means, extreme events, and as a functioﬁ of ENSO and AO phase. ENSO and AQ are
two of the leading patterns of natural climate variability. It has been argued that skill in
climate forecasting will come from an ability to forecast these patterns (Higgins et al.
2000). The AO was used in this study and not the North Atlantic Oscillation (NAO),
because Thompson and Wallace (1998) showed that the AQ accounts for a substantially
larger fraction of the variance in Northern Hemisphere surface air temperature than NAO.

Because seasonal prediction is viewed as a boundary forcing problem instead of
an initial value problem, atmospheric initial conditions are largely ignored. Though not
proven, the possibility exists that atmospheric initial conditions can have impacts on

seasonal prediction. In this new seasonal prediction system, atmospheric initial



conditions are included. The initial conditions include both high and low frequency
components. Examples of the low frequency modes are the Pacific North America
(PNA), NAO, and AO. If the model is capable of predicting or maintaining low
frequency modes then atmospheric initial conditions may be of importance (Kanamitsu et
al., in press). The model’s ability to predict these low frequency modes is another reason

AQ patterns are examined in this study.



2. MODEL AND OBSERVATIONAL DATA

a. Model Data

In our study, we have utilized the 21-year hindcasts of the NCEP operational
climate prediction GCM runs. The model is a coupled ocean-atmospheric model with 10
ensemble members for the 1979-1999 period. The lead time is two months, and initial
conditions, both atmospheric and oceanic, are updated yearly. For the 10 member
ensemblé used in this study, the corresponding initial conditions are chosen from the first
5 days of the month at 12 hour intervals. Because JFM is the season and the lead time is
two months, the initial conditions are from November 1-5 at 00Z and 12Z. The model
has T621.28 resolution with output on a 2.5° x 2.5° grid. The boundary condition over the
oceans 1s provided from the NCEP global weekly sea-surface temperatures (SSTs)

analysis. A more detailed description of the model is given in the appendix.
b. Observations

NOAA/NCEP Climate Prediction Center (CPC) provided the observations used in
our study. The data for mean temperature and precipitation are observed station data

from 1979-1999 over the U.S. placed on 1.0° x 1.0° grid.
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In order to investigate the model’s ability to predict patterns associated with
ENSO and AO, classifications of ENSO and AO events were needed. The ENSO
classification is subjective and based on the pattern and magnitude of the SSTs in the
equatorial Pacific. Some of the processes involved are described in Rasmusson and
Carpenter (1983) and Ropelewski and Halpert (1987) for warm episodes and Ropelewski
and Halpert (1989) for cold episodes. Table 1 shows the classification of years into
ENSO warm, bold, or neutral events.

The AO classification is also provided by CPC. It is based on the Thompson-
Wallace methodology (Thompson and Wallace 2000). The indices classified by CPC and
Thompson-Wallace methodology have a 0.99 correlation, so they are virtually identiéal.
The AO indices were normalized as in equation (1) (Wilks 1995).

Normalized AQ = aa—

(D)

S
where x 1s each individual seasonal index, X is the mean from 1979-1999, and s is the
standard deviation of all x. Normalized values greater than 0.5 were considered positive
AQ events, and normalized values less than —0.5 are considered negative AO events.
Figure 1 shows the yearly values of normalized AO index, and Table 2 lists the AO

classification.



Table 1. Yearly classifications of ENSO warm, neutral, and cold events from JEM 1979-
1999 based on the pattern and magnitude of SST anomalies in the tropical Pacific.
Classifications of ENSO events are by NOAA/NCEP Climate Prediction Center.

— e ——

Warm Events Neutral Events Cold Events
1983 1979-1982 1989
1987 1984-1986 1999
1992 1988
1998 1990-1991

1993-1997
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Figure 1. Yearly JFM values of normalized AO index from 1979-1999. Using equation
1, AQ values were normalized. Normalized values greater than 0.5 are considered
positive events and normalized values less than —0.5 are considered negative events.
There are 5 positive events, 7 neutral events, and 9 negative events.



Table 2. Yearly JFM classifications of AQO positive, negative, and neutral events from
1979-1999. Seasonal AO indices were provided by NOAA/NCEP Climate Prediction
Center. AO values were normalized using equation 1. Normalized values greater than
0.5 were considered positive events, and normalized values less than —0.5 were
considered negative events. '

Positive Events Neutral Events Negative Events

1989 1982-1984 1979
1990 1986 1980

1992 1988 1981

1993 1991 1985
1997 1994-1995 1987
1999 1996

1998




3. DATA PROCEDURE

The model outputs analyzed are daily maximum and minimum temperature and
daily precipitation rate. Daily mean temperatures are obtained by combining the
maximum and minimum temperatures. For both mean temperature and precipitation the
ensemble mean is obtained by averaging the 10 ensemble members. The differences in
mean temperature and precipitation among ensemble members are small, meaning the
mternal variance (i.e. ensemble spread) of the model is small, and therefore the
differences between the model and observations are caused by external variability (i.e.
response to different boundary forcing). Once the model ensemble data are placed in a
single continuous daily record from 1979-1999, comparisons to observations are made
after the forecast data and observations have been interpolated to the same resolution
(0:25° x 0.25°).

For extreme events, the model and observed data are also ranked from high to
low. The top and bottom 1%, 5%, and 10% were compared for mean temperature but
only the top 1%, 5%, and 10% for precipitation (precipitation is not normally distributed,
and the most common occurrence is no precipitation). For ENSO and AO comparisons,
model and observed averages were computed for all years that fell into a particular
category (i.e., all ENSO warm events were averaged). Model ensemble anomalies are

obtained by comparing seasonal forecasts to model climatology from 1979-1999, and



observed seasonal anomalies are obtained by comparing seasonal observations to
observed climatology from 1979-1999. Defining anomalies in this fashion eliminates
any inherent biases in the model or observed data.

Other statistical measures are used, such as root-mean-square error (RMSE),
anomaly correlation (AC), and RMS skill score (SS). The equations used are standard for
verifying data sets and can be found in Wilks (1995). Like the ENSO and AO, model
forecasts are compared to model climatology and seasonal observations are compared to
observed climatology.

The equations are:

RMSE = \/%é(ym -0,)’ )

where M = 21, y = individual seasonal forecasts of variable y, o= individual seasonal

observations of variable y, and m = each individual event of the variable y,

DI —Cu)o, —C,)]
AT =1 = )
[Z_(ym ~-C,)?> (0, —C,)*1"*

where C,, = the climatological value of the variable y,, in (y,, —C,)and o, (0, —~C, ),

RMSE ,,
S8 =100 ={l~———22 )
RMSE,,,
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4. RESULTS

We begin our evaluation of the model forecast by comparing the climatology of
the model to that of observations over the 21-year period. The model (Fig. 2) has a cold
bias throughout the Northeast, the Mid-Atlantic, the Great Lakes states, and in the
southwest along the Rocky Mountains. The biases are greater than 2°C per day
throughout much of New England, as well as Ohio and Michigan. Small regions of warm
bias are located in the northern Great Plains and Florida.

The regions of largest bias correspond well to the regions of largest RMSE (Fig.
3). Because RMSE include biases in the mean and errors in the variance or spread, the
strong similarities between Figs. 2 and 3 indicate that these biases are fairly persistent
and not skewed by a few large errors.

The model precipitation rate (Fig. 4) is higher than observations across most of
the U.S. Only along the Pacific coast and along the northern Gulf is the model not
positively biased. The bias in most places is less than 2 mm/day except in the Pacific
Northwest, where biases are greater than 2 mm/day and as much as 4 mm/day. The
precipitation rate is highest in the Pacific Northwest for the winter season (Fig. 6). The
two areas in the mean that show no positive bias (along the Pacific coast and northern
Gulf) have large RMSE errors (Fig. 5). The large RMSE are most likely due to errors in

the spread of the data and may be a result of errors in extreme events. Though the model
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Figure 2. Average daily mean temperature bias (°C) of model ensemble compared to
observations for 21 year record. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. Negative biases are located in the Northeast,
Great Lakes, and Southwest, while a positive bias is located in the northern Great Plains.
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Figure 3. Seasonal mean temperature (°C) RMSE of model ensemble compared to
observations for 21 year record. The areas containing the largest errors correspond match
the regions with the largest biases in the mean.
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Figure 4. Average daily precipitation rate bias (mm/day) of model ensemble compared to
observations for 21 year record. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. Positive biases are present throughout the
country except along the northern Gulf and Pacific coasts.
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Figure 5. Seasonal daily precipitation rate (mm/day) RMSE of model ensemble compared
to observations for 21 year record. Errors are small (less than 1.5 mm/day) for most of
the country except in the Pacific Northwest and the Mid-Atlantic. Areas in the mean that
show no positive biases have large RMSE.
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Figure 6. Average daily precipitation rate (mm/day) of model ensemble and
observations for 21 year record. Though the model produces higher precipitation
rates almost everywhere, the spread of precipitation and which regions receive the
most and least precipitation is represented well.

16



has a positive bias, it does well in representing which regions receive the largest and
smallest amounts of precipitation during the winter season (Fig. 6).

The model has difficulty producing extreme events (i.e. events for the 1%, 5, 10%,
90™ 95™ and 99™ percentiles). The problerh is expected; because climate models are
known to have less variance in their spread, as a result the amplitude of the ensemble
forecasts tends to be less than observations. The highest model daily temperatures at the
90™ 95" and 99™ percentiles (Fig. 7) are lower than observations everywhere by at least
2°C and as much as 8°C. However, at the cold extremes the model temperatures are
higher than observations by at least 2°C and as much as 10°C for most of the country
(Fig. 8). The differences between the model warm and cold extreme events and observed
values are opposite but not always of similar magnitudes. For example, in the warm bias
region over the northern Great Plains (Fig. 2) for the warm extreme events (Fig. 7) the
model has negative values ranging from -2°C to -6°C, while for the cold extreme events
(Fig. 8) the model has positive values greater than 6°C throughout. A similar but
opposite pattern exists for the cold bias in the Northeast. The differences in producing
extreme cold or warm events may help increase the magnitude of the cold and warm
biases in the ensemble mean, but since the biases are both extremes they indicate the
biases are consistent throughout. The analysis of extreme events and RMSE indicate that
biases in the mean may be persistent throughout the spread.

For extreme precipitation events (Fig. 9), the model does well at the 90%
percentile, showing only small biases, but by the 99 percentile the model has a negative

bias across the entire eastern half of the U.S. and the Pacific coast by as much as 12
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mm/day. However, the two regions that show strong negative biases at all three
percentiles are along the northern Gulf Coast and the Pacific Coast. The lack of extreme
events in these regions helps explain the large RMSE in the regions, and why no positive
bias exists in the mean pattern.

As stated earlier, for a GCM to be useful, it must be able to predict major climate
variations like those associated with ENSO. The period 1979-1999 contains four major
warm events and two major cold events (Table 1).

Average seasonal anomalies for mean temperature for the warm events are shown
(Fig. 10). Observations show the traditional El Nino pattern, which is warm temperatures
along the northern half of the country and cool temperatures in Florida and the Desert
Southwest. The model (Fig. 10) depicts some warming in the Northeast and Great Lakes,
but the warm anomalies are 4-8 times smaller than observations. The model actually
shows cold conditions in the Pacific Northwest and failed to produce the cold anomalies
in Florida and the Southwest. The modeled precipitation pattern also shows significant
bias (Fig. 11). In regions where positive anomalies are present in observations (e.g.,
California and the deep south) the model has negative anomalies.

Individual analysis of the 1992 and 1998 warm ENSO events are shown in Figs.
12-15. Model temperature anomalies for the 1992 event are negative and completely
opposite of th.e observed positive anomalies (Fig.12). The precipitation rate anomalies
for the 1992 event correlate well with observations (Fig. 13). The model produces
similar positive anomalies along the Gulf Coast and similar negative anomalies in the

Mid-Atlantic, Northeast, and Pacific Northwest. For the 1998 warm event, the model and
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Figure 10. Average daily mean temperature anomalies (°C) during ENSO warm events
for model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The model shows warm anomalies in the
Northeast and Great Lakes region, but the magnitudes are much smaller.
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Figure 11. Average daily precipitation rate anomalies (mm/day) during ENSO warm
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model fails to produce the
positive anomalies in the Southeast.
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Figure 12. Average daily mean temperature anomalies (°C) during the 1992 ENSO warm
event for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model shows negative
anomalies everywhere which is the opposite anomaly pattern shown in the observations.
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Figure 13. Average daily precipitation rate anomalies (mm/day) during the 1992 ENSO
warm event for model ensemble and observations. Positive regions are outlined with
solid lines and negative regions outlined with dashed lines. The model produces similar
positive anomalies along the Gulf Coast and similar negative anomalies in the Mid-
Atlantic, Northeast, and Pacific Northwest.
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Figure 14. Average daily mean temperature anomalies (°C) during the 1998 ENSO warm
event for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model and observed patterns
show warm anomalies through the eastern half of the country. The only opposite
anomalies are in the Pacific Northwest and Desert Southwest.
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Figure 15. Average daily precipitation rate anomalies (mm/day) during the 1998 ENSO
warm event for model ensemble and observations. Positive regions are outlined with
solid lines and negative regions outlined with dashed lines. The model fails to produce
the positive anomalies along the east coast and California and fails to produce the
negative anomalies in the Pacific NW and Ohio River valley.
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Figure 16. Average daily mean temperature anomalies (°C) during ENSO cold events for
model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The positive anomalies for the eastern half
of the country are represented well, but the negative anomalies along the west coast and
extreme northern Great Plains are not produced.
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Figure 17. Average daily precipitation rate anomalies (mm/day) during ENSO cold
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. Negative anomalies are produced
in the Deep South and Florida, but the positive anomalies in the Ohio River valley are not
represented in the model.
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observed patterns show warm anomalies through the eastern half of the country. The
only opposite anomalies are in the Pacific Northwest and Desert Southwest (Fig. 14), but
for precipitation the model fails to produce the positive anomalies along the east coast
and California and fails to prodube the negaﬁve anomalies in the Pacific NW and Ohio
River valley (Fig. 15).

Cold ENSO temperature anomalies (Fig. 16) correlate better with observations
than those of warm events. Similar positive anomalies appear from the East Coast to the
Central Plains, although the magnitudes are smaller for the model. Observations show
negative anomalies along the Pacific Coast and the Northwest, and the model shows no
significant patterns (i.e. anomalies greater than |0.25|) in these regions. In fact, no
regions of negative anomalies are present. For precipitation (Fig. 17), the model
produces negative anomalies similar to observations in the Deep South, Florida,
California, and the desert southwest, but it fails to produce the positive anomalies along
the Ohio and Mississippi River valleys.

The results of the ENSO analysis indicate that the model’s ability to produce
ENSO patterns, on average, is limited. But the analysis of the individual events suggests
that the model may have the ability to produce similar anomaly patterns of certain
Variables for an individual ENSO event. Model sensitivity to the SST boundary forcing
may be responsible for the errors.

Like ENSO, the AO is a major controller of wintertime climate patterns
(Thompson and Wallace 1998; Higgins et al. 2000). In the 21 years of record used iﬁ

ourstudy, five positive and seven negative AO events occurred (Table 2). Temperature
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and precipitation anomalies associated with AO positive events are shown in Figs. 18 and
19. For temperature (Fig. 18), the traditional observation pattern of warm temperatures
throughout the eastern half of the U.S. is not found in the model average. In fact, the
model produces negativé anomalies over most of the counﬁ'y. For precipitation (Fig. 19),
only two regions have significant pattems in observations; negative anomalies along the
northern California coast and positive anomalies in the Mississippi River valley from
eastern Texas to Kentucky. Negative anomalies are present in the Pacific Northwest
instead of California, and a small positive region shifted to the Deep South.

The model AO negative anomalies for temperature (Fig. 20) fails completely in
producing the cold anomalies throughout the majority of the U.S. For precipitation (Fig.
21), the model again shows no ability to produce the anomalies associated with AO
negative conditions. These results suggest an inability of the model to maintain low
frequency atmospheric modes. The model’s inability to produce the positive
precipitation anomalies along the East Coast during AO negative events, which are
representative of the higher number of winter storms alpng the coast, is particularly
problematic.

Temporal anomaly correlations are calculated so similarities in anomaly patterns
can be detected. This is a very important test for a GCM, because the model’s role is to
predict higher or lower values compared to average for the variable of interest. Using
equation 3, AC was calculated on a seasonal basis. Correlations for seasonal temperature

and precipitation (Figs. 22 and 23) are poor. Anomaly correlations are less than 0.5
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everywhere. In fact, for precipitation many of the anomaly correlations are negative,
indicating that model and observations show opposite anomaly patterns.

Using equation 4, RMS skill scores were computed. RMS skill scores show areas
where the model forecast is superior in comparison to some reference value, such as
climatology or persistence. The improvement is a percent improvement over the
reference (e.g., a SS of 10 means the forecast is a 10% improvement over the reference).
For our study, both climatology and persistence were used as reference values in
computing the SS. SS, with climatology as the reference, for mean temperature (Fig. 24)
shows almost no regions are present where the model is better than climatology, but
because we are examining seasonal forecasts we expect seasonal differences to be small
so persistence is probably the better comparison. In this case, the observed values from
JEM of the previous year were used. For example, when computing the skill of the mean
temperature forecast for 1980, the forecast was compared to mean temperature
observations from 1979. Persistence was used as the reference to calculate SS for mean
temperature (Fig. 25). This calculation shows the model outperforming persistence for
the Central Plains and some other small regions in the country. SS for seasonal
precipitation rate using persistence as the reference (Fig. 26) shows an improvement in
California and in the northern Gulf states. RMS skill scores for precipitation using

climatology were calculated but showed no regions where the model outperformed

climatology.
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Figure 18. Average daily mean temperature anomalies (°C) during AO positive events for
model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The model fails to produce the positive
anomalies that occur in the observations.
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Figure 19. Average daily precipitation rate anomalies (mm/day) during AO positive
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The positive anomalies in eastern
Texas and the Mississippi River valley and shifted in the model tothe Deep South and
into the Carolinas.
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Figure 20. Average daily mean temperature anomalies (°C) during AO negative events
for model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The model fails in producing the negative
anomalies present over most of the country.
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Figure 21. Average daily precipitation rate anomalies (mm/day) during AQ negative
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model fails to produce the
positive anomalies present in the eastern half of the U.S.
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Figure 22. Distribution of temporal anomaly correlations of JFM seasonal mean
temperature from 1979-1999. Regions of correlations of 0.5 or higher are areas in which
the model demonstrates skill in predicting anomalies. Correlations of 1.0 represent
perfect forecasts. Positive regions are outlined with solid lines and negative regions
outlined with dashed lines. Positive anomaly correlations are located in the northern
Great Plains and the Northeast, but all values are less than 0.5.
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Figure 23. Distribution of temporal anomaly correlations of JFM seasonal precipitation
rate from 1979-1999. Regions of correlations of 0.5 or higher are areas in which the
model demonstrates skill in predicting anomalies. Correlations of 1.0 represent perfect
forecasts. Positive regions are outlined with solid lines and negative regions outlined
with dashed lines. There are no large regions of positive correlations, and no values
greater than 0.5 are present.
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Figure 24. Skill score (100 « (1 - (RMSEforecast / RMSEclim))) for seasonal mean
temperature versus climatology. Values greater than zero are regions in which the model
forecast is an improvement over climatology. Values are a percent improvement of the
model over climatology. There are no large regions of values greater than zero.
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Figure 25. Skill score (100 « (1 - (RMSEforecast / RMSEpersistance))) for seasonal mean
temperature versus persistence. Values greater than zero are regions in which the model
forecast is an improvement over persistence. Values are a percent improvement of the
model over persistence. Positive skill scores are located in the Central Plains and the
Pacific Northwest.
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Figure 26. Skill score (100 « (1 - (RMSEforecast / RMSEpersistance))) for seasonal
precipitation rate versus persistence. Values greater than zero are regions in which the
model forecast is an improvement over persistence. Values are a percent improvement of
the model over persistence. Positive regions are located along the northern Gulf Coast
and California.
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5. CONCLUSIONS AND DISCUSSION

The ability of a version of the NCEP operational climate prediction GCM to
predict NH winter seasonal temperature and precipitation patterns over the U.S. was
examined and assessed. The examination was based on the model’s ability to produce,
on average, the mean seasonal temperature and precipitation, as well as those associated
with each phase of ENSO and the AO.

For mean temperature, the biases in the seasonal average are consistent with
regions of highest RMSE indicating that the biases are fairly persistent, and therefore
forecasts can be adjusted to include these biases. The model’s ability to produce extreme
events was poor. This fact is expected because the model has a low resolution and
climate models are known to have less variance in their spread. The anomalies for
temperature were negative at the warm extreme events and positive at the cold extreme
events. Analysis of the extreme events and RMSE indicate that the biases are persistent
throughout the spread. For precipitation, the model produc'ed a positive bias everywhere
except along the Pacific coast and along the northern Gulf states, where no anomalies
were present. But these two regions had large RMSE and a lack of extreme events in the
model indicating that the lack of extreme events may be responsible for the small biases

in the mean.
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Clearly, the most problematic result of this study is the model’s very poor skill in
predicting the effects of major climate events, namely ENSO and AQ. Because ENSO
and AQO have their greatest influence on the U.S. during the winter season, the model’s
poor forecast ability is more troublesome.

On average, skill in predicting surface climate associated with ENSO events is
limited. For individual events, the model was able to forecast one variable well, but the
other variable for the same ENSO event was forecasted poorly. Model sensitivity to the
SST boundary forcing may be responsible for the errors.

The inability to forecast patterns associated with AO shows that the model is
unable to predict or maintain low frequency modes in the atmosphere. Large systematic
errors, which distort the low frequency part of atmospheric variability, may be the reason
for the lack of impact from atmospheric initial conditions. Errors in height anomalies
and/or pressure fields poleward of 20° N, especially in the North Atlantic, may be
responsible for the poor results.

Seasonal anomaly correlations were poor for both variables. In fact, no region
shows a value greater than 0.5, which is the significance level for stating skill in the
forecast. RMS skill scores calculated against climatology and persistence underscore the
model’s difficulties. Climatology is a better predictor than the model almost everywhere
for mean temperature and everywhere for precipitation. The model does perform better
than persistence over certain regions for both parameters. But, it is not as large or

widespread of an improvement, as we would have hoped for in an operational model.
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APPENDIX

Model Description

The GCM used in this study is the new version of the NCEP seasonal forecast
model. The new dynamical prediction system was introduced in April 2000. A second
generation of the model was made to further improve the coupled system to refine
seasonal prediction.

The dynamical framework is based on the spectral AGCM described in
Kanamitsu (1989). The reduced grid of Williamson and Rosinski (2000) was recently
incorporated saving computer resources by about 30% at T62. The resolution is T62L.28
meaning about 200 km horizontal resolution and 28 vertical layers.

The land model in the new system is based on the Oregon State University land
model (Pan and Marht, 1987). Two soil layers are present and both soil temperature and
water content are predicted. Canopy water content is predicted, and simple snow physics
1s also included.

The ocean model is a Pacific Ocean basin GCM covering the domain 45° S-55° N
and 120° E-70° W. The horizontal resolution is 1.5° in the zonal direction, while in the
meridional direction the resolution is 1/3° between 10° S-10° N and increases linearly to
1° between 10° and 20° N and S then 1° poleward of 20° N and S. The ocean model is

coupled to a T42 (about 300 km) atmospheric model. In the coupling, the total SST from
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the ocean is given to the atmosphere, and the momentum, heat, and fresh water fluxes
from the atmosphere force the ocean model.

For atmospheric initial conditions, the model uses real-time T621.28 atmospheric
analysis from the operational data assimilation (Kanamitsu, 1989). Both high and low
frequency components of atmospheric initial conditions are incorporated. Some low
frequency modes are incorporated. For land surface initial conditions, climatological soil
wetness based on the NCEP/DOE Reanalysis-2 (Kanamitsu, et al., 2002, in press) is used.

The only boundary forcing in the hindcast runs analyzed in this study is from the
observed SSTs. Therefore, the only difference in initial or boundary conditions between
the ensemble members is in the atmospheric initial conditions.

For more information regarding the model and model processes please refer to

Kanamitsu et al. (in press).

45



ACKNOWLEDGEMENTS

First, I would like to thank my co-authors, Dr. Wayne Higgins, Dr. Jac-Kyung
Schemm, and Dr. James J. O’Brien for their help in the experimental process and in
production of this manuscript. Thanks to NOAA/NCEP for the use of their model, for
funding this study, and for use of their facilities for much of the work.

Second, I would like to thank my committee members, Dr. Xiaolei Zou, Dr.
Guosheng Liu, Dr. Wayne Higgins, and Dr. James J. O’Brien for taking time to review
and examine my research give advice on how to proceed and improve the manuscript.

Finally, A special thanks is given to Dr. James J. O’Brien for funding, overseeing
and guiding this project. For the past two years, Dr. O’Brien has provided my with
opportunities that I would not have been offered elsewhere, and I thank him for providing
there opportunities and for allowing me to study under his guidance at the Center for
Ocean Atmospheric Prediction Studies (COAPS).

David Sa.lapaté received a NOAA/NCEP Fellowship in the Applied Research
Center (ARC) within COAPS. The COAPS/ARC is funded by the NOAA/Office of

Global Programs.

46



REFERENCES

Higgins, R. W., A. Leetmaa, Y. Xue, and A. Barnston, 2000. Dominant factors
influencing the seasonal predictability of U.S. precipitation and surface air
temperature. Journal of Climate, 13, 3994-4017.

Kanamitsu M., 1989. Description of the NMC global data assimilation and forecast
system. Weather Forecasting, 4, 335-342.

Kanamitsu M., A. Kumar, J. Schemm, H. Juang, W. Wang, S. Hong, P. Peng, W. Chen,
and M. Ii, (in publication). NCEP dynamical seasonal forecast system 2000, Bulletin
of the American Meteorology Society.

Kanamitsu M., W. Ebisuzaki, J. Woolen, S. Yang, J. Hnilo, M. Fiorino, and J. Potter,
2002 (in press). NCEP/DOE AMIP-II Reanalysis (R-2). Bulletin of the American

Meteorology Society.

Kumar, A., and M. P. Hoerling, 1995. Prospects and limitations of seasonal
atmospheric GCM predictions. Bull. of the Amer. Met. Society, 76, 335-345.

Kumar, A., and M. P. Hoerling, 2000. Analysis of a conceptual model of seasonal climate
variability and implications for seasonal prediction. Bulletin of the Amer. Met.
Society, 81, 255-264.

Kumar, A., M. P. Hoerling, M. Ji, A. Leetmaa, and P. Sardeshmukh, 1996. Assessing a
GCM'’s suitability for making seasonal predictions. Journal of Climate, 9, 115-129.

Meehl, G. A, and B. A. Albrecht, 1991. Response of a GCM with a hybrid convection
convection scheme to a tropical Pacific sea surface temperature anomaly. Journal of
Climate, 4, 672-688.

Palmer, T. N, and D. A. Mansfield, 1986. A study of wintertime circulation anomalies
during the past E]l Nino events using a high resolution general circulation model. Part
I Influence of model climatology. Quart. J. Roy. Meteor. Soc., 112, 613-638.

Pan, H. -L. and L. Mahrt, 1987. Interaction between soil hydrology and boundary layer
developments. Boundary Layer Meteorology, 38, 185-202.

47



Rasmusson, E. M., and T. H. Carpenter, 1983. The relationship between eastemn
equatorial Pacific sea surface Temperatures and Rainfall over India and Sri Lanka

Monthly Weather Review, 111, 517-528.

Ropelewski, C. F., and M. S. Halpert, 1987. Global and regional scale precipitation
patterns associated with the El Nifio/Southern Oscillation. Monthly Weather Review,

115, 1606-1626.

Ropelewski, C. F., and M. S. Halpert, 1989. Precipitation patterns associated with the
high index phase of the Southern Oscillation. Journal of Climate, 2, 268—284.

Thompson, D. W. J., and J. M. Wallace, 1998. The Arctic Oscillation signature in the
wintertime geopotential height and temperature fields. Geophysical Research Letters,

25, 1297-1300.

Thompson, D. W. I., and J. M. Wallace, 2000. Annular modes in the extratropical
circulation. Part I: month-to-month variability, Journal of Climate, 13, 1000-1016.

Wilks, D. S. 1995, Statistical Methods in the Atmospheric Sciences. Academic Press,
San Diego, CA. 233-281.

Williamson, D. and J. Rosinski, 2000. Accuracy of reduced-grid calculations. Quart. J.
R. Met. Soc., 126, 1619-1640.

48



