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ABSTRACT

The stability and structure of wave-like perturbations imbedded
in a zeonal flow containing vertical and horizontal shear are examined
via an analytical model of a mid-latitude cyclone. The model combines
and extends some work by several previous investigators. Perturbation
methods are used to formulate and solve this model. The model is con-
tinuous in three space dimensions and time. A transformation to geo-
strophic coordinates is employed that includes some ageostrophic
effects, and additional ageostrophic terms are retained after scaling
the primitive equations. The model is adiabatic, frictionless, fully
compressible and the Coriolis parameter varies linearly. Perturbation
series solutions are obtained which incorporate effects from vertical
and horizontal shear upon gquasi-geostrophic and ageostrophic terms.
Normal mode solutions are found which grow due to barotropic and
(primarily) baroclinic instability of the zonal flow.

The specific examples of the zonal flow are chosen to model
closely conditions observed in the atmosphere during incipient mid-
latitude wave-cyclone development. The horizontally averaged profiles
of pressure, temperature and density were chosen to fit the corre-
sponding profiles in the U.S. Standard Atmosphere. A meridionally
variable temperature gradient is used to model a thermal front such

as those observed in the atmosphere.

variable temperature gradient is used to model a thermal front such

as those observed in the atmosphere.
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The stability, structure and energetics of some solutions are
discussed. The lowest-order solutions are in basic agreement with
several previous studies. The effects of the intensity and vertical
structure of the model thermal front are examined in a consistent
fashion. As the intensity of the front increases the growth rate
increases for most wavenumbers. . As the meridional width of the east-
west aligned frontal zone diminishes, 1) the most unstable wavelength
shifts to shorter wavelengths and 2) the fastest moving wave shifts
to longer wavelengths. The structure is changed by the front in two
ways: 1) the amplitude is increased in the vicinity of the front and
2) the meridional scale of the eddy is decreased in proportion to the
scale of the prescribed front. The phase of the eddy pressure field
is changed by the front in two ways: 1) barotropically unstable
tilts are introduced and 2) the westward tilt with height is
decreased in the upper region and increased in the lowest part by
the horizontal shear. Examination of the energy conversions indi-
cates that the two instability mechanisms inhibit each other. The
baroclinic conversion (Kgfi"X;) is reduced by the barotropically
unstable potential vorticity gradient in the interior. The barotro-
pic conversion (E;—:—E;3 is decreased by the baroclinic vertical
shear at the toé and bottom through the boundary conditions (w = 0)
there. The ageostrophic terms 1) introduce meridional asymmetry
into the solution, 2) reduce the growth rate and phase speed and
3) tend to form a jet in a mean zonal flow that is initially only

a function of height. Like the ageostrophic terms, the nonlinear

3) tend to form a jet in a mean zonal flow that 1S 1nitidaiiy ovuay

a function of height. Like the ageostrophic terms, the nonlinear
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distortion caused by the coordinate transformation improves the com-

parison between the model solutions and observed cyclones.
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Figure 14. Sketch of penetrative convection in the upper ocean
due to surface cooling by an imposed heat flux Q.
In the mixed layer, the mean temperature T is almost
constant, while the convective heat flux GT_
decreases with depth. 1In the thermocline, T varies
sharply, while wT increases rapidly. The neutral
level is the level where thermals and anti-ther-
mals have the same temperature. The dotted
curve is the mean-temperature profile at a later
time, showing the cooling in the mixed layer and
the heating in the thermocline.

Figure 15. Plots of the coefficients € and A defined by (50)
and (58), € is the ratio T/(-T'h), and A is the
ratio —(wT)_h/Q-

Figures 16a

and b (a) Dimensionless vertical velocity variance and
(b) dimensionless vertical turbulent flux of
vertical heat flux near the surface, for (1-mD)km=5
and 2m=0.684. Dots correspond to atmospheric
observations presented by Wyngaard, et al. (1971).

Figure 17. Vertical profile of the rms vertical velocity,
scaled by -w,.

Figure 18. Vertical profiles of the vertical-velocity vari-
ance, w?, scaled by wﬁ. The solid curve is the
solution of the present model. The dashed curve
is the numerical solution of Zeman and Lumley
(1976). The dots represent the data of Willis
and Deardorff (1974), run Sl.

Figure 19. Vertical profiles of the vertical flux of tur-
bulent kinetic energy, -%ww?, scaled by w}. The
solid curve is the solution of the present model.
The dashed curve is the numerical solution of
Zeman and Lumley (1976). The dots represent the

data of Willis and Deardorff (1974), run Sl.

Figure 20. Vertical profiles of the temperature variance,
(T-T)?, scaled by (u*/Q)Z. The solid curve is
the solution of the present model. The dashed
curve 1s the solution of Zeman and Lumley (1976).
The dots represent the data of Willis and Deardorff
(1974), run S1.

Figure 21. Vertical profile of the mean temperature, T, scaled
by Th.
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Figure 21. Vertical profile of the mean temperature, T, scaled
by Th.
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CHAPTER ONE

INTRODUCTION




Air-sea interactions cannot be successfully modelled without

a deep knowledge of the upper-ocean dynamics and thermodynamics.
The currents and variations of temperature and salinity in the upper
ocean are induced and controlled by surface atmospheric conditions,
oceanic lateral advection, and deep oceanic conditions. The com-
plexity of the situation can, however, be somewhat simplified by
classifying the various processes which take place in the upper
ocean. They are: turbulent mixing by wind stirring or mean current
shear, convection, penetrative convection, entrainment of stratified
fluid, and re-stratification. All these processes involve small-
scale turbulent motions, in space as well as in time. In this work,
the resulting fine structure is studied in order to achieve a better
knowledge of the dynamics and thermodynamics in the upper ocean.
Upper-ocean processes can be thought of as the relative motion
of two interacting fluids: the sinking fluid parcels generated near
the surface and transmitting surface information downward and the
rising fluid parcels forming the return flow. The former play the
active role in mixing and convection, and are called thermals. The
latter play the alternate passive role and are called anti-thermals.
A general theory based on this concept is developed and applied to
various cases, including deepening of the wind-mixed layer, penetra-

tlve convection due to surface cooling, and upper-ocean frontogenesis
due to horizantal aduvaneian . - .

tlve convection due to surface cooling, and upper-ocean frontogenesis

due to horizontal advection.



The work is divided into several chapters (Chapters 2 to 5),
each of them being a discrete and independent entity. As an advan-
tage, the reader interested in one specific topic may limit his/her
reading to a particular chapter without facing problems understanding
symbols or basic ideas. Despite advantages, this presentation leads
to some unavoidable repetition, for which the author apologizes.

Chapter two is the development of the general theory of mixing
and convection, based on the concept of a two-fluid system. It is
an application of the dynamical theory of interacting continua pro-
posed by Kelly (1964), developed by Green and Naghdi (1965), and
generalized by Truesdell (1969). The equations are written for two
interacting Boussinesq fluids in a rotating frame. Interaction terms
are parametrized for the purpose of geophysical situations. Pairs of
governing equations are derived for thermals and anti-thermals. Each
pair meets an Invariance Principle as a consequence of reciprocity in
the roles played by thermals and anti-thermals. Considerable sim-
plification is obtained by assuming that the response time of tur-
bulence is much less than the time scale of evolution of the overall
system. This assumption is realized in all geophysical situations.
Each pair of governing equations is transformed into an average
equation for which interaction terms cancel, combined with a very
simple equation linking the two fluid properties. An important
parameter of the model is the fraction, f, of area occupied by

thermals. Since a closure assumption is needed, a dynamic satu-

Pation annilihnmisim bmdeemmm 4l e d o a3 e XL S 23

thermals. Since a closure assumption is needed, a dynamic satu-
rdation equilibrium between thermals and anti-thermals is assumed.

This implies a constant value of f throughout the convective layer.




Chapter three is the application of the theory to the deepening

of the wind-mixed layer. In view of simple algebra, the model is
one-dimensional, frictionless, and neglects the turbulence produc-
tion by the mean-flow shear in the thermocline. Hence, the increase
in potential energy required for deepening is supplied by the tur-
bulence input at the surface. The analytical treatment of the
equations is simplified using the well-known facts that the mixed
layer is quasi-homogeneous and that the thermocline is a thin layer
of large gradients. The vertical structure throughout the mixed
layer and thermocline is given by an analytical solution. Vertical
profiles of mean velocity components, mean temperature, and vertical
fluxes of momentum and heat are then plotted. The solution also
yields bulk formulae predicting the rate of deepening, the thermo-
cline thickness, and the mean surface temperature. As the mixed
layer deepens, the thermocline shallows, vertical profiles, there-
fore do not remain similar to themselves in time. The analytical
solution is not self-similar.

Chapter four is the application of the theory to penetrative
convection due to surface cooling, as it occurs past mid-fall and
during winter. The model is still one-dimensional, but includes
dissipation. Wind stirring plays an important role when the con-
vective layer is shallow, but rapidly convection dominates the
process. Thermal instability itself supplies the kinetic energy

required for stirring and deepening. Wind stirring is therefore
ionared in +hot cantian Aacriiminm A Anned hamAadcananns mioad 1ouraw

required for stirring and deepening. Wind stirring is therefore
ignored in that section. Assuming a quasi-homogeneous mixed layer
and a sharp thermocline, a single non-similar analytical solution

is found. Vertical profiles of mean values and vertical fluxes



are plotted for the mixed layer and the thermocline. The solution
also yields bulk formulae predicting the rate of deepening, the
mean surface temperature, the heat flux at the bottom of the mixed
layer and the thermocline thickness. Although the results
presented here focus on convection in the upper ocean forced by sur-
face cooling, they also apply directly to convection in the atmo-
spheric boundary layer above a heated ground.

Chapter five is a study of advective effects and their inter-
actions with wind-mixing effects. A case of frontogenesis is
chosen in order to include lateral variations in advection and
mixing and in order to understand better frontal dynamics of the
large-scale oceanic fronts in the central North Pacific. Inter-
actions between advection and mixing result in important cross-
front asymmetries in properties such as mixed-layer depth, pvcno-
cline strength, and/or mixed-layer density. Two cases are treated
separately: the case of convergence (when the water masses downwell
at the front) and the case of confluence (when the water masses

form a long-front current).




CHAPTER TWO

A GENERAL THEORY OF MIXING AND CONVECTION:
MODELLING BY TWO BUOYANT INTERACTING FLUIDS




1. INTRODUCTION

Convection may be caused by either an initially unstable
situation or by a continuously-applied external forcing. In
most geophysical convective situations, convection is of the latter
kind and is maintained by a forcing which is almost invariably
applied along one boundary rather than within the fluid. The theory
developed here attempts to model-convection when convective motions
are driven under such circumstances. Convection of air above a
heated ground, mixing of the upper ocean under the action of wind
stress and/or surface cooling, and penetrative convection in stars
are some examples.

Along the boundary where the forcing is applied, fluid par-
ticles coming from the interior are altered; their velocity
components and/or temperature are modified. The same particles
thus leave the boundary with new properties. As a consequence of
this mechanism, convection can be thought of as the relative motion
of two different fluids: the fluid particles coming from the
interior toward the boundary, and the altered fluid particles leav-
ing that boundary with different properties. The latter play the
active role in convection and will be called thermals. This name
was adopted by glider pilots for masses of warm air rising from
hot ground. Ever since, this word has been widely used in the

field of convection. The other fluid parcels play an alternate
Dassive role and will ke An11-9 amdtd 2haswaT - S

field of convection. The other fluid parcels play an alternate

passive role and will be called anti-thermals.




The model presented here does not require interpreting thermals
and anti-thermals as discrete elements. Particles will not be
numbered nor will they be assigned a volume. The two fluids may
be considered like plumes, puffs or other forms (Scorer, 1978).
However, the terminology of thermals and anti-thermals is used for
convenience because discrete elements are more easily perceived.

As a formal extension, the word thermal will be even assigned
arbitrarily to non-buoyant fluid having an excess of momentum.

Priestley (1959) has shown how one can obtain information
about the mean properties and the fluctuations in air over a heated
ground by considering it as the superposition of many closely-spaced
convecting elements. However, his approach is limited to environ-
mental lapse rate constant with height and does not allow the
elements to grow or decrease as they migrate vertically.

The model developed here is an extension of the dynamical
theory of interacting continua proposed by Kelly (196u4) and Green
and Naghdi (1965), and extended by Truesdell (1969). For the
present purpose, equations are written for a two-fluid continuum
in a rotating frame. The Boussinesq approximations are made
(Spiegel and Veronis, 1960), and interaction terms are parametrized
in view of geophysical situations.

The forcing along the boundary generates thermals at the
expense of anti-thermals, whereas interactions between the two

fluids in the interior progressively transform thermals back to

anti-thermals. Thermals are directlv dniven hv +tha avtanrnal

fluids in the interior progressively transform thermals back to
anti-thermals. Thermals are directly driven by the external

forcing, while anti-thermals are driven by reaction to the thermals



(continuity of mass, conservation of momentum and heat). The two
fluids have different properties; their relative motion is thus
a mechanism capable of transferring heat, momentum, energy, or any

other constituent, through the convective layer.

2. FRACTION OF AREA OCCUPIED BY THERMALS

At a given level, any horizontal surface is crossed by thermals
and anti-thermals. At a given time, a given horizontal area A is
occupied partly by thermals and partly by anti-thermals (Figure 1).
From a hypothetical instant infra-red picture detecting warm and
cold regions, one may compute the fraction of area occupied by ther-
mals for that surface at that time. That value inevitably varies in
a certain range, and a theoretical ensemble average yields, in a
statistical sense, a local instantaneous mean value. If one evokes
the hypothesis of ergodicity, this averagipg process 1s equivalent
to an average over horizontal distances and time intervals short
compared to lateral and temporal scales of variation characterizing
the whole system. The resulting quantity, noted as f, is dimension-
less, positive and less than unity (Manton, 1975). As a direct result,
the fraction of area available to anti-thermals is (1-f). Although
it is anticipated that f will be assumed to be a constant, the govern-
ing equations derived hereafter are written in a general framework,
allowing local and temporal variations of f.

The observed mean value of any quantity is a combination of

allowing local and temporal variations of f.
The observed mean value of any quantity is a combination of

contributions due to the two fluids in the ratio of their respective



Anti-thermals

The fraction of area occupied by thermals at any level
is the instantaneous local value, averaged over horizon-

tal distances and time intervals short compared to lateral

45 e luswdlltaneous local value, averaged over horizon-
tal distances and time intervals short compared to lateral

and temporal scales of variation of the overall system.
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available areas:

horizontal velocity u = fu' + (1-f)u", (1)

v o= fv' o+ (1-f)v", (2)
vertical velocity w o= fu' + (1-f)w", (3)
pressure p = fp' + (1-f)p", (u)
density o= fo' + (1-£)o", (5)
temperature T = £T' + (1-£)T", (6)

where primed and double-primed quantities refer to thermals and
anti-thermals, respectively. The bar thus represents an operator
averaging over short horizontal distances and short time intervals
in the sense defined previously. It indirectly assumes that each
fluid is characterized by single values rather than by distribution
functions of their properties.

The above relations, rather than a definition of mean values,

constitute the mathematical expression of the average operator:
a = fa' + (1-f)a",

where a represents any physical quantity. The application of this
operator may also define momentum, heat and energy fluxes. In the
context of Boussinesq approximations, the vertical fluxes of hori-

zontal momentum (Reynolds stresses divided by po, the reference den-

sity) are:

-uw = -fu'w' - (1-f)u"w", (7)
-vw = ~fvlw' - (1-f)v'w", (8)
—uw = -fu'w' - (1-BHu"w', (7)

-vw = ~fv'w' - (1-f)v''w", (8)
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the kinematic vertical convective heat flux (heat flux divided by

p C ) has the form:
o p

Wl = fw'T' + (1-£)w"T", (9)

and the vertical flux of turbulent kinetic energy reads:

L w ((u=T)2+(v-7) 2+ (w-7)2)
= Lt (0T 24(v'-7) 24 (u' =) 2)

+ B(1-F)w' ((0"'-0) 2+(v"'=7) 2+ (w"-7) 2] . (10)

Other fluxes may be defined in an analogous way but are not of
primary importance to geophysical convection problems.
Finally, the averaging operator may also be used to define |
root-mean-square (rms) quantities, measuring departures from mean
values. If a represents any physical quantity, the rms fluctuation

is defined as:

_ L
qpms t(a- 3)2 2 (11)
1.2., aims = f(a'-3)2%+ (1-f)(a"-3)2. (12)

Simple calculations yield:

1 . 24
Srms (igfiz(a'_g) =_(£E£15(a”_5) (13)

[f(l—f))%(a'—a”). (14)

The sign is selected as to yield a positive value when the thermals

quantity a' exceeds the mean value a. The rms fluctuation is

directly proportional to the difference between thermals and anti-

theymale —acv —waceo wo wus meaun vatue a.  The rms fluctuation is
dlrectly proportional to the difference between thermals and anti-

the :
hermals values, and is zero when these values are equal and do not
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differ from the mean.
3. MASS AND VOLUME EXCHANGES BETWEEN THERMALS AND ANTI-THERMALS

Thermals and anti-thermals continuously exchange mass and,
conéequently, momentum, heat, and energy. At any moment and at any
location, either thermals or anti-thermals lose some of their mass
to the other. The exchange is controlled by Em, the mass exchange
per unit time and total volume of fluid (kg m3s 1), However, in
the Boussinesq framework, that quantity is advantagedusly replaced
by the volume exchange, E, per unit time and total volume (s™1
defined as:

E=—, (15)
where o0 is the reference density close to the actual densities of
thermals and anti-thermals, p' and p'", respectively. By definition,
the mass exchange, Em, is chosen to be positive if anti-thermals
lose mass to thermals and is negative if thermals lose mass to
anti-thermals.

In subsequent sections, it will be assumed that heat and
momentum are transferred exclusively through this mass exchange,
thus excluding transfer by diffusion or collision. However, this
assumption may be questionable for highly turbulent clouds, where
momentum exchange between air masses can occur without mass

exchange, as in a collision.

f sy e uweci Gl m@dSES Al OCCUr without mass

exchange, as in a collision.
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4. INVARIANCE PRINCIPLE

From a semantic point of view, thermals and anti-thermals play
reciprocal roles: what is lost by one is gained by the other.
Thermals may be labelled anti-thermals and vice-versa. Their dy-
namics and thermodynamics are therefore to be governed by corre-

sponding equations and the following Invariance Principle must hold:

Principle: All the governing equations must be invariant under the
transformation:
primed quantity «—» double-primed quantity
f=-—1-f

E =—-E

rms fluctuation —=— -rms fluctuation.

It may easily be seen that any mean quantity such as u, -uw,

wT, ... is invariant under that transformation, and equations for

mean values will thus automatically meet the Invariance Principle.

5. GOVERNING EQUATIONS

The dynamics and thermodynamics of two interacting fluids are
parts of the mathematical theory of mixtures. This latter theory
aims to represent exchanges of mass, momentum, heat, and energy.

Particular cases are theories of diffusion and chemical homogeneous

PeaC‘tiOnS aAand kinoatia +Fhomnt ae A0 - 50 cinssscwany HINW L T AU CUCDEY
Particular cases are theories of diffusion and chemical homogeneous
reactions and kinetic theories of heterogeneous continua. A general

framework for all such theories has been laid down by Kelly (1964),
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green and Naghdi (1965), and Truesdell (1969, Lecture 5) so as to
“include magnetohydrodynamic and other effects. Here, the governing
‘equations are written for a two-fluid Boussinesq rotating continuum.

Moreover, interaction terms are parametrized in view of geophysical
‘situations.

Thermals and anti-thermals have relatively large vertical ve-
locities. Due to these sinking or rising motions, they do not have
time nor do they go far enough laterally to be affected by temporal
‘and horizontal variations in the overall system. As a result, in

any equation, operators such as
‘3_ ' _3_ 1ot G 1ot i_ _ nan
3,C(fa ), ax(fu a'), gy(fv a'), ax((l flu"a ),

lead to terms which are negligible compared to these involving the

tical operators applied to the same quantities:

3 11 3__ gt
—a-z—(fw a'y, aZ((l—f)d a ],

However, it will be seen in the treatment of the continuity
1]

tions that, in the case of zero global vertical motion, w' and

9 — 3 ,—  Y—
3t a, '5;( a), ‘5}‘( a)
8 — 3 ,— 5 —
3t a, E’( a)s W( a)
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operator:

a —_—
v (wa)

These conclusions are equivalent to stating that the response

time of the two interacting fluids is much less than the time scale
of evolution of the overall convective system.

. The system is thus characterized by two time scales: time
variations of the whole system will be resolved at the long time

‘scale, by assuming a quasi-instantaneous response of the fluctua-

tions at the short time scale.

or thermals: ) oy (l - a(T'-TO)), (16)

or anti-thermals: p" oy (l - a(T”—To)], (17)
where o is the coefficient of thermal expansion ( «=3.5x1073 %¢-!

e - _ o - _ .

for air at 15°c, a=10"% °c-! for pure water at 10°c), and TO is the
*rence temperature. The mean density is related to the mean

temperature by:
L

o |

=p, (1 - aT-1)). (18)

’ o =0, (1~ aT-1)). (18)

llatter result is obtained simply by summing (16) and (17) pre-
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multiplied by £ and (1-f), respectively. (If density is a linear
function of salinity , an equation similar to (18) may be derived.)

In the Boussinesq framework, the variations of density are
small, and the continuity equation is equivalent to the law of
conservation of volume (Spiegel and Veronis, 1960). The equations
become:

for thermals:

S_
ot

E__ 1 a t a 1
f+ax(fu)+§(fv)+a—z(f‘ﬂ)

E, (19)
for anti-thermals:

a a " 3 " 8 Fay " -
Te(1-£) + 3;((1—f)u ]+ W[(1—f)v )+ 5 ((-f)w ] = -E, (20)

where E is the volume exchange between the two fluids, per unit
time and volume, and is positive if anti-thermals lose mass to
thermals (positive divergence of the thermals velocity field). It
may be easily shown that the above two equgtions meet the Invariance
Principle,

Summing (19) and (20), an averaged continuity equation is
obtained:

L

ST+
ax ay

T+ =o. (21)
9Z

As stated in the preliminary remark, the term ow/3z of this equation
is the sum of the dominant terms in the left-hand sides of (19) and
(20). The two other terms, du/9x and dv/3y, are the sum of negli-

gible terms. Therefore, the two contributions to ow/3z almost

(20). The two other terms, du/dx and 3v/3y, are the sum of negli-

gible terms. Therefore, the two contributions to 9w/dz almost

cancel each other, and one may write:
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i.e., the mean vertical velocity is z-independent. Since, in most
cases, there is no mean upwelling or downwelling, this mean veloci-
ty ought to be zero everywhere, leading to a relationship between
w' and w':

w o= fw' + (1-f)w" = 0. (22)
To the same level of approximations, equations (19) and (20)

reduce to:

E :a—(fw') =

- ~((1-£)w"). (23)

o)lc)

In the regions where variations of f are unimportant, E=f3w'/3z,
i.e., thermals grow (E > 0) when they accelerate (dw'/3z > 0), and
decrease in size (E < 0) when they decelerate (3w'/3z < 0). Note
that E has not been parametrized in any manner.
d) Heat conservation equation:
In the context of Boussinesq approximations, the heat conser-
vation equations are:
for thermals:
2(er) ¢ 2 (urTr) + S(EvITY) ¢ S(E'T') = = E(TIHTY), (28)
ot ox Ay 3z 2 ?
for anti-thermals:

3 d 3
—-—t—(('l—f)T"] +o—((1-HHu"t) + —agf—((l—f)v”T”] + =—((1-£)u)

=

= 5—E(T‘+T"), (25)

where molecular diffusivity and internal source of Jheat are noclaont-
-—-5 E(T'"+T"), (25)

where molecular diffusivity and internal source of heat are neglect-

ed, since they are unimportant for most geophysical convective situ-
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ations. The heat exchange between thermals and anti-thermals is
modelled by a transfer of mass at the mean temperature (T'+T'")/2. A
justification of this parametrization and a discussion of a more
general formulation is presented in Appendix B.

The above equations, which meet the Invariance Principle, could
also have been written in terms of the buoyancies

b'! =—ag(T'—To), b" :—ag(T”~To).
The sum of equations (24) and (25) yields the global heat con-

servation equation:

3
ot

3

— 3 — _
3y VT+§EWT— 0, (26)

T+ 0T +
ax

which expresses that the time rate of change of the mean temperature
T is equal to the negative of the divergence of the convective heat

flux. In the case of horizontal homogeneity on scales much larger

than the one of thermals, the reduced equation is:

%‘?TIT: -EWT’ . (27)

where the vertical convective heat flux wT is defined by (9).
Subtracting from (24) and (25) the continuity equations (19)

and (20) pre-multiplied by T' and T", respectively, and assuming

that thermals and anti-thermals do not have time to see lateral and

temporal variations (preliminary remark), one obtains:

T!
1
fw 3

(1-£)ndTt
9%

w

E(T"-T"), (28)

E(T"-T'). (29)

BT— LUl —L ), (28)
3T

_ n
(1-f)w .

[T SIS T S

E(T"-T'). (29)
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By use of (22), the difference of these two equations leads to:
9 -
(T* +T") =0, (30)
oz

stating that vertical variations of temperatures are inversely
correlated. This last equation is remarkable by its simplicity.
As one may expect, similar results will be obtained from the
treatment of the horizontal momentum equations, and these will
greatly facilitate further computations.
e) Horizontal momentum equation:

In the context of Boussinesq approximations, the horizontal
momentum equations on a rotating fo—plane are:
for thermals:

—a_ ! E_ ' 1 _8_ 1 t a__ g ! 1 !
at(fL~1 )+ Bx(fu u') + By(fv u') + aZ(lw u') + ff kxu

(@]

) _¢l>_ v, (fp') + %E(g'ﬂs”) + %{l‘zf)E(g'-g”), (31)

for anti-thermals:

g_t((l_f)g-”) + %;((l—f)u"g”) + g_y((l"f)v"kl") ¥ %((l_f)wllgll)
+ (1-D)F jo" = -;- v, ((1-D)p") - 2 E(u'+u") - Z(1-20)E(u'-u"),
o -

(32)
where u'=(u',v',0), g”=(uﬁ,v”,0) are the horizontal velocity com-
ponents of thermals and anti-thermals, respectively, k=(0,0,1) the
vertical unit vector pointing upward, VH the two-dimensional
gradient operator (§§3%§30), and fo is the Coriolis parameter.
Thermals and anti-thermals are subjected to two different pressures

(Truesdell, 1969). Viscous forces are neglected since they are

unimportant for most geophysical convective situations. The ex-

(Truesdell, 1969). Viscous forces are neglected since they are
unimportant for most geophysical convective situations. The ex-

change of momentum is modelled by a transfer of mass at the mean
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horizontal velocity (g’+9")/2, analogous to the heat transfer. It
may be shown that this form of exchange is the only one that con-
serves total kinetic energy in the horizontal motion. The last
term of each equation represents a kinetic energy exchange, which is
converted to kinetic energy in the vertical motion (See section
about energetics). Finally, it may be seen that the pair of equa-
tions meets the Invariance Principle.

The sum of equations (31) and (32) yields an equation governing

the mean horizontal momentum u=(u,v,0):

a_

Py (33)

|

L w+ Wi -vp
~ 9z~ o~ =

a JE—
+ % WY + 5y o ~Hp.

= |

In the particular case of horizontal homogeneity at large scales,

the two components of equation (33) reduce to:

9 — 9 —

3—1';_ fOV = - S—Z-'-uw, (34)
v — 5 —

%%'*‘ fou = - a—ZVW, ] (35)

where the Reynolds stresses -uw and -vw are defined by (7) and (8).
Subtracting from (31) and (32) the continuity equations (19)

and (20) pre-multiplied by u' and u'", respectively, and assuming

that the vertical advection terms dominate (preliminary remark),

one obtains:

il gt = By, (36)
né__ [ — M_qy !

w'sou'" = E(ut-u'). (37)
wn_g__ u' = E(Bn_gv ) (37)
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By use of (22), the difference of these two equations leads to:

(1-f)g—£ ut f%z— ut = 0, (38)

which is comparable to (30).

£) Vertical momentum equation:

In the context of Boussinesq approximations (Spiegel and
Veronis, 1960), densities may be approximated by the reference den-
sity I everywhere except in the buoyancy terms where actual values
have to be kept. For two interacting fluids, the vertical momentum
equations are:
for thermals:

8_1 E_tv 9 (- é__lv
Bt(fw ) + ax(fu w') + Sy(fv w') + aZ(fw w')

- -%—g;{fp') -%fp' +%E(w’+w”), (39)
O O

for anti-thermals:

3 9 3 d
So(@=fun) + —((-f)um) + W((1-f)v"wvv] + 5 (-E)um)

L2 (-0pr) - B41-6)p" - L B, (+0)
O O

The sum of these two equations yields an equation for mean

quantities:
LR - B T S - S
i % U + 5y VWt oW s S 9% o 0. (4l1)

The main balance consists of the terms on the right-hand side, i.e.,
the hydrostatic balance. The fourth term dominates the left-hand
side, because w' and w" do not cancel their effect in the correla-

tion ww and vertical advection dominates. Using (13) and (22), the

s1de, because W' and w'" do not cancel their effect in the correla-
tion ww and vertical advection dominates. Using (13) and (22), the

Reynolds stress ww is found to be equal to wims , and (41) may be
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rewritten as:

w2 (42)

which simply is the hydrostatic relation corrected by the Reynolds
stress divergence. To obtain an equation governing the vertical
motions, this equation will be sutracted from (39), and this correc-
tion will become of the same order as the remaining terms.

A vertical velocity equation is needed in order to predict
vertical motions through the convective layer. That equation, ob-
tained by subtracting (42) multiplied by f from equation (39),
using (13), (22), (23), and assuming once again that vertical advec-
tion is the dominant term of the total time derivative (preliminary

remark), is:

ow p+mp
rms 2m rms 2 2 of
Sm wrms 9z * 1-2f ( po (1+m?) wrms 9Z
_ 1
- o Tr'ms oy 3z Prms’ _ (43)

where m is a coefficient dependent on f only, defined by:

m=—12f (uy)

2(£(1-))7
This diagnostic equation controls the vertical motion of ther-
mals and anti-thermals. It relates the vertical acceleration to the
buoyancy. The pressure term allows an exchange of kinetic energy
between horizontal and vertical motions. The equation finally in-

cludes a correction term due to eventual changes in f.

e e D 2N )

cludes a correction term due to eventual changes in f.
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In the above set of governing equations, the unknown variables
are u', u", u, v', v", v, w', w", W} T', T", T, p', P", p, £, and E.
There are thus 17 variables for which 17 equations are needed.

The definitions of mean values u, v, w, T, and p [(L), (2),
(3), (4), and (6)] yield 5 equations. The two continuity equations
(19) and (20) may be equivalently replaced by (22) and (23). The
heat conservation equations (24) and (25) may be replaced by (26)
and (30), the horizontal momentum equations (31) and (32) by (33)
and (38), the vertical momentum equations (39) and (40) by (42) and
(43). Since the horizontal momentum are two-dimensional, there are
5+2+2+4+2 = 15 independent definitions and governing equations.
One needs thus two extra equations to solve the problem for the 17
variables. A closure hypothesis will provide the first one, while

an examination of the energetics will provide the second one.

6. CONSERVATION OF FRACTION OF AREA OCCUPIED BY THERMALS

Where thermals accelerate, they tend to separate vertically and
to grow by entraining surrounding fluid (Turner, 1973, Chap. 6
and 7; Scorer, 1978, Chap. 8). Isolated thermals may grow freely,
but in presence of many others, they grow until they feel a strong
return flow more and more confined to a reduced fraction of area.
This return flow will tend to erode the thermals, preventing them

form growing any further. and a satnratinn enniTihminm +olan ~1---

This return flow will tend to erode the thermals, preventing them
form growing any further, and a saturation equilibrium takes place.

Inversely, the same equilibrium state does occur in regions where
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Expand ¢ and Y in powers of U.

6= wgy + e+ L

(9)
b=y oy

The horizontal shear in the basic state is included in wl; if it were
in Y the problem would not be separable. We chose wo so that

C -
dy = 0, where Aoy is the lowest-order part of a quantity related to

the meridional gradient cf Ertel potential verticity (see Charney and

Stern, 1962). For convenience, the quantity g will be referred to as

the potential vorticity.

=B -U - U - €U - =
Ay = B OXX ovy ~ Yozz T 38Uz = O (10)

here U = -y _.
" (e} qu

Assume the solution has a wave-like form
b = Re%&(y, 7) exp(ik (X - CT))} . (1la)

This form is consistentwith the X boundary conditions. The complex
phase speed C is the eigenvalue in this problem so it is also

expanded.
(11b)

Substitute (g9) - (11) into (g8) and equate like powers in M. At

the i + 1 order in U, a complex two-dimensional Poisson equation for

"

¢4 is obtained. The problem can be expressed as

the 1 + 1 order in Y, a complex two-dimensional Poisson equation for

”~

¢i is obtained. The problem can be expressed as

m
™
-

N N . g N
- = 12
ZZ’(¢i) . + a6E¢iz k ¢i + ¢iYY Fi , (12a)




PaY _/\ U ey
]D(f.):v. - —9Z 5 -3 atz-=0,1 (12k)

¢, =0 at Y = +Y. . (12c)

The differential operatorsTEA andlI) are defined by (12), where the
"vertical" boundary conditions, w= 0 at the top and bottom, (12b) have
been expressed using the adiabatic equation (5¢). The meridicnal

poundaries are located at Y, .

b
The lowest-order problem is homogeneous, that is, Fo = BO= 0, and
is solved in a fashion analogous to that used by Eady (1949). 2 Y

~

dependence of ¢ is chosen which satisfies (12c), reducing (l2a) to an
ordinary differential equation for the Z dependence of @. The verti-
cal boundary conditions (12b) provide the constant that links the two
solutions of (l2a) and prescribe Co'

A cos(mY¥} dependence upon Y will be chosen for the first-order
solution; further, the meridional and zonal wavenumbers will be set
equal, m = k. In order to satisfy the conditions (1l2c), the bound-

aries +Y are placed where cos(mY) vanishes. Therefore, the posi-

b

tion of the meridional boundaries is a function of wavelength.

To second- and higher-order, the Poisson equation and vertical
boundary conditions are, in general, heterogeneous. The same differ-
ential operator appears on the left-hand sides of (12) at each order
in Y, and it has a nontrivial homogeneous solution. Thus, the hetero-

geneous terms must satisfy an orthogonality condition in order to
- . - . . - N T S TP B Cra~ifi~allv. +he

geneous terms must satisfy an orthogonality condition in order to
find a solution at the second and higher orders. Specifically, the

heterogeneous terms must be orthogonal to ¢*, the homogeneous solution
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of the conjugate of the "total adjoint operator." The total

adjoint operator includes the boundary and interior differential

operations and is described in Appendix A. For this problem, the

heterogeneous terms must be orthogonal to

b* = exp[a62]$o .

The orthogonality condition is used to specify Ci for i > 0 and can

be expressed as (see Appendix D):

C.
i

- ’ (13)

where Bi* = Bi - $oZCi/(UO - Co).

When Co is purely real, special care must be taken when evaluat-
ing (13). First, Fi will have a singular point along the Z integra-
tion path at the critical level where Uo = Co. Evaluating the singu-
lar integral by using the Cauchy Principal Value is apparently not
appropriate. However, since we are interested in the growing modes
and in order to avoid the singular point, Qe deform the contour of
integration gg_if_co had a small positive imaginary part. The inte-~
grand is analytic and we deform the contour to the Im(Z) < 0 side of
the pole. The justifications for this procedure are discussed in
detail by McIntyre (1970). Second, where Co is purely real two solu-

tions of different phase speed and vertical structure occur at lowest-

QE€TAall DY MCLNTYLE (LI/uUj . et R P . -~ oL
tions of different phase speed and vertical structure occur at lowest-

order. In evaluating (13), we chose the slower moving of the two

solutions since it is probably more relevant to this study. This
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point is treated by Green (1960, p. 243). Note that the regions of
the spectrum where CO is purely real will not be important and are not
emphasized in this report.

~

Once Ci is obtained, ¢i can be calculated. McIntyre (1970) solved
the quasi~geostrophic form of the heterogeneous (12) in Cartesian coor-
dinates by using Generalized Green's Functions for the Z dependence
and employing an infinite transcendental function series for the Y
dependence. In this study, direct numerical techniques are used which
are computationally much faster and yet still highly accurate. This
approach allows us to choose almost any reasonable profile for ), and
to include the O(u) ageostrophic terms with ease. The details of the
numerical procedure are discussed in Appendix B.

Many of the results are presented here in nondimensional form.
However, it is useful to mention the magnitudes of the scaling param-
eters used. From the static state we determine that K = .14, a, = -1

6

and H = 8.32 km. The Rossby radius of deformation is chosen for the

. . 4 .
horizontal length scale, L. It can be determined by setting € = 1.

If we choose a vertical scale D = 10 km and a mean Coriolis parameter

fO = lO"4 sec'_l (which corresponds to a central latitude of 43.259

on the earth), then L = 1100 km. An appropriate length scale for a
wave is the quarterwavelength, hence the model is suitable for
describing waves of ~4500 km wavelength. A reasonable choice of B for

this L and fO is B = 1. We choose a velocity scale V = 22 m/sec so

that the Rossby number u = .2.

1l L aliu L “aD P - L. we ClUUbDE d VELULLLY Slalde v — <L Uiy dee buU

that the Rossby number py = .2.

4 .

Note that € is inversely proportional to the Richardson number.
Define Ri = gDK/V2 then E_l = Riu2 = 1, thus € = 1 can be used to
define the Rossby radius of deformation.



4. TIRST-ORDER SOLUTION

The solution of the lowest order form of (12) is discussed inthis
section. It is similar to a result obtained by Eady (1949) with modi-
fications caused by the variable Coriolis parameter, compressibility and
the geostrophic coordinates transformation.

If we assume that the Y dependence of ¢o is given by cos(mY) and

define

¢ (¥,2) = cos(my) ¢_(2)

then the first-order part of (1l2a) reduces to:

~ ~ 2~
¢oZZ T aghoy T C <bo =0 (14)

where az = (m2 + k2)/5 = 2k2/g since we have set m = k. It is conveni-

ent to write the solution of (14) in the form -

Azz
¢ = e cosh(AlZ) + A-sinh(AlZ) , (15)

where A, = 1/2(a 2 + 4@2

2
1 ) and A_ = a6/2.

6 2
The solution (15) is valid up to an arbitrary multiplicative

constant since (14) is linear; the remaining complex constants A and

CO are determined from the vertical boundary condition:

C U]
6 -|—2~|¢. =0 atz=0,1. (16)
[ Yo |
5 - | —22¢ = tz=0,1. (16)
C‘boz Uu -cC ¢o 0 a
L © o]
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From (15) and (16) evaluated at Z = 0,

: (oY 2

A= —  _ £
. (17)

CoAl Al

Recall that the corresponding Eady (1949) result is A = -Uo (0)/C a.
o

Using (15), (17) and (16) at Z = 1 the complex phase speed is found.

2 1/2
_ b £ (b - 4ae) .
Co - 2a (18)
( 2 ) .
where a = | — sinh(A,)
1
l
b = { (1) cosh(Al)
A22 A2
+ U, (1) e + q(uozw) + Uoz(l)) sinh(a))

e = -U _(0) U (1) cosh(A )
oZ

A

U __(0)
oz . :
_ [ - (AzUo(l) - UOZ(l))} sinh(a,)

While B does not appear explicitly in (14) - (18), it does appear

implicitly in the definition of Use

-a_Z
UO=A(e 6 -1)+ B2 (19)

This profile of Uo satisfies (10). It has westerly vertical shear

that increases with height for the values of A chosen in this study.

This profile of Uo satisfies (10). It has westerly vertical shear
that increases with height for the values of A chosen in this study.

Fig. 2 shows two profiles of Uo’ one for B = 0 (A = .8) and the other
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Fig. 2 The lowest-order basic state wind profiles, UO(Z) for B =0
(A= .8) and for B = 1 (A =1.4). In both cases ag = -1. The
westerly vertical shear increases with height, but reaches a
much larger maximum at Z = 1 in the B = 1 case. These pro-
files are used for the corresponding f-plane or B-plane
experiments discussed in the remaining sections of this arti-
cle.

cle.
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for 2 =1 (A= 1.4). These profiles will be used for the calculations
of the second-order solutions when B = 0 or 1, respectively.

The first-order growth rate and phase speed spectra for the basic
state velocities shown in Fig. 2 are presented in Figs. 3 and 4,
respectively. Since (18) is guadratic there are two modes. When Co
is complex the two modes have the same phase speed and form an ampli-
fying/decaying conjugate pair. The decaying mode is not considered.
When CO is pure real the phase speeds differ. The solutions for B =0
are analogous to the results of Eady (1949); the relatively minor
differences for CO are due to the inclusion of compressibility. The
inclusion of the variable Coriolis parameter induces two major effects.
First, the amplitude of the phase speed and growth rate are diminished.
Second, a long-wave cut-off to the instability is introduced. While
8 does not explicitly appear in (14) it does enter into (16) through
(19). (DPue to (10) and (12c), the solution is forced by the vertical
boundaries.) The results for B = 1 are cognate with Green (1960, Fig.
2) except that critical layer instability as interpreted by Bretherton
(1966b) is not possible, so a short-wave cut-off is also present at
lowest order. As in Green, the low rigid 1id makes B stabilize the
solutions (see Lindzen et al., 1979).

The reduced propagation speed due to the nonzero £ can be
understood from the geopotential tendency eguation. For B # 0 we
have a nonvanishing planetary vorticity advection term. This term

is positive east of the trough and negative west of the trough, which

have a nonvanishing planetary vorticity advection term. This term
is positive east of the trough and negative west of the trough, which

is opposite to the contribution by the relative vorticity advection
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Fig. 3 Growth rate spectra for the two velocity profiles shown in
Fig. 1. The parameter O is related to the wavenumber,
k2 = g€02/2. The maximum growth rate is less for the B = 1
than for the B = 0 profile. The variation of the Coriolis
parameter also introduces a long-wave cut-off (necar a ~ 1.2)
and the short-wave cut-off (near a ~ 2.4) is shifted to a
slightly smaller value of 0. See the text for a more com-
plete discussion of Figs. 3 - 6.
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plete discussion of Figs. 3 - 6.
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Fig. 4 Phase speed spectra for the two velocity profiles shown in
Fig. 1. The f-plane profile is similar to the result
obtained by Eady (1949) as was the growth rate spectrum
shown in Fig. 3. The B-plane profile is similar to results
obtained by Green (1960). The variable Coriolis formulation
reduces the phase speed. Because (18) is quadratic, the
phase speed is doubly valued for neutral waves.
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reduces the phase speed. Because (18) is quadratic, the
phase speed is doubly valued for neutral waves.
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term, indicating an input of retrograde motion. Since the relative
vorticity decreases with wavenumber for a sinusoidal eddy, it is
clear that this B-effect becomes more marked as the wavenumber
decreases.

The medium—scale waves, those between the long- and short-wave
cut-offs, have phase speeds and growth rates which are compatible with
Green (1960). For B = 1, the most unstable wave, at & = 1.7, has
dimensional wavelength of 5700 km, phase speed of .5 m/sec and
doubling time of "1.8 days. Green's maximum growth rate was nearly
unchanged by the inclusion of B = 1, which implies that the reduction
of the maximum growth rate found here may be due primarily to the use
of different velocity profiles. However, the presence of critical
layer instability in Green's study may be masking a diminution of the
growth rate caused by the nonzero B. In this mddéi-thé'plaﬁétary
vorticity gradient stabilizes the long waves and it will be argued
later that this stabilization extends to the middle waves, though

the importance of the effect decreases with wavelength.

For the long waves, those longer than the long-wave cut-off,
there are two neutral modes when R # 0. One solution moves swiftly
retrograde and is comparable to the neutral Rossby wave fourd by Green
in this range of 0. The other long-wave mode corresponds to the weakly
amplifying/decaying pair of slow-moving solutions found by Green (1960).
Apparently, his solutions were unstable due to weak critical layer

instability which is not possible to lowest-order here. Since we are

Apparently, his solutions were unstable due to weak critical layer
instability which is not possible to lowest-order here. Since we are

interested in amplifying solutions, the slow-moving solution will be
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used for the second-order computations where critical layer insta-
pility may occur.

Critical layer instability regquires the presence of a basic state
potential vorticity gradient, qy, at a "critical level" defined as
where Uo(z) = Re(CO). This condition is not satisfied at lowest-
order because of (10). Bretherton (1966a) visualized the instability
as follows. First, consider the meridional flux of basic state g to
be a generation term for perturbation potential vorticity. Next, it
can be shown that for an infinitesimal perturbation the flux is
unbounded at a level where the eddy propagation speed equals the basic
state flow. The total potential vortici£y is conserved, so the
critical layer flux must be balanced by a general growth of the
disturbance, whose structure emphasizes a region where the potential
vorticity gradient is of opposite sign. Within the mathematical
construct of this type of perturbation problem, such an analysis
seems appropriate; however, a different analysis may be required for
a nonlinear problem. This question arises again in the next section.

For the short waves, those shorter than the short-wave cut-off,
there are again two neutral modes which relate to the two solutions
obtained by Eady (1949). The critical layer instability argument
shows that only one of these two solutions is physically realizable
for a given basic state with nonzero qy. The predominant sign of the
critical layer potential vorticity flux determines which solution is

appropriate to conserve total potential vorticity. 1In this study,

“lllLliCddl .Ld.yEJ. PUCE“EJ—dJ_ VUIthlty IilUuX Ueterlilllles wiliCli DUiuLlLoll 1>
appropriate to conserve total potential vorticity. In this study,

the potential vorticity gradient for the higher-order problem will be
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primarily positive in the interior; thus only the slower solution can
palance the critical layer flux. Green (1960) investigated an analo-
gous situation. In his experiments the mean potential vorticity gra-
dient was uniformly positive and he found an amplifying/decaying pair
of modes which coincided with this slower mode. This slower mode will
be used in the second-order calculations.

The growth rates and phase speeds are also presented as a func-
tion of Uo(l) in Figs. 5 and 6, respectively. The values of B and ag
are fixed in each figure, only A is varied. Since UO(O) = 0, the
magnitude of Uo(l) is a gross estimate of the vertical shear. In
general, as Uo(l) increases, so do the growth rates and phase speeds
as one would expect. We see that as the vertical shear increases, the
long-wave cut-off is shifted to longer wavelengths for fixed B. There
is also a minimum value of Uo(l) below which all waves are stable when
B # 0. For B =1, the wavelenyth of maximum instability shifts to
longer wavelengths as Uo(l) increases in magn;tude and asymptotically
approaches the most unstable wavelength found for B = 0. The position
of the short-wave cut-off is altered only when 8 # 0. When B # 0 the
short-wave cut-off is asymptotically approached as the shear dominates
the B-effect. All of these features of the growth rates (Fig. 5) are
in qualitative agreement with the classical neutral stability curves
derived from 2-layer models (e.q., Phillips, 1951) or with continuous
models (e.g., Charney, 1974).

The mathematical reasons for the long- and short-wave cut-offs

wouels (e.g., charney, i1v/4).
The mathematical reasons for the long- and short-wave cut-offs
are not easily deduced from this formulation. This is because the com-

bPressibility and variation of the Coriolis parameter enter into the
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Fig. 5 The growth rate spectra for a) B = 0 and b) B = 1 versus
Uy(1). Only A is varied, ag = -1. Since Ug(0) = 0, Ug(1)
is a crude measure of the vertical shear. 1In general, the

| | ?rowth rate increases with U,(l). As the vertical shear
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Uy(1). Only A is varied, ag = -1. Since Ug(0) = 0, Ug(l)
is a crude measure of the vertical shear. 1In general, the
| growth rate increases with Uo(l). As the vertical shear
increasingly dominates the B-effect the long-wave cut-off
shifts to longer wavelengths and the short-wave cut-off
approaches the B = 0 value.
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PHASE SPEED

The phase speed spectra for a) B = 0 and b) B = 1 versus
U,(1), see Fig. 5. 1In general, the phase speed increases
with U (1). The major exception occurs near the long-wave
cut-off and results from its shift to larger wavelengths
with Uo(l).

with Ug(l). The major exception occurs near the long-wave
cut-off and results from its shift to larger wavelengths
with Uo(l).
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problem in a complicated fashion. Simpler previous investigations
have succeeded in defining relations which describe the positions of
similar cut-offs. These relations agree qualitatively with the
behavior exhibited by the lowest-order solution. For example,
Fijgrtoft (1951) was able to determine a formula for the position of
a correlative long-wave cut-off in his vertically continuous model.
An expression for the short-wave cut-off is easily deduced for the
2-layer model (when B = 0) and a similar relation can be obtained
here. Define Lc as the wavelength of the short-wave cut-off at
o =0, SO that k = 2WL/LC. Then, using the definitions of o and € ,

for m = kX and B = 0,

_mexn? 1eant? (20)

c a f 1.2 £
co o

which is quite similar to the 2-layer result. The critical wave-
length increases with increasing static stability or decreasing mean
planetary vorticity. But, observe from Fig. 5 that increasing B
shifts the short-wave cut-off to longer wavelengths.

The physical reasons for the two cut-offs are gualitatively
understood. The so-called advective theory of baroclinic instability
(Figrtoft, 1951) attempted to explain the short-wave cut-off in terms
of parcel trajectories. The assumption was made that the horizontal
scale of the disturbance becomes too small relative to the vertical,

so that the slope of the trajectories exceeds the slope of the pre-
PPN (L T I S S [} NSRS SN +hA ~ARAx A~ svanhla +A FaaAd swmAan Fhe

so that the slope of the trajectories exceeds the slope of the pre-
scribed isotherms. Therefore, the eddy is unable to feed upon the

potential energy of the prescribed flow. However, this theory is



37
inadeguate on several grounds. First, the position of the shcrt-wave
cut-off (for B = 0) is independent of the slope of the mean isotherms
(see Fig. 5a). Second, as pointed out by Bretherton (1966b), the
vertical structure changes for the short waves. This change compen-
sates the decreasing horizontal scale by decreasing the vertical. A
descriptive explanation of the short-wave cut-off has been inferred
from 2-layer models (e.g., BHolton, 1972, p. 190). Associated with
a growing disturbance is differential vorticity advection which must
increase with wavenumber for.a given amplitude. This advection induces
a so-called secondary circulation, whose vertical motions must also
increase with wavenumber. But, the static stability resists these
motions implying that sufficiently short waves will be stabilized.
This stabilizing influence of static stability is evident in (20).
By similar reasoning the inverse dependence of LC upon fO in (20)
results from the definition of the geostrophic velocities. Since the
geostrophic velocities for a given geopoténtial field are less for
larger fo, the thermal advection is less and so from the "omega"
equation the induced vertical velocities are less. Since a weaker
secondary circulation is present the cut-off is shifted to higher
wavenumbers. The stabilizing effect of the planetary vorticity gra-
dient, which introduces the long-wave cut-off and shifts the short-
wave cut-off, can also be explained using the "omega" equation.
However, this effect for non-zero B does not cause stability by

itself, but instead occurs when instability is already present. Since

However, this effect for non-zero B does not cause stability by
itself, but instead occurs when instability is already present. Since

the unstable waves tilt with height, there is differential planetary

vorticity advection when B is nonzero, which increases the reguired
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strength of the vertical velocities of the secondary circulation.
Again, since the vertical motion is resisted, the result is a stabi-
lizing effect. For this wave-like eddy the relative vorticity gradient .
varies as the wavenumber cubed, whereas B is constant; thus the
planetary vorticity contribution to the "omega" equation dominates 1
for the long waves. As B increases, the positions of the long- and i
short-wave cut-offs must shift since the slowest growing waves are t
most easily neutralized by the R-effect. Therefore, the short-wave
cut-off shifts to longer waves and the long-wave cut-off shifts to
shorter waves as B increases. The opposite shift occurs in Fig. 5b
(where B is fixed and Uo(l) increases) because the changing thermal
fiald, associated with increasing A, alters the vertical structure of
the eddy in a way which diminishes the importance of the planetary
vorticity gradient.

The vertical structures of the transform pressure amplitudes are
shown in Fig. 7 for the two velocity distributions of Fig. 2. The
addition of compressibility and the consequent increase with height

of the prescribed vertical shear cause the asymmetric distribution of

pressure modulus. The vertical shears are about 3 and 7 times greater

at the top than at the bottom for the B = 0 and B = 1 zonal flows,

~

respectively. When Co is complex ¢O is complex. The imaginary por-

tion causes the vertical tilt of the trough and ridge axes toward the
west with height. This tilt and the meridional structure are illus-

trated in Fig. 8 for o = 2.0 and B = 1.

west with height. This tilt and the meridional structure are illus-
trated in Fig. 8 for o = 2.0 and B = 1.
Only baroclinic energy transformations are possible at lowest-

order. The conversion from the basic state available potential energy




39

10—
09
08
0T
06

Z 05F
04
031
o2

Ol

00 ] 1 ) 1 | 1 ) 1
0 03 06 09 1l2 15 18 2l 24 27

|60l

Fig. 7 The magnitude of the perturbation pressure solution at a =2.1
for each velocity profile shown in Fig. 2. The moduli are
not symmetric with height because 1) the basic state vertical
shear increases with height and 2) compressibility is includ-
ed.
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Cross sections in geostrophic coordinates of the lowest-
order eddy amplitude and phase of the pressure field and baro-
clinic conversion from zonal to eddy available potential
energy for ¢ = 2.0 and B = 1. The phase diagram illustrates
the meridionally uniform westward tilt with height of the
trough and ridge axes. The phase angle is measured positive,
eastward, relative to the value at the center top (Y = O,

% 1)..  The lowest-order amglltude and baroclinic conver51on
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trough and ridge axes. The phase angle is measured positive,
eastward, relative to the value at the center top (Y = 0,

Z = 1). The lowest-order amplitude and baroclinic conversion
are largest at the center top.
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to the eddy available potential energy (X;_;_Z;) is also -included in
Fig. 8. This conversion is related to the poleward heat flux multi-
plied by the vertical shear of the zonal flow. At lowest-order the
maximum occurs at the center top of the domain in geostrophic coordi-
nates. The energy conversions will be discussed more thoroughly in
the next section in reference to the energetics of the second-order
quasi-geostrophic solutions.

In summary, compressibility has only a minor effect upon the
quasi-geostrophic phase speed and growth rate as evidenced by the
comparison of the B = 0 mode and Eady's (1949) result. However, it
can have a significant impact upon the vertical structure of the dis-
turbance. The variation of the Coriolis parameter has the large
effects of reducing the phase speed and stabilizing the eddy. The
stabilizing increases with the wavelength to such an extent that a
long-wave cut-off of the instability is introduced. Because of the
lack of critical layer instability, this formulation reproauces the

short-wave cut-off found by Eady (1949). All these effects are evi-

dent in previous studies and are well-recognized if not well-understood.




5. SECOND-ORDER QUASI-GEOSTROPHIC SOLUTION

The stability, structure and associated energy conversions of the
second-order quasi-geostrophic solutions are discussed in this sec~
tion. The nonlinear distortion of the eddy by the transformation
back to Cartesian coordinates is also examined. Solutions are con-
sidered for four basic state profiles with identical meridional
structure but differing vertical variation.

The gquasi-geostrophic system of equations is composed of the
lowest-order terms in (8) and its boundary conditions. The ageo-
strophic effects that arise from the remaining_terms in (8) and its
vertical boundary conditions are described in the next section. The
system of equations, (12), is no longer homogeneous but contains the

forcing terms

F. = ¢ + /(e = U) (21)

‘ ! c |
17 %) 1zzy 36V gy * Viyyy

in (12a) and
— ! X - iy T p—
By = [(Cl * wlY)¢oZ ¢owlYZ}/(Lo Cy) (22)

in (12b).
Four different O(u) basic state profiles are used in this study.

The meridional dependence is the same for each profile:

’

The meridional dependence is the same for each profile:

0. = Gz(z)%x tanh (a¥) - b

3
1 1Y 7 b)Y } (23a)

42
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v = G(Z){)\ tanh (a¥) - b ¥ - szB%
(23a)
U, =G ‘ 2 3 21
and 1= (Z)tg}\(l - tanh (aY¥)) - b, - 3b,Y f
where ) = T /tanh (aY ). In three of the cases a maximum in the
max — max

meridional gradient of the potential temperature field is present at
Yy = 0. This distribution, arising from the tanh term in (24a),
attempts to model a thermal front. For convenience, we will refer

to this feature as a front. But it should be kept in mind that
observed atmospheric thermal fronts are often more intense and of
smaller width than can be treated with this analytic model. The
intensity of the front is defined by the maximum value of the meridi-
onal gradient of potential temperature. The intensity and meridional
scale of the frontal zone can be changed in a systematic fashion by
varying the parameter a. As a increases the intensity increases and
the width decreases. The parameter ) serves to normalize the Y depen-
dence so that the value of @l at a large distance (% Ymax) from the
center of the domain is independent of a. Thus, increasing a repre-
sents adiabatic compression of the isotherms in the meridional
dimension. The b1 and b2 terms act to control the magnitude of the
0(y) addition to the basic state. In the examples detailed here

B 2, Ymax = 2.25 (this Ymax ~ Yb for ¢ = 1.0), bl = 1.1 and

b2 = .03. The vertical structure, given by G(2Z), distinguishes the

four cases. 1In one case the basic state thermal front is confined to

D2 = .03. The vertical structure, given by G(2), distinguishes the
four cases. 1In one case the basic state thermal front is confined to
the lower portion of the domain. This case is labelled the "Surface

Front" case. 1In another case, the front is independent of height;
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this case 1s referred to as the "Deep Front" case. The third case has
a front in the upper part of the domain and is called the "Upper
Front" case. Finally, there is the "Barotropic" case where the Ul
wind field is independent of height and thus does not arise from a
potential temperature field. 1In each case the velocity field is

symmetric in ¥ with maximum value at Y = 0, Z = 1. The specific

vertical prescriptions for the four basic state profiles are

G(Z) = 22 (Upper Front Case)

G(z) = 2 (Deep Front Case)

G(z) = 22 - 22 (Surface Front Case) (23b)
G(z) =1 (Barotropic Case)

Note that Ul(z) for the Barotropic case is equivalent to Ul(l) in the
other cases. The vertical structures in (23b) are chosen so that G(0)
and G(l) are independent of the three cases where a front is present.
In summary, these specifications mean that differences between the
basic states, for the three front cases and for various choices of a,
result from adiabatic stretching or compressing of the same large-
scale potential temperature field in the vertical and horizontal,
respectively.

The Surface Front case total prescribed velocity and thermal
fields for a =1.6 and 8 = 1 are shown in Fig. 9. The vertical shear
in Ul is largest in the lower portion of the domain, associated with
the limitation of the front to that region. These features are

characteristic of the polar jet structure often observed near incip-

the limitation of the front to that region. These features are
characteristic of the polar jet structure often observed near incip-
ient wave-cyclone development in the atmosphere. Strong frontal zones

extending through the entire troposphere, at least in some instances,

D e et e
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Cross sections in geostrophic coordinates of the basic state
zonal velocity (upper figure) and prescribed potential tem-
perature; O and temperature; T (lower figure) for the Surface
Front case where a = 1.6. The prescribed thermal front in
this case is confined near the bottom and has a width, for
this value of a, which is close to the Rossby radius of
deformation. The letters A, B and C denote the meridional
boundaries for o = 2.0, 1.8 and 1.6, respectively.

boundaries for o = 2.0, 1.8 and 1.6, respectively.
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form during rather than before cyclone development (e.g., Palmén and
Newton, 1969, p. 338). The maximum velocity (40 m/sec) is also com-
parable in magnitude to that observed in the polar jet. The width of
the frontal region for a = 1.6 is approximately the Rossby radius of
deformation. For a = .8 the width is about twice this value. A
significantly smaller scale cannot be handled by the model in its
present form so solutions will be shown for the range 0 <a < 2.0.
Those solutions at a = 1.6 will receive primary attention.

The Upper Front case total prescribed velocity and thermal
fields for a = 1.6 and B = 1 are shown in Fig. 10. Here, the front
is confined near the upper part of the domain where the basic state
vertical shear is correspondingly largest. These features are charac-
teristic of the subtropical jet under which wave-cyclones occasionally
develop. The upper.front is not as clearly visible as the surface
front because of the exponential increase of Uo with height. The Deep
Front case, where the front is independent of height, is intermediate
to Figs. 9 and 10.

In these experiments the basic state is independent of &, although
the positions of the meridional boundaries change as indicated in Fig.
9. This is in contrast to Brown (1969a,b), who also examined flows
with both vertical and horizontal shear but tied the meridional struc-
ture of his prescribed velocity field to the meridional wavelength of
his solutions. He also used the procedure of fixing the available

potential energy while varying the kinetic energy of the basic flow,

his solutions. He also used the procedure of fixing the available
potential energy while varying the kinetic energy of the basic flow,
and vice versa. Here the temperature field at a large meridional

distance is fixed and the adiabatic compression of the isotherms
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Fig. 10 Similar to Fig. 9 except for the Upper Front case where
a = 1.6. The thermal front in this case is confined near
the top.
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in ¥ and Z is varied. Like Brown (1969%9a,b), we chose flows which are
presumed, by inspection of the potential vorticity gradient, to be
barotropically unstable.

McIntyre (1970) discusses in some detail a solution derived from
a barotropically unstable basic state. As a check upon the method
of solution used in this model, a calculation was made using the same
basic state profile discussed by McIntyre (1970). The two solutions
were quite similar. The type of solution for this basic current will
be examined again in connection with Fig. 21. (See Appendix I.)

The meridiénal potential vorticity gradient for each of the four
basic states is presented in Fig. 1l for a = 1.6 and B = 1. Because
of (10), thisgradient arises slowly from the O(H) part of the basic
state.

Fig. 12 displys the linear distortion by tﬁe coordinate transfor-
mation for the Surface Front case wind field shown in Fig. 9. Since
there is no prescribed v field, the basic state only modifies the
meridional dimension. A vertical feature in geostrophic coordinates
acquires a poleward tilt with height when transformed back to Carte-
sian coordinates. Additionally, meridional asymmetry is introduced.
The grid is stretched on the equatorward side and compressed on the
poleward side of the velocity maximum. This implies that the relative
vorticity is decreased on the equatorward@ side and increased on the
poleward side. Such a change in the vorticity field induces a sole-

noidal circulation which would produce a poleward tilt of the velocity

poleward side. Such a change in the vorticity field induces a sole-
noidal circulation which would produce a poleward tilt of the velocity
maximum with height. This tilt is observed in the atmosphere for

amplifying fronts. For an infinitesimal perturbation, the coordinate
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.0

An illustration of the linear distortion of a regular grid
in geostrophic coordinates (upper diagram) by the coordinate
transformation into Cartesian coordinates (lower diagram).
Only the basic state zonal velocity (for the Surface Front
case shown in Fig. 9) is used in this linear form of the
coordinate transform. The meridional boundaries for o = 2.0
are used in these figures. The transform introduces a pole-
ward tilt with height. 1In the meridional dimension, the
grid is stretched on the equatorward side of the velocity
maximum and compressed on the poleward side. From (7c¢), this
figure can be used to deduce how the distributions of
several quantities in geostrophic coordinates appear in
Cartesian coordinates when the eddy amplitude is very small.

several quantities in geostrophic coordinates appear in
Cartesian coordinates when the eddy amplitude is very small.
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transformation would be dominated by the basic state. This, along
with (7c¢), means that Fig. 12 will be useful in interpreting the
results of this chapter that are presented in geostrophic coordinates.
The remaining figures of the growth rates and phase speeds are
divided into three regions according to the long- and short-wave
cut-offs. The blank regions centered about those cut-offs are neces-
sary because the denominator in (13) vanishes at the cut-offs. To
obtain values at the cut-offs a different expansion procedure must
be employed (see McIntyre, 1970). L'Hospital's rule is used to

define U. and the wl terms in (21) and (22) for a = 0.

1
The growth rates for the Upper Front and Deep Front profiles

for B = 1 are presented in Fig. 13 as a function of o and a. Nearly

all the wavelengths are now unstable. Even the long waves are weakly

unstable, in gualitative agreement with Green (1960). For the middle

waves, the growth rates are negative for small Qalues of a. This

damping is due to the b. term in (32a); for example, if bl = ,5 is

1
used instead of bl = 1.1, all the middle waves amplify over the entire
range of a. The growth rate for each wavenumber increases asymptoti-
cally to a specific value as a increases. This behavior is more pro-
nounced at smaller values of a for smaller values of a. In addition,
the shorter of the middle waves are more greatly destabilized than
the longer of the middle waves. The net effect is a shift of the most

unstable wave to shorter wavelengths as a increases. The growth

rates when B = 0 (not shown) are compatible, except that there is no

unstable wave to shorter wavelengths as a increases. The growth
rates when B = 0 (not shown) are compatible, except that there is no
long-wave cut-off, so features of the middle waves are "stretched"

in o and extend into the long-wave portion of the spectrum.
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Fig. 13 Second-order growth rate spectra for the Upper Front and

Deep Front cases for various ¢ and a, where B=1., as a
increases, the intensity of the thermal front increases and
its meridional scale decreases. For the middle waves, the
growth rate generally increases with a with the shorter
waves more greatly destabilized by the front. Nearly all
waves are destabilized, though the long waves are only
weakly unstable The blank reglons are centered about the

- I NEENEN

waves more greatly destablllzed by the front. Nearly all
waves are destabilized, though the long waves are only
weakly unstable. The blank regions are centered about the
lowest-order instability cut-offs where (13) is singular.
The contour interval in Figs. 13-16 is .1l. See text for
further interpretation of the second-order growth rates.
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The growth rates for the Surface Front and Barotropic cases for

g = 1 are presented in Fig. 14 as a function of ¢ and a. The Surface
Front growth rates are consistent with the Upper Front and Deep Front
results. However, the Barotropic case growth rates for the middle

waves are dramatically different. The middle waves in the Barotropic

case are all damped; and further, the damping increases with a. This
result seems odd because analysis of qlY indicates that the Barotropic

case U, field should generally produce growth via the barotropic

1
mechanism, and that the instability should increase with a. This
apparent éichotomy will be resolved when the energy conversions are
examined later in this chapter.

The phase speeds for the Upper Front and Deep Front profiles
when B = 1 are depicted in Fig. 15 as a function of ¢ and a. The
phase speed‘spectra for the Surface Front and Barotropic cases are
shown in Fig. 16. For the phase speed there is a definite trend
between the four cases: from the Upper Front to the Barotropic. 1In
general, for the middle waves the phase speed is negative, and the mag-
nitude at first decreases then increases with a.

The calculation of C., includes boundary and interior terms in

1l

(13). The real part of C., for the long and short waves is dominated

1
by the boundary terms contribution.5 But, for the middle waves the
interior terms contribution is of nearly equal magnitude and often

of opposite sign. The negative values of the phase speed for small

2 arise primarily from the boundary terms. As a increases these terms

of opposite sign. The negative values of the phase speed for small

2 arise primarily from the boundary terms. As a increases these terms

5 . .
The boundary terms contribution to the phase speeds and growth rates
for these four cases are presented in Appendix I.
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Fig. 14 Similar to Fig. 13 but for the Surface Front and Barotropic
cases. The second-order growth rates for the middle waves
in the Barotropic case are negative.

in the Barotropic case are negative.
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Fig. 15 Second-order phase speed spectra for the Upper Front and
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in the Upper Front case
See text for further dis-
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Fig. 16 Similar to Fig. 15 except for the Surface Front and Baro-

. 1o

tropic cases.

There is a clear progression in the phase

speed spectra from the Upper Front case to the Barotropic

§¥Rf1ar to Fig. 15 except for the Surface Front and Baro-

tropic cases.

There is a clear progression in the phase

speed spectra from the Upper Front case to the Barotropic

case.



57

pecome large and positive and also the interior terms become more

important, especially the U portion. The positive values of the

1yy
interior potential vorticity gradient (like the positive planetary

vorticity gradient) act to reduce the total phase speed. The poten-

tial vorticity gradient in (22) is integrated over Y and Z in (13},

so by inspection of Fig. 11 it is clear that the interior contribu-
tion is largest for the Barotropic case and least for the Upper Front
case. Yet, the boundary terms contribution also becomes larger in
complementary fashion. An analogous situation occurs for the growth
rates. For the middle waves, the growth rates are almost the same
for the three frontal cases, which might imply that the vertical
structure of the front does not appreciably alter the stability of the
eddy. In general, this is probably a specious conclusion since it
relies upon the questionablé vertical boundary condition at Z = 1.,
for example. The boundary terms and interior terms in (13) each vary
considerably between the four cases, but for the three frontal cases
they fortuitously combine for the middle waves into similar spectra.
The variation of the interior terms is exemplified by the short waves
growth rates, to which the boundary terms do not contribute. In the

Barotropic case only the U interior term contributes to the growth

1yy
rate; the boundary terms happen to cancel for the middle waves. This
termcan cause damping for the middle waves and amplification for the

short waves because the lowest-order vertical structures of the two

classes of waves are different. This point will be treated more

short waves because the lowest-order vertical structures of the two
classes of waves are different. This point will be treated more

specifically when the energy conversions are examined.
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A gualitative interpretation of the growth rate spectra for the
short waves and, in particular, the negative growth rates for the
Upper Front case, may be deduced from Bretherton (1966a). In essence,
Bretherton shows that the potential vorticity, at a critical level,
determines the instability of the short waves. Presumably, he defines
the critical level as where U(Y,2) - Re(C) vanishes, where U(Y,Z) is
the total basic state velocity field and Re(C) is the total phase
speed. Mathematically, we can see that the interior integrand in (13)
would tend to be largest at the height where UO - Co is very small.
The critical level defined in this latter way is between Z = .3 and
7z = .15 for the short waves and B = 1. By inspection of the basic
state potential vorticity gradients in Fig. 1l we can qualitatively
explain the growth rates calculated for the short waves. The contour
of Z integration is the same in all cases, so the short waves in the
Upper Front case are damped since the basic state potential vorticity
gradient is predominantly negative near the critical level. 1In the
other cases the gradient is primarily positive at the critical level.
If we define the critical level as Bretherton did, then it is less
certain that the calculated growth rates can be explained in this way.

The total growth rates and phase speeds are approximated by
truncating their respective perturbation series after two terms. These
approximate total values for the Surface Front case are shown in Figqg.
17. To justify this approximation, some quick calculations of the

third term in the series were made for a few key values of ¢ and a.

17. To justify this approximation, some quick calculations of the
third term in the series were made for a few key values of ¢ and a.
The results of these computations suggest that the general features of

the total complex phase speed shown in Fig. 17 are unchanged by the



— s ea —s a2 )
-

288Y88388

.40
.20
0.00

Fig. 17

- — g e

59

kIm(Cp+uCy) SURFACE FRONT CASE

i LR R BRE LERBREE SRR Er N T (1\ﬁﬁ11 /l
L ] \\\\\\ ’—"—,——ﬂ=
O
. /-_____,’—
A B A G B A l_l 1 1 UV N T U N N (N S S N ¥
0.0 5 1.0 1.5 2.5 3.0 5.5

Re(Co+uCy) SURFACE FRONT CASE

T 1T 7 [17111\11 1[ AN A T ‘11]7 R
f -
(e
- =
b )
_ =8
I = NN
L
N L | P rall U 11
0.0 5 1.0 1.5 2.0
X
The total growth rate (upper figure) and phase speed spectra

(lower figure) for the Surface Front case. The shift of
the most unstable wave to shorter waves as the meridional
scale of the prescribed frontal zone decreases (as a
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(lower figure) for the Surface Front case. The Shlft of
the most unstable wave to shorter waves as the meridional
scale of the prescribed frontal zone decreases (as a
increases) is evident in the upper diagram. As a increases,
the fastest moving wave shifts to longer wavelengths.
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higher-order terms.6 The shift of the most unstable wave to shorter
wavelength as the meridional width of the frontal zone decreases is
more clearly visible in this figure. The shift implies a convenient
explanation for a discrepancy between the lowest-order solution and
observed mid-latitude wave-cyclones. One presumes that the most
unstable wavelength should roughly correspond with the observed wave-
length of most cyclones. However, the most unstable wave at lowest-
order has a wavelength of V5700 km whereas atmospheric cyclones are
typically 3-4000 km in wavelength. The ostensible link between the
most unstable wavelength and the scale of the front suggests that this
difference arises in part because a thermal front is present in the
atmosphere, but not present to lowest-order in this model. For the
middle waves, the total phase speed at first increases then decreases
and the fastest moving wave has a longer wavelength as a increases.
Similar results are obtained for B = 0.

As fdr the most unstable wavelength, the meridional scale of the
eddy also responds to the scale of the basic state front. It is con-
venient to define the meridional scale of the eddy in terms of the posi-
tions of the eddy zonal velocity maxima. These maxima are indicated by
the + symbols in Fig. 18. This figure shows the surface eddy zonal
velocity fields for the lowest-order solution and two total solutions

computed for different values of a. (In this treatise, the "total"

6
If anything, these calculations corroborate the effects introduced by

the addition of the second term in the series to the first. The
third +evm ctronmt+rhoence +ha mlieama cemmcm 3 emmeed e — 3 .~ e -~ .

If anything, these calculations corroborate the effects introduced by
the addition of the second term in the series to the first. The
third term strengthens the phase speed maximum and the shift of the
most unstable wavelength.



Fig. 18

el

Eddy zonal velocity fields at the surface for the lowest-
order solution (top) and total Surface Front case solutions
for a = .8 (middle) and a = 1.6 (bottom), where O = 2.0

and * Y, are the meridional boundaries chosen for this value
of o in geostrophic coordinates. The meridional scale of
the prescribed front when a = .8 is about twice that for

a = 1.6. The extrema of the eddy zonal velocity field

(indicated by + symbols) provide a convenient measure of the

— -t A2t aen 1A AF Eha ~AAA Mhie fFimire chawe that _the
the prescribed front when a = .8 is about twice that for

a=1.6. The extrema of the eddy zonal velocity field
(indicated by + symbols) provide a convenient measure of the
meridional scale of the eddy. This figure shows that the
meridional scale of the eddy solution is linked to the scale
of the basic state front.



62

solution will be approximated by summing the first two terms in the
perturbation series solution.) Unless otherwise stated, the exponen-
tial time amplification factor in (lla) equals one, by setting T = 0.
To lowest-order there is no meridional scale to the basic state flow
so the eddy zonal velocity maxima are at the boundaries. It is
useful to define the frontal scale in terms of the latitudes where

U. . vanishes. The meridional positions where UYY vanishes (see Fig.
114 for an example) are quite close to the latitudes of the eddy =zonal
velocity maxima shown in Fig. 18. This correspondence implies that
the meridional scale of the wave is related to the meridional scale
of the mean zonal current, a conclusion supported in an article by

Simmons (1974), for example.

The moduli of the total pressure fields for the four cases are
shown in Fig. 19. These solutions, where o = 2.0, a = 1.6 and B8 = 1,
will be emphasized in the remainder of this chapter. The second-order
contribution to the modulus can be deduced by comparing these plots
with Fig. 8. 1In general, the magnitude of the pressure is increased
in the vicinity of the strongest thermal gradients. One conseguence
is the reduction of the meridional scale mentioned earlier. Changes
occur in the vertical structure as well. In the Upper Front case the
amplitude is increased near the top of the domain and slightly reduced
near the bottom. The opposite changes occur in the Surface Front
case: the amplitude is increased near the surface and slightly dimin-

ished near the top.

case: tTne amplltude 1S 1ncreased near the surtace and slightly dimin-
ished near the top.
The phase of the total pressure field is illustrated in Fig. 20

for the four cases. The prhase angles in these cross sections are
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calculated relative to the phase at the center top. A positive value
means that the feature is east of the corresponding feature at the
center top. Generally, there is still westward tilt with height. But
there are two major changes in the phase caused by the second-order
solution. First, the westward tilt with height is increased slightly
in the lower portion of the domain and greatly reduced in the upper
portion. This latter effect becomes more prominent as the depth of

the region of strong horizontal shear increases. In the Barotropic

case for a = 1.6 there is actually a slight eastward tilt near the
top and center to second order. Second, horizontal tilts are intro-
duced by the second-order solution. Contours that dip down at the
center indicate that, at a given height, the trough and ridge axes
tilt southeast-northwest for Y < 0 and southwest-northeast for Y > O.
These tilts are characteristic of barotropically unstable growth and
are clearly visible in three of the cases. Also, these tilts are
greatest near the middle and lower portions of the domain. The
horizontal tilts are very weak in the Upper Ffont case and, if

anything, indicate a slight barotropic damping near the vertical

boundaries. The significance of these tilts is elucidated by examining

the energy conversions.

An equation for the total perturbation energy can be easily
derived (e.g., see Pedlosky, 1964a) from (7) and (5c). Multiply (7)
by ps¢ and (5c) by eps¢z, where ¢ is the total perturbation pressure

solution. Integrate both equations over the volume of the domain.

CAamhina dhn camTbdvm jmginmded mm bm mldnle

-

solution. Integrate both equations over the volume of the domain.

Combine the resulting equations to obtain:
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p €D
2 2 2
SQCFJ.J-ITSWX +0,) + TS ¢, dxavaz =

B fﬂ'psu (byby) ydxaydz + fffepsuzq’xd’dedeZ :

(24)

The left-hand side of (24) is the time rate of change of the total
energy of the quasi-geostrophic eddy in geostrophic coordinates. The
first term on the right-hand side is a barotropic generation term
which converts zonal kinetic energy of the basic state into eddy
kinetic energy. The integrand of this term is related to the eddy
horizontal momentum convergence and is represented symbolically as
KZ -* KE. The last term is a baroclinic generation term and converts
available potential energy. This term is related to the eddy pole-
ward heat flux and is represented symbolically as AZ - AE. These two
energy conversions will provide the nexus between the properties of
the basic state and the stability and structure of the perturbation
solution.

The zonally averaged barotropic energy conversion (E;f:_iﬁ) for
each of the four cases is presented in Fig. 21. At first glance, the
patterns of the energy conversion more or less agree with one's expec-
tations from classical potential vorticity arguments. For an amplify-
ing purely barotropic wave, the region of positive barotropic energy

conversion occurs where f - U is positive, if the phase speed is

YY

between the minimum and maximum velocities of the zonal flow and if

there are points in the domain where B - UYY vanishes. The regions of

DOST+ 11778 Mosvmtrrmrmd 4 ~assranmd A S Td o LY SR S S U ST

there are points in the domain where B - UYY vanishes. The regions of

Positive barotropic conversion in Fig. 21 correspond rather well with

the regions of positive potential vorticity gradient in Fig. 11, even
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though qy has vertical as well as meridional structure. This is a
result that was anticipated by Kuo (1949, p. 118) many years ago,
based upon the similarity of the model equations. The vertical posi-
tion of the maximum is only slightly different in the four cases and
is determined in part by the pSU factor. Not suprisingly, the baro-
tropic conversion is weakest for the Upper Front case and strongest
for the Barotropic. However, there is a discrepancy between these
results and classical barotropic instability theory. The lines of
zero conversion in Fig. 21 do not coincide with the zero contours of
qy in Fig. 11. 1In fact, the regions of positive conversion are
smaller than the corresponding regions of positive dy in three of the
cases. The Upper Front case appears to be an exception to this rule.
This deviation from pure barotropic instability theory arises
from the boundary conditions at the top and bottom and has been
described mathematically by Held (1975). A similar relation can be
derived for this model. The density-weighted vertical and zonal ave-

rage total horizontal momentum convergence can be expressed as

1 ke, 1 uo qu|d>| p.EU, |¢|
S Mdz = - exp(”kc T) 5 dz + (25)
o U—c| |U—C|

where M = - ps¢X¢YY , Ci is the imaginary part of C and all the
perturbation series have been summed. The lowest-order part of (25)
is easily obtained. However, the individual higher-order parts are

quite messy due to the perturbation expansion procedure and do not

is easily obtained. However, the individual higher-order parts are

quite messy due to the perturbation expansion procedure and do not

-
A brief derivation of (25) is included in Appendix H.
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further illuminate the effects shown succinctly in (25). The first
term on the right-hand side is the well-known (e.g., Green, 1970) baro-
tropic response. The last term shows the effect of having baroclini-
city in the problem. At lowest-order this term sums to zero, but at
higher orders it alters the momentum convergence and therefore the
barotropic energy conversion. The sign of this term depends upon the
relative magnitudes of its top and bottom boundary components and

upon the sign of U In the Surface Front case the value of the last

7"
term is decreased at the top and increased dramatically at the bottom
by the second-order solution causing a net reduction in the momentum
convergence. In the Upper Front case the opposite changes occur,
though smaller in magnitude, and produce a slight increase in the
momentum convergence. These changes explain the differences between
these results and pure barotropic theory.

It is worth noting that the opposite barotropic conversion is
obtained for thé basic state profile discussed in detail by McIntyre
(1970). That is, the region of positive qy is associated with
negative barotropic energy conversion. (See Appendix I.) The reason
for this occurrence may be deduced from Brown (1969a). Brown (1969%9a,
Figs. 2 and 3) found a demarcation between barotropically damped,
short wavelength solutions and longer wavelength, barotropically
amplified solutions for a basic current with vertical and horizontal

shear. This result may be the analogue, for combined barotropic-

baroclinic instability, of a result obtained by Kuo (1949). Kuo

Shear. 7Thls result may pe the anaiogue, IOIr COlWlied LDaluLlupiu—
baroclinic instability, of a result obtained by Kuo (1949). Kuo
(1949) found that waves longer than the neutral wave were amplified

while the shorter waves were damped, and that this condition was
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related to the increase of the phase speed with wavenumber. The
phase speed also increased with wavenumber in Brown's (1969a) solu-
tions. In addition, he found that when the magnitude of the phase
speed spectrum was increased, the wavelength of the demarcation also
increased. McIntyre (1970) formulated his model on an f-plane so his
phase speeds are about twice as large as they are on a B-plane.
Apparently, the wave is short and fast enough, so that McIntyre's
(1970) solution belongs to the barotropically damped class of waves
found by Brown (1969a). The results detailed here, for the middle
waves on a B-plane, ostensibly belong to the longer, barotropically
amplified class of waves.

Since the last term in (25) arises from the baroclinic nature of
the zonal flow and generally opposes the barotropic term, it follows

that the presence of baroclinic vertical shear can inhibit the baro-

tropic instability mechanism. This statement must be tempered some-

what since it is based upon the vertical boundary conditions. At the
end of Chapter 2 a conceptual deficiency of the W = 0 boundary condi-
tion at Z = 1 was suggested. In (25) we can see some additional prob-
lems with rélating this result to the atmosphere. For example, assume
for the sake of argument that the form of the Z = 1 boundary term
appropriately describes the effect of the tropopause. In this model
it has been convenient to let U increase monotonically with height,
whereas in the atmosphere the zonal flow typically reaches a maximum

at the tropopause and may decrease with height above it. The UZ fac-

e e ra s mmaa st A LT M [T eANed e meeN U AAbAMe A TT e ] e racb e | % e MA MRl b e s

at the tropopause and may decrease with height above it. The UZ fac-
tor was large and positive at Z = 1 in this model but in the atmo-

sphere the "appropriate" Uy might be small or even negative. Yet, the
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damping effect arises from the quite reasonable boundary condition at
7z = 0. These arguments suggest that the inhibition of the barotropic
conversion in the atmosphere might be even greater than what these
calculations infer.

The effect of the barotropically unstable horizontal shear upon
the baroclinic energy conversion is less ambiguous. The zonally
averaged baroclinic conversion (X;_:—E;) for each of the four cases
is depicted in Fig. 22. For clarity, the lowest-order portion of this
energyiconversion, shown in Fig. 8, has been removed. In the three
cases where a basic state front is present, we see how the poleward
heat flux responds to the amplitude of the wave. In the Upper Front
case the wave is of large amplitude primarily in the upper levels and
that is where the heat flux is largest. In the Surface Front case,
the wave amplitude is large near the bottom and so is the heat flux.
The wave amplitude is large near the top, but the conversion is weak
in the Upper Front case. Another feature of ;hese plots is the
occurrence of negative values at the upper levels in three of the
cases. Indeed, the negative values dominate in the Barotropic case.

Both of these features tie together a number of the results
pPresented above. The increase of the westward tilt with height near
the bottom in the Deep and Surface Front cases increases the poleward
heat flux there. The negative values of the baroclinic energy conver-
sion near the top arise from the reduction of the westward tilt there.

The growth rates are positive in the three frontal cases because the

e NsA Ll AANS A [P Y ) L od e A\ e de \SaL (ST s N e LA L e s — - R e - ——— ————— - -
The growth rates are positive in the three frontal cases because the
volume average of the baroclinic conversion is positive. The volume-

averaged barotropic conversion is also positive, but it is smaller.
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(The smaller magnitude is probably not caused by the vertical

walls at Y = in (see Kuo, 1949 and Brown, 1969b) at least for the
middle waves.) The growth rates are negative in the Barotropic

case because the baroclinic energy conversion was predominantly nega-

tive and exceeded the positive value of the barotropic conversion.

TABLE 1

Volume-Averaged Energy Conversions for the Four Cases (a = 1.6,0 = 2.0)

Upper Front Deep Front Surface Front Barotropic

A * A .070 124 .241 -.202

Do -
hZ KE .001 .010 .030 .077

The source of these effects lies in the structure of the basic
state. In the three cases where a front is added to the lowest-order
basic state, the frontal temperature gradients introduce additional
vertical shear. This additional vertical shear increases the baro-
clinicity of the zonal flow and is mainly reséonsible for the positive .
poleward heat fluxes visible in Fig. 22. The negative values of the
energy conversion come from the horizontal shear and especially the

= UYY term in dy- For the tanh profiles used in this study, this term

is positive in the center of the domain, the same sign as the B term.

Indeed, the dy term acts much like the nonzero B term did in the

15 POSITIVE LIl LUE CEILEL UL LUSE UWIIALL, LUG OSUiie D4 gi We  viie m wemen
Indeed, the Ay term acts much like the nonzero B term did in the
lowest-order solution. That is, it reduces the growth rate and phase

speed of the wave. The westward phase tilt reduction and consequent
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negative baroclinic energy conversion are greatest at the top because
the effect of the Ay term increases with height. This can be seen

py deriving an equation for the heat flux h, similar in format to (25)

8
and like that derived by Charney and Stern (1962).
VA ~ 2 Z
hzy = (2kc,T) Keetyy 01" a 55 a 26
zZ) = — ex T - Z
2 eEPleRey o - c|? ? PsPydyy (26)
o o

where h = QS$;$;. This relation shows that the damping effect caused
by the positive values of 9y accumulates with height. In the Barotro-
pic case, large positive values of qY extend decwn to the surface,
making this term quite large. There is no compensating additional
vertical shear, as there was for the other cases, so the net effect is
the predominately negative energy conversion and consequently negative
second-order growth rates. Since the positive values of q, are asso-
ciated with the horizontal shear in these cases, it follows that the

barotropically unstable horizontal shear inhibits the baroclinic

energy conversion mechanism.

' The concept of a delta function in the potential vorticity at the
vertical boundaries discussed by Bretherton (1966b) can be applied
to (26). Using this line of reasoning we can understand how there was
positive baroclinic conversion at lowest-order, even though both
integrands on the right side of (25) vanish in the interior (except

Perhaps at a critical level). The same concept may explain

[ - - . - - . FE T U T A i R

Perhaps at a critical level). The same concept may explain

the small positive values of the energy conversion near the surface in

8- . , - . - e s = - . ,
Note the sign error in the first equation on page 170 in that paper.

—— - i——
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the Barotropic case. The special boundary values of dy apparently
create the shallow region of strong westward tilt with height in

Fig. 20d. The resultant poleward heat flux in the lower third of the
domain slightly exceeds the strong equatorward flux from the - UlYY
term.

Some interesting aspects of the solutions are evident when the
energy conversions are calculated in Cartesian coordinates. The
transformation of coordinates is nonlinear because it involves the
perturbation solution as well as the basic state. If the eddy is
infinitesimally small, Fig. 12 and relations (7) can be used to deduce
the linear changes produced by the transform. Crude calculations of
the energy conversions for the Surface Front case are shown in Fig.
23, including the zonal average conversion from eddy available poten-
tial energy to eddy.kinetic energy, (X;_;—E;). The lowest-order
contribution is now included in these diagrams and the amplitude of
the solution shown in Fig. 19c¢ is used. The most obvious change in
these plots is the poleward tilt with height introduced by the trans-
form. This linear phenomenon was discussed earlier in this section
in connection with Fig. 12. The (K;T;_E;) conversion, which is
related to the vertical heat flux, has a maximum in the lower center
of the domain. As expected, this maximum is somewhat higher in the
Deep and Upper Front cases'.9 The volume average of this conversion

is between one quarter and one half the volume average of the

9
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is between one quarter and one half the volume average of the

Energy conversion diagrams in Cartesian coordinates for the other
cases are presented in Appendix I.
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e 1 a2 2 o 1 2 1

(o]
“l
-
P

Cross sections in Cartesian coordinates of the three zonal
average energyconversions(KZ - KE)' (AZ > AE) and (AE > Kg)
for the Surface Front case where o = 2.0, a = 1.6 and R = 1.
The transform was made using the finite eddy amplitude pre-
sented in Fig. 19c. The upper and middle diagrams may be
compared with Figs. 20c and 2lc, respectively. The coordi-
nate transform introduces a poleward tilt with height as
mentioned in connection with Fig. 12. The finite amplitude
(nonlinear) transform causes little additional modification
of the energy conversions. The nonlinear transform shifts
the maximum barotropic conversion slightly south of the axis
of mean zonal velocity maximum. The opposite shift occurs

- - T e e

of the energy conversions. The nonlinear transform shifts
the maximum barotropic conversion slightly south of the axis
of mean zonal velocity maximum. The opposite shift occurs
for infinitesimal eddy amplitude. The contour interval in
the upper figure is .1 and .25 in the middle and lower dia-
grams.
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(a_ KE) conversion. Thus, both components of the eddy total energy

Z
are built up by the baroclinic instability mechanism.

The magnitude of the barotropic conversion (E;_;_§;5 is also
about the same as its value in geostrophic coordinates. The coordi-
nate transform does not alter the growth rate, so since it did not
significantly change the baroclinic conversion, one would not expect
the volume-averaged barotropic conversion to be appreciably altered
either. The maximum is shifted to the equatorial side of the mean
zonal velocity maximum. This change may be due, in part, to the crude
manner in which the figure was calculated. The large positive con-
version is produced in the areas just west of the high and low centers
of the eddy pressure field. As mentioned previously, the coordinate

transform is one of two sources of ageostrophy in this model; the

other is the subject of the next chapter.



6. SECOND-ORDER AGEOSTROPHIC SOLUTION

In the previous chapter the gquasi-geostrophic portion of the
second-order solution was discussed. 1In addition, the ageostrophic
and nonlinear modifications of this solution by the coordinate trans-
form were briefly described. 1In this chapter, the higher-order terms
in the interior equation (8) and the vertical boundary conditions are
examined. Since these terms are neglected in the quasi-geostrophic
equations, their contribution is labelled an "ageostrophic" effect.
Recall that the perturbation solution has Y variation, which Phillips
(1964) suggests is necessary to examine properly the non-geostrophic
effect. The many terms from (8), that do not vanish at second order,
are classified into five groups according to origin. These groups
can be examined separately as well as together because the model
equations are linear in geostrophic coordinates. These terms can
only respond to the leading-order, purely baroclinic, basic state
variables. It will be shown that the source of ageostrophy in
geostrophic coordinates is primarily the divergence term in the
vorticity equation and that it is strongly asymmetric in Y.

The ageostrophic term in the model equations include the terms
on the right-hand side of (8) and higher-order terms in the vertical
boundary conditions. Many of these terms in (8) vanish at second

order, leaving

- - -

order, leaving

78
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ﬁx$l) = DV + GC + VC + BV (27)

where

N A - "N N +
v E(zflz¢oz * fl¢oZZ) Ea3cos¢oZ * ES(bo(flt']oZZ 2leUoZ)

+

2 ~ A A
& (woZZ¢oZZ f LpoZZZ(boZ + S¢o(woZZUoZZ * 1'DoZZZUoZ))

~ ~ 2 ~ ~ ~
BYE(O 7 * 3g0gg) T B¥SO, - a4c05(a5y¢o " bz

A

tagellag = £100, = £10, + €V p0007) ~ 918,

a6€S¢o((a3 - le)Uo - f1UoZ + EUonoZZ) + glEUoZS(bo’

G = - BSU_G_, + o’ (£, - BY)G,
- = - BSan)oY'
RY = B$oY’
S=(Uu_ -2¢C )_l and a., = a, + ug,(2) + O(Uzi.
o} o} 7 6 1

The term DV comes from the divergence term in the vorticity equation.
This term can be subdivided. The terms in DV containing the fac-
tors a4, a6 or gl occur because the model fluid is compressible, that
is, if incompressibility had been assumed, these terms would not
appear in DV. So, these terms can be referred to as compressible

divergence terms (CDV) and the remaining terms in DV as incompressible

divergence terms (IDV). The geostrophic correction term, GC, results

divergence terms (CDV) and the remaining terms in DV as incompressible
divergence terms (IDV). The geostrophic correction term, GC, results

from using the pressure as a streamfunction to lowest-order. These
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terms appear because Pq and H are functions of Z and B # 0. The VC
term comes from the O(U) part of n3 in geostrophic coordinates. The
BV term arises from the transformation of the Bv term in the vorticity
equation and makes a much smaller contribution than the other terms.

The vertical boundary conditions are heterogeneous,

ﬂ)(¢l) = BT = CgYsh_, - £,56_, (28)

+ & - - - = .
b, (a5 le) + s(Utol U, (a, flz))] at z = 0,1

The terms in BT mainly come from the compressibility of the static
state through the 0(u) part of (5a).

Growth rate and phase speed spectra for each of the second-order
ageostrophic terms are presented in Fig. 24 for both R = 0 and B = 1.
For the middle waves, the total effect of the ageostrophic terms is to
reduce both the growth rate and phase speed and it varies only
slightly with wavenumber. The individual components have greater
variation with 0. The terms VC and BV are odd fuctions of Y, so from

(13) they do not contribute to C The two components of DV generally

1
oppose each other, but the complete DV term reduces the growth rate
and phase speed, as does the BT term. The GC term also reduces the
phase speed. For the shorter of the middle waves, the GC term
increases the growth rate. For the longer of the middle waves, the
growth rate is slightly decreased for R = 1 and nearly unchanged

for g = 0 by the GC term.

These results may be compared with the conclusions from a study

for 8 = 0 by the GC term.
These results may be compared with the conclusions from a study
by Derome and Dolph (1970). They examined some higher-order in y

modifications of one of Eady's (1949) solutions. However, they
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retained the aséumptions of incompressibility and constant Coriolis
parameter. They also chose a different mathematical formulation
than that used in this study which, as they discuss, apparently
creates an inconsistency between the boundary conditions. They found
that to second order in U the growth rate was decreased and the phase
speed unchanged for the unstable waves in Eady's analysis. They also
found that a poleward tilt with height was introduced into the solu-
tions. This latter feature manifests itself in this model by the
linear part of the coordinate transform (see Fig. 12) and was noted by
Hoskins (1975). A crude comparison between their results and those
from this study can be made by ignoring the GC, CDV and possibly the
BT terms in the B = 0 complex phase speed. The BT term contribution
is uncertain, since it arises largely from allowing compressibility
in the problem, but not entirely. Keeping this in mind, the results
for this model seem to agree with some of their calculations. The
disagreement occurs for the propagation speed of the eddy. This
study suggests that including compressibility in the problem may lead
to a reduction of the phase speed by non-geostrophic effects.

The amplitude and phase of the sum of the ageostrophic terms are
presented in Fig. 25 where B = 1 and 0 = 2.0. The gquantities depicted
in Fig. 25 are not linear so the contributions by the individual com-
ponents cannot be as easily separated as they could for the complex
phase speed. The maximum amplitude is not appreciably changed by the

ageostrophic terms, but meridional asymmetry is introduced. The mag-

bnase speed. The maximum amplitude is not appreciably changed by the
ageostrophic terms, but meridional asymmetry is introduced. The mag-
nitude poleward of the center is enhanced while that equatorward of

the center is diminished. This change in amplitude also reduces the
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meridional scale of the eddy. The latitudes of the eddy zonal velo-
city maxima are at Y = Yb and near Y = -Yb/2, Since the latitude of
the former is at the boundary and cannot shift poleward, it is not
clear whether the scale reduction is actually due to the ageostrophic
terms or is an artificial consequence of the boundary conditions. The
term largely responsible for this change in the amplitude is the
divergence (DV) term. The GC and BT terms are of secondary impor-
tance.lo The ¢l‘s calculated from the VC and BV terms are much
smaller. There are two major changes in the phase caused by the ageo-
strophic terms. At mid-levels the westward tilt with height of the
solution is increased poleward of about Y = .2 and is decreased on the
equatorward side. These changes introduce a strong southwest to north-
east meridional tilt of the trough and ridge axes across the domain.
Again, the DV term is largely responsible for these changes. This
type of tilt is observed at lower and middle latitudes for cyclone
waves in the atmosphere (e.g., Palmén and Newton, 1969). Saltzman
and Tang (1972) were unable to reproduce these horizontal tilts in
their 2-layer model, which included some non~geostrophic terms, unless
they introduced horizontal shear into the basic flow. Their cléim,

that horizontal shear in the basic current is required to produce

10
Derome and Dolph (1970) describe the structure of their solution by

displaying cross sections of the real and imaginary parts of the v
and w fields. Assuming that v = ¢4, we find that the general
features in the imaginary part of ¢l here, agree with those in the
negative of their real part of v. However, the real part of ¢
similar in the lower region but of opposite sign above. See
Appendix I for plots of the real and 1maglnar¥=8arts of the DV, GC,

S-ULUL SO 4 LuS sanaganary palt ULy ueLE, Wllll LuUSe 11 e
negative of their real part of v. However, the real part of ¢
similar in the lower region but of opposite sign above. See
Appendix I for plots of the real and imaginary parts of the DV, GC,
BT and total ageostrophic ¢l S.
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these tilts, seems to conflict with the results found by Derome and
polph (1970), Hollingsworth (1975) and this study.

The barotropic (E;_:_E;) and baroclinic (X;_:—X;) energy conver-
sions due to the ageostrophic terms are also shown in Fig. 25 where
=1 and g = 2.0. The lowest-order contribution has been removed
from these plots and the lowest-order basic state wind U0 was used
in the calculation of these conversions. There is no horizontal shear
in the basic state wind field used in the computation of the second-
order ageostrophic solution. Therefore, the volume average of the
barotropic energy conversion should be zero. But unlike the lowest-
order solution, the zonal average of this conversion for the ageo-
strophic terms does not vanish at second order. Instead, there is a
tendency to build up the mean zonal velocity poleward of the center
and decrease it on the equatorward side, especially at high levels,
though the volume average of the conversion is still zero. Therefore,

the ageostrophic terms are forming a jet in the meridionally uniform

basic state flow. Hollingsworth (1975) also found northward momentum

transport produced by some non-geostrophic terms in a 2-layer model
for a purely baroclinic zonal flow. The jet which would be formed

lies poleward of the center, as does the axis of the eddy pressure

maximum. The baroclinic conversion is also asymmetric. From

Fig. 254 it is clear that the volume average of this conversion is

negative, thereby explaining the decrease in the growth rate by the

ageostrophic terms. The negative values are due to a strong equator-

- R e 2 R P 4 il e e P R ] —-d A M wlLCUOoC 4l L[S § = \j.L\JW il L auc U] wilce
ageostrophic terms. The negative values are due to a strong equator-
ward heat flux in the upper half of the domain which is manifested by

the eastward tilts of the trough and ridge equatorward of the center.
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In the previous section it was shown that the strong horizontal shear
of the jet stream can lead to an up-gradient, equatorward heat flux
at high altitudes for a quasi-geostrophic eddy. From Fig. 25 it is
clear that the non-geostrophic terms also can produce an up-gradient
heat flux, primarily on the equatorial side of the wave. The low-
level poleward heat flux cannot compensate the upper level equator-
ward flux in part because the value of UoZ is much smaller near the
bottom than near the top (see (24)). As before, the DV term is
primarily responsible for these effects. |

In conclusion, the ageostrophic terms introduce a considerable
amount of meridional asymmetry into the solution. While they don't
affect the maximum amplitude of the solution appreciably, they do
cause marked changes in the phase of the eddy that alter the energy
conversions and result in reductions of the growth rate and phése
speed. Finally, the ageostrophic terms introduce horizontal shear

into the meridionally uniform mean zonal velocity field.



7. SYNOPTIC ASPECTS OF THE PRIMARY VARIABLES

In the previous sections the perturbation solutions have been
discussed in nondimensivnal and therefore rather abstract terms. 1In
this chapter the three-dimensional structures of the primary vari-
ables are briefly described in dimensional terms. The primary vari-
ables considered are pressure, temperature and velocity. The dimen-
sionality is restored by using (3) and (2a), so for the pressure and
temperature, the dimensional vertical variation canbe largely deter-
mined by the static state.

The three-dimensional structure of the eddy pressure in Cartesian
coordinates is illustrated in Fig. 26 for the quasi-geostrophic Surface
Front case where R = 1 and o = 2.0. The zonal average pressure has
been removed and the three levels are the surface, 4 km and 8 km. As
before, T = 0 so the exponential time amplitude factor in (lla) equals
one. This figure exemplifies the features described earlier in con-
nection with Figs. 19 and 20. The westward tilt with height of the
trough and ridge axes is evident in this figure. The poleward tilt
with height introduced by the coordinate transform is also evident.
The barotropically unstable horizontal tilts are most prominent only
at the middle level and almost nonexistent a£ the surface. Even though
the nondimensional pressure modulus was largest at the top, the expo-

nential decrease of ps with height causes the dimensional eddy pressure

e et e e e e e = e e i, o — = o - - - - e S -
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nential decrease of ps with height causes the dimensional eddy pressure

to be largest at the bottom. However, the geopotential height of a
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8 km

4km

YA

Surface

-2400km X 0 2400km

Fig. 26 The dimensional eddy pressure field at three levels for the
: quasi-geostrophic Surface Front case solution with o = 2.0,
a = 1.6 and B = 1. The westward and poleward tilt with
height of the trough and ridge axes can be seen in this
figure. The barotropically unstable horizontal tilts are
clearly visible only in the middle plot. The vertical
length scale is 10 km. The contour interval is 2 mb.
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pressure surface is more commonly used in meteorology. From the
viewpoint of geopotential height deviations, the amplitude is largest
at the top.

The relation between the total potential temperature and pressure
fields at the surface is illustrated in Fig. 27. In addition, two
meridional cross sections relating the potential temperature and zonal
velocity fields are also presented. The solution depicted in Fig. 27
is the Surface Front case along with the ageostrophic terms; therefore
it includes all second-order effects. The major visible difference
between this solution and the quasi-geostrophic Surface Front case
solution is a slight shift of the contours to the north. For example,
the surface high and low pressure centers in the quasi-geostrophic
solution lie along Y = 0. The coordinate transform causes the high
pressure center to expand in horizontal area and the low center to
contract. This change was noted by Hoskins (1975); it is a recognized
ageostrophic effect (e.g., Saltzman and Tang, ;972) that is observed
in the atmosphere. The upper plot shows the surface warm and cold
fronts developed by the growing wave. Both fronts intensify as
the eddy evolves. The maximum cross-frontal temperature gradient for
the stage of development shown in Fig. 27 is twice the maximum gra-
dient of the surface thermal front in the prescribed flow. The middle
diagram is a cross section taken at about x = - 1600 km and cuts
across the cold front. The bottom diag;am is chosen to intersect the

warm front and is taken at about x = 100 km. These cross sections

Ml WO0 LIIT LU L Ll L LLI AN L LU M A YR AL kb S lA M dl e s e M e

100 km. These cross sections

warm front and is taken at about x
indicate that the thermal fronts are quite shallow, as is typically

observed during the early stages of mid-latitude wave-cyclone




Fig. 27
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1200km

-1200kmE—T= 3T T ey
-2400km Okm X 2400km

10km

Okm :
-1200km Okm Y  1200km-

The top contour plot relates the dimensional fields of pres-
sure (solid lines) and potential temperature (dot-dashed
lines) at the surface. The middle and bottom plots are
cross sections, taken near x = - 1600 km and x = 100 km, of
the dimensional potential temperature (dot-dashed lines) and
zonal velocity (solid and long dashed lines indicate wes-
terly and easterly flow, respectively). This solution is
for the Surface Front case including all ageostrophic
effects, where ¢ = 2.0, a = 1.6 and B = 1. The coordinate
transform causes the high pressure region to be larger than
the region of low pressure. The ageostrophic terms cause
the surface high and low pressure centers to be north of

y = 0. The temperature gradient across the front is twice

+hat+ Af +ha nyacAyi kAl Farnn+ Tmvvmreman Ll n Ll mminm T Lammea

the region of low pressure. The ageostrophic terms cause
the surface high and low pressure centers to be north of
y = 0. The temperature gradient across the front is twice
that of the prescribed front. However, the thermal front
remains shallow. The contour intervals are: 2° K and 2 mb

in the top plot, and 4° K and 5 m/s in the lower two dia-
grams.
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formation. However, in the atmosphere the cold front which develops
to the west of the surface high often eventually extends tﬁrough the
depth of the troposphere. The extension of the front through the
depth appears to be weak in this model, but the ageostrophic terms
do tend to encourage this development. This is not surprising since
ageostrophic effects are quite important for the generation of strong
fronts and this model is primarily quasi-geostrophic with ageostrophic
changes presumed to be of secondary importance. Yet the poleward tilt
with height of the zonal velocity maximum that was discussed earlier
is also visible in these cross sections.

Two types of parcel trajectories are presented in Fig. 28 for
the quasi-geostrophic Surface Front case. The "Eulerian" trajectories
are determined relative to the fixed coordinates, whereas the "Lagran-
gian" trajectories are displayed relative to the moving wave. In
other words, the Eulerian trajectories show the parcel paths seen by
an observer standing on the surface, while the Lagrangian trajectories
are seen by an observer moving with the wave. Hence, the surface
high and low pressure centers (marked by H and L, respectively) move
as indicated in the upper chart but are stationary in the lower dia-
gram. These trajectories were computed while the storm was amplifying
and show the movement over a period of one day. During this time,
the exponential time factor in (lla) increases from .75 to about 1.2.
The dashed arrows are the projection of the three-dimensional paths

(given by the solid lines) upon the surface and are intended to aid

~-t- MUbaGW @ArLUWD GLT LT pLUJECLLIUN UL THEe Ttnree-alimensional patns
(given by the solid lines) upon the surface and are intended to aid
in the interpretation of the trajectories. The lower plot can be

favorably compared with an idealized trajectory diagram in Palmén and
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Two depictions of the trajectories associated with the ampli-

fying quasi-geostrophic Surface Front case solution for
o =20, a=1.6and B =

%hase speed of the wave. The SOlld arrows are the
Lied tne parcelS auring oneé day. ‘Lhe

phase speed of the wave. The solid arrows are the three-
dimensional trajectories; to aid interpretation of them,
their projection onto the lower surface is indicated by the
dashed arrows. See the text for further discussion.

The arrows show the paths trav-
elled by the parcels during one day. The "Eulerian" trajec-
tories are determined relative to the Cartesian coordinates;
the "Lagrangian" trajectories are calculated relative to the

three-
“Elalerian” tfajec-
tories are determined relative to the Cartesian coordinates;
the "Lagrangian" trajectories are calculated relative to the
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Newton (1969, Fig. 10.20). Briefly, the upper-level flow is dominated
py the strong zonal flow. There is rising motion east of the surface
low and sinking motion west of it. The vertical velocities are
largest near the fronts. The horizontal wind generally veers with
height in the regions of warm air advection and backs with height in
the regions of cold air advection (east of the surface low and high
centers, respectively). All these features are observed in the

atmosphere.



8. SUMMARY

This study has sought to elucubrate the effects of a thermal
front upon the stability, structure and energetics of an incipient
wave-cyclone. The major findings are: 1) the maximum growth rate
shifts to shorter waves when the prescribed thermal front decreases
in meridional scale and increases in intensity, 2) the wave amplitude
is increased in the vicinity of the front, 3) the meridional scale of
the eddy is smaller when the scale of the prescribed front is smaller,
4) the barotropic and baroclinic instability mechanisms inhibit each
other, 5) the ageostrophic terms reduce the growth rate and phase
speed of the wave and 6) the ageostrophic terms tend to form a jet by
transporting momentum poleward. The results of this study agree with
several observed properties of the atmosphere.

An analytic model was used to isolate and examine these effects.
The solutions of this model consist of perturbation series, where the
Rossby number is the small expansion parameter. The Surface Front
case (where the prescribed thermal front is confined near the bottom)
for oo = 2.0 and B = 1 has been a paradigm of the solutions obtained
from this model. The lowest-order guasi-geostrophic modifications
were examined separately in the previous chapter. The solutions
exhibit many well-known properties but also contain somewhat unexpec-

ted features. In this final chapter, these results will be summarized

exhibit many well-known properties but also contain somewhat unexpec-
ted features. In this final chapter, these results will be summarized

and further interpretated.
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The analytic model employed in this study combines and extends
the approaches in several previous studies by others. This model is
adiabatic, frictionless, fully compressible and the Coriolis parameter
varies linearly. A perturbation method outlined by McIntyre (1970)
is used to formulate and solve this model. A nonlinear coordinate
transformation (after Hoskins, 1276) is made which incorporates some
ageostrophic effects. In the transform space the model is linear. 1In
addition, some ageostrophic terms, neglected in the quasi-geostrophic
equations, are retained after scaling the primitive equations. Even
so, there are still many approximations in this model. Those assump-
tions which influence the interbretation of the model solutions are
analyzed at‘the end of Chapter 2. The results discussed by Green
(1960) are germane to the lowest-order solutions presented here. The
higher-order terms in the perturbation series solutions respond to the
basic state thermal front and to the ageostrophic terms. Three cases
were examined which were distinguished by the vertical structure of
the thermal front. A fourth case was also examined where the second-
order basic state current was independent of height (so no front was
presen£). All four cases had the same meridional variation.

Growth rate and phase speed spectra were determined for the four
quasi-geostrophic cases and for the ageostrophic terms. Both long-
and short-wave cut-éffs were present in the lowest-order solution;
the former is related to thé qéﬁéefé'BT'bdth_éré'relatéd'tb’thé’vahfSh-
ing interior potential vorticity gradient. There was little difference
the former is related to the qéﬁéefE'ST'bdthﬂaré‘relatéd’tb’tﬁé vanish-
ing interior potential vorticity gradient. There was little difference

between the growth rate spectra for the three frontal cases, even

though the boundary and interior contributions to the growth rate
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varied considerably between the three cases. Nearly all waves in the
second -order quasi-geostrophic solutions were unstable, ostensibly

due to the presence of a nonzero potential vorticity gradient at- a
critical level (see Bretherton, 1966a,b). In the cases where a thermal
front was prescribed, as the intensity of that front was increased so
was the growth rate, up to some asymptotic value. The wavelength of
maximum instability shifted to shorter waves as the meridional scale

of the front decreased, which seems to be consistent with Brown (1969a)
and Simmons (1974). In contraat, Simmons and Hoskins (1976) concluded
that the instability mechanism was rather insensitive to the choice of
basic state when the prescribed meridional variation was larger than L,
the Rossby radius of deformation. In this study, the growth rate is
sensitive presumably because the meridional width of the frontal zone
is close to L. This shift may explain much of the discrepancy between
the most unstable wavelength, ~5700 km,rof the lowest-order solution
and the 3-4000 km wavelength of typical atmospheric wave-cyclones.

The atmospheric cyclones usually form along a thermal front, which is
not present in the lowest-order basic state. The growth rates are
reduced when a purely barotropic wind field (which from classical argu-
ments should lead to barotropic amplification) is added to the purely
baroclinic lowest-order basic current. It is the UlYY interior inte-
gral in (13) from (21) that generally reduces the growth rate for the
Prescribed flow profiles examined in this article. For the middle

waves (with zonal wavelength between the long- and short-wave cut-

Prescribed flow profiles examined in this article. For the middle
waves (with zonal wavelength between the long- and short-wave cut-
offs) , the phase speed is generally reduced by the prasence of the

horizontal shear. These negative values of the phase speed also arise
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primarily from the interior integral. Hence, the positive potential
vorticity gradient (as did the planetary vorticity gradient here) re-
duces the growth rate and phase speed. The ageostrophic terms tended
to reduce both the growth rate and phase épéed..”fhe maiﬁ source of
rhese changes was the divergence term (through its second-order com-
ponents) in the vorticity equation. The reduction of the growth rate
agrees with Derome and Dolph (1970), but the reduction of the phase
speed does not. Apparently, this disagreement arises because the
model used here is fully compressible while theirs is not.

The discussion of the amplitude and phase of the solutions
centered around those solutions obtained for a specific choice of the
parameters. These solutions were considered to be representative of
the results for the middle waves. Some features of the total solution,
where o = 2.0, B =1, and a = 1.6 for the Surface Front case with the

ageostrophic terms included, are summarized in Fig. 29. The quantities

in this figure include all the first- and second-order parts of the
perturbation series solution. It was found that the amplitude of the
wave was generally increased in the vicinity of the front, whether the
front was confined near the surface or near the top. In turn, this
changes the meridional scale of the wave. As the prescribed cross-
frontal scale was reduced, the meridional scale of the wave decreased
accordingly. The coordinate transform introduced two recognized non-
geostrophic changes in the structure noted before by Hoskins (1975).

First, because the mean zonal velocity increased with height, the

geostrophic changes in the structure noted before by Hoskins (1975).
First, because the mean zonal velocity increased with height, the
transform introduced a poleward tilt with height of the trough and

ridge axes. Second, the transform caused the horizontal areas of low
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and high pressure to shrink and expand respectively. Both of these
features are observed in the atmosphere. Without using a coordinate
transform, the former ageostrophic effect was found by Derome and
polph (1970) and the latter was obtained by Saltzman and Tang (1972).
The ageostrophic terms, again primarily those from the divergence
term, introduced meridional asymmetry ihto the solution. These terms
enhanced the amplitude north of the center and diminished it to the
south. The total perturbation pressure amplitude depicted in Fig. 29a
illustrates some of these structural properties.

The thermal front altered the phase of the wave in two ways.
First, the westward tilt with height was increased near the surface
and decreased near the top. This latter effect became more prominent
as the depth of the region of strong prescribed horizontal shear
increased. Secondly, there was horizontal shear associated with the
thermal front which was barotropically unstable. This produced hori-
zontal tilts of the trough and ridge axes--southeast-northwest equator-
ward, and southwest-northeast poleward of the center. These tilts
were generally greatest where the horizontal shear was greatest, except
along the vertical boundaries. The non-geostrophic terms created a
southwest-northeast tilt across the domain. Therefore the solution
combining the Surface Front and ageostrophic effects, from Fig. 29b,
has very little horizontal tilt south of the center (that is, the
axes are nearly north-south aligned) and strong southwest-northeast

tilt to the north. 1In addition, the westward tilt with height is

dxes are nearly north-south allgnedaj) ana STroOng SOUTNWEST-NOrTNeast
tilt to the north. 1In addition, the westward tilt with height is

Strongest in the lower half of the domain equatorward of the center.
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The momentum flux calculated for this model compared favorably
with the observed atmospheric distribution (e.g., Newell et al.,
1972), when the ageostrophic terms were included.ll The front pro-
duced a dipole pattern of the poleward momentum flux for the gquasi-
geostrophic eddy. The ageostrophic terms helped create a single,
large region of positive momentum flux, and produced maximum values
at the top of the domain.

Energy conversions were calculated for the four cases and for
the ageostrophic terms. These conversions revealed the connection
between the properties of the basic state and the stability and struc-
ture of the eddy. The role of the thermal front in the energy con-
versions was elaborated upon in Chapter 5. Briefl&, the barotropic
conversion (E;—:_E;) conformed with one's expectations based upon
classical potential vorticity arguments. The regions of positive
barotropic conversion corresponded fairly wéll with the regions of
positive qy, the basic state potential vorticity gradient, even
though qy had vertical as well as meridional structure (compare Figs.
11 and 21). The regions did not correspond exactly because of the
vertical dependence in the basic current. Specifically, the vertical
boundary conditions reduced the momentum convergence in three of the
cases and enhanced it slightly in the Upper Front case. Since these
departures from pure barotropic instability theory arose from the

baroclinic nature of the zonal flow, it followed that the presence of

The poleward heat flux and _momentum_ flux for th% Sgrggce ggont gage-
vaLvuedlnle nature Oor tne zZola I10wW, 1T IoLli0Owea na € p senc O

The poleward heat flux and momentum flux for the Surface Front case,

with and without the ageostrophic terms, are presented in Appendix
Io‘
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a baroclinically unstable flow inhibited the barotropic instability
mechanism. This conclusion depended, in part, upon the questionable
w = 0 boundary condition at the top, but that dependence actually
reduced the inhibition. This conversion was weakest in the Upper
Front case and strongest in the Barotropic case. The ageostrophic
terms discussed in Chapter 6 responded to the lowest-order basic
current which had only vertical variation. Though the volume-averaged
barotropic conversion by the ageostrophic terms was zero, the zonal
average did not vanish. The non-geostrophic barotropic conversion
was asymmetric and largest at the top. These terms tended to create
a jet in the basic state flow poleward of the meridional center. This
result seems to be consistent with a study by Hollingsworth (1975)
using a 2-layer model. The combined ageostrophic and Surface Front
barotropic conwversion is shown in Fig. 29c (compare with Figs. 21lc and
25c). The large positive conversion in the middle is due to the hori-
zontal shear associated with the thermal front. The negative conver-
sion to the north is due to both the vertical boundary conditions
(the baroclinic inhibition) and the ageostrophic terms. In contrast,
the conversion for Y < -.4 is weak because the vertical boundary terms
and ageostrophic terms oppose each other. Like the explicit ageo-
strophic terms, the nonlinear coordinate transform added positive
conversion south of the center and negative conversion to the north
when the wave had finite amplitude. This distribution isropposite to

that created by the transform when the wave amplitude is infinitesi-

when the wave had finite amplitude. This distribution is opposite to
that created by the transform when the wave amplitude is infinitesi-

mally small.
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The lowest-order baroclinic conversion (X;t:_gg) was largest at
the top. The second-order poleward heat flux was largest and posi-
tive in the vicinity of the front. The baroclinic conversion created
by the front was small in the Upper Front case and largest in the
surface Front case. However, the reduction of the westward tilt of
the trough and ridge axes near the top reduced the baroclinic con-
version at high levels. This reduction was a consequence of the
barotropically unstable aspect of the basic current. This effect is
a function of the vertical integral of qy, so it is largest in the

Barotropic case and least in the Upper Front case. Therefore, after

examination of the gquasi-geostrophic energy conversions (Kz ﬂ-KE) and

(AZ »—AE), it was concluded that the baroclinic and barotropic insta-

bility mechanisms tend to inhibit each other. A mathematical expla-

nation of this conclusion can be gleaned from Charney and Stern (1962)
or Held (1975). 1In the Barotropic case, the second-order changes

to the volume average baroclinic conversion were negative and
exceeded the positive barotropic conversion, thus explaining the
reduction of the growth rates. The thermal fronts increased the
growth rates because the front introduced additional vertical shear
and thus additional baroclinic instability. The combined ageostro-
phic and Surface Front baroclinic conversion (X;—:fzg) is shown in
Fig. 294 (compare with Figs. 8, 22c and 25d4). The large positive
conversion near the center bottom is due to the surface thermal

front in the basic state. The asymmetric terms introduced a strong

conversion near the center POTTOmM 1S que TO the surrace thermal
front in the basic state. The asymmetric terms introduced a strong
equatorward heat flux at high levels south of the center and a

Smaller poleward heat flux near the surface north of the center.

- — o — e e
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The coordinate transformation appeared to have little effeqt upon the
paroclinic conversion aside from introducing a poleward tilt with
height.

One way of interpreting the results of this study is that they
resolve some questions regarding the solutions obtained by Eady
(1949). One guestion was addressed earlier; namely, Why is the most
unstable wavelength in Eady's model much longer than the typical
wavelength of atmospheric wave-cyclones? The answer was that even
the presence of a weak front with small cross-frontal scale shifts
the most unstable wavelength to shorter waves. Another guestion
that one might consider is: Why are his calculated growth rates
so good? Eady's problem only incorporates the baroclinic instability
mechanism, and the basic current he chooses is simple, but not wildly
unrepresentative of the atmosphere. A simplistic argument might be
made that, because strong horizontal shear associated with the jet
stream and in situ processes like latent heat release occur in the
atmosphere, perhaps the growth rates would be much too large if all
the major mechanisms were included in a model. One way to reduce the
growth rate is to include the planetary vorticity gradient, another
way is to include ageostrophic terms. Diabatic processes were not
considered in this study, but Johnson (1970) has summarized some
observational studies of their role. For example, it seems that
latent heating may become important only after the cyclone reaches

a mature stage. Brown (1969b) found that a simulation of small-scale

latent heating may become important Only artexr tne Ccyclone reacunes
a mature stage. Brown (1969b) found that a simulation of small-scale
eddy momentum and heat diffusion processes reduced the growth rate.

The barotropic instability mechanism was considered in this study,
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and while it introduced some tendency for growth, the simultaneous
operation of the baroclinic and barotropic instability mechanisms
tended to inhibit each other. The reason why these two processes do
not linearly add together can be simply stated: the most efficient
structures for the two processes of energy conversion are different.
Since the structure of the wave lies somewhere between these two
when both processes operate together, both conversion processes are
not operated as efficiently as either can be when it operates alone.
In the experiments discussed in this study, the baroclinic and
barotropic instability mechanisms tended to inhibit each other. A
more general way of stating this conclusion is that the baroclinic and
barotropic instability mechanisms are not independent. The results of
this study complement the discussions of (26) and (25) by Charney and
Stern (1962) and Held (1975), respectively. In one sense, those rela-
tions show that the two instability mechanisms compete for the basic
state forcing. This study also complements the recent work by Lindzen
et al., (1979) which reveals an underlying connection between the
mechanisms, a connection suspected by Kuo thirty years earlier.
Finally, this study demonstrates that the connection between baroclinic
and barotropic instability must be recognized in order to properly

analyze problems where both mechanisms can operate.




APPENDIX A
Total Adjoint Operator
We wish to find the adjoint operator for a total differential
operator which includes the operator valid in the interior of the
domain and the operator(s) valid along the boundaries. Letzg(l) desig-

nate that total operator

L (1) . Lu interiox

B.u along each i boundary

Let L be a second-order partial differential eduation of the form

2 2
L=-a—2+d§E+e+fi—
dz oY

in a rectangular Y,Z domain S.

Let B, =0 along the Y constant boundaries

]

9 .
and B, = - §E'+ c along the 2 constant boundaries, B.

For convenience, we choose ¢, d, e and f to be complex constants.
Let us use angle brackets to denote the inner product for the
total operator and curved brackets for the inner product of each

component operator, thus:

component operator, thus:

105




106

u,v) = (W,v) o+ (u,v)

The adjoint operator, denoted by ﬂgz), must satisfy

V0,0 = G124

for any arbitrary u and v.

From the definition of the inner precduct, we can write
vy = fv Taas + fu(-a, + cuas

where the overbar indicetes. the conjugate. (Recall that the first
term of the inner product is conjugated in the integrand.) Inte-
grate by parts twice with respect to Y and Z, and use the Dirichlet
boundary conditions (u = 0) along the Y = constant boundaries. One

obtains.
(1) = - - —* - —
L a,v) = (qu - u(vZ - dv)dB +.fuL vds + Jb(—uz + cu)dB
* . . .1
where L 1is the conjugate adjoint of L, that is

2 2
T
97 oY

A term in the first integral cancels one in the third leaving

lRecall that the real operator P¢" + Qp' + R¢ = O has the adjoint
™hut 0 /amt AVl L (DY o N' 4+ RNV = 0. where the primes denote

1Recall that the real operator PO" + Q¢' + RO = O has the adjoint
PY" + (2P' - Q)Y' + (P" - Q' + R)Y = 0, where the primes denote

differentiation. This formula, of course, is reproduced by the

integration by parts.
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(ﬂgl)u,v> =J'-JL*vdS +IE(-VZ - dv + cv)aB = <u,ﬁ2)V>

We can immediately see what‘ﬁ}z) must be:

For

Lu in S
ﬁ}l)u = —uZ + cu along B
o) along Y = constant boundaries,

(ﬁgl)u,V> <u,ﬁ12)v> if

Lv in S
ﬂ‘(z) _ = - N .
vo=<-v, + dv + cv along B (2 = constant boundaries)
o along Y = constant boundaries.

In my specific application, if a nontrivial homogeneous solution
for ﬂ}l) exists, then 112) also has a nontrivial homogeneous solution.
. . 222) .
This may be true in general. also allows us to write the ortho-
gonality condition (13) as a prescription for c¢ in terms of known

guantities.




APPENDIX B
Numerical Determination of ¢l

The second term in the asymptotic series of the perturbation
pressure is obtained by direct numerical solution of the heterogeneous
Poisson equation. Since matrices and finite differences are used
instead of continuous differential operators, some special care must
be taken to make the problem completely consistent in terms of matrix
operations. In other words, a formulation which is appropriate and
consistent for the continuous equations is not necessarily so for its
discrete analog. Thus, before one can solve for $l' both the matrix
of coefficients (call it M) representing the total homogeneous opera-
tor and the forcing function matrix (call it F) must be carefully
defined.

The homogeneous system of equations has a nontrivial solution;
it is just the first term in the asymptotic séries. This was accom-
pPlished by a special choice of the free constant, co. Since a homo-
geneous solution exists, the corresponding coefficient matrix must be
singular. But, while the analytically determined co is a good guess,
there is no guarantee that it will cause the coefficient matrix
(determined by finite differences) to be singular to machine accuracy.
So, an iterative procedure is used to find the appropriate c, for the
coefficient matrix M using the analytic CO as a first guess. The

-4 -5

_———l o . JE O N S s ~v 1N it +hic arrnr conld

coefficient matrix M using the analytic Co as a first guess. The

-4 -5 .
analytic cO may make M singular to 10 or 10 7, but this error could
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~

be greatly magnified in the calculation of ¢ So, it is important

1°
to find the e which makes the matrix singular to machine accuracy,

< 3 x 10—16. As a check, we should expect the change in o to be
small, and in practice it has been "NVv.01%.

Since the homogeneous form of the equation has a nontrivial solu-
tion, the heterogeneous terms must be orthogonal to the solutian of
the conjugate of the adjoint system of equations. We know the
analytic form of the adjoint operator (see Appendix A). The matrix
equivalent of the adjoint operator is the conjugate transpose of the
matrix M, call it M*. It would be wrong, in general, to form M* from
the continuous adjoint operator in the same fashion as the coefficient
matrix M was formed from the homcgeneous operator. 1In fact, the con-
jugate transpose matrix M* may not correspond to any continuous dif-
ferential operator. Therefore, once the problem has been placed in
matrix form, all manipulations should be performed in matrix form to
guarantee consistency.

In the continuous problem, the second-order orthogonality condi-
tion for the heterégeneous terms was satisfied by the precise choice of

c In the matrix formulation we must insure that the forcing terms

1
be orthogonal in a matrix sense. We have two choices: 1) we can

iterate to find a new cl or 2) we can "project" the forcing function

as a whole. 1In this study the second method was chosen. The follow-

ing projection of the forcing function is made:

e L T S —— ——e—— - —— ———— — — e

ing projection of the forcing function is made:
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¢, *F

5;;62 ¢r (B1)

3>
|
|

where ¢r is the normalized right eigenvector of M and therefore corre-
sponds to the solution of the homogeneous adjoint system of eguations

(i.e., M*¢r = 0). The star signifies the conjugate transpose. The

matrix F incorporates the forcing terms from the interior (Fl) and
those from the boundary conditions (Bl)' As a check, we should expect
the correction to F to be small and in practice it is: for a 47 x 47

matrix, F was altered by .1l% or less. The method of iterating 1 is

unsatisfactory because the forcing function matrix is not very sensi-

tive to the value of c, in this problem. The procedure yielded

1

iterated values for 1 that were significantly different from

the analytic values. Thus, the use of the iterated c, may imply that
asignificantly different problem is being solved. However, it was
found that the broad features of the solution $l were not altered by
quite different choices for Cq-
There are also two choices for defining the forcing function.
We can formulate it from the analytic expressions for ¢o or we can use
the left eigenvector of M. Both approaches were tried and
essentially no difference was found in the results. This means that
the third-order forcing function could be calculated using the $l
matrix, and so forth for the higher orders. The analytic expressions

for ¢o were used in all the second-order calculations shown here.

Tha mat+riv acation

N

for ¢O were used in all the second-order calculations shown here.

The matrix eguation

. =M~ F (B2)
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is used to compute ¢l. Since M is singular, one might anticipate that
calculating its inverse would be difficult. This was not the case.
The heterogeneous solution was unaffected (to at least three digits)
whether M was singular to 10_4 or 10-15, for example. However, the
projection (Bl) is imperfect because ¢r* could only be computed to

12 digits of accuracy. Thus, the homogeneous solution, multiplied

by an arbitrary complex constant, is still present in the answer after
calculation of (B2). The homogeneous solution is removed by project-

ing the answer:

g *dy

¢, = ¢1 - $£:$; ¢o (B3)

where the heterogeneous solution ¢1 is the second term in the asymp-
totic series for the perturbation pressure and ¢2 is the left eigen-

vector.



APPENDIX C
The Geostrophic Correction Terms
The geostrophic correction terms appearing in (8) and (20) arise

because the relations

u =-P and v_=P (Cl)
y g

were used to define the geostrophic velocities used in the equations.
While these relations (Cl) are valid at the 0(1l) level, there are
0(u), and higher, terms that arise from three sources. These
sources are: 1) the scale height H is a function of Z, 2) the Corio-
lis parameter can vary; B # 0 and 3) the variation of the density in
the perturbation and basic state. The terms arising from these
sources are not contained in u and v but are explicitly written out
in (8) and (20). This partition allows us to assume that the primary
components of u and Vs arise from cyclostrophic balance, eliminating
from (20) the u and v, terms in (8).

Sources 1) and 2) manifest themselves in the advecting velocities
in the semi-geostrophic coordinates as the fl and B terms, respectively.
Sources 1) and 2) also contribute to the vorticity equation forcing

function with the term
ufaytugtey - B, - [, (v (fy - BYD], ]
uf[agtug gy = BV |y = [dyv (£ - By

which can be written in geostrophic coordinates as
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! - (£, -
ufB <I}XY(I)Y - 2(bXX(I)X * ‘I)YY@X (fl BY)DZ ((DXX - (I)YY)

source 3) is manifest in the

—a,H (up)x + (vp)y (C2)

term in the vorticity equation forcing function (see Appendix E).




APPENDIX D
The Orthogonality Condition

Examine the orthogonality condition

H¢*z&($l)deZ - ff ¢*F avaz , (D1)
S S

where S represents the Y and Z domain and ¢* is the conjugate of the
homogeneous solution to the total adjoint operator (see Appendix A).
The X and T dependence has been factored from the orthogonality rela-

tion. For this problem, the total adjoint operator is

2 2
*
0Z Y
o at Y = 1Y (D2)
b
0 oz _
5z a6 - — at z = 0,1
u - C
(e} o
The overbar indicates the complex conjugate. Nontrivial homogeneous

solutions exist both for the total operator (they are merely the first-
order results of Section 4) and for the total adjoint operator (D2).

From (D2) we find

¢* =e " b
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Integrating (Dl) by parts, twice, one obtains

A A Z=l lA *
I[¢*¢lz - ¢l(¢z* + a6¢*)]z=ody + j;¢lL (¢*)avdz = {! ¢*FldeZ

*
Using (D2) and L (¢*) = 0,

~ =]
I[¢*($lz - 559%?%-” ay = ff ¢*F dvaz. (D3)
o o) S

Z=0

The unknown $l can be eliminated from the left-hand side of (D3)

by using (12b). The heterogeneous terms in (12b) include a term
involving cl.
~ Z=1
- *B * = fs *
clo - ay + ¢ 1 dy () FldeZ , (D4)
o o) 7=6 S

~

B*=‘ ~ _ ~ + A—'A _
1 (wlY¢oZ ¢o 1Yz - C06Y¢oz 2flqu¢o ¢ouo(a3 le)

/lag = ey o lag = £1.000 = £10,-

- fl¢oZuo

The orthogonality condition can now be arranged in the form (13) as a

definition of ¢

1
a z=1\-1
- (e tei] |1 oo - foe]
Z=0
"1 (Luo - co 4 o) J ) lﬁf Tl - n )




APPENDIX E

Vertical Component Vorticity Equation Derivation

Define
Ny = &3 + HOy
where
0 (ug,vg)
53 = vgx - ugy and 03 = —57;7§7— = unggy - ugyvgx

Using (5) and combining terms, the 53 equation is obtained.

d = (d.(v)) = (d.(u)) =-uv - v v + uu + v ou
2(€3) ( 2( g 'x 2 gy X gx X gy Yy gx Y gy
d2(63) = (1 + uBy)(wZ + a,w + a4ud2p) - Bv - uwxvgZ - pwvgxz
+ pw u + pwu - uv - vv + uu + v u
Y g9z gyz X gXx X gy -y 9Xx Yy 9y

a4u[upx + vpy] - ud, (v ) ”(dz(“a”y

u[dz(Vg(fl - By, + u[dz(ug(fl - B,

A geostrophic correction term (C2) can be combined with the divergence

term. Truncating at the O(p) level:

d2(€3) = u(g - Yw) - Bv + aepwg3 + (1 + uBy)(wz - a7w) +aup,

~

- uw£32 - L[“d2(va)]x - [dZ(ua)]y} - u!d2(vg(fl - By))]x

< S ~ ~ ~ o -

- uwg3z - u“d2(va)]x - [dz(ua)]ys - Ll(d2(vg(fl - By))]x
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a 7 ’
(u ug) o(v Vg)

+ufa, £, - 8y))]

2 g1 (E1)

vy ax,y)  9(x,y)

The last two terms in (El) are eliminated by the 0. equation.

3
d(ud. (u),v) d(u_,ud, (v.)) d(u,v.)
Ld_(0.) = 2 g g g~ 2 g ne
273 3(x,y) (x,y) gx d(x,y)
N g

9(v,v ) 9(u_,u) (u_,v)
a — 9 Ly -—9 L., -9
gy 9(x,y) gx 9(x,y) gy (x,y)

Use (5d) and (5e) and truncate at the O0(y) level to obtain

- Vv _Vv +u

d o’ —3 -—
Hdy 3) [vxvgy gx'y gyux ugxuy](

1+ -
upy) uBvax

_ - 9 g 9 g
HBuu ”l:‘.lx se,y) Uy Taix,y)

d(u_,v) d(u_,v )]

This can be reduced to

8(v,vg) B(u,ug)
M, (03) = Ty Y Ty “B[ng * uugx]

(v,v_) o(u,u_)
g9 g (E2)
+“By|?a(x,y) ¥ a(x,y)]

Combine (El) and (E2) to obtain (6):

d,(ny) = HEE = VW) - Bv + aghwh, + (1 + uBy) (w, + 3w - uwes,
+ aup, - u[dz(va)]x + U[dz(ua)]y - u[dz(vg(fl - By)).Wlx
+ula,ta (£ - ByD] - ubfvvy, + v ] (£3)
+ ula, (u (£; - By) )]y - ufvv , uung (E3)

Transform (E3) into geostrophic coordinates (7a) term by term.

The following relations are useful
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8 _ 3 9 3 3 3 3
3t " ar T 9 T NFy T L HI) g+ I gy
3 3 3 3 3 9 3 (E4)
— =J — — —_— = _— —_— —
dy ax+(l+K)ay’az M3X+B3Y+3Z
where
Q= Whyp » N=udy o T =p0, T =ub,
K=u<I>YY,M=u<I>XZ,B=u<DYZ.
Truncate each term at O(u) and use (7c):
d(£)=D[<b + @ + u(d )2+].1(<1> )2+u(¢> )2 [E5)
273 21 "xx YY XX XY YY
2
Hd, (0,) = “Dz[q)w@xx - (O (E6)
] = 7
v, + U(E Yw) w, + u((bxx + @YY) v, (E7)

since from (5a) and (5¢), w involves onlv derivatives of P. It is

understood that the W, on the right-hand side of (E6) is a function

of 9.
- Bv = - ng(l - uBY + ufl) - uBDz(ug) = - D2(BY + uBug) (E8)
a6uw53 = a6uw(¢>XX + QYY) (E9)
uBy(wz + a6w) = uBY(wZ + a6w) (E10)

2Notethat the total derivative (following a parcel) of any quantity

2 . . .
Note that the total derivative (following a parcel) of any gquantity
in geostrophic coordinates equals the total derivative of that guan-

tity in Cartesian coordinates.
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rRecall that from (5a)
6 =0 - udla, - £.) + pE.o, + 0(u2)
g ~ H¥la5 1z 7 5%y H
So,

- - - ' _ - 2
aw = a7eD2(¢Z) a6ueD2(fl¢Z (a3 flz)¢) + acue @ZZD2(¢Z) (E11)

7
ACEP 'ﬁW(Qxxz * Oyyy) (E12)
a,up, = a4U(a5a® - @Z)T (E13)
—uB vvgx + ung] = —uB[@XQXX - ®Y¢XY (E14)

—H dz('vg(fl - By))]x * u[dZ(ug(fl B By))]y B (E15)

—u(fl - BY)D2(®XX‘+ @YY) + uB[®XY®Y + 2¢XX®Y + @YY¢X

This leaves the ageostrophic velocity term. If we assume that ageo-
strophic velocities are primarily due to cycléstrophic balance, then
this term will not enter into the calculation of the first- and
second-order solutions. The transform of this term is indicated

symbolically in (8) as
! - =
U[[d2(va)]k [dz(ua)]y uD(va,ua) (E16)

Relations (E5) - (E16) are substituted in (E3) and rearranged so
that only the O(u) terms (other than those from the definition of

D2) appear on the right-hand side. By combining and transforming

that only the 0(u) terms (other than those from the definition of
D2) appear on the right-hand side. By combining and transforming

(5a) and (5c), w is expressed in terms of 9.
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_ & E17
le2(¢Z) + € ZZD2(<I>Z) (E17)

= = ¢ - d
W €D, (%) + WEH(ay - £,)%,

and

(a, - 2f. )9 + (e@zz - fl)DZ(dDZZ)

w, = = ED, (P ) - €U (ay 1z’ “zT

z

_ | (E18)
+ e@ZZZD2(¢Z) 2flz(ug<1>ZX + Vg¢zy)[

Relations (E17) and (E18) are substituted for w and wZ to obtain

(8). The relation (E17) is used for the boundary conditions w = 0



APPENDIX F
The Static State

The prescription of the static state is important because the
vertical variations of P, 8, T and p are dominated by the variations
of the static state variables (3). There is some flexibility in how
we choose the static state, despite a half-dozen restrictions imposed
to make the problem solvable. In this report, a particular static
state which closely models the USSA will be employed.

Much of the flexibility mentioned above arises from the realiza-

tion that small changes in the static state density field can cause

large changes in the static stability, K. One can obtain analytically

solvable lowest-order versions of (8) for various variations of K,
from cases where K increases slightly with height to cases where it
decreases dramatically with height. From the definition (2b) of g,
it is clear that the problem can be significantly altered by markedly
different choices of K.

The particular static state used here is patterned after the
USSA. It is assumed that the USSA is representative of the typical
average atmospheric conditions present during incipient wave-cyclone
development. This state is contrasted with an isothermal state,

where K is constant but about three times larger, in Fig. 1.

The specific choice of ps is

Baled e IN dhad WD Ll e A WA ML bbb Al el Y de el b e e

The specific choice of ps is

121
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z/D .9

p (z) = 1.1 P+ 13400 - 2 2) 0u?) (F1)

where D = 10 km is the height of the domain. From the hydrostatic
relation

-2/D _ .134 .45

Ps(z) = gl|l.l e D (z - - 22) + 0(u2) + constant. (F2)

The eg(z) distribution can be obtained from a state equation. We will
not need to know what the O(uz) parts of (Fl) and (F2) are to solve
the vorticity equation at the level we will truncate it. The constant
in (F2) is chosen so that PS(O) = 1013 mb. The static stability for

this example is

and is independent of height.
The pressure scale height computed from (Fl) and (F2), as for the

USSA, is not constant but decreases with height.

Ps(z) 5
_— = * o e o ’ F3
ps(Z)g H (1 + ufl(z) + U f2(z) ) (F3)
where
P (0)
S -1.1
H 5 (0) and fl = D z

s

h H = 5 ) g ana fl = D z o et -

is a reasonable choice for fl. The fi are all assumed to vanish at

the bottom. The higher-order corrections (fi for i > 1) are not
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needed here either. However, £. will appear in the hydrostatic rela-

1

tion (5a) and the horizontal momentum equations (5d) and (5e).




APPENDIX G
Scaling
The scaling arguments for P, p and € developed below were
generously provided by Dr. J. Pedlosky.

Assume the following relations hold:

P =P (2) (1 + PP")
p=p (z) * (1 +0p")
6 =6_(2) + (1+ 6e")

A

where the primes denote nondimensional quantities and ﬁ, 6 and 6 are
the as yet undetermined nondimensional scaling factors. Note that

the static state variables satisfy

(PS)Z = ng

and

c_nB = c_ 4nP_ - c_ np_. (G1)
P s v s P s

Let us anticipate that the horizontal pressure gradient will be
of the order of the Coriolis acceleration; that is, the perturbation

is in approximate geostrophic balance.

B e it d e m— e e - e ————
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ﬁPS(z)
-1 (P')y, = O(fOVU'pS). (G2)

Assuming that u' and P' are 0(l), we use (G2) to define

P=fOVLP—~—-——=1J\)I<€. (G3)

For the purposes of the scaling, the lowest order definition of H is
adeguate in (G3).

To obtain the density scaling factor, we anticipate that in the
vertical direction the buoyancy force due to density departures
p - ps) caused by the motion field will be of the same order as the
vertical pressure gradient. That is, we expect approximate hydrostatic

balance for the eddy. Thus

(P PP') b £ VL
e o T[]
s D D Z

using (G2). Again let P' and p' be 0(l) to get

£ VL £ 212

~ [e]
P = - 4
p gD f L gD HKE . (G )

A

Since 5, 6 and 8 are expected to be small, it follows from (1)

that

cp Qn(es(l + 66")) cp Rnes + cp n(l + 68"y .

~ ~
—_ o~ n_n ' - NN . n:nz\

cp Mnf + e An(l + 6oy .

cp Rn(es(l + 66'))

~ . A2
o, #nb_ + c B8 + 0(6%)

A ~ A2 A2
+ [ - ' .
c, Q,nPS c PP cp ans cppp + O0(P7,p")
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Using (Gl) we may write
Ber = yBp' - pp' + 0(82,8%,5%) (G5)
and to keep 6' 0(l) it is convenient to choose

6 =p = uke. (G6)




APPENDIX H
Some Mathematical Details
I. A derivation of (5a):

We can write (G5) as

8 =a P -+ o). (H1)

Write the vertical momentum equation as

(P_(1 4+ pvkeP"))
S Zy0m%) =0. (H2)

ps(l + pkep')

Multiply by G/Vfo and recall that (PS)z = psg (dimensional) , so that

< 1
L 1 . u\)Ke(PSP_)z )
g (1 + ukep") ps(l + UKEP')
truncated at O(p). Use the definition of the scale height (2d) to

get

P! + uf een !
g uKked uKeg(ps (L +n 1t ))z

1 + pkep' ps(l + uKep')

Note that gkeu = Vfo/6 and divide by (1 + ukep') to obtain

1 1 1 -Ll— =
p' + (P )z' + P ay + ps (psP'fl)z, 0. (H3)

0. (H3)

. 2 '
prH (B T By Ty (PP Ey)
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Note that £, is nondimensional. Using (Hl) and (Gl) we can rearrange

1
(H3).
! = g' - ' "D | - - '
(P')_, =6 a YP' + P Dl(ﬂn()s)z Y(SLnPs)ZJ o (P'p £))
_ Dp_gY
(P )z =06' +P'k - P agy - Ps + ule, + pP fl(znps)z} - uflp'z,
' = At ' - 1T o & pt 2
(p )z' B' + P [ua3 Ule' + uflK uLlP o + 0(u™)

Truncating at O0(u) we retrieve (5a)

' = 1 ' - - '
(P )z' ' + P (a3 £150) MEP' .

II. A derivation of (25) and (26)

This derivation is sketched in the article by Held (1975) and is
repeated here for the convenience of the reader.

Let g' denote the total perturbation series of eddy potential
vorticity; then the linearized quasi—geostropﬁic potential vorticity

equation can be written

(@)g = - 0@, - uw'iq,), (H4)
where v' = ¢x. Multiply by g' and average over X

%( (;)—2)T = - w'q'(g)- (H5)
LY 5T\4uf\,n¢,+hnpfn§m\ﬂlyl

Assume a solution to (H4) of the form

q' = Reld exp (ik(X - e} (H6)
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Then substituting into (H4) (see pages 168-169, Charney and Stern,

1962, for more details), one gets

kC. /\'2
v'ig' = 21 &gl— exp(2kciT). (H7)
91y

Multiply g' (defined as equal to ZZ(¢)) by psv' and average over X.

This can be written as

psv gqg' = - M+ (h)Z ’

where M is defined by (25) and h by (26). To obtain (25) we integrate
over the depth of the fluid. To obtain (26) we integrate from the
surface to a height Z. The derivation of (26) is only slightly dif-
ferent from that for (25) so only the derivation of (25) need be shown.

Integrate cver the depth of the fluid and use (H7):

1 ke, 1 A2
X MdzZz = —Ei-exp(2kciT) o] lgl—-dz + h

1
o e} s qulY o

Multiply the boundary conditions at Z = 0,1 by ps¢z and average over X

p

s 2
7?-((¢Z)

Jp TPV 6,0,

which is similar in form to (HS5) thus

ke, p_|o_|°
iPslvy
ovd = — == exp(2ke.T) at z = 0,1.
ke, o |4 |°
v'g = — -2  exp(2kc.T) at Z = 0,1
Pq 7 2 UZ exp i !

Substitute into (H8)
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~l2 ~ 2
1 ke, 1o |4l plogl” 1
Mdz = - exp(2kciT) S U_ dz + -U— . (H9)
o o qlY Z o
Return to (H4) and substitute in (H6) giving
(U-0)q = - ¢q,,. (H10)
Also write the vertical boundary conditions as
(-6, =-6u atz=o0,1. (H11)
Substitute (H10) and (H1l) into (H9) to obtain (25):
~ 2 ~
sl ke, { 1 p_ul9| OS|¢>[2 1
MdZ = — exp(2kc,T) S —q,. 42 + —S—— 1y ;
o g Pl ju-cpr Y v -c|® Zlo

which is similar in form to (8b) in Held (1975).




APPENDIX I
Further Figures

The purpose of this appendix is to present some figures which
expand upon the discussion in the main text. The figures were deemed
inappropriate for the main text and are included here for the benefit
of those readers who may wish to see more details.

The first set of plots (Fig. I-1) shows the growth rate and
phase speed spectra for each of the four quasi-geostrophic cases
obtained from the vertical boundary terms in (13) only. The contour
interval of .1 is the same in each of these diagrams.

The second set of plots (Fig. I-2) shows the three energy conver-
sions in a format similar to that in Fig. 23, but for the other three
quasi-geostrophic cases. In each triplet, the contour intervals are .1
in the top diagram and .25 in the middle and bottom diagrams. These
cross sections are in Cartesian coordinates.

The third set of plots (Fig. I-3) shows the real (left) and imagi-
nary (right) parts of the eddy pressure ¢l calculated for the three
most important ageostrophic terms in (27) and (28) and the total for
all the terms. The intent is to facilitate comparison with a solution
of Derome and Dolph (1970). These cross sections are in geostrophic

coordinates. The contour interval varies in the figures.

" The plots composing Fig. I-4 show the changes in the poleward heat

coordinates. The contour interval varies in the figures.
“The plots composing Fig. I-4 show the changes in the poleward heat
flux and momentum flux, for the Surface Front case, caused by the
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ageostrophic terms. Again, g = 2.0, a=1.6 and B = 1. Inparticular,
the ageostrophic terms greatly improve the comparison between these
ageostrophic terms greatly improve the comparison between these
theoretical and observed atmospheric distributions of the momentum
flux. In the atmosphere, a single, large region of positive momentum
flux, with maximum value.near the tropopause is often observed in
middle latitudes (e.g., Newell et al., 1972). The ageostrophic terms
have less effect upon the poleward heat flux.

The group of diagrams in Fig. I-5 may be compared with the solu-
tion discussed by McIntyre (1970), and they are presented to check the
method of solution used here. Fig. I-5a compares quite favorably with
Fig. 5 in McIntyre (1970). The poleward heat flux is v'8' and the
momentum convergence is :TGT;TT;: The comparison is not exact for
several reasons, among them: 1) we define m differently, so we use
different values for 0, 2) we define the horizontal shape of the
domain differently and 3) he sums 11 terms in the series while I
only use the first two. Similar basic state profiles were used; in my
results o = 2.0, 8 = 0 and a, = 0. Fig. I-5b shows the baroclinic
(K;—:_K;) and barotropic (E;_:?Eg) energy conversions (not computed
by McIntyre, 1970). The potential vorticity gradient for this basic
state (U = 2 +.4cosz(mY)) is positive between * .55, and negative

elsewhere.
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UPPER FRONT CASE
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Fig. I-la. Growth rate (upper diagram) and phase speed (lower dia-
gram) spectra for the Upper Front case obtained by using
onlv the vertical boundary terms in (13). The contour
Fig. I-la. Growth rate (upper diagram) and phase speed (lower dia-

gram) spectra for the Upper Front case obtained by using
only the vertical boundary terms in (13). The contour
interval is .1.
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Fig. I-1b. Same as Fig. I-la except for the Deep Front case.

Fig. I-1b. Same as Fig. I-la except for the Deep Front case.
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kIm(C,) SURFACE FRONT CASE
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Fig. I-lc. Same as Fig. I-la except for the Surface Front case.

Fig. I-lc. Same as Fig. I-la except for the Surface Front case.
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POLEWARD HEAT FLUX
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Fig. I-4a Quasi-geostrophic poleward heat flux and momentum flux for
the Surface Front case, 00 = 2.0, a = 1.6 and B = 1. The
contour intervals are .2 in the ugper diagram and .05 in
the lower.
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POLEWARD HEAT FLUX
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Fig. I-4b Same as Fig. I-4a, except that the contributions by the
ageostrophic terms have been in¢luded. Same respective
contour intervals as in Fig. I-4a.
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BAROTROPIC CONVERSION
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The corresponding baroclinic (A7 =+ A_) and barotropic
(K_ - K.) energy conversions for the solution presented in
Fig. I-5a. The contour interval is .25.

Fig. I-5b
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