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Abstract

A spectral Chebyshev-collocation method is devised for the 1-1/2 layer nonlinear reduced-
gravity equations. Following a gencral description of spectral methods with their applica-
tion to meteorological and occanographic problems the implementation of the numerical
technique is described. A bicharacteristic scheme is applied to solve the cquations at the
boundaries incorporating the boundary conditions. This treatment enables stable time in-
tegrations (spectral methods in general are very sensitive to boundary errors). A simple
transfinite grid generation method is used to construct grids over irregular (non-rectangular)
simply-connected domains.

The model is used in a study of the dynamics of Yanai (or mixed Rossby-gravity) wave
packets. These are of interest becanse of the observations of equatorial instability waves
(which have the characteristics of Yanai waves) and their role in the momentum and heat
budgets in the tropics. A scries of experiments is performed to investigate the generation
of the waves by simple cross-equatorial wind stress forcings in various configurations and
the influence of a western boundary on them. They may be generated in the interior ocean

as well as from a western boundary. The obscervations from all the occans indicate that the

X1



waves have a preferential period and wavelength of around 26 days and 1000 km vespectively.
This is scen in the model results too and @ plausible explanation is provided as being due

to the dispersive properties of Yanai waves.
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Chapter 1

Introduction

Since the beginning of research in numerical modelling of geophysical flows, finite differ-
ence techniques have been widely used and continue to be developed. With the advent of
high-speed digital computers. scientists and mathematicians have collaborated in carnest.
sceking accurate and efficient ways to compute numerically the flow fields for the atmosphere
and the oceans. For the nonlinear shallow water equations, Arakawa (1966) [1] devised a
mumerical technique which prescrves three constraints (namely, the conservation of energy.
censtrophy, and mean vorticity) of the governing differential cquations, in finite difference
form. This is an elegant approach for dealing with the nonlincar instability or aliasing
error. Arakawa showed that it is possible to construct schemes that are not only free of
the nonlinear computational instability, but also free of the spurions inflow of energy to the
short waves which cause this instability, instead of artificially suppressing their amplitudes.
Grammeltvedt (1969) [19] gives a survey of finite difference schemes, some of which are still

being used in metcorology and oceanography today.
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There are, of course, other popular numerical techniques to solve partial differential
cquations. Spectral methods belong to one such class of teciimiques, and although they are
not so widely used as finite difference methods in oceanography, they do provide a very
powerful tool for solving certain types of problems. Finite difference methods are “local”
methaods, in the sense that the computed solution at a grid point depends only on the local
spatial solution at the current and a few recent time levels. They may suffer from poor
phase speed representations of the waves being modelled. Spectral techniques, on the other

hand, are “global” methods and can generally give improved phase speeds.

1.1 Spectral Methods In Geophysical Modelling

A spectral method was introduced into meteorological modelling by Silberman (1954) [53]
using the non-divergent barotropic vorticity equation. In spherical geometry, he expanded
the solution as a sum of surface spherical harmonics using Legendre polynomials. Other
authors followed suit with this method. including Platzman (1960) {50]. Bacr and Platzman
(1961) [2]. As pointed out by Platzman (1960) [50]. one of the principal advantages of this
spectral technique over finite difference schemes is that it prevents nonlinear computational
instability, because there is no spurious energy cascade to the shorter wavelengths. However.
such a model was not considered to be competitive with other methods at high resolution.
The scheme is inefficient due to the large number of computations per time step needed for
the nonlinear terms in the equations. The number of these computations grew as O(N?)

(in the one-dimensional case), where N is the number of harmonics retained. Most finite



difference methods require O(N) computations (N here being the number of grid points).

Eliasen et al. (1970) {13] and Orszag (1970) [44], working independently, introduced
the so-called “transform method”, which brought about a renewal of interest in spectral
methods for meteorological modelling. The concept is to carry out multiplications involving
nonlinear terms in physical space and transform back to spectral space again for the lincar
dynamics. This reduces the operation count from O(N?2) to O(Nloga(N)) making the
spectral method competitive in efficiency with standard finite difference techniques at high
resolution. Naturally, the success of this scheme was dependent upon the already available
fast transform methods, such as, for example, the Fast Fourier Transform (Cooley and
Tukey, (1965) {10] ) in the case where trigonometric functions are used as basis functions.
With an increase in resolution without much of a loss in efficiency, another important
aspect of the spectral method came into play, namely its rate of convergence. This is
often referred to as “spectral accuracy”™. It means that the truncation error decays faster
than any polynomial in (1/N). where N is the number of basis functions used in the
truncated series expansion for the solution. Finite difference methods have an algebraic rate
of convergence, so that, for example. a second order accurate scheme has an error which
decays as O(1/N?), N being the munber of grid points used. In other words, for a given
accuracy, the spectral method requires much fewer basis functions than grid points needed
for the finite difference  scheme. Thus, at high resolution, therc is a substantial saving in
computer storage space with the former. For problems in meteorology and occanography.

this can be a very significant advantage.



1.1.1 Spectral Methods In Ocean Modelling

Bretherton and Karweit (1975) {4] introduced a G-layer quasi-geostrophic model for mid-
ocean mesoscale modelling over a limited area domain. They assumed that the non-
divergent part of the velocity field was doubly periodic and used a Fourier spectral method
to solve the Poisson equation resulting at each time step. Such a model has become pop-
ular with ocean modellers for the study of the dynamical propertics of the mesoscale eddy
ficld under simulated mid-ocean conditions. Rhines (1975) {52] used this method . as did
Haidvogel and Held (1980) [22] and Haidvogel (1983) [21].

It is also possible to attain “spectral accuracy” with a model where the domain is
not doubly periodic. If the physical domain has solid wall boundaries. for example. then
cither Chebyshev or Legendre polynomials may be chosen as basis functions to yield this
accuracy. A further discussion on this topic will be given later. For limited arca modelling in
oceanography several authors have described spectral models using Chebyshev polynomials
(e.g. Haidvogel et al. (1980) [23]. Jensen and Kopriva (1988) [29]). Fulton and Schubert
(1987b) [15] described different limited arca, nonlincar shallow water models with Chebyshev
basis functions. They have implemented models with both open and solid wall boundary
conditions. Mixed basis functions can also be used, e.g. with channel models. In a study
of the circulation driven by oscillatory winds, Haidvogel and Rhines (1983) {20] used a
Chebyshev and a sine series expansion. As a general rule (see Boyd (1989, p. 2) [3] ) it i»
best to use Chebyshev polynomials for spatial dimensions which are not periodic, and to

use Fourier series for spatial dimensions which are periodic.



1.1.2 Irregular Domains

One of the major difficulties in using a spectral method is that the computational domain
must be a square. If the physical domain (e.g. an ocean basin) has irregular boundaries.
then a mapping must be employed to transform the physical domain into a square. There
are many problems associated with such mappings. If the domain is not simply connected
(as in the case of an ocean basin with islands). then several different mappings may have to
be used, one for each simply connccted segment of the domain. All these parts have to be
~patched” together in some manner. allowing a two-way interaction between each pair of
neighbouring segments. There may still be problems associated with the mappings even it
the physical domain is simply connected. The boundary could be so irregular that the grid
generated after the mapping is not one-to-one (i.¢.grid lines are intersecting). If this occurs.
domain “patching” may still have to be used. Some domain mapping techniques have been
used by ocean modellers, although typically in rather simplified situations. In a study of
flow over irregular coastal topography, Broutman and Grimshaw (1989) [5] used a simple
conformal mapping to transform the square computational domain into more interesting
shapes. Haidvogel et al. (1991) [24] have designed a semi-spectral primitive equation ocean
model with Chebyshev polynomials for the vertical discretization and finite diffevences in
the horizontal. Using a coordinate transformation to generate an orthogonal curvilinear
horizontal grid, their model can allow for “moderately” irregular basin geometries. An
illustration of domain decomposition methods used in the spectral solution of hyperbolic

equations is given by Kopriva (1989) {33]. He showed using as examples some simple



equations in both one and two space dimensions that spectral accuracy can be obtained
by using “patched” (i.e. where two subdomains intersect along an interface) and “overset”

(i.e. where subdomains overlap) Chebyshev grids.

1.1.3 Boundary Treatments

When employing a spectral method for solving hyperbolic equations, care must be taken to
treat the boundary conditions correctly. As pointed out by Gottlieb and Orszag (1977, p.
155) [17], the mathematical features of spectral methods follow very closely the differential
equations being solved. Just as it is important that the analytical solution gives the correct
characteristics at the boundarics, so also is it necessary that some attempt be made to
compute these characteristics numerically. In this regard, spectral methods are much more
sex'xsitivc to errors at the boundaries than are finite difference methods in general. Nev-
ertheless, they are free of problems encountered with finite differences when higher order
methods are used. They do not require extra “ghost” points outside of the computational
domnain, nor do they require extra “boundary conditions” (ones other than those of the
differential equations), which occurs with finite difference methods of higher order than the

governing differential equations.

1.2 The Present Study

The purpose of this investigation is twofold: 1) To design and implement a Chebyshev-
collocation ocean model using the 1-1/2 layer, nonlinear reduced-gravity equations on an

irregular domain; 2) To apply the model in an investigation of the dynamical propertics of
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equatorial Yanai (or mixed Rossby-gravity) waves.

Jensen and Kopriva (1988) [29] examined a similar spectral model, using the linear
reduced-gravity equations on a rectangular domain. Their results show that, for the same
accuracy, the spectral method requires only 15% of the storage needed by a standard finite
difference model, while the computer time differs by less than 20%. This is a striking illus-
tration of a point made by Canuto et al. (1988, p. 7) [7] that “in most practical applications
the benefit of the spectral method is not the extraordinary accuracy available for large N
(number of modes), but rather the small size of N necessary for a moderately accurate
solution”. We use an algebraic grid generating method to construct grids over irregular
shaped domains, and a bicharacteristic scheme to compute all the boundary values.

In this study we illustrate the power of the spectral method in solving many types of
oceanographic modelling problems. The specific problem we study here is on certain dy-
namical properties of cquatorial Yanai wave packets. These instability waves have occupied
the interest of oceanographers for almost the past twenty years due to their role in the
momentum and heat balance in the equatorial regions and most especially because of the
curious way in which these waves always scem to select a preferential wavelength and pe-
riod of around 1000 km and 25 days. We illustrate how the waves can be genevated by
simple cross-equatorial wind stress forcings and present a plausible explanation as to why

this particular wavelength and period appears.



Chapter 2

Overview of Spectral Methods

In this chapter, we give a brief introduction to spectral methods. We concentrate on the
Chebyshev-collocation method.

We present the mathematical framework for the numerical formulation of spectral mod-
cls. Spectral schemes belong to a class of numerical techniques known as the “method
of weighted residuals™. It is from this point of view that we present the mathematical

framework .
2.1 Method Of Weighted Residuals
Let us consider the following representation for a model problem:

Llu)=0 (1)

together with, as yet unspecified, boundary and initial conditions. The symbol, £, is a

differential operator, which may be lincar or nonlinear. The solution. u = u(x,t), we may



think of either as a vector or as a scalar function, with x being a position vector. We

approximate the solution u as:
N
N \ .
wr (e t) = 3 an(t)du(x) @)
k=0

where ¢1.(x) are specifically chosen ‘basis’ or ‘trial’ functions, and ar(t) are coefficients we
[P &

must compute. We define the residual function, ¥ (x, t) according to:
L] =r" (3)

In general r¥(x.t) 2 0. We introduce a new set of functions. {(x.1)}72, called "weight’
or ‘test’ functions. The fundamental idea behind the method of weighted residuals is that
the residual function. r, is required to be orthogonal to the space spanned by the finite
sct of test functions Y = {'l,/’[;}ﬁ:o. Thus we choose the coeflicients ar(t) so that V1YY .
and therefore, by the Projection Theorem (Stakgold, (1979 p. 266) [56]) the “best approx-
imation” to ¥ from Y= is the zero vector. It is in this sense that the residual function is
brought as close to zero as possible.

To be more precise, we regard the solution © € H, where H is a Hilbert space. The sct
{¢r}22, forms a basis for H, and so the finite dimensional space, X, defined by the span

of the set of functions {d)k};}':o is a subspace of H. Let < -,- > denote the inner product

for H. The requirement that ¥ be orthogonal to Y+ implies:
<rt,u>=0 VveY? (1)

This gives us a sct of conditions to compute the coefficients ar(t). We shall illustrate the

above by mecans of some simple examples.
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EXAMPLE 1: Consider the one-dimensional nonlinear advection equation:

du du
5"*‘“5; O. IE (0,210) (

(g ]

with initial condition: u{z,0) = uo(z)
and periodic boundary condition: 1(0.1) = u(2%.1).

We select as our space of trial functions the space of all trigonometric polynomials. and for

our subspace X+ the set {c"’}k \/\'/ . - Thus we have:
N2
wY(z.t) = Z g (t)e'** (G)
k=- N2

where the coefficients i (t) are to be determined by an orthogonality condition similar to

(1) above. We select as the test functicns the space of trigonometric polynomic als also, xo
hY N ik k=N/2~ 3 . R . : H H

that X® =Y = {7}, _ \V/, . Using the usual inner product for this Hilbert space . 1.c.

2=
< v >=/ u(xr)i(z)dr (7)
0
(where #(z) is the complex conjugate of v(zx)) we obtain from equation (4):

\' xk.r 27 a“’ \0”' —ikr 7
<7 _/( Zgetar =0 k=-N/2. N/2-1 ()

Substituting the expression for a™ given by (6) into (8) and using the orthogonality prop-

erties of trigonometric polynomials yiclds:

alﬁlk \.Ou‘v 9
— L e d F = y == — A V 2 -
5 +{u o )i =0 k Nf2, L N/ 1 (9)

where

“9u 1 coud
(Il‘ —g:;—)k = ‘)—/ u‘\ —:;f;—c—"‘rdr (10)
p & Jo s



11

Equations (9) arc a system of ODEs, which can be discretized in time, and then solved for
the unknown coefficients ;. The nonlinear term in equation (10) is of the form:

— 1 2=

wV ) = = N wVe %z (11)
7 Jo

-t

where u¥,w? have expansions similar to equation (6) above. When Y wY are expanded
in this form, again using the orthogonality properties of the trigonometric polynomials, we

obtain:

(61\“)1\': Z ‘.‘pU:’q (12)

ptg=k
This is a convolution, and requires O(N?) operations. Eliasen et al. (1970) [13] and Orszag
(1970) [44]. using the “Transform Method”, showed that it is more efficient to perforin the
multiplication ug'—; in physical space, rather than compute a convolution sum in spectral
space, thereby reducing the operation count to O(4V log, N). (See Canuto et al . (1988)
(7)) O

The choice of test functions determines the type of spectral method. There ave three

basic types:

e The Galerkin Method: The sct of test functions is identical to the set of trial functions.

ie., Y= ¢ Vk.

e The Collocation Mcthod: The sct of test functions consists of Dirac delta functions.

i.c. . = 8(x — 1), where the set {z )}, are the “collocation points™.



o The Tau Method: The set of test functions are given by:

¢or k=0,1,...,N -1
zr/lk = .
xt k=N-1+1,...,N
where the ¢, do not satisfy any boundary condition and the x are determined so

AY

that the solution u-* satisfies [ boundary conditions.

Our example 1 above is an illustration of the Fourier-Galerkin method, because we
chose Fourier trial functions. This is the spectral scheme most often used in oceanographic
problems. We note here also that the trial functions with the Galerkin method must al-
rcady satisfy the boundary conditions. For a comparison of these three methods applied to
geophysical flow situations, see Fulton and Schubert (1987a, 1987b) [14], [15].

For our occan model we choose to use the Chebyshev-collocation scheme. We illustrate
this method by means of a simple example using Burger’s equation.

EXAMPLE 2: The governing cquation. boundary and initial conditions are:

Jdu Jdu 0%u

—a't’“'*'lté-;“l/'a—xj:o. IE(—I.I) (13)
u(—-1,t) = u(1,t) =0 (14)
u(z,0) = up(z) (15)

We choosc our trial functions as Chebyshev polynomials:
ér(x) = Ti(z) = cos(kcos~ z)), k=0.1,....N (16)
and our test functions as delta functions:

Pelz) =6(x —zx), k=0,1,...,N (17)
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We will discuss later on how to select the collocation points, but for now we just say that

rg = —1 and zx = 1. Our approximate solution is, thercfore,
v ‘\v
u(z.t) = Y w(t)Tr(z) (18)
k=0

Employing the orthogonality condition given by equation (4), and using the usual inner

product for square-integrable functions on the interval -1 <z < 1
1
<u,v>= / u(x)v(z)dr (19)
-1

we obtain:

du \ou? 0u
u -~ v

at + oz Oz2

s 1
0 =<7V, >= / l( Jé(z — =1 )dx

ou® N ou d u
u

= . = ()
= - v 0 k=0.1,....N (20)

=

I=I

The approximate solution satisfics the differential equation at the collocation points. The
derivatives can be computed by differentiating equation (18), but the details will be de-
scribed later when we discuss the selection of the collocation points. Once the derivatives
are evaluated, then equation (20) can be solved for wY (z,1), using a suitable time dis-
cretization scheme. For this we use a fourth-order Runge-Kutta method. (see Canuto ef
al.. (1988) [7]). Note that with the collocation method, the cquations are solved in physicul
space, whereas with the Galerkin (and also the Tau) method, they are solved in trans-
form space. The boundary conditions in equation (14) can be applied at cach time step:

wV(=1,t) =uV(1,1)=0 O
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2.2 Spectral Accuracy

We illustrate the meaning of the term spectral accuracy, both for periodic and non-periodic
functions. It is in seeking this degree of accuracy that helps to determine which set of

functions one should use as trial functions for a given model problem.

2.2.1 Smooth, Periodic Functions

Recall from equation (6) that the Fourier-Galerkin approximation to the solution of the

model problem (1) is given by:

~N/2-1

ut = Z flke'kr (21)
k== N2

For the continuous transform:
9
. 1 /'-’” x 1 27 Ju e ue~ 'k
U = — ue” Ndr = — ez + - 22)
2% Jo 2z Ju Oz (—1k) —1k ¢

0

If u is periodic, then the boundary term in this last equation vanishes, and up ~ O(%).
Similarly, if u and its first m derivatives are smooth and periodic, then as a result of repeated

integration by parts, we have:
1

i ~ Ol

) (23)

Therefore, if u is infinitely smooth, and all its derivatives are periodic too, then iy decays

faster than any inverse power of k. This is a significant result in the light of the following:
<u—-uNu—uY >=u-u|

(where [Julf is the norm of the function u)

o0 N/2=-1

___” Z {lkcxkr_ Z I-lkcrk:“‘Z:” Z {chikr”'.’

= —co k=-N/2 [kix= /2
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where we have used the notation:

S =y ey

k=N/2 k<—-N[2  k2N/2

On applying Parseval’s identity to this last expression, we obtain:

e — wWP=2r Y |l (24)
a4
|K[=N/2

Thus, the norm of the truncation error is governed by how rapidly the cocfficient Jiy|
decays. Owing to the fact that 1. decays faster than any inverse power of k, the Fourier
approximation has a high rate of convergence for this class of functions. This is referred to

as spectral accuracy.

2.2.2 Smooth, Non-Periodic Functions

It is also possible to obtain spectral accuracy for functions which are smooth but not
periodic. This case is more relevant from an oceanographic point of view, for limited-
area models with cither solid wall or open boundaries. It is not true that any sct of
orthogonal functions will produce this degree of accuracy to a smooth solution. The trial
functions must be chosen correctly. We illustrate how the cigenfunctions of a singular
Sturm-Liouville operator allow spectral accuracy for any smooth function with no restriction

on the boundary conditions to be applied.

2.2.3 Sturm-Liouville Theory
The general Sturm-Liouville problem s written as:

Llu} = —(pu) +qu = Awu, z€(-1,1) {25)
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together with some suitable boundary condition for u(z). The prime " denotes differentia-

tion: u' = %‘ We concern ourselves with singular Sturm-Liouville problems, and require:
plz) >0 €ClH(-1,1)

( i.e. p(x) is continuously differentiable on the open interval (-1,1) )
glz) >0 e Cl-1,1)

(i.e. q(z) is continuous on thic open interval (=1.1))
w(z) >0 € C%-1.1)

and is integrable over (=1, 1). A singular Sturm-Lionville problem occurs when p(x) = 0 on
at least one of the boundary points. Let L2, (=1.1) denote the Hilbert space of all square-
integrable functions with respect to the weight function w(z) on the interval -1 <z < 1.
e,

1 o
/ Cw(z)dr <o VY u€ Li,(-—l. 1).
-1

with inner product:

1
<up>= / , u(z)v(z)w(z)dz

and norm:

lullZ =< wouw>.

The cigenfunctions of the differential operator f— form an orthogonal basis for this Hilbert

space. Let us denote these cigenfunctions by the set {¢}72o and assume that they have



already been normalized. If we expand the function u of our model problem in terms of

these eigenfunctions. we obtain:
jo. o3
u=y iy (26)
k=0

where ity =< u, ¢ >, since ¢y is an orthonormal basis. The only requirement we place on

w is that it be infinitely differentiable. Since the ¢ are cigenfunctions of % we have:
Llox] = Awdn (27)
where Xy is the &' cigenvalue corresponding to ¢y.

1
= 11k:/ uwddz
-1
L e
= )\_k/-l“ [Hr)dr
1! N
= [ =) + b
kJ-1
{
- 11

1
= -——1 —updy +/l(p«,")l.u'+uqt,‘)k)d:x:
-1 -

- 11 1
i 1
= 5= —upy, +/ dr((=pu') + qu)dzr + [pu'g‘)k]
k|| 1, J= »
(
1 L] '
u
== <, —— >+ plu'dy — wﬁlk)]
/\k w -1
\

We impose the boundary condition on p(z): p(=1) = p(1) =0, yiclding:

up = /\i < <f)k.£—[-“~] > (28)
13 w
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If, now, u) = ﬁ € L2, we can repeat the integration by parts. At the m!h

us stage, we
obtain:

uj < ¢k.ll(,,,) > (29)

= m
AL‘
where

_ L:I“(m—l)]

U(n) =

e L:(-1,1). (30)

w
In our case, (using Chebyshev polynomials) and indeed for most cases of interest, Ax = o)

(sce Canuto et al. (1988, p. 285) [7]). Equation (29) therefore implics that:

. C
| < m”“(m)uw (31)

for some constant C. Compare this bound with the decay rate in the Fourier case given
by cquation (23). If u is infinitely differentiable. the coefficients i1, decay faster than alge-
braically, and spectral accuracy is obtained as in the Fourier case with periodic functions.

Note, again, that we have not imposed specific boundary conditions on u to get this result.

2.2.4 Jacobi Polynomials

When deciding upon which functions to use as trial functions for a spectral method, poly-
nomials are of particular interest because of the ease in which they can be evaluated, and
their derivatives computed. It can be shown (Canuto ct al.. (1988, p. 286) [7]) that the
only polynomial solutions to the singular Sturm-Liouville problems just discussed are the

Jacobi polynomials, where:

pz)=ca(l -zt 1+ ) (32)

w(z) = e2(l — 2)*(1 + z)” (33)
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—

with -5 < a,8 <

(ML

. cl. ¢2 constants. The two common sets of polynomials chosen
are the Legendre polynomials (@ = 3 = 0) and the Chebyshev polynomials (a = 3 = Ly,
Fulton and Schubert (1987a) [14] indicate three important reasons why a Chebyshev series

approximation is preferred for limited-area modelling:

e Chebyshev series give better global approximations than do Legendre series for the

same number of terms.

o Chebyshiev series converge faster than Legendre series for approximations to nou-

smooth functions.

e Chebyshev series can be evaluated very efficiently using the Fast Fourier Transform

algorithm.

This last pomnt is a very significant one for vcecan modelling. because a large nunber of

modes is often necessary.

2.2.5 Chebyshev Polynomials

The Chebyshev polynomials. {Ti(x)}33, are the cigenfunctions of the singular

Sturm-Liouville problem:

(V1-— :lszIk(I))' + %Tk(:ﬂ =0 (34)

This is equation (25) with p(r) = V1 - T2, q(z) =0, w(z) = 71-':—; If Ti.(z) is chosen so
that T (1) = 1 then we have:

1

Ti(z) = cos(kcos™ x) (35)



If we substitute 8 = cos™!(z) we can write:
Ti.(0) = cos(kB) {36)

so that a Chebyshev series is really the same as a Fourier cosine series with a change of

independent variable. They satisfy the following recurrence relationship:
Tii1(z) = 22T (z) — The-1(z) (37)

with Ty(z) = 1. Ti{z) = = {figure 1). The inner product for the Hilbert space generated by
{Th(x) )32 is:

1 1
< u.v >=/ w(zv(z)w(z)dz ——-/ ———lll—v—.(l:r Yu,v € L;‘)‘,(—l. 1) (33)
-1 -1 - T

The Chebyshev polynomials are orthogonal on this space, but not orthonormal:

. ack s
<71j.1k >= T(Sjk- (\59)

where 8 is the Kronecker delta function. and ¢ 1s defined as:

2 k=0
o = (40)
1 k>0
From this we deduce the transform pair:
T
u{r) = Zﬂka(:ﬁ) (41)
k=0
2 gl Ti
iy = -—~/ —u—kf(lx (12)
wepJo1V1l—x

In order to use a Chebyshev expansion, as in Example 2 above, we need to truncate the
serics in cquation (41) to a finite number of terms, and to approximate the integral in

cquation (42) by some quadrature formula.



Tolx)

T, (x)

Figure 1: The first five Chebyshev polynomials on the interval =1 <z < 1.
They are gwcn by To(z) = 1; Ti(z) = 7, T2(z) = 222 ~ 1; T3(z) = 4z° — 3z;
Ty(z) = 8zt -—Szcv + 1.
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2.2.6 Gauss-Lobatto Integration

To approximate the integral in equation (42). we use the fact that a Gauss quadrature
rule will give an optimal result for polynomials on the interval (-1,1). The quadrature
points will be the same as the collocation points, which we referred to in Example 2.
The optimal points for a Gauss quadrature rule are given by the zeros of the (N + 1)
order orthogonal polynomial retained in the truncated series - in this case, the zeros of
Tx41. However. as indicated by figure (1) . Te(-1) and Ty (+1) arc never zero. (In fuct.
Te(#1) = (£1)*). This means that the boundary points would be excluded from the set of
collocation points, making it impossible to apply the boundary condition. We. therefore.
select to use Gauss-Lobatto integration. Following Canuto ct al. (1988) [7}, let Py denote
the set of all polynomials of degree < N. The result for Chebyshev polynomials can be
stated as follows:

Gauss-Lobatto Integration: Let {3 )i be the points zp = —=1.2y = 1 and the &' =1

roots of the polynomial Ty (z). Let wg,wy,... . wx be the solution of the linear systen:

N 1
}:(:cj)kwj = / zXw(z)dr 0< k<N,
j=0 -

Then

N 1

Zp(x])wj = / plz)w(z)dx

=0 -l
for all polynomials p in Pax—y. (Sce Canuto ct al. (1988, p. 57) [7])- The collocation and
weight points are:

jw . v J
zjzcos(-;\—,-) j=0.....N; wj = (43)



The resulting discrete Chebyshev transform pair is:

N
TR Z’(‘Lka(.’E) (44)
k=0
. 2 & ulz)) .
U = o Z z Ti(z;) (45)
_]:0 J

where é. =2, k=0; =1, k2> 1.
With the choice of collocation points given by equation (43). Ti(x;) takes on a very
convenient form:
jk=

Ti(z;) = cos(kcos™! ;) = COS(T) (46)

This means that. as pointed out earlier. the discrete Chebyshev transform can be evalnated
very efficiently using an FE'T routine.

We note here also that with these collocation points the grid lines are closer togetlicr
nearer the boundaries than in the interior (figure 4). This might lead one to conclude
that with more grid points in the boundary regions, there is better resolution there. This
is not necessarily the case. Solomonoff and Turkel (1989) [55} have carried out a study
of the approximation propertics of Chebyshev collocation methods. Their results show
that for the approximation of a function with a “moderate” slope ( 2.e.one which can be
resolved by the collocation points), the Chebyshev scheme does give better results near
the boundaries with a Gauss-Lobatto grid. However, the results are also better near the
boundaries when a uniform grid is used (although the approximation is not as good as with
a Gauss-Lobatto grid). For the case of a function with a “steep” slope, the approximation
is the same everywhere in the domain. This illustrates the fact that spectral methods wre

global methods and cannot be interpreted in terms of local methods. The closeness of the



grid points near the boundaries serves only to counter the tendency of the approximating

polynomials to oscillate with large amplitude in these regions.

2.3 Differentiation

Let us return, firstly, to the continuous Chebyshev transform given by equations (41) and
(42). Differentiating the first of these cquations with respect to x, and denoting the coctfi-

(1)

cients of the derivative by ;" we have:

}: (Th(z) = }:ﬁﬂﬁux) (47)
k=0 k=0

A relationship between the coefficients 7. and uf,: ) can be found using the casily verifiable

result:
mt !
ale) T (x)
ITAx) = k41 Tkt .
W) =0 -1 (18)
Substituting (48) into (47) gives:
2kuy, = (:L._lz'tg_l_) - “&)1 EL>1 (-19)

where e =2, A =0and ¢ =1 & 2> 1. If we truncate the series expansion for u(x) to NV
terms, then (49) gives the following recurrence relationship to compute the coeflicients for

the derivative:

ui”-—() k>N
i) = Al # 2k + Digyy k=N-1LN-2....0 (50)

The collocation derivative of the discrete Chebyshev transformn (44) is simply the ordinary

derivative of this finite sum at cach of the points z;. There are two ways to compute this
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derivative: 1) FFT method: 2) Matrix multiplication method.

FFT method: Compute the Chebyshev coefficients in (45) with an FFT routine. Then
modify these coefficients using the recurrence relationship (50) and transform back again.
A similar modification to the coeflicients can produce second and higher order derivatives
casily.

Matrix multiplication method: From the equations for the discrete Chebyshev trans-
form. (44) and (45), it is easy to show the following holds using the orthogonality properties
of discrete Fourier sums:

A
w¥(z;) = D wlilz;) = ulz)) (51)

k=0

This means that the collocation approximation is simply the interpolating polynomial
through the data points (zj,u(z;)). The derivative can therefore be computed by dif-
ferentiating the Lagrange interpolating formula. Using the notation Dyu to denote this

derivative, the result is:

N
(Dyw)(zk) = Y_(Dxlulz;) k=0.1,....N (
j=0

(<4 ]
8%
—

where the matrix (Dy)g; is computed to be:

,

) .
o (=1 k#]

€y Tu—1,
5(—;—_'%') 1 S k ::] S l\r — 1
(Dx)ij = : (53)
2N 41 g
S k=3=0

2N 41
_( 6 )
and & is as defined before.

The best choice of differentiation method is dependent upon the particular choice of



computer. It is therefore advisable to compare both methods for efficiency. Generally
speaking, if a low number of modes is retained, the matrix multiplication method is more
cfficient. This means that there is a cross-over point for some number Ny of modes. and

that Ng is machine dependent.



Chapter 3

The Model

Layered models are quite popular amongst oceanograpliers for the numerical simulation of
the ocean circulation. In particular the 1-1/2 layer “reduced-gravity” model has been shown
to be very capable of reproducing essential features observed in the veal oceans. Luther and
O'Brien (1985) [36] uscd this type of model. applying it to the northwest Indian Oceuan.
They were able to compute important phenomena such as the formation and coalescence
of the two-gyre system during the southwest monsoon. the formation and decay of the
cnergetic eddy field off the Arabian Peninsula during the transition period from southwest
to northeast monsoon. and then the formation of the southwestward Somali Current with
the onset of the northeast monsoon. Indeed much work has been done with layered models
applied to the Indian Occan (Simmons ct al. (1988) [54], Woodberry ¢t al. (1989) [G4].
Kindle and Thompson (1989) {32], Jensen (1991) [28] ). the Pacific Occan (Pares-Sierra and
O’Bricn (1989) [45], Johnson and O'Brien (1990a) [30], Johnson and O’Brien (1990b) (31]

), the Atlantic Occan (O'Brien et al. (1978) {43), Busalacchi and Picaut (1983) [6]) ) as well

27



as to other regions of the world's oceans. Here, we present the numerical formulation of o
nonlinear 1-1/2 layer “reduced-gravity” ocean model using a Chebyshev-collocation spectral
method. We describe how the theory of chapter (2} is applied to our two-dimensional model.
A bicharacteristic method is developed for the boundary solution and an algebraic grid-
generation scheme is implemented to construct grids over non-rectangular simply-counccted

domains. We use a Runge-Kutta time-stepping method.

3.1 Model Equations

Under the assumption that the ocean consists of two incompressible, hydrostatic. homoge-
neous layers of slightly different densities p; and py with the lower layer infinitely deep and

at rest, (figure 2 ) the vertically-averaged equations of motion for the upper layer are :

Jdu du . Ju _ ,Oh T, 2 .
N us—+ v(')y fv=—¢ I + h + AV u (51)
dv dv Jv O 7y

i — 3 = — —_— RAVAS 59
5 T s U(?l/ + fu g a5 ¥ oh + AV*v (95)

oh ol ok _
at ox dy .

where © and v are the castward and northward depth-averaged velocity components re-
spectively, h is the thickness of the upper layer. 7, and 7y are the wind stress components,
g = g&'p—:zﬁ'— is the “reduced gravity”, A is the kinematic eddy viscosity and f is the Coriolis
parameter. For a domain bounded by solid walls, the boundary conditions on u and v arc:

u=v=0.



p
1
h(x,y,t) u(x,y,t)
v(x,y,t)
p2 motionless

Figure 2: Schema for a 1-1/2 layer “reduccd-gravity” model.
The wind stress vector is (7z, 7y), and the upper layer thickness and velocity components are
h, u (castward) and v (northward) respectively. The layer densities are p) and p2, assumed
to be constants. The lower layer is infinitcly deep and motionless.
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3.2 Numerical Formulation

We consider the square domain: —1 < z.y < 1. Let the variable 1(z, y,t) denote any of the
dependent variables u, v and h of equations (54), (55) and (56). By firstly considering 5 as
a function of z. writing down its discrete Chebyshev transform according to equations (1)
and (45), then secondly considering this transform as a function of y and transforming now

with respect to y, we obtain the double discrete Chebyshev transform pair:

NN
N ; -
PV (@i t) = 30N G ()Tl ) T (we) (57)
n=0m=0
VoM LN :
s 4 o jnw ke
Yom = 5o ——— cos (=) cos( (58)
nn MNe,,c, jl;)k:O cj N M
where z; = -(:os(%?). 7 =0.1..... N and y. = -—cos(%—‘,’-). E=0.1..... M. We make
this substitution for cach of the dependent variables, ie.u = u¥Y, v = ™Y b~ bV

and proceed to solve equations (54), (55), and (56) as outlined carlier in Example 2. The
extension of the ideas in differentiation already presented, to two dimensions is straight

forward. For the matrix multiplication method we have:

oM N .
Iz (j, i t) = O _(Dx)jplznyet)y §=0,....N k=0,...,M (59)
(=0

where (Dy)ji is the (N + 1)x(N + 1) matrix given by equation (53). Similarly,

oM M _
T e = (Duad et 3 =00 N k=0 A (60)
=0

where (Dag)ir is a (M 4 Dx(M + 1) matrix with an analogous definition to (53). We note
lhere that it is not neccessary to compute these differentiation matrices at every timestep.

Once the number of modes to be used in cach direction has been specified, (Dy); depends
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only on the known quantities (z;, yi). and specific constants ¢;, . Thus, (Dy) and (Dyy)
can be computed, or read in at the beginning of a computer program before the timestep
loop. A similar matrix can also be computed and stored for the second derivatives.

The transform technique for computing derivatives also extends casily to two dimensions:

Y NM AV 4

ay -
5’; Ty t) = 3 9 PE(OTu(z) Tuly) (61)
n=0m=0

where a recursion relation similar to {50) is nsed to compute the coctlicients 7,

Y =0Vn>N

am

Y = Vhgom + 20+ D n=N-1.....0.

We remark here that, under a simple linear transformation of variables. the computa-
tional square domain —1 < x,7 < 1 can be transformed into a rectangle: 24, < @ < 250,

Ymin L Y < Umar:

1 . .
Ty = Tmin + };[1 + -x]](fnmr = ZTuan) J=0.1... .. N (62)
1
Yk = Ymin + :)‘[1 + },L'](:’/m(u' - ymin) k=0.1....M (63)
where X; = —cos(-{-\i). Y = - cos({"—;). Later we shall describe how to provide for move

irregular shaped domains.

3.3 Boundary Conditions

The model equations (54) - (56) form a set of parabolic quasilinear partial differential

equations. However the frictional terms are small for most solutions of interest. Without



these terms (i.e. A = 0), the resulting set of equations is hyperbolic. The regious where
these terms are largest are close to the boundaries. but still they are an order of magnitude
smaller than the local acceleration. For the following realistic choice of scales: Length

L = 100 km, time T = 10 days, velocity V = 1ms™!, A = 1000 m2s~1 we obtain:

0“ ‘/ -6 D)
[—é?]——-'i;NO(lO )7115
0%u Vv _: —a
[A—-a-;?] = IOUOZE ~ 0(10 ) ms

We. therefore. select to put the model equations in characteristic form by regarding the
friction terms as right-hand-side source terms or forcing functions, along with the Coriolis
force and wind stress components.

Spectral methods are very scnsitive to boundary treatments. Their solutions follow
very closely to the mathematical solutions to the problem. For the case of hyperbolic wave
cquations it is important to make a good attempt to solve for the characteristics on the
boundary. Otherwise, the solution miay become rapidly unstable in timne. This problem
may also be encountered with finite diffevence and finite clement methods, as discussed for
example by Gottlieh et al. (1982) [16). In a study of the boundary treatment for hyperbolic
systems using the Chebyshev collocation method and an émplicit time differencing scheme,
Canuto and Quarternoni (1987) [8] state that the only unconditionally stable treatment at
the boundaries consists of using the prescribed physical conditions together with certain
lincar combinations of the differential ecquations which express the incoming characteristics.
In our model we use an explicit Runge-Kutta method, solving the equations in characteristic

form for the height field at the boundaries.
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Rewriting the model equations putting the Laplacian friction terms together with the

right-hand-side “forcing™ terms yields:

du  Ou Jdu  ,0h

E‘TU5;+U'(9—II'+90—J:=F1 (61)

Jdu Jv (')u Ol i}

3t ter eyt gy T (62)
oh oh Ok Ju Ov N
-(7)—t-+u—0-;+ a—y+]l(5;'+'(:)—1;): (66)

where
= fv+ —7 + AV?u
pih

Fy=-fu+— + AV
/)ll

Following Lardner et al. (1986) [34] we put this system of equations in characteristic form
by taking the nonlinear combination a1(64) +02(65) +03(G6), where the o; (1 = 1,2.3)

are as yet unspecified functions of the dependent variables:

Ju du
Ul-a—t—+(01u+0’;h) +0|v‘0—‘/'+
U)-a-—* +U)u0—' + (o2 +0’3h)'(2'l'1' +

at Jr oy

dl al dl
030—: + (019 + 03")51-:' + (029" + 03v)—*l- =0 F1 +02F {67)

dy
The a; arc chosen so that all three directional derivatives in (67) are constrained to lic in

the same plane in zyt—space. Let the vector N = (cos8,sin 0, N) denote the normal to this

plane. This constraint implies:
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(ucosf +vsinh+ N)oy + hcosboz =0 {GS)
(wcosf +vsind + N)oo+ hsinfoz =0 (69)
(¢ cos0)o; + (¢'sin@)oa + (ucos 8 + vsinf + N)oz =0 (70)

The two distinct solutions to this set of equations are discussed by Lardner et ol. (1986)

[34]. We choose the one which gives the bickaracteristics for the system:
N=a—ucosf —vsint: o = —hcosl: go=—hsind; o3=a=+/y'h

where a is the local wave speed. The plane perpendicular to NV is called a wave plane. As

g varies, the wave plane envelopes a cone. called the Mach cone, and is expressed by:
(dz — udt)® + (dy — vdt)? = adt?

The tangential direction of a wave plane with the Mach cone is called a bicharacteristic

direction and is given by:

dzx p (1)
— — 0S

T =T ecos 7
dy

— =y —asinf 72
I v — asin (72)

Equation (67), known as the compatibility equation, becomes:

du dv  adh du du
205 0— + sinf— — —— — asind(sinf— — cos §—
Cos T + sin ST asmf(sin - cos Oy)
.0 Jdu )
—acosf{—sin 0—-2 4+ cosO0—) = cosO0F) +sin0F, (73)
Jx dy
where the operator ('1——1( = 3’7 + (u — acos 0)5"’; + (v — asin 0)(7‘2'_; Because of the fact that

the Laplacian friction term has been incorporated into a forcing function, the appropriate



boundary condition to apply to equation (73) at a solid wall is the “no normal flow™ con-
dition. We consider two distinct cases: {a) edge point.;. (b) corner point.

Edge point: Taking as an example the western boundary we select the bicharacteristic
normal to the boundary and directed towards it (figure (3a)). The appropriate value for
8 is the angle between the bicharacteristic direction and the z-axis measured in the sense
shown. We assume that © — ¢ < 0, so that 8 = 0 gives the bicharacteristic in the negative
z-direction. A unit normal to this boundary is 1 = (cos8,sind). The "no normal How™

condition becomes:

wcos@+vsinf =0

::mos(?a +51110—(?——-0
Jat
= a‘+ L (74
(ﬂ() 0)01. = l~)

Substituting this condition into equation (67) and rearranging the terms yiclds:

al
1R} + 02 Re) + 03(Ri) + 03557 =0 (75)
where
(’)u Jv ,Oh
u A ~ F
R uns + U(')J +yg e |
R.=1 0U+U@+ -(2-’1—'1)

(') dy Or
dh ah Ju Ov

= Y- — h{( — _—
R Yoz + UOy + l(OI + Oy)
I
= % = ;‘}‘7[cosozzu +sin0R) - Ry, (76)

Corner point: We take as an example the northwest corner. Let Oy and 8y denote the
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(a) (b)

Figure 3: The western portion of the physical domam showing the bicharacteristics, directed
perpendicularly towards the boundary from the interior region, used to compute the height
ficld at boundary points: (a) At a point on the western boundary one bicharacteristic is
used with angle 0 measured in the sensc shown. (b) At the northwest corner the two
bicharacteristics normal to the northern boundary (0x) and western boundary (fw) are

used.
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angles corresponding to the bicharacteristics at the northwest corner normal to the western
and northern boundaries respectively (figure (3b)). For each of these angles we may obtain
an equation for %’ similar to equation (76). Taking the average of these two equations we
obtain:
ah a . . . —
e = ﬁ[(cos Oy + cos Oy )Ry, + (sinf, +smby )R] — Ry, (77)
Equations (76) and (77) are integrated to compute all the boundary A values at each
time step. Once the height field has been determined we revert back to the original form
of the model equations (equations (54) - (56) ) no longer regarding the frictional force as
a source term and apply the “no-slip” conditions on the velocity fields: u = v = 0 on the
boundarics. We remark here that equations (76) and (77) are not "new”. but are simply
a re-arrangement of the original model equations in order to get a better estimate for the

bicharacteristics on the boundaries and thus obtain solutions which are stable in time.

3.4 Numerical Grid Generation

In this scction we outline the construction of a non-orthogonal grid over an irregular do-
main bounded by four specified curves. The coordinate transformation from physical space
to computational space does. of course, alter the model equations by introducing certain

mapping factors in the derivative terms. An algebraic grid generation method is used.
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3.4.1 Two-Dimensional Coordinate Transformation

We denote the original coordinate system in physical space by the variables (z,y) and the
transformed system by (X.Y). In general, for a non-orthogonal system. we require two scts
of basis vectors: The covarient basis vectors (€;) and the contravariant basis vectors (¢').

They are defined simply as follows:
Ei=em: E'=VX' i=12

where X! =X, X?=Y and7=r(X.Y) is the position vector. Thus the covariant basis
vectors are parallel to the coordinate lines in physical space and the contravariant basis
vectors are perpendicular to the level curves of the transformed coordinates in physical
space ( figure 4). For a detailed coverage of coordinate transformation and grid generation
sce Thompson et al. (1985) [57].

The volume clement in the transformed system is :

dV = JdXdY

where J = Jacobian = (‘i}é\”.(i;’_)", - 7)—‘1(123\1) The relationship between the contravariant and

~

the covariant vectors is:

with 7.7,k cyclic in 1.2,3 and taking &Y = ¢y = k, the unit vector perpendicular to the
(z,y) plane. The conservative forms of the gradient and Laplacian operators for any scalar

A are:

1 N 9JEA
J & X

=]

VA=



Figure 4: The mapping function z maps the square computational domain into the irregular

physical domain bounded by four specifiable curves: Ty, Tz, I'z, and Ty.
The vectors &' arve the contravariant basis vectors at cach point and the ¢; are the covariant

basis vectors.
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. 1o 0 94
Vid= = —— (& 8
722 o % (50)
Let (Z,7) denote orthonormal basis vectors in cartesian coordinates. From equations (78)

above we have:

J-'l_.al:_g.‘
¢ Tyt avY
o Oy Or
Te=—5x" T oxV¥

Substituting these expressions into equation (79) yields:

\7,4=0—4&+m'
0J
SRS {m,- gj_;gmgi—,m{ 2 i+ gz
%—j = %[——5“3\:(%,1) + %(%An (52)

For the model equations. all first order spatial derivatives are computed according to cqua-
tions (81) and (82) and the friction teyrms using equation (80). Note that the munber of
derivatives in each case to be computed in the transformed coordinates is exactly double

the number of derivatives in the original cartesian coordinates.

3.4.2 Mapping Procedure

We assume that the physical domain is bounded by four specifiable curves: Ty (X)), Ta(Y).
[3(X), T4(Y) where 0 < XY < 1 (figure 4). We use the transfinite grid generation
procedure to construct a grid over this physical domain. This essentially consists of doing

a “linear blending” of curve I'y into its opposite side 'y and Iy into Te. The coordinates
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x = (z,y) in physical space are given in terms of the transformed coordinates (X.Y)

according to:

x(X.Y)=(1-X)I4(Y) + XToY) + (1 =Y )T1(Y)
+YT3(X) - (1 - X)(1-Y)T1(0) - (1 - X)YT3(0)

-X(1-Y)I'i(1) - XYT3(1) (33)

Although we think of mapping the physical domain into a square. it is more usual to
express the mapping in the above form. i.c. where the transforined coordinates (X.Y') are
the independent variables. It is not always possible to obtain an analytical expression for
the Inverse mapping.

An example of a grid constructed using this type of mapping is shown in figure (5). The
physical domain is a section of the western Indian Ocean basin from 10°S to 25°N. excluding
the Gulf of Aden, extending 10,000 km castwards into the basin. The western boundary is
approximated by a polynomial of degree 8. The points on cach boundary, through which
the grid lines pass, are selected according to an arc-length paramcterization of cach curve.
In other words, for a regular spaced grid in the computational square domain (2.¢. not a
Gauss-Lobatto grid) the points would be cquidistant along cach boundary. This yiclds a
more cven grid particularly in cases where opposite boundaries are irregular and not near
the swme length. An uneven grid can greatly affect the stability properties of the numerical

method.
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Figure 5: (a) Physical domain showing o scetion of the Indian ocean from 108 to 25N.
exclnding the Gulf of Aden. (b) The squive computational domain illustrating a Gauss-
Lobatto grid.

Note the closeness of the grid hues near the boundaries. This does not improve the acen-
racy near the boundaries, but rather serves to prevent Large oscillations in the polynomial

approximations in these reglons.
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3.5 Time Differencing Scheme

On applying the finite Chebyshev series expansion given by equation (57) to the moddl
cquations (54) — (96). there results a system of differential equations to be solved in time.
as described in EXAMPLE 2 of scction (2.1). We can express the equations to be solved in

the form:

ug
1_[ =
uy
P)
a—f = Lyu (84)

(with similar expressions for » and h) where La is the nonlinear spatial approximation
operator. The matrix Ly is similar to a diagonal matrix A, and we can rewrite equation

(84):
Jdwn

0—7=Aw (

[v2]
(1]
~—

where Ly = pAp~! and w = p~'u. The matrix A is diagonal whose nonzero clements
are the eigenvalues of the operator Ly. This implies that the system of cquations is now

decoupled. The k™ equation is:

ot

= Ay (86)
with Ax being the & cigenvalue. The region of absolute stability for a particular time
integration scheme is the set of all AAt in the complex plane for which the solution does not

grow in time. Solomonoff and Turkel (1989) [55] indicate the following reasons for using a

fourth order Runge-Kutta method for the Chebyshev collocation scheme:
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e It is closer to the high spatial accuracy of this numerical method than a second order

formula.

o The region of stability includes a significant portion of the left-half complex plane.

with a comparatively large section of the imaginary axis {see Canuto et al. (1988) [7]).

We use the following formulation of a Runge-Kutta method applied to equation (84). de-

noting by " the value of 1 at time level n:

Initialize v = u"
for k=4,1.—-1
u ="+ %Lx(u')
end for

=u"

ﬂ”+l

This yields a fourth order accurate scheme (for linear problems) and requires only two levels
of storage.
Spectral methods usually have severe time-step restrictions in comparison with finite

difference methods. The CFL stability criterion for finite difference schemes applied to the

onec-dimensional advection equation ( %% + (L:—E = () is of the form:
At
—a} < Const. (87)
Ax

Since Az = O(-v'l—d). where Ny is the number of spatial grid points. we have:

At < Const.




Gottlieb and Tadmnor (1991) [18] present a study of the CFL condition for spectral approx-
imations to hyperbolic problems. Using the Chebyshev collocation mecthod with N, being
the highest order basis function retained ( i.c. Nop + 1 collocation points), they dervive the
following stability criterion for Runge-Kutta time differencing:

9

AL yin

At]ul()\‘\'”, + ) < Const. (S9)

where Ay, 1s the N}:,' cigenvalue and Az, is the minimum spacing between grid lines on

a Gauss-Lobatto grid. Since Az,in ~ O(T.ly-) and Ay, ~ O(N?3,), this implies:
NG

sp

Const.
At S 5

=

(00)

Comparing (90) and (88) it would appear that the spectral method requires a much shorter
time step, but it must be remembered that for the sume degree of accuracy N << Ny
Spectral methods are in general more expensive with CPU time than finite difference meth-
ods. For a quantitative comparison, with a lincar model. sce Jensen and Kopriva (1988)
[29].

It has been argued, heuristically, that the severe time restriction for the spectral collo-
cation method is due to the closeness of the grid lines near the boundaries: Azyym ~ ("\”‘”]f)

N

(figure 4a). This is a misleading argument and indeed using a uniform grid would not. give
a larger allowable time step. Equation (89) shows that there are two influencing factors
on the stability criterion, namely. the size of the cigenvalue Ay, and the size of .5—11: .

both of which are O(N;')p). In fact. it is possible to construct problems where the stability

criterion is governed solely by Ay, and independent of the minimal grid size. as Gottlich

and Tadmor (1991) {18] have shown.



Chapter 4

Previous Studies on Yanai Waves

4.1 Introduction

In recent times, interest has been growing in the observed instability waves of the equato-
rial occans. They appear as scasonally modulated, near-surface waves with period around
one month and zonal wavelength of approximately 1000 km. Observations taken from the
Pacific, Atlantic and Indian Occans have detected these waves within a latitude band be-
tween 3°S and 5°N approximately. Simulation studies have also been performed, with the
instabilities appearing as wave-like oscillations in the northward component of the velocity
field and in the sea surface temperature just north of the equator. Possessing a group veloc-
ity that is both eastward and downward, the waves provide a mechanism for transporting
cnergy both to the cast and to the deep interior oceans. They play a major role in the
momentum balance of the surface regions of the equatorial occans and it has also been

suggested that they play a similar role in the heat balance through meridional convergence
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towards the equator. These characteristics indicate the presence of Yanai waves (or mixed
Rossby-gravity waves). In this chapter we describe some of the previous important studies

that have been carried out on these waves.

4.2 Historical Background

4.2.1 OQObservations

The near-surface flows in the equatorial regions of the oceans are characterized by strong
zonal currents. The strongest of these currents is the equatorial undercurrent (EUC) flow-
ing to the cast with speeds sometimes surpassing 100 em s~!. The EUC is flanked on cither
side by the westward flowing south equatorial cunrrent (SEC). North of the equator there are
the castward flowing north equatorial counter-current (NECC) and the westward flowing
north equatorial current (NEC). (The Indian Ocean is an exception as the zonal equato-
rial currents there reverse four times during each year in response to the reversal of the
monsoon winds). The horizontal shears existing between these oppositely moving currents
may produce instabilitics in the equatorial flow (barotropic instability). Instability waves
have been observed and it is widely believed that they are a result of the barotropic shear
between the SEC and the NECC.

Interest in these waves began following the observations of meridional oscillations of
the SEC and the EUC during the GARP Atlantic Tropical Experiment (GATE) in the
summer of 1974. These observations arc described by Duing ¢t «al. (1975) [12].  Using

ship data collected from meridional crossings of the equator at 23°30°W and 28°W they
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observed meandering motions in the flow fields as well as the temperature and salinity
fields from the surface to well below the core of the EUC. The core of the EUC was scen
to oscillate approximately .—}_;°on cither side of the equator. They reported a wavelength of
2600 = 390 km, phase speed 1.9 £ 0.3 ms™! westwards and a meander period of 16 % 2
days as being compatible with the available observations. Subsequent studies by Weisberg
(1979) [59]) and Weisberg et al. (1979) [62] using data also collected during the GATE
experiment show that these 16-day meanders appear above the EUC but longer period waves
of about one month radiate downward and upward with westward phase propagation. Deep
current measurements taken by Harvey and Patzert (1976) [26] produced the first evidence
of 25-day waves in the eastern equatorial Pacific. From data collected using near-bottom

current recorders, they isolated oscillations of wavelength 1000 Lm., amplitude 4 cms™!.

U approximately, and suggested that the wave was a

propagating westwards at 50 cms”
first-mode baroclinic Rossby wave trapped at the cquator. BEvidence of similar westward
propagating long waves in the castern equatorial Pacific surface layers was presented by
Legeckis (1977) {35]. The westward flowing SEC has relatively low temperature waters
because of equatorial upwelling and the advection of cold waters from the coast of South
America. The oppositely flowing NECC advects relatively warm waters from the west.
Consequently there arc large latitudinal temperature gradients, especially in the castern
Pacific, and a sea-surface temperature front (known as the equatorial front) is visible on
satellite produced infrared images. Legeckis (1977) [35) detected long waves in the equatorial

front from satellite images taken during 1979, propagating to the west with 2 period of about

25 days and wavelength around 1000 k. He also noted a deercase in wavelength from about
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1200 km to 800 km going from east to west which indicated the presence of a wave packet
with the long waves having a greater group velocity.

The mathematical stability analysis of these equatorial zonal currents was addressed by
Philander (Philander (1976) [47] and Philander (1978) [48]). He was able to show, using a
realistic zonal velocity profile of the surface currents in the equatorial Atlantic and Pacific.
that the most unstable waves have a period and wavelength around 1 month and 1100 km
respectively and propagate to the west. These scales were independent of the changes in the
velocity scale of the mean currents and Philander (1978) [48] proposed this as an explanation
for the observed waves. A comparison of the mean zonal profile used by Philander (1978)
[48] and an estimate of the true profile obtained from drifter buoy data was presented by
Hansen and Paul (1984) [25] and showed a good agrecmient between the two apart from «
displacement. of about 1°latitude. Philander’s hypothesis is very plausible and there is a
general consensus that this is the generating mechanism for the instability waves at least
in the eastern parts of the equatorial Atlantic and Pacific Oceans.

Evidence for the vertical propagation and surface generation of the waves in the Gult of
Guinea was discussed by Weisberg et al. (1979) [61] based on data collected from an array
of current meter recorders. They described the waves as equatorially trapped vertically
propagating Yanai (Rossby-gravity) waves and presented an analysis of their kinematies,
dynamics and energetics. This rescarch was extended by Weisberg and Horigan (1981) [60]
where they discussed the seasonal variability of the waves. The observations were taken
from current meters located on the equator at 3°W, at depths between 558 m and 1936 ae.

They calculated the group velocity using a ray tracing argument and estimated that it took



2 - 3 months for the wave packet to reach the observational depth from a source in the
central Atlantic around 15°W. The authors illustrated the seasonal variation of the waves
and suggested a generation time during the July to August maximum trade wind period in
the central Atlantic. In other words, the subsurface waves observed appeared to be @ result
of waves gencrated by surface instabilitics between the SEC and the NECC further to the
west and thus the waves provided a stabilizing effect for these currents.

The structure of the currents in the equatorial Indian Ocean is quite different to that
of the Atlantic and Pacific. The zonal wind and the zonal surface current reverse four
times per year. (For an excellent description of these currents as modelled by a 1-1/2 layer
reduced-gravity model driven by mean monthly winds, sce Woodberry et ol. (1989) [64] ).
Nevertheless, instability waves as described above for the eastern Pacific and Atlantic have
also been observed in the Indian Ocean, but in the western part of the basin, They were first
discovered in the moored records of the meridional velocity field as described in Luyten and
Roenunich (1982) [37], although the authors did not discuss these waves. (Sec figure 5(¢)
of their paper). Reverdin and Luyten (1986) [51] observed 26-day oscillations from current
records at depths of 200 m and greater between 47°E and 62°E. They were also able to infer
a surface expression of these waves from drifter buoy data. In June and July (the beginning
of the south west (SW) summer monsoon) of 1976. 1979 and 1981 buoys deployed on the
cquator in the western Indian Ocean drifted in a clockwise gyre centred on the equator at
50°E with a period of about 25 to 30 days. During the peak of the SW monsoon at the
end of July buoys away from the coast started to meander meridionally with a period of 20

- 30 days. In August of 1979 onc of the buoys happened to be located close to a mooring



on the equator at a nominal depth of 155 m at 62°E. Energetic oscillations were detected
by the current meter one month later with a period of approximately one month. These
oscillations were predominantly in the meridional direction and in September the phasces
in the buoy and current meter data were close although the amplitude at the surface was
at least twice as large as that at 160 m depth. The fact that the meanders were observed
carlier at the surface suggests that energy propagated downwards in a similar fashion as
that hypothesised by Weisberg and Horigan (1981) [60] for the case of the castern equatorial
Atlantic. The authors also suggested that the upper ocean circulation was a candidate for
the generation of these waves because the observations scemed to imply a source of encrgy
during the late summer monsoon. At this time the circulation does bear some resemblence
to that of the Atlantic and Pacific Ocecans with an castward flow north of the cquator
and a westward flow to the south. However there are some obvious differences too. For
example, the thermocline is deeper in the western Indian Ocean and there is no equatorial
front. Also there is no equivalent to the Somali Current system elsewhere with its semi-
annual reversal and complex gyre system. Another important difference is the fact that
buoys in the region 0°- 5°N in the Indian Ocean during the oscillations drifted towards the
cast. In the other oceans the westward drift (sce. e.g. . Hansen and Paul (1984) [25]) is
believed to be important in the generation of these waves, in accordance with the stability
analysis of Philander (1978) [48). These results scem to indicate that there are possibly
other generating mechanisms for the waves at least in the western Indian Ocean.

Further obscrvational evidence for the existence of 26-day waves in the Indian Ocean



was provided by Tsai (1990) [58]. In an analysis of SST data obtained from the NOAA-
9 satellite he isolated antisymmetric long waves trapped within 6 degrees latitude of the
cquator between 52°E and G0°E and demonstrated the similarity in structure between these
waves and linear Yanai waves.

Another distinguishing feature in the observations of the equatorial instability waves is
the distinct frequency separation between the time scales for the castward velocity compo-
nent (4 - 8 months) and the northward component (1 month). This was noticed. e.g. . by
Weisberg and Horigan (1981) for the Atlantic Ocean and by Luyten and Roemmich (1982)
for the Indian Ocean.

The importance of the instability waves with regard to their effect on the momentun
and heat budgets was studied by Hansen and Paul (1984) [25] for the Pacific Ocean and by
Weisberg and Weingartner (1988) [63] for the Atlantic Occan. Hansen and Paul reported
a significant conversion of mean potential energy to eddy energy with approximately equal
contributions from barotropic and baroclinic instability. They estimated the barotropic
contribution could be as much as an applied wind stress of about 0.3 dynes cm™2 which
is quite significant in comparison to the annual and interannual variations in wind stress.
Both studies discovered a similar meridional convergence of eddy heat flux towards the
cquator. For the case of the Atlantic Hansen and Paul (1984) [25] estimated this heat flux
to be about 3; the value of the cquatorial cooling duc to upwelling and Ekman divergence
along the cquator. Another point of interest to note from the results of these investigations
is that the wave generation did not occur exactly in the shear region between the SEC

and the NECC, but rather further south of this region. The waves obscrved by Legeckis



(1977) [35] from satellite images appeared with cusp-like peaks and smooth troughs. Each
of the troughs had an anticyclonic eddy moving westward with the phase of the wave while
a cyclonic eddy resided south of the peaks. It was in the cyclonic shear region of the
SEC between the equator and .75°N that the waves were generated rather than in the shear
region between the SEC and the NECC, according to Weisberg and Weingartner (1988) [G3].
Hanscen and Paul (1984) [25] noted that the equatorial front was not in fact the boundary
between the SEC and the NECC but rather that westward flow continued to exist about
300 km further to the north of the wave troughs.

More recently, evidence for the existence of 30-day instability wave packets in the western
and central Pacific has been noted. They appear to be less encrgetic in the west than in the
region of strong latitudinal shear in the east. Perigaud (1990) [46] analyzed Geosat data of
sca-level variations across the equatorial Pacific over a 26-month period and identified three
disconnected regions of wave activity in the 28 ~ 40 day frequency band: West of 175°E:
between 160°W and 175°E: east of 160°W. There was an increase in the period of the waves
in going from cast to west. An energy high along 6°N was noticed and the waves here varied
from about 33 days in the cast to 40 days in the west. This increase in the period can be
explained as being due to the dispersion of Yanai waves: The waves with larger period have
shorter wavelengths and smaller group velocities. If the generating mechanism for these
waves is the latitudinal shear between the zonal currents then one would expect there to be
a high correlation between wave amplitude and shear strength. However, Perigaud (1990)
found a very low correlation (.05) between the maximum wave amplitude and the maximum

meridional gradient absolute value. This result suggests that there may be other generating
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mechanisms for the waves in the Pacific. particularly the western region. In fact, McPhaden
et al. (1990) [39] proposed that observed oscillations of the meridional velocity in the 10
~ 30 day period band in the western Pacific could be remotely forced by the wind. Yanui
waves can be generated by a eross-equatorial wind stress. Chiswell and Luckas (1989) [9]
observed 10-day period Yanai waves in the central Pacific and showed that they probably
originated in the western Pacific where the wind stress was coherent with them, allowing

for wave dispersion.

4.2.2 Numerical Experiments

There has been some rescarch work done on the cquatorial long waves using numerical
models although not as extensively as has been done with observations and data analysis.
The first major numerical investigations were carried out by Cox (1980) [11] using & multi-
level primative equation model. He was abie to reproduce many of the observed features
of these waves. Simulations of the Pacific ocean were performed using long-term averaged
monthly-varying wind stress. Instability waves similar to those reported by Legeckis (1977)
[35) were evident by mid-September north of the equator in the eastern part of the occan.
They did not extend as far to the cast as the waves obscrved by Legeckis. The peak in the
eddy activity resulting from the waves was seen to follow soon after the peak in the shear of
the mean currents during late sumuner giving credence to the hypothesis that the waves were
caused by a barotropic instability resulting from this shear. Cox (1980) [11} also performed
a scries of experiments using the same numerical model applied to a zonal channel domain

centred on the equator with solid wall boundaries north and south and cyclic cast - west
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boundary conditions. The model was initiated by a random perturbation meridional velocity
ficld over the upper 233 metres of the domain. superposed upon a mean zonal velocity
field taken from the output during August of the Pacific model. A spectral analysis of
the meridional velocity field taken at the surface and 3°N revealed that the waves with
periods around 30 days grew most rapidly. The experiments also revealed that the mean
stratification could be as significant in contributing to the instabilities as the meridional
shear: On reducing the vertical stratification a more intense horizontal divergence resulted
which had a destabilizing effect on the westward flowing SEC. (Philander (1978) [48] has
shown that the most unstable waves in the equatorial Atlantic and Pacific are westward
propagating). Baroclinic instability while present. had a very low growth rate. The Pacific
model simulations of Cox (1980) [11] also demonstrated the westward and upward phase
velocity of the waves and their castward and downward group velocity, as has been described
from observational data by Weisberg et «l.(1979) [61] in the Atlantic Ocean and by Reverdin
and Luyten (1986) [51] in the Indian Ocean.

Philander ¢t al. (1986) [49] reported on the results from general cireulation models
of the Atlantic and Pacific driven by the Hellerman and Rosenstein mean monthly winds
(Hellerman and Rosenstein (1983) [27]). The instabilities appeared as equatorial waves non-
homogencous in space and non-stationary in time with period around one month and zonal
wavelength around 1000 km. In both oceans the waves transported heat and momentum,
with results near the surface in good agreement with the measurements of Hansen and
Paul (1984) [25]. Although the heat flux by the waves was comparable to that across the

ocean surface, their meridional heat transport was small (about 10%) compared to the net



northward annual mean heat flux across the equator in both oceans, due to the fact that
the eddies were cffective only over the upper ocean.

Equatorial oscillations with period around one month for the Indian Ocean were sim-
ulated by the numerical models of Kindle and Thompson (1989) [32] and Woodberry ¢t
al. (1989) [64]. Both models were forced by the monthly mean climatological winds of
Hellerman and Rosenstein (Hellerman and Rosenstein (1983) [27]). In a time versus longi-
tude plot of meridional transport across the equator Woodberry et al. (1989) [G4] discovered
wave packets with zonal wavelength 500 - 650 km increasing slightly in the cast, west-
ward phase speed (~ 20 ems™') and castward group velocity (~ 24 cms~1). Kindle and
Thompson presented spectral plots of the zonal and meridional velocity fields on the equa-
tor at 62°E from yecars 6 through 9 of their simulations. The results are in good agreement
with the observations reported by Luyten and Roemmich (1982) [37] and by Reverdin aud
Luyten (1986) [51]: The zonal component was dominated by a semi-annual period and the
meridional component by a 27-day period with little energy in the semi-annual period. A
sequence of contour plots, begining in late August, of the meridional velocity field showed
an intense wave packet generated from the western boundary symmetric about the equator.
with increasing wavelength from west to cast indicating the presence of Yanai waves.(Sce
figure (14) in the next chapter). The authors believed that the wave packet was generated
by an instability associated with the circulation of the southern gyre with the northward
movement. of the gyre being an important part of the generation. However. they pointed
out that the waves were excited in other years too when there was no real movement of the

gyre at all. In addition, the authors noted that this mechanism does not explain why the



waves were generated during the NE monsoon and while they believed that “the unstable
nature of the western boundary is the primary cause of the 26-day oscillation™ they also
recognized “direct wind forcing as an alternative mechanism and a potential contributor to
the observed Yanai wave energy in the 20 - 30 day band™.

Moore and McCreary (1990) [41} investigated the excitation of cquatorial waves at a
western boundary using a linear continuously stratified model. They forced the model
with a wind patch at the western boundary of zonal extent 2500 km and oscillating at
periods of 30 and 60 days. Different cases were examined where the wind was dirccted
either meridionally or zonally with the boundary oriented meridionally or at an angle of
45°. Kelvin and Yanai waves were generated by the 30-day period wind while at the 60-day
period short Rossby waves were generated in addition to these waves. They demonstrated
that the western boundary is an efficient source for these waves and that the slant of the
western boundary can cffect the solution. For example, when the boundary was tilted at
45°to the zonal direction. an oscillating zonal wind pateh can excite Yanai waves in addition
to the Kelvin waves but wlien the boundary was purely meridional only the Kelvin waves
were excited. The authors also claimed that, unlike the Kelvin waves, the Yanai waves were
almost entirely indirectly forced at the western boundary rather than divectly by the wind
forcing arca, due to the fact that the Yanai waves had short wavelengths in comparison to
the zonal scale of the wind patch. Nevertheless, the Yanai waves did respond to the change
in the period of the wind: The 60-day zonal wind generated Yanai waves of wavelength

347 km whereas the 30-day wind generated waves of length 840 km.



Chapter 5

On A Generating Mechanism for

Yanai Waves

In the previous chapter we presented an overview of the observational and mumerical studies
that have been carried out on Yanal waves in the equatorial regions of the world’s oceans.
For the most part there appears to be a general agreement amongst the scientists who
have studied these instability waves that the gencerating mechanisin is a barotropic shear
instability between the cquatorial zonal currents in the equatorial front region ~ at least
for the case of the eastern Pacific and Atlantic oceans. Scientists have argued that there is
a different generating mechanism for the waves in the western Indian Ocean (Kindle and
Thompson (1989) {32] ). In this chapter we investigate the possibility that these waves
may also be generated by a cross-cquatorial wind stress over the occans. This may be a

more likely cause for the waves in the Indian Ocean. We begin with a description of lincar
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cquatorial free waves on an unbounded domain and derive analytical expressions for Yanai

waves.,

5.1 Linear Equatorial Free Waves

The derivation of the analytical expressions for linear equatorial waves have previously been
presented in the literature, with applications to both the atmosphere (e.g. Matsuno (1966)
[38]) and the ocean (e.g. Moore and Philander (1977) [42]). Here we give an outline of the
derivation of the dispersion relations for these waves with particular focus on the Yana
wave. Consider the linear cquations for a 1-1/2 layer reduced-gravity model with no forcing

or friction:

du (11}
E—/}]/U*}‘EE—-O (91)
Jdu Joé
b T (99
o + PByu + 3y 0 (92)

09/) 9 Ou OU) .

-a—l+c'($+'é; = (93)

whiere ¢ = ¢'h is the “geopotential” and ¢ = Vo'hy is the internal gravity wave speed.
the constant hig being the upper layer thickness when the fluid is at rest. Equations (91)
- (93) are the lincarized versions of equations (54) - (56) without forcing and friction. It
is convenicnt to non-dimnensionalize the equations by choosing the following length scale L
and time scale T

L= /= T== (94
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The quantity L is the cquatorial Rossby deformation radius. Denoting all non-dimensional

quantities with a prime the transformed system becomes:

a' ,, 9¢
FEREA i
! !
vy 0¢_
v TVt gy =0

We shall drop the prime for notational convenience and for the remainder of this scction all

quantities are non-dimensional. We seek normal mode solutions to these equations of the

form:
u u(y)
. — L(y) er(kr—..;t)
¢ Sly)

Substituting (98) into (95) - (98) gives:

—iwit — yo + ik =0

oo _dd
—wb + yit+ — =0

dy

I dv
—twd + kit +— =0

dy

Case a: v = 0. Kelvin Wave.

If we put v = 0 in equations (95) - (97) then the solution for u and ¢ is:

o,

u=2¢d=FlrFt)et

(99)

(100)

(101)

(102)

where F is an arbitrary function. To ensure bounded solutions for large values of y we

choose the solution with the decaying exponential in y. The corresponding normal mode
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solution is:

u=¢ = et = o= 5 oik(x=1) (103)

together with the dispersion relation:

w=k (104)

( figure 6 ).
Case b: v £ 0. Rossby, Inertia-Gravity and Yanai Waves.

In this case we can eliminate @ and ¢ to obtain a single equation for o:

125 N " .
Wk - yDE =0 (105)
dy- w

The solution must be bounded in y: & — 0 as y — %2¢. This boundary condition gives the

constraint that the quantity w”® — k% — é— must be an odd integer:

b

2

Iy o C = (2n41). =n

!
Il
2
—

o

...... {100)

!

€

Regarding this as a quadratic equation in k, we can solve for & in terms of w. Both of
the roots lead to physically admissable solutions: One root gives a high frequency class of
solutions known as inertia-gravity waves with modes n = 1.2,3..... The other root gives
the low frequency Rosshy wave solutions with modes n = 1,2,3,.... The n = 0 mode
corresponds to the Yanai wave (figure 6). The solution to cquation (103) for the Yanai
wave is:

1 :
I S 0 O (107)

NN
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th

where H,(y) is the n'* order Hermite polynomial. The multiplicative parameter in front of

this expression is a normalization factor, i.e., if we define:

2

C—YQ—Hn(U)

Yy = —F——= (108)
PARINGS
then the 1, 's satisfy the orthogonality conditions:
ol
/ Ynthmdy = 8. (109)
—_

For the remainder of this section we shall focus on the Yanai wave. Putting n = 0 in

the dispersion relation (106) and solving for & in terms of w yields two solutions:

1
k==w: k=w-~— (110}
w
We reject the solution corresponding to k = —w because the u field becomes unbounded for
large . Equations (107) and (110) then give the solution for v:
il Lyr—ist
ulr, y, t) = Yoly)e™=" 77 (111)

Substituting the corresponding solution for v into equations (99) - (101) and using the

recurrence relations for Hermite polynomials we obtain the solutions for v and ¢:

w=¢= —’-“io by (y)etoSre—iet (112)

&

where the appropriate functions 4, are given by:

|
"F“

Vaye ¥

c
o = == Y= (113)
T

B
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Figure 6: Dispersion diagram for lincar equatorial frec waves.
The wavenumber & and frequency w have been non-dimensionalized by units of \/g and

VP respectively.
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We shall use these solutions later on to illustrate the structure of Yanai wave packets
and compare themn with the results from our numerical model. As can be seen from the
dispersion diagram (figure 6) the group velocity is always towards the cast (the slope of the
curve is always positive) whereas the phase velocity can be cither eastwards (positive &) or
westwards (negative k) depending on the size of the frequency. In fact the phase and group

velocities, ¢, and ¢, respectively. are quite casily computed:

&= (114)

EARRYERS|

The latitudinal structure of the u and ¢ fields for the Yanai wave arc identical (equation
(112)). They are anti-symmetric about the equator and have extrema points exactly one
Rossby deformation radius distant north and south of the equator (figure 7). The v field
is symmetric and has a maximum value on the equator. Later, we shall exploit the anti-
symmetry property of the ¢ ficld in order to isolate the i anomalies in our model solutions

from the Kelvin waves which are syminctric about the equator (equation (103)).

5.2 Choice of Model Parameters

A list of paramecter choices for our model is given in table (1). They are the samne for
all the experiments to be described unless otherwise stated. The values hg = 200 m and

L are reasonable choices for the Indian

¢ = .03 ms~? giving a phasc speed of ¢ = 2.45 m s~
Ocean and have been used, c¢.g., in the nunerical model of Woodberry et al. (1989) [64].

Applying these scales to the non-dimensional dispersion relations of the previous scction,
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Figure 7: The non-dimensional u, v and ¢ latitudinal profiles for the Yanai wave. Each unit
of length on the horizontal axis is cquivalent to 1 Rossby deformation radius.

The maximumn value for the v field occurs on the cquator and at one deformation radius
from the cquator for the u and ¢ ficlds. All three ficlds decay in the poleward directions in
accordance with the imposed boundary conditions.
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parameter | description value

J5} Coriolis parameter 228 x 107151
A eddy viscosity 750 m? 57!
At time step 1300 s

hg initial upper-layer thickness | 200 m

q reduced-gravity 03 ms=?
c phase speed 2.45 m 57!
T time scale = —\}C—; 1.55 days
L Rossby deformation radius | 327.75 km
N+1 Chebyshev modes in « 73

M+1 Chebyshev modes in y 37

L, length of domain in x 15,000 km
L, length of domain in y 3.000 km

Table 1: List of various model parameters used in the model. These are the values used in

all of the experiments performed unless otherwise specified.
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Figure 8: Dispersion curves for Yanai and Rossby waves. The horizontal lines indicate the

locations of periods for 10, 20, 26, 30 and 40 days.
Note that only the 40-day period gives rise to both Rossby and Yanai waves; i.c., short

Rossby waves propagating cnergy castwards may be excited at this period from a western

boundary, but not at the 30-day period or less.
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we see that for the period set of 10, 20, 26 and 30 days only the Yanai and Kelvin waves are
available whereas at 40 days both short and long Rossby waves may be excited in addition
to these waves (figure §). The Yanai wave becomes infinitely long as & — 07 (i.e. as the
period approaches 9.73 days). As k becomes positive the phase speed of the Yanai wave is
eastward, 7.e., in the same direction as its group speed. But this occurs at periods which
are too short for our interest. We focus our attention on waves with periods greater than
about 13 days which implies the wavelengths ave less than 3. 500 ki approxnnately (figure
9a). The group velocity increases with increasing frequency and therefore decreases with
increasing period (figure 9b). It is interesting to note the rate at which the group velocity
increases with decreasing period: e.g.. it doubles in size from 25 to 50 cms™! in going from
30 to 20 days and more than doubles in going from 20 to 10 days. This implics there will be
a significant separation in time between waves of different wavelengths and this fact turns
out to be a very important one for the experiments we shall deseribe.

Yanai waves in the 20- to 30-day period range have been observed and modelled in tlie
cquatorial regions of all the oceans as we have already discussed in the previous chapter.
The particular value of this peak in the period varies slightly between the different oceans as
a result of the different stratifications. In the Indian Ocean the peak is observed to be about
26 days (Reverdin and Luyten (1986) [51]). The 26-day wave has a wavelength of 896 km
with the particular set of parameter values we have selected for our model. Contour plots of
the u, v and I ficlds for this wave calculated from the analytical solutions {equations (111)
and (112)) are shown in figure (10) with the domain size we shall use for the experiments

to be described in the next section.
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Dispersion relation for Yanai waves
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Figure 9: (a): The dispersion curve for the Yanai waves with wavelength plotted vs. the
period in days. The 25-day period wave has a wavelength of 945 ki approximately. (b):
The group velocity as a function of the period for Yanai waves. Note that the group velocity
doubles (from 25 to 50 cm s™! approximately) when the period changes from 30 to 20 days.
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5.3 Numerical Experiments

We describe a sequence of model simulations generating Yanai waves by applying a wind
g

stress forcing. For all but one of these simulations the wind stress is adjacent to the

western boundary of the domain. The purpose of our experiments is to address the following

questions:

1.

(V]

(s ]

Can a simple cross-cquatorial wind stress generate Yanai wave patterns similar to
those found in the numerical modelling results of. for example, Kindle and Thompson

(1989} (32 7

What cffect does the angle of the western boundary have on the Yanai waves generated

from such a simple wind stress pattern at this boundary ?

Does the area of the wind forcing region influence the wavelength selected for these

waves and is this related in any way to the Rossby deformation radins 7

Can these waves be generated by a similar wind stress forcing in the interior of the

domain?

What is the mechanism by which Yanai waves of a specific period around 25 days are

generated 7

For all the simulations we use a wind stress profile of the form:

e (2, y') =0

D (116)

oy o— ’l
re(z'y) = -T’—;l(l + tun/z[(“ - *)
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with 7p = 5 x 1072 N m~2 and s = 300 &m (figure 11). The variables £’ and 3’ specify
the direction normal to and along the western boundary, respectively, so that the wind is
everywhere parallel to this boundary (7 = 0). The parameter z; is a measure of the width
of the wind stress region which is varied amongst the different experiments.  We use a
damping function, d(z). to absorb the waves propagating towards the castern boundary (as
in, e.g., Moore and McCreary (1990) [41]). This function is continuous and is cffectively

zero over most of the domain apart from a narrow region close to the castern boundary:
S -
d(z) = Amnh(q[:c -~ x0)) (117)

where A = 1071 s7!, § = 1.6 x 10719 m Vsl and 29 = Ly — 5 x 10° m (Agure 12).
The damping cffect is applied as an extra linear term to the right haud side of the model

equations (cquations (54) - (36) ) so that we solve:

L[] = Rlz.y.t) = d(z)3 (118)

o

ot

i

+ u(,% + vy and R(z,y,t) contains the

where ¢ represents cither u, v or h — hy. £ (f’y

remaining “right-hand-side™ terns.

EXPERIMENT 1: Indian Occan model simulation.

The western boundary of our model domain is a polynomial approximation to the cast
African coast from 10°S to 10°N, similar to that of figure (5a). The wind stress profile 1s
that of figure (11), with a width of 1000 km, turned on at t = 0. and everywhere parallel
to the coast. Both Yanai and Kelvin waves are generated because the wind stress has a

component meridionally and zonally. (On a rectangular domain a purely meridional wind
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Figure 11: The wind stress profile used in subsequent numerical experiments. Here the
“g'— direction” refers to the direction normal to the western boundary and 3’ is along this
boundary. (p = 1000 kgm=3)
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Figure 12: The damping function used to absorb the waves approaching the eastern bound-
ary. Effcetively there is an open boundary on this side of the domain.
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stress generates a Yanai wave whereas a purely zonal wind stress generates a Kelvin wave,
as has been demonstrated by Moore and McCreary (1990) [41]). The (dispersive) Yanai
waves have eastward group speeds in the range 12 - 80 cem s~V and westward phase speeds
in the range 15 - 75 ems™!. A sequence of “snap-shot™ pictures of the meridional velocity
field from the model simmulation at days 20, 48 and 76 show a packet. of Yanai waves emanat-
ing from the western boundary region propagating cnergy eastward at the group velocity
(figure 13). The Kelvin wave is not seen because it has zero meridional velocity. (NOTE:
The boundaries of the domains in our model experiments are always smooth curves even
though the figures show jagged lines on the western boundaries. This is merely due to the
way in which we transformed the model solution from the computational domain to the
physical domain.)  There is an increase in the wavelength of the Yanai waves castwards
across the basin because of the dispersive properties of these waves: The waves with the
higher group velocity have longer wavelengths (figure 8) and in time separate out from the
shorter waves which remain closer to the western boundary. The longer waves have shorter
periods (figure 9a) and so there is a decrease in period from west to cast. But the decrease
in period is not a lincar one as group velocity does not vary lincarly with period (figure 9b).
As we shall sce later, this fact gives rise to a preferred period selection in the interior of the
domain, with the very long period waves remaining close to the western boundary and the
short period waves disappearing castwards out of the domain. For a comparison we show
the results of a simulation of the Indian Ocean by Kindle and Thompson (1989) [32]. The
model was driven by the Hellerman and Rosenstein monthly wind stress (Hellerman and

Rosenstein (1983) [27]). Figurc (14) shows three “snap-shots” of the meridional velocity
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Figure 13: Spectral model simulation on the Indian Ocean domain from 10°S to 10°N. The
wind stress is everywhere parallel to the coast extending a distance of 1000 Akm from it and
switched on immediately at £ = 0. The figure shows three snap-shots of the meridional
velocity ficld at days 20, 48 and 76. A packet of Yanai wawes is generated propagating
encrpy castwards from the western boundary. Note the increase in wavclength from west

to cast.
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Fignre 14: Indian Ocean model simulation wsing the monthly climatological winds of Heller-
man and Rosenstein (from Kindle and Thompson (1989) ). The figure is a scquence of
snap-shots of meridional velocity contours for days 230, 268 and 286 of the 8§ year of in-
tegration, showing a packet of Yanai waves propagating from the west. A similar increase

in wavelength ocenrs in going from west to cast, as i our model solution.



contours at days 230, 258 and 286 of the §*h year of integration. A packet of Yanai waves
is seen to propagate energy eastwards from the western boundary region, with wavelength
increasing castwards. Comparing. for example. this wave packet from GO°E to 85°E on day
286 with our model solution from 3000 km to 5.500 km we see that the train of Yanai
waves generated are similar (allowing for the difference in domain size). There are more
frequencies available in the wind stress we chose for our model and consequently more waves
seen in the wave packet of our simulation. The large wavelengths leading the wave packet
are due to the impulsive turn-on of the wind. Nevertheless. by day 76 the emergence of
wavelengths around 1000 km west of the 5000 km mark is becoming clear.

The question arises as to how well do the Yanai waves in owr model couple with the
wind frequencies. We used a “ramp” type wind forcing by turning on the wind stress to its
constant maximum value impulsively at ¢ = 0. Theoretically, therefore, all frequencies are
available from the forcing. But we do not obtain wavelengths longer than o few thousand
kilometres. The reason for this is due to the power spectra of the wind. For example. lct

us simplify the wind stress profile to a “ramp” function of height b and length T:

b 0<t<T
() = (119)

0 otherwise

Expanding this function in a Fouricr series of the form:

Ty(t) = Z ay cos(”ﬂ) + Z b, sin(n“) {120)

T T

n=0 n=l

we obtain the cocflicients:

(l()=§
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t, =0

n=1305...

=he
o

o

n=24,6,...

Since the coefficients (other than ¢g) are at most O(;lx-) this implies that the power at
frequency n i1s at most O(,—}-;). Hence there is little power input to the higher frequency.
longer wavelength waves with this type of ramp wind stress and similarly with the wind
stress profile we have used in this experiment. In order to clarify this further. we present
results from two model simulations with meridional wind forcing at 10 and 13 days on «
rectangular domain to show that extremely long Yanai waves can be generated by high
frequency winds. The theoretical wavelengths for these waves are 37.688 km and 3,505 kmn
respectively. The wind patch size is 1000 km and the height field anomalies after 299 days
are shown in figure (15). The longer wave is too long for the domain and is absorbed by
the sponge layer. but the results are in good agreement with the theoretical values. We
conclude that the Yanai waves couple very well with the frequencies in the wind forcing and
that the preferential wavelength selection of around 1000 km is not directly associated with
the Rossby deformation radius. In addition, examining the time scale and the length scale
(= Rossby deformation radius) given in equation (94) it is clearly possibly to alter the time
scale keeping the deformation radius fixed by altering thie values of F and ¢ appropriately.
Such a change in the time scale can produce any desired change in the wavelength of the

wave at the same frequency because the dispersion curve is changed.
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Fignre 15: (a): The height field anomaly after 299 days with a purcly meridional wind patch
oscillating with period 10 days at the western boundary. The wind patch size is 1000 b
and the theoretical wavelength is 37.688 km. The wave is too long for the domain and
is absorbed by the sponge layer. (Contours are in metres, with solid contours indicating
positive values and dashed contours indicating negative values). (b): As in {a) except that
the forcing period is 13 days. The theoretical wavelength is 3,505 km and the simulation

is in good agrcement with this.
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EXPERIMENT 2: Dependence of solution on wind patch size.

We begin by using the analytical solution for the height ficld (equation (112)) to generate
a “synthetic” wave packet similar to that produced by our model simulations. The purpose
of this is to illustrate more clearly the structure of the model solutions and to use it as
a comparison between some of them. Consider a rectangular domain (as we had in figure
(15)) and a purely meridional wind stress at the western boundary with a profile as in
figure (11) of width 1000 km. The wind is switched on immediately at ¢t = 0 and the
solution for the height field anomaly after 100 days is shown in figure (16b). Because of
the impulsive turn-on of the wind the ocean “fecls” the higher frequency components of the
forcing first and then in time responds more to the lower frequencies. If the time period
is long cnough (~ 400 days) the occan eventually adjusts to a balance between the height
ficld and the wind stress. In other words, the ocean is tending towards responding to
zero frequency and the waves are extremely short, have negligible group velocity and have
been damped by friction so much so that they are not scen anymore. We generate o wave
packet to mimic this scenario crudely from the (non-dimensional) solution for the height
field (equation (112)) by superposing 20 frequencies together cqually distributed from (non-
dimensional) frequency .3 (corresponding to a dimensional wavelength of 679 ki) to .9
(corresponding to a dimensional wavelength of 9,755 Lm). Each separate wave is enveloped
by a Gaussian amplitude function with a standard deviation cqual to %”’ of the wavelength
of that particular wave and moves castward in time with it’s group velocity. This enables
a4 simulation of the initial “burst” of long waves propagating away from the source and

having no influence on the shorter waves appearing later. The situation at 100 days is
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Fignre 16: (a):A synthetic wave packet of Yanai wiwves generated by superposing 20 frequen-
cies of the (non-dimensional) analytical height solntion. Each individual wave is enveloped
by a Gaussian mnplitude function with a standard deviation equal to ',l‘”' of the wavelength
and moving with the group velocity of that wave. (Contowrs are non-dimensional).  (b):
Model soiuiion o a rectangular domain after 100 days. The wind patch size is 1000 km.

(7 = 0). Note the similarity in wavelength sclection with (a). (Contours are in metres).
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shown in figure (16a) and compares well with the model solution in (b). The numerical
simulation does exhibit a little distortion particularly closer to the northern and southern
boundaries. Distortion was e¢ven more pronounced with the Indian Ocean results of the
previously described experiment which we attribute to the irregular shape of the western
boundary (and consequently the wind stress profile) but nevertheless this really does not
effect the wavelengths selected.

Having discussed the generating mechanism and resulting structure of these Yanai wave
packets in a simple rectangular domain we now turn our attention to the possible mflu-
ence that the wind patch size (the present experiment) and the orientation of the western
boundary (the next experiment) may have on wavelength selection. We shall use as a stan-
dard test experiment the solution on a domain with a sloping western boundary eof angle
15°with the eastward direction. a wind patch size of 1000 Am and a time period of 100
days. Since we are only interested in the Yanai wave part of the solution we extract the
anti-symmetric part of the height ficld anomaly leaving behind the symmetric Kelvin waves.
Let the subscript “top™ denote the position of any point in the domain north (south) of
the equator and the subscript “bot™ denote the corresponding point due south (north) from
“top” and the same distance from the equator. Let liygr denote the total height ficld so that

I = hyot = hyop. Then we can write:

1
(h!op + hyor) -+ '2'(”101) — hpat) (122)

(SRR

hyot =

The quantity %(h,u,, — hyoy) is the anti-symmetric component of the total height field and

%(hm,, + hyor) is the symmetric component. The anti-symmetric part of the I field solution
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to the standard test experiment described above is shown with the synthetic wive packet
in figure (17). Although there is slightly more distertion in this solution. the wavelengths
appearing are very similar to the synthetic wavelengths and hence to the model solution
on the rectangular domain of figure (16b).

The standard test experiment is next compared with what happens when the wind
patch size is increased to 2000 k. The anti-symmetyic height field anomalies of these two
model runs reveal little difference after 100 days except that, due to the slightly larger zonal
extent between the castern edge of the wind patch area and the sponge layer in the test
experiment, more of the shorter waves in this case are scen (figure (18)). Thus, the size of
the wind patch zonal extent does not interfere with the wavelength selection. To reinforce
this conclusion we performed a simulation on a rectangular domain with a wind patch size
of 280 km which is less than the Rossby deformation radius (327.75 km). Although the
wave amplitudes of the larger wavelengths are small in this case (there is less energy being
supplied by the wind) and are distorted by the small-amplitude inertia-gravity waves, the
wavelengths themselves compare well with those produced when the wind patch extends for
1000 km (figure 19). Again. because of the larger zonal distance in the former case between

the forcing region and the sponge layer, more shorter waves are visible.

EXPERIMENT 3: Dependence of solution on coastline geometry.
In our first experiment with the Indian Ocean model domain we noticed a distortion of the
initial long waves propagating away from the coastal forcing region but in time the (v ficld)

wave packet in the interior occan becmne more synunetric about the equator. As a farther
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Figure 17: (a): Analytical wave packet as in the previous figure. (b): The anti-symmetric
component. of the model height ficld anomaly after 100 days. The physical domain has
w sloping western boundary at 45%. The wind stress is divected northwards everywhere
parallel to the coast and has a patch size of 1000 km. Note the similarity in wavelengths
present. with those in (a) (and hence with those of the model solution on the rectangular
domain) indicating that the sloping boundary has no effect on this sclection. (Contours are
in metres).
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Figure 18: (a): Model solution of the standard test experiment after 100 days as in the
previous figure.  (b): As in (a) except that the wind patch size has been increased to
2000 k. No appreciable change in the wavelengths sclected is noticed as can be scen in
the similarity of the wave pattern of (a). (Contours are in metres).
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Figure 19: (a): Height field anomaly after 100 days with a wind patch size of 1000 km
as in figure (16h). (b): Same as in (a) except that the wind patch size has been reduced
below the Rossby deformation radius to 280 km. Although the waves are weaker and more
distorted than in (a), the wavelength selection has not been affected except that more of
the short waves are visible near the forcing region. Incrtia-gravity waves appear near the
boundaries which interfere with the longer wavelengths because of their small amplitudes,
causing them to be distorted. (Contours are in metres).
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illustration of this distortion due to the coastline geometry we present two solutions for
the v field after 50 days: the first is on a rectangular domain and the sccond has a sloping
western boundary at 30°(figure 20). In both cases the wind stress is parallel to the western
boundary with a patch size of 1000 km. The longer wavelengths in the irregular domain are
distorted and there is no such distortion in the rectangular domain. In time this distortion
disappears just as with the Indian Ocean case (experiment 1).

Next we investigate whether the angle of the western bonndary has any effect on the
wavelengths sclected, apart from the distortion. To do this we compare the anti-symmetric
component of the height ficld of the standard test experiment (sloping western boundary at
45°, wind patch size of 1000 kin and time period of 100 days) to the same simulation with
the boundary sloping at 60° (figure 21) and the boundary sloping at 30°(figure 22). The only
essential difference between the three cases is the length of the leading wave group because
of the change in zonal extent between the wind forcing region and the sponge layer. For
example, the 30°case has the smallest zonal extent and consequently more of thie longest
wave group has been absorbed by the sponge layer.

As a final experiment to examine the western boundary influence apart from its ori-
entation, we present the result of what happens when the forcing region is in the interior
of the domain with no forcing at all near the boundaries. We select a rectangular domain
with a meridional forcing of patch size 1000 km exactly as before except that the whole
wind patch has been shifted 4000 km castwards into the interior. (The wind has also been
tapered north and south to minimize any cffect from the northern and southern bound-

aries). The model is run for 100 days. This is compared with the case where the wind
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Figure 20: (a): Model v field on a rectangular domain after 50 days. The wind stress is
parallel to the western boundary with a patch size of 1000 km. (Contours arc in ms~h).
(b): As in (a) except that the western boundary is sloping at 300 to the eastern direction.
The wind stress is everywhere parallel to the coast. Note the distortion of the long waves
in this case caused by the boundary slope.
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Figure 21: (a): Anti-symmetric height ficld anomaly of the standard test experiment as in
figure (18a). (Contours are in m s~ (b): As in (a) except that the slope of the western
boundary has been increased to 60°. The wavelengths excited are virtually identical in both
cases. The longest wave group has been absorbed by the sponge layer more in (a) because
of the shorter distance between the forcing region and the castern boundary (due to the
shallower slope of the western boundary).
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Figure 22: (a): Anti-symmetric height field anomaly of the standard test experiment as in
figure (18a). (Contours are in m s™1). (b): Same as (a) except that the slope of the western
boundary has been decreased to 30°. Again the wavelengths sclected are the same apart
from the increased distortion and the greater absorption of the leading wave group by the

sponge layer.



patch is adjacent to the western boundary (figure 23). The leading wave group with the
interior forcing simulation has already been almost completely absorbed by the sponge layer
by day 100 but, nevertheless, the remaining wavelengths in the wave packet are similar to
the boundary forced case. There is considerably more distortion in the latter case but the
wave amplitudes do not scem to have been altered much despite the fact that some of the
energy from the forcing goes into generating anti-symmetric Rossby waves which propagate
westwards from the eastern edge of the wind patch. This is an interesting result in view
of the observations reported by Perigaud (1990) [46] for the Pacific Ocean and which we
discussed in chapter 4. According to this study, 30-day instability wave packets both in the
western and central Pacific were detected. In other words the waves were observed further
to the west than the region of strong latitudinal shear and it is feasible that they could
have been generated by a cross-cquatorial wind stress in the mterior ocean rather than o
shear in the mean flow. As we shall see more clearly later on, the Yanai wave packets in
our model do, in time, settle down to a period band centred on 25 days once the long waves
with the high group speeds. which are a result of the impulsive turn-on of the wind. have
disappeared out of the basin through the sponge layer. This may also be an explanation
of why Perigaud (1990) [46] discovered a very low correlation between the maximum wave

amplitude and the maximum meridional gradient. absolute value.
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Figure 23: (a):Contours of the model height field anomaly after 100 days. The (mcridional)
wind forcing is adjacent to the western boundary and has a patch size of 1000 k. (Contours
are in metres). (b): As in (a) except that the wind has been shifted castwards to a distance
1000 ki from the western boundary. The leading wave group has been almost completely
damped by the sponge layer but nevertheless the remaining wavelengths ave similar to (a).
There is an anti-symmetric Rossby wave packet emanating from the eastern side of the

forcing region propagaiing westwards.
5 &
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5.4 Fourier Analysis

We have described rather qualitatively the generation of Yanai wave packets by cross-
equatorial wind forcings in various configurations. In all of the experiments deseribed @
similar selection of wavelengths appeared and we indicated that. in time, a narrow band
of wavelengths will dominate the interior region of the domain. The particular value of
the centre of this narrow band depends on the choice of model parameters (effectively.
those parameters which determine the phase speed ¢) because it can be altered for different
stratifications. We now present a more quantitative description of the dynamics described
using Fourier analysis (this scction) and wavelet analysis (the next section).

We consider the height field anomaly of two of the experiments described in the previous
section: The solution on the rectangular domain of figure (16b) and on the domain with
sloping western boundary at 45°of figure (17b) (our standard test experiment). In both
cases the model was boundary forced and the wind patch size was 1000 Ene. Figure (24a)
shows the (de-meaned) time series for the first case at a position 5,201 km from the western
boundary and 167 kmn north of the cquator. Initially there are high-frequency Yanai waves
which are as a result of the impulsive turn-on of the wind and we note a steady growth in
amplitude of these waves to @ maximum value of about 45 cm. This 1s in accordance with
the decrease in power with increase in frequency as we discussed previously. In time the
waves separate out more and the amplitude decays as the ocean tends towards a balance
between the height field and the wind stress. The very low-frequency waves have such

small group velocity that they never reach the interior occan before they are damped out
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Figure 24: (a): The de-meancd time series of the height ficld anomaly located at a position
5.201 Jan from the western boundary, 167 Am north of the cquator. The model run is the
same as that of fignre (16b). The record is at every 1 day for 300 days. Note the appearance
of the 25-day waves after the initial burst of lxigh-fn:qncnry oscillations. (b): The power
spectrinm of the time series in () taken from days 150 to 300. showiug a high peak centred

on 25 days.
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Figure 25: (a): The de-mecaned time scrics of the height ficld anomaly from the same model
run as in figure (18a). The wind stress is parallel to the western boundary sloping at 459
Since 7, # 0 there are Kelvin waves present in addition to the Yanai waves. The 25-day
waves appear again after about 150 days when the Kelvin wave peak and high frequency
Yanai waves have passed. (b): The power spectrum of the time series in (a) taken from

days 150 to 300 showing a high peak centred on 25 days.
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completely. The very-high frequency waves, on the other hand, disappear rapidly out of the
domain through the sponge layer due to the high group velocities. The relationship between
group velocity and period is not a linear one and in fact in the narrow period band between
30 and 20 days the group velocity doubles in size. as we pointed out before. from 25 to
50 cm s~ ! (figure 9b). This large change in group velocity over such a narrow period range
causes a preferential period selection in the interior of the domain, after a time period. To
see this more clearly we present the energy spectrum of this time series between days 150
and 200 (figure 24b). The dominant peak is centred on 25 days. (The secondary peaks are
due to inertia-gravity waves).

In the second case we examine the simulation with a sloping western boundary at 45%as
in figure (17b). The wind stress, being parallel to the western boundary, has both a 7,
and a 7, component and therefore there are Kelvin waves as well as the Yanai waves in
the solution. We take the time series of the height ficld anomaly for 300 days at a point
located the same distance from the western boundary as in the previous case and subtract
out the mean value (figure 25a). The initial large peak is due to the Kelvin waves and
thereafter the Yanai waves are apparent. The encrgy spectrum for this series for days 150
to 300 again shows a dominant peak centred ..on 25 days (fignre 25b). This result verifies
our previous findings that the slope of the boundary does not interfere with the preferential

period selection.
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5.5 Wavelet Analysis

Fourier analysis of a time series yields an average amplitude for eaclt wave component over
the entire series. This means that all local information is lost. Wavelet analysis can provide
this local information and we now demonstrate how this can be used to illustrate further
the particular frequency (or wavelength) selection in the dispersive Yanal wave packets we
have discussed.

Meyers et al. (1992) [40] illustrated how wavelet analysis can be used to measure group
velocities over a finite range of wavenumbers in an Yanai wave packet. Here we use the
same wavelet transforin as discussed in their study. For a given function f(x) we define the

wavelet transform as follows:
1 -0
T,b0) = - [oE1twa (123)

The function g(z) is known as the “mother wavelet” and must satisfy specific properties
(as detailed in Meyers (1992) et al. [10]). b is a translation paramcter in the x dimension
and « is a length scale. The transform is cssentially a convolution of f(z) with the set
of functions obtained from the translations and dilations of the wavelet g(z). It maps the
one-dimensional function f(z) into a two-dimensional function Ty{a,b) which is & measure

of the relative “energy” at scale « and position b. We use the Morlet wavelet defined as:
glz) = ' (124)

with the parameter ¢ = 5. We can think of the parameter o as being a measure of the

wavelength of the waves in the function f(x) and in fact, for this particular mother wavelet,
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Meyers et al. (1992) [40] derived a relationship between g and the wavelength A of a Fourier

mode:
c+ V2+c*
a = ( i )A (125)

We sclect the anti-symmetric component of the height field anomaly from the standard
test experiment (figure 17b) for our analysis. The function f(x) is chosen to be the discrete
function consisting of an array of 1064 data points on a zonal “slice” stretching from the
western to the castern boundary at a position 177 km north of the equator. The data
together with the corresponding wavelet transform from the model simulation after 20, 60.
100. 140, 160 and 200 days are shown in figures (26) - (28). The contour values can be
considered to be a measure of the relative “energy” i a particular wave (characterized by
its wavelength which decreases in the vertical direction of the contour box) at a particular
location (characterized by distance from the western boundary which increases in the hori-
zontal direction of the contour box). (The contonr values themselves are not shown because
they do not correspond to a known quantitative measure of the energy field). Note the
appearance of a “tongue” at the top-left corner after 20 days. This is a region of relatively
high-cnergy, and as the simulation continues it begins to reach towards the bottom-left
corner of the contour box. Then after about 140 days this “tongue” begins to rise and
narrow bending into a shape more centred on the wavelength at 945 ke (which corresponds
to a period of 25 days). After 200 days the selection of this particular wavelength by the

“tongue” has become quite clear.
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Figure 26: (a): Top: A west-cast scction of the anti-symmetric component of the height
ficld anomaly (fromn the standard test experiment) at 177 ki north of the cquator after 20
days. (Values arc in metres). Bottom: The wavelet transform of the profile above. Note the
appearance of the “tongne™ on the top-left. corner of the plot, which corresponds to high
contour values. (The contonr values can be considered as an “cnergy” but are not labeled
since they do not have a quantitative measure). (L) As in (a) after 60 days. Note the
growth of the “tongue™.
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Figure 27: (a): The anti-symmetric height ficld and wavelet transforn after 100 days. (b):
As in (a) at time 140 days. The “tongue” is starting to narrow and rise after having
extended almost. to the bottom-left part of the domain. This is an indication of the waves
beginning to select a narvow wavelength range.
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Figure 28: (a): The anti-symmetric height field and wavelet transform after 160 days. (b):
As in () after 200 days. The “tongue™ Lias continued to narrow and become more horizontal
with a central wavelength around 945 km. which correspouds to a period of 25 days.



Chapter 6

Summary and Conclusions

The technological advances in computer architecture of vecent years have inspired scien-
tists to search for and develop new numerical techniques for solving partial differential
cquations. The fields of numerical weather prediction and oceanographic modelling have
benefitted tremendously from these advances particularly with the advent of vector comput-
ers. Although finite difference methods are most popular amongst ocean modellers (mainly
because of the case in which complicated domains can be handled without coding diffi-
culty) spectral models have also been constructed and are in use. We have designed and
implemented a spectral Chebyshev-collocation ocean model using the 1-1/2 layer nonlin-
car reduced-gravity cquations. The model employs an algebraic grid generating method
to handle “moderately” complicated boundaries on simply connected domains. Extremely
high-accuracy results can be obtained with a minimum number of Chebyshev modes due to
the property of “spectral-accuracy” which the model possesses. A bi-characteristic scheme

was applied to the boundaries which minimizes the boundary errors and maintains stable
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integrations.

The model is very useful for examining geophysical flows when the domains are not tco
complicated. It is feasible to extend it in order to handle more complex geometrics (domains
with islands and sharp inlets, etc.) by using multi-domain and more powerful mapping
techniques. In this study we used the model to investigate certain dynamical properties
of equatorial Yanai waves. These dispersive “instability” waves appear as anti-symmetric
oscillations about. the equator in the temperature (or pressure) field in the observations and
are believed to play an important role in the momentum and heat balauce in these regions.
Although, theoretically at least, Yanai waves can have any value for the frequency. both
the observations and the modelling results of previous works indicate that a preferential
period of around 25 days is sclected. This value may vary slightly between the oceans
beeause of the different stratifications. To date, scientists have believed that the waves are
caused by a latitudinal shear in the equatorial zonal mean currents {(barotropic instability).
We performed a serics of experiments using simple cross-cquatorial wind stress forcings in
various configurations to show that the waves may also be generated without any shear in
the mean flow. They may be generated cither in interior regions or at the western boundary.
If they originate from the western boundary then the geometry of this boundary may distort
the initial packet of waves breaking the anti-symmetry in the height field but it does not.
interfere with the wavelengths selected nor with the value of the preferential wavelength
of 945 ki which becomes apparent in time. Nor s this particnlar wavelength dependent.
upon cither the length scale of the forcing region or the Rossby deformation radins, In all

of the experiments we performed, a packet of Yanai waves was generated with wavelengths



ranging from about 15 km to 5000 km. The longest waves have the greatest group velocity
and so they disappeared through the sponge layer on the castern boundary most rapidly.
The shortest waves have the smallest group velocity and they were damped in and near the
forcing region. After a time period of about 150 days a narrow band of waves with central
period of 25 days occupies the interior of the domain due to the nonlinear relationship
between the group velocity and the period of the waves.

Although we do not refute the theory that equatorial instability waves are caused by a
latitudinal shear in the mean zonal flow. we have presented @ plausible explanation for the
existence of these waves in regions where this shear is small (e.g. in the western Pacific) or
where the shear is virtually non-existent at the generation times (e.g.in the Western Indian

Ocean). Further obscrvational investigations are necessary to elucidate this.
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