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ABSTRACT

A nonlinear, single-layer numerical model is used to examine the '
baroclinic response of the equatorial ocean to time-variable winds. The
rectangular model basin extends 1,500 km south of the eguator and 15,000
km zonally; open boundary conditions are employed at the southern boun-

dary. Attention is focused on the equatorially trapped wave response to

symmetric, zonal time-dependent winds. The effects of mean currents,
topography, coastline variation, thermodynamics and thermohaline mixing
are neglected.

In order to interpret the numerical solutions, analytic expressions
for the vertical motion of the model pycnocline along the eguator are
derived from the linear theory cf equatorial waves. Two types of wind
distribution zre considered: 1) a uniform wind. across the entire basin
and 2) a longitudinally bounded patch of wind stress within which the
wind is uniform. The numerical model is used to determine scme of the
parameters of the analytic expressions. For problems whose linear solu-
tions are well known, the results given by the numerical modsl, linear
theory, and the derived analytical expressions agree very closely. The
analytical expressions are also used to examine the general linear
response of the equatorial ocean to time-variable winds as a function of

the pericd of the forcing, the kasin length and *the stratification.

the pericd of the forcing, the hasin length and the stratification.



Both the numerical model and the analytical expressions are util-
ized to examine the suggestion of Meyers that remote forcing may be
responsible for the large semi-annual signel of the vertical displace-
ment of the thermocline in the eastern equatorial Pacific Ocean. Using
Meyers' computations of the long term mean and seasonal winds along the
equator, the numerical model reproduces the observations of the average
seasonal vegtical displacement of the pycnocline at the eastern boundary.
The analytical expressions reveal that equatorially trepped Kelvin waves
excited between 180° and 120°W are responsible for the large semi-annual
response at the eastern boundary of the model.

Numerical simulations of the anomalous El Nifio event are performed
by initializing the model at some stage of the average seasonal solution
and, subseguently, modifying the mean winds in the central and western
Pacific. The seasonal winds remain unmodified throughout the basin as
well as the mean winds in the eastern half cf the model ocean. Since the
model runs are made over periods of years, such features as the intensi-
fication of winds prior to El Nifo, the relaxation phase and the subse-
quent return to normal conditions are included. Discussion is focused
on the effects of the magnitude, duration and timing of both the relaxa-
tion and the subseguent intensification phases. In addition t¢ a real-
istic representation of the onset of El Nino, the numerical simulation
is able to account for such observed features as the slow decline of sea
level in the western Pacific during E1 Nino, the rapid recovery of the
height field in the western Pacific, the occasional appearance of El

Nino events in consecutive years and the rapid end to El Nino conditions

height field in the western Pacific, the occasional appearance of El

Nino events in consecutive years and the rapid end to El Nino conditions
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in the eastern Pacific. The occurrence of El Nifio-like conditions at
the eastern boundary in the year following major El Nifio events is
related to the duration of the anomalously weak winds in the central

and western Pacific Ocean.
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INTRODUCTION

The variability of the eguatcrial Pacific circulation has been

linked to climate anomalies throughout the tropics and higher latitude
regions (e.g., Bjerknes, 1961, 1966a, 1966b, 1969, 1972; Ichiye and
Peterson, 1963; Quinn and Burt, 1970; Namias, 1976; and Julian and
Chervin, 1978). The most dramatic abnormal phenomena are the E1 Nino
events during which anomalously warm surface water often extends from
the Peruvian and Ecuadorian coasts to thousands of kilometers from the
eastern boundary along the equator. Wyrtki (1975b) hypothesizes that
the occurrence of El Nino is related to the sudden relaxation of the
equatorial Trade Winds in the Central and western Pacific subsequent to
a period of abnormally strong winds in that region. Wyrtki's hypothesis
received theoretical support from the modelling of Hurlburt, et al.,
(1976) and McCreary (1976, 1877). In his analysis of the tropical
Pacific circulation, Wyrtki (1973) found high correlations between El
Nino events and anomalous sea level differences across the major equa-
torial surface currents. It is evident that the baroclinic structure

of virtually the entire equatorial Pacific experiences drastic changes
during El Nino. An understanding of the dynamics of such anomalous
events, however, will require an understanding of the variability asso-
ciated with the seasonal cycle as well. It is the purpose of this paper

to explore certain aspects of both El Nino and the equatorial seasonal

circulation.

to explore certain aspects of both El Nino and the equatorial seasonal

circulation.
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Wyrtki (1974) has provided an excellent description of the seasonal
variation of the equatorial current system in the western and central
Pacific. Using sea-level data over a twenty-year period at eleven equa-
torial stations, Wyrtki showed that the strength of the South Equatorial
Current situated south of the eguator tended to vary in phase with the
Equatorial Undercurrent, but out of phase with both the North Eguatorial
Current and the North Equatorial Countercurrent. The Countercurrent is
generally weakest in the spring and strongest in the fall. For a general
description of the equatorial current system, see Knauss (1964).

There are no long period data records of the circulation in the
eastern tropical Pacificy this is due, primarily, to the scarcity of
islands in that region. Tsuchiya (1274) has examined the surface geo-
potential anomaly field from the EASTROPAC expedition (February 1976 to
April 1968). He, too, found that the Countercurrent was weak in the
spring but very strong in the fall. One of his discoveries was an
observed eastern current very near the equator during the April-May per-
iod. Tsuchiya offers evidence disputing the usﬁal interpretation of
this current as the surfacing of the Undercurrent (Taft and Jones, 1974).

Both Meyers (1975) and Wyrtki, et al. (1877) have related the sea-
sonal variation of the eguatorial currents to the seasonal changes of
the thermel structure in the tropical Pacific. Both studies found that
vertical displacements of the thermocline account for most of the vari-
ability of the thermal structure. Attempts to explain the seasonal
motion of the tropical thermocline have been only partially successful.

White (1977) attempted to explain the vertical variability of the thermo-

motion OI The Troplcal Thermocllne have been only partially successiul.
White (1977) attempted to explain the vertical variability of the thermo-

cline between 10°-20°VW as a combination of the forced Ekman pumping
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response and a free Rossby wave with an annual period. Meyers (1979a),
however, shows that such a theory is not totally consistent with obser-
vations along 10°N because, in regions other than those considered by
White, the data are not consistent with White's theory. Meyers finds
that the free Rossby wave plays only a minor role in the vertical motion
of the thermocline at 10°N but a major role at 6°N.

Efforts to explain the vertical motion of the thermocline at the
equator have proven fruitless. The model of Dewitt and Leetma (1978),
which is frictionally controlled at the equator, was able to simulate
the observed seasonal motion of the eastern Pacific equatorial thermo-
cline during only part of the year, but an extremely large value of ver-
tical eddy viscosity was required to achieve this result. HMeyers (1879a)
also examined the seasonal motion of the equatorial thermocline by in-
cluding the effects of geostrophic divergence and by using the model of
Gill (1975) to estimate the vertical velocity due to Ekman pumping at
the equator. The resultant analysis could not explain the seasonal ver-
tical motion of the thermocline along the equator. The most probable
cause of the inability of these works to succeed at the equator is that
the effects of remote forcing were not properly included. In fact,
Meyers (1979b) suggests that the semi-annual signal of the thermocline
motion in the eastern equatorial Pacific is remotely forced. The dynam-
ics governing the narrow latitudinal band in which equatorial upwelling
occurs (3°S-3°N) constitute a unigue physical system. The presence of
equatorially trapped waves can provide a very efficient mechanism for

the zonal propagation of energy along the equator. If the equator is an

equatorially trapped waves can provide a very efficient mechanism for
the zonal propagation of energy along the equator. If the equator is an

efficient waveguide at seasonal time scales, then the effects of remote
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forcing will have to be included accurately in order to account for the
seasonal variability of the thermal structure in the near-equatorial
regions.

Although the analytical framework for the equatorial response to
time-variable winds was established by Moore (1968), most theoretical
equatorial studies have focused on the transient response to suddenly
imposed steady winds. Such features as the equatorial jet (Yoshida,
1659; O'Brien and Hurlburt, 1974), the Somali Current (Lighthill, 1969;
Anderson and Rowlands, 1876a; Cox, 1976; Hurlburt and Thompson, 1976),
E1l Nino (Hurlburt et al., 1876; McCreary, 1976, 1977), the Equatorial
Undercurrent (Gill, 1975; McKee, 1973), the equatorial current system
(Cane, 1979; Semtner and Holland, 1979; Cane and Sarachik, 1976, 1977,
1879), and the Gulf of Guinea Upwelling (Moore et al., 1978; Adamec and
O'Brien, 1978) have been modelled as the transient response to a steady
wind. In addition to simplifying the analytical development, the impos-

ition of impulsive steady forcing allows an easier interpretation of

the
solutions in terms of the interior and boundary fesponses.

A notable exception to the above approaches in modelling the time-
dependent equatorial ocean is that of Wunsch (1977), who examined the
equatorial response to forcing with an annual period. In crder to model
the observations with high vertical structure found by Luyten and Swallow
(1976) in the Indian Ocean, he examined the forced wave response. Since
his model assumes that energy propagates vertically in only one direc-

tion, Wunsch's approach is equivalent to that used by meteorologists

(Holton, 1975). Such an approach focuses on the vertical structure of a

Ticn, wWunsch's approach is equivalent to that used by meteorologists
(Holton, 1975). Such an approach focuses on the vertical structure of a

particular x-y-t mode determined by the forcing rather than on the x-y-t
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structure of a particular vertical mode., Wunsch is able to generate
very tightly trapped Rossby waves with the correct vertical scale. A
comparison of the two different approaches is given by Philander (1978).

This paper will focus on the effects of equatorially trapped waves
pertinent to a single vertical mode and initiated by symmetric zonal
winds which have time scales varying from a few months to several years.
In Section 2 a nonlinear, reduced-gravity numerical model with a basin
size corresponding to the tropical Pacific Ocean, is described. In order
tc integrate the model over periods of years, an open boundary condition,
which permits the passage of coastal Kelvin waves and Rossby waves is
applied at the southern boundary. Symmetry is used at the northern boun-
dary which is located at the equator.

In order to interpret and understand better the numerical results,
analytical expressions are derived in Section 3 for the vertical motion
of the model pycnocline along the equator. These expressions, which are
based on the linear theory of equatorial waves, are derived for two
types of wind-stress distributions: 1) a wind ﬁhich is uniform across
the basin, and 2) a wind stress patch which has a rectangular pulse shape
in the zonal direction and a uniform distribution in the meridional direc-
tion. In addition to delineating the effects of individual waves and
their reflections, the analytical expressions are used in Part 4 to exam-
ine the fundamental properties of the periodic equatorial response as a
function of the period of the forcing, the length of the basin and the
stratification.

In Section 5, both the numerical model and the analytical expres-

Stratitrication.
In Section 5, both the numerical model and the analytical expres-

sions are used to examine the climatic seasonal variability of the equa-
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torial Pacific. The forcing for these studies are the annual and semi-
annual components of the mean monthly zonal equatorial winds as analyzed
by Meyers (1979b). It is shown that the semi-annual component of the
mean monthly vertical displacement of the thermocline at the eastern
boundary is due to the excitation and subsequent propagation of eguator-
ial Kelvin waves originating between 180° and 120°W. This supports
Meyer's hypothesis (1979b) that remote forcing may be responsible for
the large semi-annual signal of the thermocline displacement in the
eastern equatorial Pacific.

Finally, in Section 6, numerical simulations of El Nino are per-
formed which combine the effects of seasonal variability and the large
scale changes of the wind stress in the central and western Pacific.

The model is initialized at a particular point in the seasonal cycle;
subsequent numerical integrations run for several years. The seasonal
wind components remain unchanged throughout the basin as do the mean
winds in the eastern haif of the model ocean. The mean winds in the
western half are modified so as to represent suéh features as the inten-
sification of Trade Winds prior to El Nino, the sudden relaxation of
these winds and the subsequent return to normal conditions. This allows
us to investigate the longer time scale aspects of E1l Nino which were
reported by Wyrtki (1977, 1979); it was observed that in both the 1972
and 1976 E1 Nino events, the initial rapid onset at the eastern boundary
was followed by a year-long decline of sea level in the western Pacific
and a subsequent rapid return to normal conditions near the end of that

year. In addition, some major El Nino events exhibit consecutive peaks

and a subseguent rapid return to normal conditions near the end of that
year. In addition, some major El Nino events exhibit consecutive peaks

in sea level in the eastern boundary regions separated by about a year.
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This was true of the 1957-58 and 1972-73 El Nifio occurrences, but not
of the 1976 event. These longer time scale aspects of El Nifio have not
been examined theoretically. The numerical simulations described in
this paper reproduce the essential features of the observations

described sbove. Dynamical scenarios for the fundamental behavior of

the equatorial Pacific Ocean during El Nifio are presented and discussed.




2. THE NUMERICAL MODEL

The enormous size of the Pacific Ocean presents a formidable obsta-
cle to the numerical modelling of its time-dependent circulation. Ade-
guate resolution of the narrow currents and waves trapped along the
boundaries and the equator requires fine horizontal grid spacing in
regions which cocmprise an extremely small percentage of the basin's total
area. In order to examine effectively the feature(s) of interest, sub-
stantial compromises may have to be made in the choice of such parameters
as the dimensions of the model basin, the horizontal resolution, the
length of the time integrations and the vertical resolution. Since we
will 1) examine the dynamics of egquatorial and coastal regions on the
scale of the internal radius of deformation, 2) perform a variety of
numerical experiments over time scales of years, and 3) use a basin whose
dimensions approximate the true size of the tropical Pacific Ocean, the
logical choice for the model equations are those given by a single layer,
reduced-gravity model. Such a model represents the baroclinic mode of
a two-layer system in which the ocean is assumed to be hydrostatic,
incompressible and consists c¢f two homogeneous layers of different den-
sity. The interface between the two layers represents the main pycno-
cline, which in the equatorial regions is very strong and shallow. The
reduced-gravity model also assumes that the horizontal pressure gradient

in the lower layer is so small that the layer is motionless. This is
cAnel etant wi+h +tha marvecantz=t+iAar AF +ha Fiaeo+ RovnAanTinia mada b o

in the lower layer is so small that the layer is motionless. This is
consistent with the representation of the first baroclinic mode by a

8
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two-layer system in which the upper layer thickness is much smaller
than the total depth. (For an extensive discussion on the relationship
between two-layer reduced-gravity models and single-mode models, see
McCreary (1977).) The validity of a two-layer approximation for the
baroclinic structure in the central equatorial Pacific has been pointed
out by Wyrtki, et al. (1977). Examples of the recent use of reduced-
gravity models to study the equatorial circulation are McCreary (1877),
Lin and Hurlburt (1978), Adamec and O'Brien (1978) and Cane (1979).

The advantages of immobilizing the lower layer of a two-layer model
are 1) the elimination of the barotropic mode and 2) the simplification
of the model equations. The resultant governing equations for the sys-
tem are the nonlinear shallow water wave equations on an equatorial

beta-plane,

X
2 T
u, + uv_ + vu_ - Byv = -g'h_ + AV u + —_—
[ X y X h p (H+h|)
1
2 4
ve tuv +vvoo+ Byu = -g'h o+ AV Vb ———— (1)
% Y J , p, (H+th")

h, + (hu) + (hV)_ =0
X Y

where u and v are the upper layer velocity components, g' is the reduced
gravity given by g(p2 - pl)/pl, h is the thickness of the upper layer

and h' is the pycnocline height anomaly (PHA), i.e., the departure of

the upper layer thickness from its initial uniform thickness, H. A com-
plete list of parameters and symbols is given in the appendix. The
Cartesian coordinate system is righthanded with positive x directed east-

ward, and its origin is the western boundary of the mecdel equator. The

QL LTOdall Luuldudialtc oyoLcil 1o J.'_LE,A'LL}(LCUALL&U. WLLLl PUDLLLYT A WULLTULTUW TGOL™

ward, and its origin is the western boundary of the model equator. The

. Xy L s
wind stress, whose components are (17, Tj), is irncluded as a body force
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distributed uniformly throughout the upper layer. The effects of
thermohaline mixing and thermodynamics are neglected.

The set of equations (1) are solved in a rectangular basin as shown
in Fig. 1. The eastern and southern boundaries are at 80°W and 15°S,
respectively. The northern boundary for the computations is the equa-
tor; because only symmetric zonal winds are applied, the solution in the
northern hemisphere is simply the mirror image of the solution south of
the equator. The western boundary is at 162°E (13,000 km from the east-
ern boundary) in Sections 2 and 3. In order to incorporate wind-stress
measurements throughout the entire equatorial Pacific, the basin is
extended to 144°E for the computations in Section 5 and 6.

Boundary conditions at the eastern and western walls are no slip.
Symmetry is applied at the equator. The southern boundary is open, and
a variant of the boundary condition developed by Hurlburt (1974) is used
there. The boundary condition yields an expression for the north-south
pressure gradient at an open zonal boundary. All other meridional der-
ivatives are set to zero except for the flux tefms in the continuity
equation. In the two-layer model of El Nino used by Hurlburt, et al.
(1976), this condition was applied very successfully as a means to let
coastal Kelvin waves and Rossby waves pass through the boundary, thereby
preventing these waves from eventually interfering with solutions at the
equator. The reduced-gravity version of this boundary condition is

given by the simple relation:

0
1)

(h/X - b/ )/Ly (2)

=
1}

(h/, - b/ _)/L (2)
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where Ly is the distance from the boundary to the equator. The N-S
pressure gradient at the S-W corner of the basin has been set to zero.
Although, for time integrations greater than approximately six months,
some smoothing at the boundary was required to control the build-up of
"nmoise'", the boundary condition did indeed permit the passage of inci-
dent waves with no noticeable reflection.

In order to minimize core storage requirements, the model equations
are solved on a staggered grid whose spacing in the x-direction is vari-
able. The stencil for the grid is shown in Fig. 2. The values of Ax,
which change in discrete steps, vary from 20 km near the eastern and
vestern boundaries to 150 km in the interior; the meridional grid spac-
ing, Ay, is uniformly 25 km.

The model eguations are treated explicitly using leap-frog for the
time derivatives and centered-differencing for the spacial derivatives;
the viscous terms, however, are lagged in time. The nonlinear advective
terms are quadratic-averaged, using a slight variant of Scheme F from
Grammeltvedt (1969). Unless otherwise stated, thé model is started from
rest using a forward time step.

In order to examine the most fundamental eguatorial response to
time-variable winds, the effects of bottom topography and realistic
coastline configuration have been neglected. Although these features
may exert a major influence on the processes discussed in this paper,
our study will focus on the Pacific Ocean where such features appear to
play a secondary or minimal role. There is no large scale ridge in the

equatorial Pacific which seems capable of substantially altering the

play a secondary or minimal role. There is no large scale ridge in the

equatorial Pacific which seems capable of substantially altering the



Fig. 2. Stencil for the staggered grid used in the computations.
The zonal component of velocity is evaluated at the meridional boun-
daries; all three dependent variables are evaluated at the open boun-
dary.
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equatorially trapped, internal-wave processes derived for an ocean with
a flat bottom. The effects on the equatorial waves of such ridges in

the Atlantic and Indian Oceans are yet to be studied.




3. THE ANALYTICAL MODEL

In order to interpret and understand the numerical model solu-
tions, linear theory will be used as a guide. Although the analytical
framevork for the equatorial response to time-variable winds has been
established by Moore (1968), most theoretical studies have focused on
the transient response to steady winds. In this section, general
expressions for the vertical motion of the model pycnocline along the
equator are derived for the case of zcnal time-variable winds. Two
types of wind-stress distribution are considered: 1) a wind which is
uniform across the basin and 2) a wind-stress patch of arbitrary width
which has a rectangular pulse distribution in the zonal direction. The
expressions will include such features as the longitudinally unbounded
interior response, the excitation of equatorially trapped waves and the

reflections of these waves at the eastern and western boundaries.

a. Equatorial Waves

The details of equatorial wave dynamics have been reviewed exten-
sively by HMoore and Philander (1977), Philander (1978) and Beer (13978).
It will suffice here to examine only the major properties of low-
frequency equatorially trapped waves.

The linear, inviscid, hydrostatic, non—divérgent system of equa-

tions on an equatorial B-plane may be expressed as:

tions on an equatorial B-plane may be expressed as:

15
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v, + Byu = —Py/po

P =-gp - (3)

where 5; is the mean density gradient in the vertical direction. A
right-handed Cartesian coordinate system in which x is positive eastward
is employed. The effects of bottom topography, horizontal variation of
density and mean flow are ignored. If we follow the formulation of Gill
and Clarke (1974) by expanding in terms of the vertical modes of the

system, i.e.

u(x,y,%,t) u (x,y, t)
v(X,y,2z,t) - v (x,y,t) s (2)
P(%,Y,2,t)/p nL)p L (%5y,5t)
w(x,y,z,t) ' wn<x,y,t

1{i%p(x,y,z t) i?} B n=1 | b (xy,t) F (2)
N“(z)

then the equations for the vertical eigenfunctions are

In™ 8

8

1
It ™

dQFn NQ(Z)
5t 5 Fn =0 (u)
dz A
n
§ = an (5)
n 1z

The resultant system of equatlons for the amplitudes of the eigenfunc-

n v
dz

The resultant system of equations for the amplitudes of the eigenfunc-

tion expansions is given by
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Ut - ByV = Px
(6)

Vt + ByU = Py

2
P+ A (U _+V)=0
t n X y

2
Py = An W (7)

where U, V, P, and W are amplitudes of an eigenfunction expansion in
terms of Fh(z) or Sn(z), Ai is.the eigenvalue determined from the verti-
cal structure equations (4), and NQ(Z) is the Brunt-Vaisala frequency.
The eigenvalue, Ai, is the square of the gravity wave speed and is fre-
quently expressed in the form As = an, where Hn is the equivalent depth
of a particular vertical mode.

The linear inviscid form of the reduced-gravity equations, (1) may
be viewed as the system of equations describing the horizontal and tem-
poral dependence of a particular baroclinic mode (6). In such a case,
the equivalent depth is determined by the specification of the stratifi-
cation and the upper layer depth, i.e., Hn = (Ap/pO)H. For the equator-
ial oceans, the equivalent depth for the first baroclinic mode is 0(50 cm)
(Moore and Philander (1977)).

The system (6) is solved most easily in terms of the meridional
velocity. The resulting equation is

2.2 2 2
Veep T B YV - A BV 4V

ttt Vi) = 6 (%, v, ) (8)

where Gn is the amplitude of the forcing for a given baroclinic mode.

If a waveform dependence in the zonal direction is assumed, i.e.,

el(kx —u)‘t), then (8) reduces to:

If a waveform dependence in the zonal direction is assumed, i.e.,

1ot —ut) o (8) peduces to:
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w Rk 2 By ) =
=< )V = 6(y) (9)
vy >\2 w >\2 ¥
n

n
The solution to (2) may be expressed in terms of Parabolic-cylinder
functions (Beer, 1978). However, Matsunc (1966) was the first to real-
ize that if V is bounded as y » + «, then the homogeneous solution may
be written in terms of Hermite functions and the following dispersion

relation is obtained:

N

Bk _ .2 _ (om+1)e (10)
w An .

>»l€

BN

where m, which designates the particular latitudinal mode, can be any
non-negative integer. The normalized Hermite functions are given by the

relation: 2

vy %
o exp(2 (kn/B) )Hm (1)
2 m)? |

s th . . . - .
where Hm is the m Hermite polynomial. The eigenfunctions for even
(0odd) m are symmetric (asymmetric) about the equator and have turning
points given by

1.
(2m + l))\n 2. (12)

. ]
i <
The turning point is the distance from the equator at which the solution
changes from oscillatory to exponential in nature. Hence, as m increases,
the latitudinal modes become less eguatorially trapped.
Equation (10) is a dispersion relation for three types of waves:
the high frequency intertia-gravity waves, the low freguency mixed Rossby-
gravity wave and Rossby waves. An additional solution to (6) is the

equatorial Kelvin wave which is obtained bv setting the meridional velo-

gravity wave and Rossby waves. An additional solution to (6) is the
equatorial Kelvin wave which is obtained by setting the meridional velo-

city component identically equal to zero. For a derivation of this wave
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see Moore and Philander (1977). The Kelvin wave is non-dispersive with
speed A, propagates from west to east, and is trapped within an equator-
ial radius of deformation of the equator. The analytic form of the

zonal velocity component of the Kelvin wave 1is given by

u = F(k(x - At)) WO (13)

where Wo is the zero-th Hermite function. The dispersion diagram for
free waves on an equatorial B-plane may be found in numerous references
[e.g., Philander (1978), Wunsch and Gill (1976), Cox (1976), Cane and
Sarachik (1976)].

At each value of m and w for which Rossby waves are permitted,
there exist two values of wavenumber, k. Although all Rossby waves have
phase velocity to the west, the wave with larger k has an eastward group
velocity. For long wavelengths and low frequencies, planetary waves are
non-dispersive and propagate westward at a speed Xn/(Qm + 1). Hence,
both planetary and inertia-gravity waves can propagate energy in either
the westward or eastward directions.

The mixed Rossby-gravity wave (Yanai Wave)l, which has its meridional

velocity component proportional to To’ has an eastward directed group
velocity, but its phase velocity can be either westward or eastward.
Hence, the two most highly trapped waves (Yanai and Kelvin) propagate
energy in the same direction.

For given values of_)\n and m, inertia-gravity waves are possible

for values of "
w" > (2m + l)BAn.

for values of 5
w” > (2m + l)Bkn.

Oceanographers have borrowed the name Yanai wave from meteorologists as
an alternate designation of the mixed Rossby-gravity wave. The proper-
ties of this wave in the atmosphere were first observed and reported by
Yanai and Maruyama (1966).
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The period of inertial oscillations at the equatcr, which depends upon
the particular vertical and latitudinal mode, is given by

T. = ___EEL______ %

i [(2m + 1)RAJ

wherem > 1 (Moore and Philander, 1977). For the parameters used in
this paper, the longest inertial period is slightly greater than six
days.

The refiection properties of free waves on an equatorial B-plane
were first examined by Moore (1968), in which he studied the reflected
response of an incoming wave at a single frequency. At a western boun-
dary an incoming planetary wave excites shorter scale planetary waves
and either a Kelvin or Yanai wave. ELach reflected wave has the corre-
sponding symmetry of the incoming wave, and no waves are excited which
have a latitudinal mode number greater than the incident wave. At an
eastern boundary, however, energy is distributed over a much wider lati-
tudinal range than the incoming Yanai or Kelvin wave. Moore showed that
the eastern boundary response can be composed of an infinite series of
latitudinal mode planetary waves, and that for large y, this series con-
verges to a coastally trapped Kelvin wave propagating poleward along
the eastern boundary. As in the western boundary case, the symmetry of
the incident wave is preserved.

In other studies, Anderson and Rowlands (1976b) examined the east-
ern boundary reflection to an incident Kelvin wave of step function form.
Cane and Sarachik (1¢77) studied the spin-up of an equatorial basin for

forcing which is longitudinally independent and switched on at t = O.

s e mmaimes N s r L G Caan U aii wp T wd WA S M LWL R Al AL

forcing which is longitudinally independent and switched on at t = 0.
More recently, Cane and Sarachik (1979) examined the equatorial response

to similar forcing in basins which are latitudinally bounded.
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The contribution of the various equatorial waves to the quasi-
steady solution to periodic forcing is not nearly as easy to discern as
is the spin-up due to steady winds. For example, consider two cases
both of which are forced by a uniform wind; in the first case the wind
is steady and directed from east to west, whereas in the second case it
has a period of one year. The above forcing is used to drive the numer-
ical model described in Section 1. The parameters which are used in all
cases in this section are given in Table 1. The dimensions of the basin
(LX, L ) were chosen to approximate the size of the tropical Pacific
Ocean. The choices for the remaining important free parameters, Ap and
H, were made with respect to such constraints as approximating the first
baroclinic mode, producing a realistic representation of the depth and
slope of the main thermocline across the Pacific and nct permitting the
interface to surface. 1In linear wave theory the density difference, Ap,
and the upper layer thickness, H, combine to form a single parameter--
the phase speed of the internal Kelvin wave. The expression for thi
phase speed i1s given by

. (EBbeHVE %
C, = ( ) ) (an)

wnere Ck is the speed of internal Kelvin wave for the nth beroclinic
mode and Hn is the corresponding equivalent depth. The parameters in
Table 1 yield a value for Hl of 43.75 cm, which is consistent with the
order of the equivalent depth for the first baroclinic mode near the
equator (Mocre and Philander, 1977). Because the phase speed is propor-

tional to the square root of Hn’ the model results are not highly sensi-

tive to changes in the equivalent depth.

tional to the square root of Hn’ the model results are not highly sensi-

tive to changes in the equivalent depth.
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Table 1. Model Parametexrs

Mp/o = 2.5 x 107° L, = * 1500 kn
H =175 m A = 10% em? sec”t
B = 2.25 x lO—llm—ls_l = 9.8 m sec_2
LX = 1.3 x lOu km At = 5400 sec

In Figs. 8 and 4, the solutions for the height field are shown for

the steady and periodic cases, respectively. The effects of waves in

the solutions are evident by kinks in the contours and a change in the

contour spacing after the wave front propagates past a particular point.

In Fig. 3, the initial time rate of change of the pycnocline height ano-

maly (PHA) in the interior region reverses sign following the passage of

the Kelvin wave from the west and intensifies after the passage of the

Rossby wave from the east. Also, in agreement with linear theory, the

Rossby wave takes thrice the time to cross the basin as the Kelvin wave. i
The effects of the reflections of each of these waves are also very con-
spicuous. The eQuivalent plot of the upper layer thickness (ULT) for
the periodic wind case is shown in Fig. 4. In this case, it is most
difficult to differentiate betweén the effects of the zonally propaga- (
ting waves and the forced interior response. Hence, for time-variable

forcing, a technique is required whereby the effects of the various waves

may be identified and their importance assessed.

b. Interior Response

In order to identify the effects of the Kelvin waves, Rossby waves,

b. Interior Response

In order to identify the effects of the Kelvin waves, Rossby waves,
and their reflections, an expression for the vertical velocity of the

model equatorial pycnocline is derived. The derivation is based upon the
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linear theory of equatorial B-plane wave dyramics; however, the numeri-
cal model is used to determine some of the parameters. Since the solu-
tions produced by the linear version of the numericel model are very
close to these predicted by linear theory, the resulting expression is

a useful tool to the study of the equatorial response to time-variable
zonal winds.

The foundation of the derivation is the equatorial response to uni-

his will

=1

form zonal winds in an ocean with no meridional boundaries.

rst

(=N

be referred to as the interior solution . This problem was T
solved by Yoshida (19539) ané more recently (as well as more generally)
by Moore and Philander (1977). Consider the reduced-gravity model (6)
which is forced by a uniform zonal wind and in which all zonal deriva-
tives are neglected. In order to filter out inertial oscillations, the
acceleration of the meridional velocity is also neglected. Substitution

in faveor of the meridional velocity yields:

Y 2 y T
vV -y L)
PV 7Y o8 ( 7 ) (1)
1 ;f.
where y¥ is the equatorial radius of deformation = ( 5_%_) . The value
B
of the vertical velocity at the interface is essentially given by
. oh v
y = - — = H —/
W Nt H 3y

which at the equator is equal to

pe
BT
W = -
¥ z (15)
where C = VYg'H., The facter .6 arises from the non-dimensional value

of the meridional divergence at the equator. Although this expression

where C = Vg'H, The factor .6 arises from the non-dimensional value

of the meridional divergence at the equator. Although this expression
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was originally derived for a steady wind stress, it is also valid for a
time-variable wind provided the period of *he forcing is much greater
than the inertial period.

Associated with the motion of the interface in the interior response
is a zonal acceleration often referred to as the Yoshida jet. In the
presence of meridional boundaries this zonal current must be divergent,
thereby exciting equatorially trapped Kelvin and Rossby waves. These
waves propagate according to the free wave dispersion relation given by
(10), and with amplitudes dependent upon both the magnitude of the diver-
gence and the type of wave. Tor steady forcing, the free waves and their
reflections establish a steady state in which the wind-stress force is
balanced by the zonal pressure gradient. The existence of such a balance
for variable forcing, however, depends upon the stratification, the basin
width and the period. In order to determine precisely the proper balance
for given parameters, it is necessary to know the magnitude of the free

wave response and of the subsequent reflections.

c. Uniformly Distributed Zonal Wind Case

In this section the equatorial response to a uniformly distributed
time-variable zonal wind is examined in terms of the vertical velocity
of the model pycnocline along the equator. The vertical motion of the
pycnocline is influenced not only by the local response, but also by the
excitation of equatorially trapped waves and the subsequent reflections
of these waves at the boundaries. The magnitude of the interior

response depends directly upon the magnitude of the wind stress and, for

N
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response depends directly upon the magnitude of the wind stress and, for
the frequencies of interest in this paper, the local response is in phase

with the forcing. Also, the amplitudes of the waves excited at the boun-
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daries (the Rossby wave at the eastern boundary . and the Kelvin wave at
the western boundary) are directly proportional to the amplitude of the
wind stress. If the forcing has a sinusoidal variation in time, each of
these waves produces a sinusoidal zonal distribution as it propagates
away from the boundary of its origin. In the interior, the phase with
respect To the forcing of a particular wave depends upon the ratio of
the distance from the original boundary to its wavelength. Upon reflec-
tion, the waves undergo no phase changes, because the meridional walls
are free boundaries for the height field.

Let us consider the equatorial response to a time-varying spatially-
uniform wind with a freguency and an initial phass given by w and ¢,
respectively. The vertical motion of the interface may be expressed as
the sum of the interior response and the various contributions of the
waves excited by the wind stress and by the reflections from the boun-

daries, i.e.,

W(x, t) = W sinwt +¢) + ¥ sin(e(t - =) + ¢)
I K CK
, —
+ Wy sin(w(t - \g X)) + 6)
R
+ WKR sin(w(t - %—- - (LEX)) + 6)
K R
(16)
L X
+ W_ sin(u(t - = - Z—=) + ¢)
(\ T
RK °r CK
1 1 X
+ W sin(w(t - L 5=+ =) - =) + ¢)
KRK CR CK CK
! . 1 1 (L - %)
+ WRKR sin(w(t - L( t E;—) - —EE—_ Y + ¢ )

where C  is the speed of the Kelvin wave, C_ is the speed of the first

K R
mode Rossby wave (CK/B) and L is the width of the basin. The amplitudes

where CK is the speed of the Kelvin wave, C_ is the speed of the first

R

mode Rossby wave (CK/B) and L is the width of the basin. The amplitudes

of the interior response, the Kelvin wave and the Rossby wave are denoted
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by WI’ WK and W_, respectively. The remaining terms refer to the waves
generated by the reflections of the free waves at the eastern and west-

ern boundaries. TFor example, the term W, _ represents the amplitude of

KR
the westward propagating Rossby wave resulting from the incidence of the
initial Kelvin wave onto the eastern boundery; the amplitude of this
wave 1is given by the product of the amplitude of the initial Kelvin wave
and the effective reflection coefficient at the eastern boundary. Only
the first latitudinal mode Rossby waves are included even though the
higher modes are also excited both by the wind stress and the eastern
boundary reflection. The amplitudes of the higher modes will be shown
to be negligible in comparison to the amplitude of the gravest mode
Rossby wave. Equation (16) also assumes that the vertical velocity asso
ciated with a wave undergoes no phase change upon reflection.

The amplitude of the forced motion, W., may be determined from (15).

I

Hence, in order to complete the expression, it is necessary to know WK,

W, and the reflection coefficients at the eastern and western boundaries.

Since (16) will be used to interpret the numericél model results, the

model will be used to determine the unknown parameters.

Prior to the calculation of the unknown parameters in (16), it will
be shown that the numerical model results are very close to those pre-
dicted by linear theory. Let us reconsider the steady east wind case,
the first two years of which are shown in Fig. 3. In order to examine
the local response, the PHA for the first forty days at a point 9,000 km
from the western boundary and the theoretical solution determined from

(15) are plotted in Fig. 5. This figure clearly shows that the numeri-

LLivil Liie web Lol poulidaly allu Luc Licul'erlcal SULUL LUl deleriiliaed L rroi

(15) are plotted in Tig. 5. This figure clearly shows that the numeri-

cal model solution away from the effects of boundaries oscillates closely
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about the analytic solution given by (15). Linear wave theory also
stipulates that 72.6 days are required for the Kelvin wave to cross the
basin and 218 days for the first mode, non-dispersive Rossby wave to
travel that distance. These are within 5% of the values demonstrated by
the numerical model. Finally, the steady solution of this system is a

balance between the wind stress and the zonal pressure gradient, i.e.
p 5 5

g'h = (17)

For the given parameters, the steady slope of the interface is 7 10—6.
From Fig. 3, it can be seen that the zonal slope of the interface at the
end of year two is essentially 70 meters in 10,000 km, i.e., 7 x 10—6.

The amplitudes of the initial Kelvin and Rossby waves may be deter-
mined from Fig. 6, which is an enlargement of the first four months of
Fig. 3. Along the western boundary, the rate cof upwelling prior to the
arrival of the Rossby wave from the east is given by the sum of the
amplitudes of the interior response and the Kelvin wave. The value of
the upwelling rate at the western boundary during this period is

8 m/month, while that of the interior is -22.5 m/month. Hence, the ampli-

tude of the Kelvin wave is given by
W o= —WI + W = 31.5 m/menth.

Hence, regardless of the frequency or the amplitude of the forcing, the
numerical model predicts that the relationship between the amplitude of

interior response and that of the associated Kelvin wave is given by

W= -1.4 W_, (18)
Ll LCTL LVLT LCDPU“DC aliu Lilau UL oLl GDDUbIQLCU INC L Vv il wavege 45 5¢VC“ Uy
Vo= -1.4 W_, (18)

K I
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In a similar calculation, the amplitude cf the Rossby wave 1s determined

to be

wR = .6»;1. (19)

The divergence of the Kelvin wave at the equator is more than twice that
of the Rossby wave and opposite in sign both to the Rossby wave and the
interior upwelling. Hence, the initial motion of the model pycnocline
is four times greater at the eastern boundary than at the western boun-
dary. The steady-state value of the upper layer thickness at the eastern
boundary is eventually reached due to the effects of Kelvin waves arriv-
ing from the west which alterpately produce vertical velocities of oppo-
site signs and ever diminishing amplitudes. These Kelvin waves are exci-
ted by the wind stress and the reflections of Rossby waves from the
western boundary.

The magnitudes of the reflected waves are most easily determined
from the steady wind case. At the eastern boundary, the vertical velo-
city between the time of the incidence of the initial Kelvin wave and

the arrival of the second one is given by:

7 - = I 7 1.
W(ix = L) wI + vK + wR + vKR (20)

The magnitudes of WI, WK and WR have already been determined. The value

of W,  is equal to the product of W, and the vertical velocity reflec-

KR K

tion coefficient at the eastern boundary. The value of W(x = L) is the
upwelling rate at the eastern boundary between the third and tenth months
(Fig. 3). The expression for the reflection coefficient, RE’ at the east-

ern boundarv is given bv

(Fig. 3). The expression for the reflection coefficient, RE’ at the east-

ern boundary is given by
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The value of RE is determined to be .36. In a similar type calculation,
the reflection coefficient at the western boundary, Rw, is found to be
.75. The smaller value a*t the eastern side is the result of the incident
energy being distributed over a wider latitudinal range. The reflection
at the western boundary funnels energy into the equatorial region,
whereas at the eastern boundary, the incident energy is distributed over
many westward-propagating Rossby waves and the coastally trapped Kelvin
wave. Table 2 is a list of the parameters necessary to complete the
expression for the vertical velocity (16).

Table 2. Parameters for Vertical Velocity Equation:
Basin Wide Wind Stress

W, = -1.4 WI

T = J
JR .6 WI

RE = .36
Rw = .75

An alternate and more compact expression for the vertical velocity

(18) is
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W_ sin(wt + ¢)

Wix, t) I

. _ 1
) [(RR)" W, sin(e(t - nL( 53— + == ) -
n=0,1 EY R CK CR CR

n, . . 1 1
+ (RERW) RENK sin(w(t - nL(CK + q ) - C}( G

¥ n 1
& [(R.R,) R M sin(w(t - nL(z= +
n=0,1 ReRy) Ryg¥y Cy R R X

3 . 1
+ (R?PL",)PWK sin(w(t - n(n—l ) - 2+ 9]
=N ‘\/K R K

where the first summation is over all the first mode Rossby waves in the
system and the second is over all the Kelvin waves. Since RE Wy is

approximately equal to -VW_, the Rossby wave excited by the first reflec-

P\’
tion of the wind generated Kelvin wave 1s nearly the same magnitude as
the wind-induced Rossby wave. At the western boundary, however, the
first reflected Kelvin wave has approximately one-third the amplitude of
the directly forced Kelvin wave.

As a check on the accuracy of the parameter calculations and the
assumption of excluding higher mode Rossby waves‘in (16), a comparison
will be made between the analytical expression and the numerical model
results. An advantage of examining the response of the vertical velocity
is that for the long, low frequency waves considered here, the expres-
sionz for the reflection and generation of equatorially trapped waves
are independent of frequency. Therefore, let us consider the case shown

)
in Fig. 4 in which a wind stress of amplitude .3 dynes cm ~ with a per-

iod of one year is applied to the model ocean. Fig. 7 is a comparison of

the model solution for the third year of integration with the analytical

104 or one year 1s applied to the model ocean. tig. 7/ 1s a compariscn or
the model solution for the third year of integration with the analytical

expression (16). The vertical velocity is calculated from the model
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solutions after the removal cf the inertia-gravity waves. In Fig. 8,
time sections at the westernm and eastern boundaries are compared for the
two plots in Fig. 7. The close agreement betwzen the two solutions re-

L5

hat the analytical expression is an accurate predictor of the

ct

veals
numerical solutions and will be an invaluable tool in identifying the

effects of the various equatorial waves.

d. Longitudinelly Bounded Zonal Wind Case

One of the weaknesses of the above expression 1s that it cannot
account for zonal variation cf the wind stress. Although the equatorial
trade winds extend virtually across the breadth of the Pacific, there
are considerable zonal variations in the magnitude of the wind stress.
The divergence of the zonal wind can excite equatorially trapped waves
in the Interior region in addition to those waves generated at the meri-
dional boundaries. Since the numerical model is a useful tool in the
investigation of the equatorial respcnse to more rezlistic type wind-
stress cdistributions, it would be beneficial to derive an expression
similar tc (15) for winds witrk a non-uniform zonal variation along the
equator. The wind stress will be decomposed into an arbitrary number of
longitudinelly bounded regions, within which each section the wind is
uniform. Hence, in the same manner as before, we will derive an expres-
sion for the vertical velocity due to a suddenly imposed, steady, uni-
form wind which is confined to an intericr region of arbitrary longitud-
inal extent. McCreary (1977) examined the radiation of equatorial waves

from a region with a steady wind stress whose amplitude varied linearly

T AlA mmmm T AL A | A SR = T e . dem mmemm St S men A emmde Al AL -

from a region with a steady wind stress whose amplitude varied linearly
in the zonal direction. We prefer, however, to consider a patch of spa-

tially uniform wind stress in order to apply the theory developed for
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the interior response given by (15). Although we impose a different
distribution of the wind stress patzch thar that used by McCreary, the
philosophy of our approach is the same, i.e., the solution forced by a
wind stress of arbitrary zonal distribution may be decomposed intoc the
sum of responses due to individual wind-stress patches.

Consider the case in which the model ocean is forced by a wind
stress which is uniform in a longitudinal strip of width d and has zero

amplitude outside this region, that is,

X
= R -
T ()"
R =1 a<x<a+td
(%)
(22)
=0 0 <x<a,a+d<x<]L
T = A sin(wt + ¢)

The divergence of the wind stress at each edge excites an equatorially
trapped Kelvin wave and a series of Rossby waves. In deriving an expres-
sion for the vertical velocity along the equator, we shall include only
the effects of the first mode Rossby wave and the Xelvin wave. An

expression similar to (21) for the case above may be written as:

W(x, t) = Wy sin(ut + ¢)

(x-a-d) )

x

+ WIR (1 - H(x-a-d))sin(w(t -

+ wIK H(x-a-d) sin(w(t - t ¢)

(a+d-x) Y + )

CR
- ¥ HOx - a) sin(u(t - (;‘}‘(E‘) )+ )
- ¥ (1 - H(x-2)) sin(u(t - (g:) )+ 9)
S Wl (1 - H(xea)) sin(w(t - &%)y L )
IR C
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where WIK and WIR are the respective amplitudes of the equatorial Kelvin
wave and the first mode Rossby wave generated at the edge of a wind
stress of step function form. In the case cf a rectangular pulse wind-
stress distribution, the waves excited at one edge are equal in magni-
tude but opposite in sign to the waves generated at the other edge. The
function H(x - xo) is the Heaviside step function; &ll other terms
retain their previous definitions.

The amplitudes of the Rossby and Kelvin waves excited at the edge
of a zonal wind-stress patch are determined by examining a case for which
the forcing is a steady, uniform, eastward wind stress of .3 dynes cm_2

magnitude and which extends 7,000 km from the western boundary. Fig. ¢

is a plot of the PHA for the first 1.5 years. As in the previous steady

magnitude and which extends 7,000 km from the western boundary. Fig. ¢
is a plot of the PHA for the first 1.5 years. As in the previous steady

wind case, the steady-state pressure gradient in the forced region is
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-6 n = . - \ . .
7 % 10 °. The PHA for the first four mcnths at a point approximately

11,000 km from the western boundary is shown in Fig. 10. The arrival of
the Kelvin wave around day 20 initiates vertical motion which remains
unchanged until the nearly simultaneous arrival of the reflected Rossby
wave from the eastern boundary and the Kelvin wave from the western boun-
dary near day 60. [Irom this and similar plots, the magnitude of the ver-
tical velocity associated with this Kelvin wave is determined to be

26 m/month, i.e.,

wIK = 1.15 wI (24)

Similarly, the magnitude of the Rossby wave generated at the edge of the

wind stress is found to be

= 7
wIR 17 “I (25)

As a check on the parameters, Fig. 11 is a comparison of the numerical
and analytic solutions (23) for a case in which the wind stress has a

. cL - -2 < s . e
period of one year, an amplitude of .5 dynes cm ~, and is confined within

a region of 7,000 km to 11,000 km from the western boundary.

e. Discussion and Critigue

For the linear inviscid equatorial B-plane problem (3), the reflec-
tion coefficients at the eastern and western boundaries may be deter-
mined using the technique of Moore (1968) who solves for tue amplitude(s)
of the free wave(s) necessary to satisfy thé no-flux condition at the
meridional boundary. The corresponding values of RE and Rw, using
Moore's method, are 0.5 and 1.0, respectively. Hence, the numerical

model underestimates the inviscid reflection coefficients by approxi-

Moore's method, are 0.5 and 1.0, respectively. Hence, the numerical
model underestimates the inviscid reflection coefficients by approxi-

mately twenty-five percent. This is most likely caused by the effects
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of both viscosity and the periodic application of smoothing during the
numerical integrations. If the coefficients determined from Moore's
technigue for the inviscid problem are utilized in (21) and (23), then
the mixture of the inviscid analytical results and the numerical calcu-
lations is not sufficiently accurate to examine many of the numerical
solutions. This is particularly true when the distribution of the fcrc-
ing is represented by a combination of wind-stress patches. The subse-
quent accumulation of errors due to the summation over all the individual
patches precludes a useful examination of the numerical results. Alterna-
tively, one could determine the coefficients by an optimization method
based on minimizing a measure of the differences between the numerical
and the analytical solutions. It was judged, however, that such an
approach 1s unnecessary; it has been shown that the expressions (21) and
(23) are excellent approximations to the numerical model solutions and
that the numerical results are very close to those predicted by linear
theory.

An alternative form for the wind-stress paﬁéh is the type considered
by McCreary (1977),that is one in which the amplitude of the forcing
varies linearly. Such patches may be able to represent an arbitrary dis-
tribution of forcing with fewer elements than the type considered in this
paper. However, the assumption of a uniform distribution within the patch
allows one to differentiate between the interior or local response
(Yoshida solution) and the effects of waves generated at the edges of each
region of forcing. Since the waves excited at one edge of a patch are

equal in magnitude but opposite in sign to those generated at the other

region or rorclng. bSlnce The waves exclted at one edge or a patch are
equal in magnitude but opposite in sign to those generated at the other

edge, the net response excited at the common boundary of two identical
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patches is zero. Hence, if a sufficient number of patches are used to
describe realistically the distribution cf the forcing, the sum of all
the equatorial waves generated at the edges of each patch will produce
a realistic representation of the waves excited by a wind stress with an
arbitrary distribution.

The close agreement between the approximate expressions, the numer-
ical model results and linear theory appears to justify the neglect of
Rossby waves with a latitudinal mode number greater than one. The value
of the inviscid reflection coefficient at the eastern boundary for the
m = 3 Rossby wave is -.12, according to Moore's technique. Hence, for
the numerical model, the magnitude of the vertical velocity of the m = 3
Rossby wave would be less than ten percent of the magnitude of the
incoming Kelvin wave, The effects of this Rossby wave are not distinctly
evident in any of the time history plots at various grid pecints. In view
of 1) the small magnitude of this wave in comparison to the other equa-
torial waves; and 2) the close agreement between the derived expressions
for the vertical velocityv and the numerical resuits, it is a justified
approximation to neglect the Rossby wave modes greater then the first.

The effects on the reflection process of a non-meridional coastline
have also been neglected. Presumably, an east-west tilt of the coast-
line would introduce an asymmetry into the reflected response, the mag-
nitude of which would depend upon the departure of the coastline profile
from a meridional orientation. Although the eastern boundary of the

equatorial Pacific is not a meridional wall, such an assumption is a

good first approximation. The use of a meridional wall at the western

Tyuatlturial racdllle 4> UL a meladiulidal waddl, sSuCll o dil o dssuliptlioll A5 od
good first approximation. The use of a meridional wall at the western

boundary, however, is a more tenuous assumption. We examine only the
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symmetrically reflected response. The influence of a non-meridional
coastline orientation on eguatorial waves is a topic deserving of atten-
tion.

The influence of bottom topography on the reflection of equatorially
trapped waves at a boundary also requires further clarification. The
system of equations (3) permits Kelvin waves as the only class of coast-
ally trapped waves. However, in the presence of both topography and
stratification, the coastally trapped waves are a hybrid of shelf and
Kelvin waves, which under certain parameter ranges can be identified as
mainly Kelvin or shelf-type waves (Wang, 1975; &llen, 1975). The charac-
teristic offshore scale of the Kelvin wave is the radius of deformation,
whereas the shelf width provides the primary scale of the shelf trapped
wave., In the equatorial eastern Pacific, where the internal radius of
deformation is on the order of 250 km and the shelf-slope region is
approximately 50 km, one can reasonablyv expect that the reflection of a
long internal Kelvin wave will not be substantially modified by the pre-
sence of such comparatively narrow topography. ﬁven when the coastal
Kelvin wave travels poleward into regions where the shelf width and the
radius of deformation are comparable, the internal Kelvin wave may re-
tain its essential characteristics (Suginohara, personal communication).
Since, in this paper, we are not concerned with the details of the pole-
ward propagating internal Kelvin wave, it 1s reasonable to neglect bot-
tom topography in favor of studying the fundamental equatorial response

to time-variable winds.

To Time-variable winds.




4. ON THE EQUATORIAL RESPONSE TO TIME-VARIABLE WINDS

The derived expressions for the vertical velocity provide a useful
mechanism for studying the general response of the equatorial ocean to
time-variable zonal winds. In particular, we will examine such fea-
tures as 1) the relative importance of the reflected equatorial waves;
2) the apparent amplitude maximum at the eastern boundary:; and 3) the
dependence of the equatorial response on the period of the forcing, the
basin length, the stratification and the width of the forced region.

In order to investigate the above effects we will derive expres-
sions for the amplitude and phase of the oscillations as functions of
the model parameters and the zonal coordinate, x. The expression for

the vertical velocity may be written in the form

W(x, t) = B(x) sin (wt + ¢) + C(x) cos. (wt + @) (26)
or
Wix, t) = A(x) sin (ot + ¢ + 8(x)) (27)
where
Ax) = (B2 + c))? (28)
8(x) = (tan F(C(x)/B(x)) (29)

and B(x) and C(x) are derived from (21) or (23). The motion at any

given point, X along the equator will have a frequency 27/T, an ampli-

given point, X along the equator will have a frequency 27/T, an ampli-

L7
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tude A(xi) and a phase with respect to the forcing of (Xi)' The deri-
vation of the expressions for B(x) and C(x) are given below.

First, let us examine the case for which a uniform oscillatory wind
stress extends across the entire basin. If the horizontal coordinate,
%, 1s scaled by the length of the basin, the functions B(x) and C(x) in

(26) and (27) are given by

B(x) = W [l + 2

[(RERw)n WR cos((un + 3(1-x))o)
n=0,1

+ (RERW)n WK cos((Un+x)a) + (RERW)n RWWR cos((4n+3+x)c)

+ (RERw)n R.W, cos((4n+1+3(1-x))a)]] (30)

e{x) = -, [} [(RERV)n Wp sin((4n+3(1-x))a) + (RTRV)DWK sin((4n+x)a)
4+ n=O,l il R 1

+ (RERW)n R W sin((4n+3+x)a)

:
W

+ (RR)" RW, sin((4n+143(1-x))a)]]

where a is a non-dimensional parameter (QHL/CKT) which is the fraction
of 27 radians given by the ratio of the basin length to the wavelength
of the Kelvin wave. Equation (30) has also utilized the fact that C_ =

R

CK/3. Contour plots of the amplitude and phase as functions of x and «
are shown in Fig. 12; the values of the reflection coefficients and wave

magnitudes found in Table 2 have been used to evaluate (30). A detailed

discussion of the significance of these plots will follow this section.

a. Importance of Reflected Waves

In order to judge the accuracy of expressions which negléct some of

the termg in (21) Fic 12 will he naeed 2e the cetandard TF Anlxyr +he

In order to judge the accuracy of expressions which negléct some of

the terms in (21), Fig. 12 will be used as the standard. If only the
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Fig. 12. (a) Phase and (b) amplitude of the vertical motion of the
pycnocline along the equator for a case which is forced by a time-variable,
uniform, zonal wind stress. The coordinate along the abscissa is non-
dimensionalized by the length of the basin. The variable along the ordin-
ate is the non-dimensional parameter o which is given by « = wL/CK =
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uniform, zonal wind stress. The coordinate along the abscissa 1s non-
dimensionalized by the length of the basin. The variable along the ordin-
ate is the non-dimensional parameter o which is given by « = wL/C, =

2mL/C, T3 hence « increases with decreasing pericd. The maximum vertical
velocity of the model pycnocline occurs at a = m(L = C,T/2) along the
eastern boundary (x = 1). The units of the amplitude plot are the per-
centages of this maximum value. The contour interval for the phase plot
(a) is 30°, while for the amplitude plot (b) it is 10%.
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n = 0 terms in (21) are used, the resulting amplitude function is that
which is shown in Fig. 13. Such an expression includes cnly one reflec-
tion each of the Rossby and Kelvin waves generated directly by the wind
stress. The result presents a qualitatively accurate picture of the
full expression and, in general, underestimates the true amplitude by
no more than 20 percent. Tor example, at the eastern boundary the ampli-
tude of the vertical velocity oscillation for a¢ = 1.26 (which is the
value for the annual signal using the parameters in Table 1) is 2.57 WI,
while it is 2.53 WI when the n = 0 terms are used. The phase also under-
coes a small change from 75 to 65 degrees. At the western boundary,
though, the error is larger. TFor the same comparison of terms, the
amplitude at the western boundary changes from 1.72 WI to 1.42 WI, vwhile
the phase changes from -166 to 179 degrees. The addition of only one
term, however, can produce a significant improvement, particularly at
the western boundary. If we include the WKRK term, that i1s the Kelvin
wave resulting from two reflections of the initial Kelvin wave, then the
resultant phase and amplitude plots are shown by Fig. 14. For a = 1.26,
the amplitude of W is not 1.59 WI while the phase is -173 degrees.
Since it is judged that the plots in Fig. 14 are sufficiently close to
those in Fig. 12, the inclusion of more terms is unnecessary.

The equatorial response to an oscillating patch of wind stress may
be analyzed in a similar manner. Consider the wind-stress distribution
given by (22) in which the forcing has a rectangular pulse shape of

width d and its western-most edge i1s a distance a from the western boun-

dary. If we use the trigonometric identifies, scale x, d, and a by the

width d and its western-most edge is a distance a from the western boun-
dary. If we use the trigonometric identifies, scale x, d, and a by the

width of the basin, and examine the response to the east of the forced
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(see text).



W PHESE s

(a)

ALPHA

S

o N
vrsvw?fx

— T - - ——— - G G e - —

——————— LT gy

-
APy

pos

EQUATBR

W  AMPLITUDRE

(b)

ALPHA
ALPHA

lq
EQUARTBR

Fig. 1u4. Same as Fig. 12 except that the analytic espression (30)
includes only the n = 0 terms plus the reflection of the initial Kelvin
wave, i.e., the WVRK term. The thick line in the phase diagram is due
to the bunching o% contours when the phase changes sign at + 180°,

wave, i.e., the W”RY term. The thick line in the phase diagram is due
to the bunching of “Contours when the phase changes sign at + 180°,

1



53

region, the expression for the vertical velocity becomes

Wix, t) =2 L cos(wt + ¢ + a(a+§0){sin gé-([R?RI)DW_,,COS((Lm+x)c)
o1 5 7 VR Y1k
“ Vo

+ (RR)T RW, cos((bn + 1+ 3(1-x))a))

- sin ggé-((\ ) Rw R cos({4a + 24 + un(l-x))a)) ]

-

sin(wt + ¢ + a(a+%~))[sin ((R_R ™ sin((4n+x)o)

) Wi

+ (RﬁRM) ‘E TV sin((4n + 1 + 3(i-x))a))

- 31n(———0 (" R\VIR sin((4a + 2d + 4n(1-x)))o)]

where o retains its previcus definition and x > a + d. Equation (31)
includes only two reflections from the excitation of Rossby waves at the
edges of the wind stress. Because the amplitude of the Kelvin wave gen-
erated by the wind-stress is approximately seven times the amplitude of
the Rossby wave, the effects of the Rossby wave are negligible after two
reflections.

If (26) is written in the form

W(x, t) = B(x) sin(wt + ¢ + (a + % Ya)
(32)
+ C(x) cos(wt + ¢ + (a + %—)a)
then the expression for B(x) and C(x) become:
B(x) = 20, ngo,l [ 1.15 sin(ggﬁ((RERw)n sin((4n+x)a)
+ (R.RD™ R, sin((tn + 1 + 3(1-x))a)) (33)
W E

.17 sin ( ) Rr RW sin((4a + 2d + x + 4n{1l-x))a)]

T B W it

J

-.17 sin ( ) Rr R“ sin((4a + 2d + x + 4n(1-x))a)]
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c(x) = 2 [1.15 sin(g%J((RERw)n cos((4n + x)a)

: L
WI n=0,1
+ (RERw)n Ry cos((kn + 1 + 3(1-x))a))

3ad
2

.17 sin( ) REn R"7 cos((la + 2d + x + 4n(l-x))o)]

where W, and W, have been substituted in favor of W_ using (24) and

IK I

(25). When B(x) and C(x) are written in the form (33) the resulting

I

phase angle

8(x) = tan “C(x)/B(x)) (3)

is not the phase relative to the forcing, but rather part of the phase
which depends upon x. The advantage of the form (33) is the revelation
that one of the model parameters, a, appears only in the last term in
each bracket. It will be shown that these terms may be neglected with-
out producing a significant change in the amplitude of the response.

In Fig. 15, the amplitude and phase functions using (33) and (34)
are plotted for the region to the east of a wind-stress patch. Fig. 15
includes all terms in (33) and will be used as the standard for compar-
ison purposes. The close agreement between the linear expression (23)
and the numerical model has been demonstrated in Fig. 11. Now, it
remains to be shown which terms are required to reproduce the essential
results of the linear expression.

If we include only the n = 0 terms in (33), the resultant amplitude
function i1s shown in Fig. 16a. Such an expression includes two reflec-
tions of each of the four waves excited by the wind stress. The agree-

ment with the full expression is excellent:; the higher reflections are

tions of each of the four waves excited by the wind stress. The agree-
ment with the full expression is excellent:; the higher reflections are

unimportant. The result given by Fig. 16a is essentially reproduced even
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Fig. 15. Phase and amplitude functions for wind stress patch
case. The easternmost point of the forced region is at x = .45. The

contour interval is 30° for (a) and 5% of maximum for (b) (see Fig.
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contour interval is 30° for (a) and 5% of maximum for (b) (see Fig.
12). Fer this plot, a = .15 and & = .3.
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generated at edges of forced region. (b) Same as 16(a) except that only
Kelvin waves generated at wind stress edges are included.
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if the Rossby waves excited by the wind stress are neglected. The
resultant amplitude function, which includes only two reflections of
each of the two Kelvin waves, is shown in Fig. 16b. Since the Rossby
wave terms are the only ones that contain the parameter a, Fig. 16b
reveals that the amplitude function at & given point is essentially
independent of the location of the wind stress patch provided one is
east of the forcing. The total phase of the response with respect to
that of the forcing, however, does depend upon the position relative to
the forced region.

The amplitude of the Kelvin waves generated directlv by the wind
stress are so much larger than any other waves, they dominate the solu-
tion to the east of the forcing. Thus, the inclusion of only these
waves and their reflections from the eastern boundary are sufficient to
produce a fairly good approximation to the full sclution. Fig. 17 is a
comparison of solutions for a case in which the parameters are identical
to the case in Fig. 11 except that the distance of the patch from the
western boundary, a, is set to .15 instead of .53. In Fig. 17a, the
n = 0 terms have been included, while in Fig. 17b, the reflection coeffi-
cient at the western boundary, R ,, has been set of zero. Hence, only the
Kelvin waves and their first reflection affect the eastern region. The
agreement between the two solutions is quite good. At the eastern boun-
dary there is a slight phase shift of about 30 degrees, but the ampli-
tudes agree to within twenty percent. The importance of this result will

De discussed in the subsequent chapter when these expressions are applied

to the study of observations in the equatorial Pacific.

De discussed in the subsequent chapter when these expressions are applied

to the study of observations in the equatorial Pacific.
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stress patch case in which (a) only the n = 0 terms have been included
and (b) the reflection coefficient at the western boundary, R, has
been set to zero. TFor this case, the values of the parameters a and d
are .15 and .3, respectively.
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b. Amplitude Maximum at Eastern Boundary

The expressions for the amplitude and phase as shown in Figs. 12,
15 may also be utilized to examine the general nature of the equatorial
response to variable winds. One of the most prominent features of the
amplitude plots is the maximum along the eastern boundary for all val-
ues of the parameter a. There are essentially two reasons Ior this.
The first is associated with the familiar concept that the maximum ampli-

tude of a vibrating string, say, occurs at the free end(s). It is at
this point that the incident and reflected waves are perfectly in phase.
Since both the eastern and western boundaries are free with respect to

the height field, we must examine the phase of the response in order to

understand the sirong asymmetry.

The amplitude function (Fig. 18b) is essentially symmetric about

ot

he mid-point of the basin. The asymmetry of the total response is
used by the phase relationship between the forced interior motion and

-

the free wave solution. It is evident from Fig. 18a that the response
at the eastern boundary is much more in phase with the wind stress than
that 2t the western boundary. At a = 0, the "wave" solution is uniform
across the basin, has a value of WI (21%  contour value) and is 180°
out of phase with the forced motion. This is the steady state solution.
However, for non-zero values of o, the solution and the interior
response always combine to produce the largest resultant amplitude at
the eastern boundary. When the wave amplitude is at a maximum value,

the western boundary response is 180° out of phase with the wind stress.

A somewhat more simplified viewpoint of the above situation can be

the western boundary response is 1809 out of phase with the wind stress.
A somewhat more simplified viewpoint of the above situation can be

stated in terms of the Rossby and Kelvin waves generated at the boundar-
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ies. The Kelvin wave generated by the wind stress is 180° out of phase
with the wind at the western boundary, whereas the Rossby wave is in
phase with the wind at the eastern boundary. When the incident waves
reinforce the waves generated at the boundaries, the response is reduced
by the wind at the western boundary but amplified by the wind at the
eastern boundary.

Although for slightly different reasons than above, the maximum
amplitude of the vertical velocity also occurs at the eastern boundary
when the wind stress is confined to the interior region. The asymmetry
in this case is caused by the larger amplitude incoming waves at the
eastern boundary than at the western boundary; the Kelvin wave affects
the western boundary only after reflection. For higher values of o,
though, there may be interior regions east of the wind stress with com-
parable amplitudes to that at the eastern boundary. That is, if the

waves have a short enough wavelength, the Kelvin wave and reflected

Rossby wave could constructively interfere at interior points as well.

c. Dependence of Amplitude Function on Model Parameters

For the case in which the wind stress extends across the entire
basin, the amplitude and phase of the response depend upon one parameter,

a, which is given by

€
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As stated earlier. this is the fracticn of 27 radians given by the ratio
of the basin width to the wavelength of the Kelvin wave. The maximum

amplitude occurs for o = w, with a secondary maximum at 7/2; the minimum

VL Ltne DEsSlll Wwidth TO the wdvelellgin O tie NelVLIl wdve. Lie  jdxiuln
amplitude occurs for o = m, with a secondary maximum at m/2; the minimum

response occurs at o = 3m/4, At o = m, the basin width, L, is half the
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wavelength of the Kelvin wave. This is the resonant condition for the
system; at the boundaries, all the waves and reflected waves are per-
fectly in phase. A wave initiated at a boundary arrives at the opposite
boundary 180° out of phase from when it started. Subsequently, when the
reflected wave returns to its origin, it is in phase with the other
waves. At the secondary maximum point (o = w/2), the reflected wave
again returns to the original boundary with the same phase as when it
began. However, at the opposite boundary, it was 90° out of phase with
the wind stress. Hence the resultant amplitude is not as large as the
a = T case.

The wind-stress patch case also has a maximum response at o = T,
m/2. For this type of wind stress, however, an additional parameter is
introduced, i.e., the width of the forced region, d. The effect of the
longitudinally bounded wind stress is to increase the value cf o for
which the maximum response is obtained. It was shown earlier that we
can neglect the Rossby waves excited at the edges of the forcing without
significantly changing the amplitude of the respénse (Fig. 16b). Using
this approximation, (33) shows that the effect of the wind stress con-

finement 1s to modulate the response via the term

<in ad
- 2

which reaches its first maximum at
od = 7.

Since ¢ < 1, the maximum amplitude of the free wave solution is shifted

to higher values of o than for the basin-forced case.

olnce G < L, Thne maxlmum amp.Llitude OI TNne Iree wave S0oLution 1s snhilIited

to higher values of a than for the basin-forced case.
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Let us now consider the dependency of the equatorial response on
such model parameters as the width of the basin, L, the period, T, and

the Kelvin wave speed, C For a given value of the wind stress and C

K’ K>

the amplitude and phase depend upon the ratio
L/T.

Hence, the Atlantic and Indian Oceans, which are cne third the width of
the Pacific, would have the same response as the Pacific if the period
of the wind stress is also one third of that in the Pacific. It should
be noted here, that while the amplitude of the vertical velocity depends
only on o, the amplitude of the thermocline displacement depends addi-
tionally on the period. That is, for an adiabatic process and a con-
stant vertical velocity in each case, the thermocline displacement for
the annual forcing would have twice the displacement as for the semi-
annual period. As will be discussed below, however, this fact is fre-
Juently offset by the tendency of the vertical velocity amplitude to
increase with decreasing period.

The results of this work agree with Philander (1978a) whc stated
that, at the ecguator, the annual response in the comparatively smaller
Atlantic would be close to the equilibrium condition, whereas in the
Pacific the response to the annual forcing would have a more wavelike
solution. If we assume a width of 15,000 km for the Pacific and 5,000
km for the Atlantic and use the parameters in Table 1, then the value of
a Tor the annual period is approximately 1.5 in the Pacific and .5 in
the Atlantic., Fig. 13 shows that at ¢ = .5, the solution is essentially

in equilibrium with the wind stress. The response is virtually svmmetric

the Atlantic. Fig. 13 shows that at o = .5, the solution is essentially

in equilibrium with the wind stress. The response is virtually symmetric
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about the mid-point of the basin. In such a case, the thermocline slope
would be in phase with the wind, At o = 1.5, however, a pronounced asym-
metry is shown; the thermocline slope is no longer in balance with the
local wind. Philander also suggests that this is the reason for the

large seasonal signal in the Atlantic compared with that of the Pacific.
This hypothesis is not supported by Fig. 13, which shows that a wavelike
response generated by a basin-wide wind stress with an annual periocd
would produce a much greater response in the Pacific than in the Atlantic,
particularly at the eastern boundary.

The most probable cause of the larger seasonal signal in the
Atlantic is that the zonal wind stress has a larger annual amplitude in
that basin. Bunker (Katz et al., 1877) has shown that the annual pericd
wind in the equatorial Atlantic has an average amplitude of approximately
.15 dymnes cm_2 which is superimposed on a mean value of approximately .4
dynes cm—Q. The average is calculated between 10°W and 40°W. In the
Pacific, Meyers (1979b) shows that the annual signal varies between .1
and .02 dynes cm—2 with a mean value similar to fhat in the Atlantic.

It is interesting to note that a given size patch of oscillating
wind, with all other factors being equal as well, will generate a com-
parable amplitude response to the east of the forcing in the Atlantic as
in the Pacific. This is in contrast to the basin-wide forcing case for
which we saw that the Pacific response would be much larger than that in
the smaller Atlantic. Fig. 19 shows that for a region of wind stress
3,000 km wide (@ = .2 in the Pacific, Fig. 19a; d = .6 in the Atlantic,

Fig. 19b) and having an annual period, the amplitudes east of the wind

3,000 km wide (d = .2 in the Pacific, Fig. 1% ; d = .6 in the Atlantic,
Fig. 19b) and having an annual period, the amplitudes east of the wind

stress for the respective values of a are about equal.
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s
first baroclinic mode with annual periodicity is 1.5 in the Pacific
and .5 in the Atlantic.
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The amplitude of the response as a function of period only can be
seen both in Fig. 14b and 16b. In general, there is an increase in the
amplitude of the vertical velocity with decreasing period. Tor exampie,
if we use the values of CK and L given above, the value of a for the
annual period in the Pacific is approximately 1.5, while it is about 3.0
for the semi-annual period. As discussed earlier, these value are close
to those for which the amplitude response at the boundaries is maximized.
Cane and Sarachik (1977) suggest that the annual response in the Pacific
may be enhanced because the time for a round trip in that basin is close
to the annual period. As mentioned above, this period corresponds to
the value of o = 7/2 in the Pacific. Although we would also predict an
amplification of the annual period, it is the semi-annual pericd (o I 7)
which is most amplified in the Pacific.

For a given basin width and period of the forcing, the parameter a
depends upon the phase velocity of the Kelvin wave. Since the formula-
tion we have employed 1s valid for any baroclinic mode, the vertical

eigenvalues, C,, can differ appreciably. The amplitude of the forcing

Ks
projected onto the second baroclinic mode can be non-negligible (Moore

and Philander, 1977); hence it is of interest to examine the differences

in the responses between the first and second baroclinic modes.

Fry

or the equatorial mode analyses described by Moore and Philander
(1877) and Cox (1976), the phase speed of the Kelvin wave for the second
baroclinic mode is a factor of approximately 1.7 smaller than that of
the first mode. Such changes in the value of o can produce a signifi-

cant effect on the amplitude of the solution. For example, Fig. 12b

whie YirstT o mode. DuCn cnanges in tne vdlue o1 w4 Ccdn proquce a Signiri-
cant effect on the amplitude of the solution. For example, Fig. 12b

(the case for which the wind extends across the basin) shows that an
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increase in a of magnitude 1.7 could either increase or decrease the
response relative to the first baroclinic mode. In both the Atlantic
and Indian Oceans, the annual and semi-annual responses of the second
baroclinic modes would be larger than otherwise expected. Depending
upon one's choice of parameters, the opposite may be true for the
Pacific.

It should be pcinted out here, however, that the applicability of
these results to the study of the real ocean depend, in part, upon the
nature of the interaction between the wave field and the mean flow. For
equatorial motions, the interaction between the Undercurrent and equa-
torially trapped waves 1s of primary interest. Two recent theoretical
studies (McPhaden and Xnox, 1979; Philander, 1979b) indicate that the
Undercurrent has little effect on the first baroclinic mode Kelvin wave
at low frequencies; the speed of the Undercurrent is too low and its
width is too narrow toc produce a significent modification. The effects
of the Undercurrent increase with increasing vertical mode, since both
the phase speed and latitudinal extent of the waves decrease. Except
for some Doppler shifting, the very low frequency Kelvin waves in the
second baroclinic mode do not appear to be seriously affected by the
Undercurrent. McPhader and Knox do not examine the modification of
Rossby waves. Philander does not explicitly examine the effects on

firet baroclinic mode Rossby waves emanating from the eastern boundary

except to say that they would slow down, increase their latitudinal

scale and lose some energy to extra-equatorial regions. The higher mode

Rossby waves may be affected more seriously by the Undercurrent.

scale and lose some energy to extra-equatorial regions. The higher mode

Rossby waves may be affected more seriously by the Undercurrent.




5. SEASONAL VARIABILITY IN THE EASTERN EQUATORIAL PACIFIC

In this section, both the numerical and analytical models are util-
ized to examined the seasonal variation of the thermal structure and the
circulation of the equatorial Pacific Ocean. ttention is focused on
the remote forcing due to equatorially trapped waves. In particular,
theoretical evidence is presented which supports the hypothesis of Meyers
(1979b) that remote forcing may be responsible for the large semi-annual
component of the vertical motion of the thermocline in the eastern equa-

torial Pacific,

a. Description of Observational Work

A recent paper by Meyers (1979b) presents a2 very interesting analy-
sis of the seasonal variation of the 14°C isotherm in the equatorial
Pacific. Bathythermographic data taken over many years between 2°S5-2°N
were used to determine the mean depth of the 14°C isotherm as well as the
mean monthly variation. Meyers shows that 1) the 14°C isotherm is loca-
ted in the lower portion of the thermocline, 2) variation of temperature
within the depth range spanning the thermocline is due primarily to ver-
tical motion of the thermocline rather than variation of the temperature
gradients within it; and 3) vertical motion of the 14°C isotherm is
essentially in phase with the vertical motion of the thermocline.

A scatter diagram of the observations of the depth of the 14°C iso-

therm averaged between 1°S to 1°N is shown in Fig. 20. The east-west

A scatter diagram of the observations of the depth of the 14°C iso-
therm averaged between 1°S to 1°N is shown in Fig. 20. The east-west
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slope of the mean position of the isotherm is representative of the
slope of the thermocline along the equator. The mest striking aspect of
this plot is the large amplitude of the depth variations near the east-
ern boundary. The extreme values are due to the large El Nifio events.
However, even if one considers the region over which the distribution

of data points is rather uniform, the largest amplitude is at the east-
ern boundary. As was shown in the preceding section, the eastern boun-
dary is consistent with the hypothesis that remote forcing mechanisms
are operant in the eastern eguatorial Pacific.

In order to study the seasonal variability of the thermocline,
Meyers averaged the data over areas of 20° longitude (+ 2° about the
equator) and calculated mean monthly values. Then for each region
between 80°W and 140°E, he determined the mean depth as well as the
annual and semi-annual signals. A similar analysis was performed on the
zonal component of the wind stress between 2°S to 2°N. The results of
these calculations are shown in Fig. 21. Note that both the annual and
semi-annual components of the 14°C isotherm depth variation have a max-
imum amplitude at the eastern boundary. This is particularly impressive
in view of the fact that the semi-annual component of the wind stress
has virtually no amplitude in that region. This is what led Meyers to
suggest that remote forcing may be responsible for the large amplitude
of the semi-annual component of the vertical displacement of the thermo-
cline at the eastern boundary.

In the following sections, the dynmamical causes of the variation

of the 14°C isotherm at the eastern boundary are examined in an effort

Irn the following sections, the dynamical causes of the variation
of the 1u°C isotherm at the eastern boundary are examined in an effort

to test Meyers' hypothesis. The mean seasonal variation of the isotherm
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wind stress.across the entire Pacific (from Meyers, 1979b). The data
are averaged over 20° of longitude. :
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at the boundary is shown in Fig. 22a. Note that the downwelling ini-
tiated in March is representative of a mini-El Nifio. The corresponding

vertical motion of the isotherm is plotted in Fig. 22b.

b. Numerical Model Results

The mean and seasonal components of the equatorial zonal wind stress
as analyzed by Meyers (1979b) are used to force the numerical model. The
winds are assumed to have no meridional variation. This is not a seri-
oﬁs deficiency; the variation of the wind stress outside of the equator-
ial radius of deformation ( n 250 km) has little effect on the near
equatorial response (McCreary, (1976)). Meyers also found that the zonal
winds in the near equatorial region were distributed symmetrically.
Within each of the seven regions between 144°E and 80°W, the winds are
assumed to be uniform.

The model parameters for the numerical simulations are those found
in Table 1, except that the initial layer depth, H, and the density dif-
- p,, are set to 200 meters and 20

ference ‘units respectively. The
) P Yy

Py 1 t

model 1s started from rest and run for four years in order to remove all
transients initiated by the spin-up process. All solutions shown in
this section are from year four.

The model PHA is now defined as the departure of the interface from
its mean position. The comparison of the seasonal variation of the model
PHA with the observed variation is shown in Fig. 23. Considering the
simplicity of the model, the close agreement is remarkable.

It now remains to determine the dynamics of the.variation of the

B T e T e

It now remains to determine the dynamics of the.variation of the
model pycnocline at the eastern boundary in order to examine the credi-

bility of such a response in the real ocean.
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The plot begins in mid-December.
(Data from Meyers, 1979b).
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In order to examine the model results in detail, it is desirable to
use the concepts pertaining to the linear response to time-variable winds
developed in Sections 3 and 4. Hence, it is necessary to determine
whether the model results are inherently nonlinear or rather the result
of nonlinear modification to linear dynamics. Therefore, the linear ver-
sion of the model was run using the identical parameters as in the non-
linear case. The comparison between the linear results and observations
is shown in Fig. 24. Although the comparison isn't guite as close as the
nonlinear case, the essential features are still present. The larger
amplitude response in the nonlinear case is probably due to the nonlin-
earity of the wind stress term in regions where the layer thickness is
less than the initial thickness. The phase differences between the two
cases is most probably due to the nonlinear dispersion of the equatorial
waves. The essential point, though, is that the linear model can reprc-
duce the basic properties of the response. Hence, the linear response

can be examined in more detail by using the analytical expressions devel-

oped in Section 3.

c. Analytical Model Results

The wind stress applied in the numerical runs is composed of fourteen
wind stress patches as defined in Section 3d, i.e., there are two compon-
ents of the wind stress in each of the seven regions. Hence, by the
principle of superposition, the sum of the fourteen solutions of the
analytical model should reproduce the linear numerical results. These

calculations, which were performed using all terms in (23), are shown in

Gl]c._l.y Lilcas nwouc L Ollvuda L CPL'U\J.LA\,C Ll Lanacaul JlUitied LLUL L vouUuL Lo Trilcoe
calculations, which were performed using all terms in (23), are shown in

comparison to the numerical results in Fig. 25a. The agreement is very
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(a) Comparison of linear numerical model solution

(solid 1l ne) of W at eastern boundary at the equator with the sum of
all the components of the full analytical expression. (b) Comparison
of linear numerical model solution (solid line) with the sum of all
analytic components evaluated assuming no reflection from the western
boundary.
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close; we can now apply the analyticsl model in an attempt to delineate
the effects of individual waves.

The analysis in Section 4a showed that Kelvin waves dominated the
response to the east of a wind stress patch. Hence the analytical
expression was evaluated for the case in which only Kelvin waves and
their reflections from the eastern boundary are included. This is equiv-
alent to setting the reflection coefficient of the western boundary, RW’
equal to zero. Fig. 25b shows the comparison between the sum of all the
Kelvin wave responses and the linear numerical solution. Again, the
comparison is very close. This tells us that although the numerical
model includes all the waves and their multiple reflections from the
boundaries, the vertical motion of the model pycnocline 1is due to the
propagation of Kelvin waves excited in the interior region. The results
do not depend upon the position nor the nature of the western boundary.

Finalliy, we will examine whether the interfacial displacement at
the eastern boundary can be attributed to the effects of Kelvin waves
emanating from the regicn where the semi-annual component of the wind
stress is a2 maximum. Fig. 21 shows that this region is between 180° and
120°W. In Fig. 26 the results of including only the semi-annual Kelvin

waves which originate from the above area are shown. Clearly, the semi-

annual response of the model pycnocline is governed by the remote forcing

due to Kelvin waves excited between 180° and 120°W.
Although equatorial Kelvin waves have yet to be observed in the
ocean, recent theoretical studies indicate that once these waves are

initiated, they should be able to traverse large distances without sub-

ocean, recent theoretical studies indicate that once these waves are
initiated, they should be able to traverse large distances without sub-

stantial modification by the mean circulation (McPhaden and Knox, 13879;

N — e
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Philander, 1979b; and Semtner, personal communication). The results pre-
sented above are strong indirect support for their existence, and can be
tested by the acquisition of appropriate long period data records in the

eastern equatorial Pacific.

d. Seasonal Circulation

In this section, the numerical model simulation described in Section
4b is used to examine the seasonal variability of the circulation along
the equator. The numerical results are applicable only within approxi-
mately + 5° of the equator, because we have assumed that the forcing has
a uniform meridional distribution.

In Fig. 27a, the seasonal variation of the upper layer thickness
(ULT) along the entire equator is shown. The vafiability at the eastern
boundary has been discussed above. The model data are also consistent
with the observations of Taft and Jones (1974) who were unable to find a
mean zonal pressure gradient east of 115.5°W during the Piquero Expedi-
tion (June 26-August 4, 1969). The numerical simulation predicts that
the lack of a zonal thermocline slope east of 115°W is a seasonal phen-
omenon.

The ability of the model to simulate the seasonal variability of
the thermocline depth is much better east of approximately 130°¥W than to
the west of this region. Although the amplitude of the model thermocline
variation is consistent with observations in the central and western
Pacific, there is only marginal agreement between the phase of the ob-

served seasonal variability and the numerical simulation. This is not

Pacific, there is only marginal agreement between the phase of the ob-
served seasonal variability and the numerical simulation. This is not
surprising in view of both the simplicity of the model and the much smal-

ler amplitude of the seasonal cycle in the central and western Pacific.

T s . S
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The mean zonal slope of the thermocline, however, is accurately
represented by the numerical model along the entire equatorial Pacific
(Figs. 20, 27a). The ability of the numerical model to simulate a real-
istic zonal slope of the equatorial thermocline will prove to be an im-
portant facet of the El Nifio experiments in the following section.

The predicted seasonal variation of the zonal velocity component
along the equator is shown in Fig. 27b. This figure depicts only the
departure from the mean flow, because the layered model does not possess
a realistic steady state solution for the current field. If the model
is forced only by the mean winds, the steady state solution is a zero
flow condition in which the mean wind stress balances the pressure grad-
ient. The mean surface current at the equator is part of the westward
South Equatorial Current.

The amplitude of the variebility of the surface flow shows a dis-
tribution patterns similar to the pycnocline variability (Fig. 27a), that
is, the largest amplitude fluctuations are in thg eastern third of the
equator. The model predicts that the mean westward flow at the equator
is weakened from April to June, and strengthened from July to October.
This is consistent with the analysis of the EASTROPAC observation by
Tsuchiya (1974). The observations taken during this year-long expedi-
tion In the eastern Pacific reveal that the westward surface current
very near the equator was most intense in the fall season but weakest in
the spring. In fact, Tsuchiya observed a very weak eastward surface
flow near the equator during the April to May period. Although this

eastward equatorial surface current is often viewed as the surfacing of

flow near the equator during the April to May period. Although this
eastward equatorial surface current is often viewed as the surfacing of

the Undercurrent, Tsuchiya found that such a hypothesis was not consis-
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tent with his analysis. Moore and Philander (1S77) support Tsuchiya's
contention by presenting a theory which relates the dynamics of the
Undercurrent to that of the surface flow. This theory predicts that
variations of the intensities of these two currents are negatively cor-
related. Such a theory is consistent with the observations of Taft and
Jones (1974) who found that the strongest flow of the Undercurrent is in
the spring, while the weakest flow occurs in the fall.

The numerical simulation predicts a large semi-annual component of
the surface flow in the eastern equatorial region. This component is
associated with the remote forcing mechanism described earlier. Hence,
in November and December, there may be another period of weak (strong)
surface equatorial (Undercurrent) flow in the eastern equatorial Pacific.
3ince the numerical model overestimates the downwelling event at the end
of the year, the associated variations in the velocity field may not be
as large as in the spring event. Long period current meter records will
be required to test this hypothesis.

Vector plots for the velocity field in the eastern tropical Pacific
are shown in Fig. 28. These plots reveal that the eguatorial flow per-

iodically separates into twc branches. This feature was also observed

by Hurlburt, et al. (1976) in their numerical simulation of El Nifio. r
They explained it as an effect due to the westward propagation of the |
pressure field as an internal Rossby wave. |

The seasonal variation along the eastern boundary of the meridional . '
velocity field and the ULT are shown in Fig. 29. In this simulation,

the seasonal variation of the zonal winds along the equator does not pro-

velocity field and the ULT are shown in Fig. 2¢. In this simulation,
the seasonal variation of the zonal winds along the equator does not pro-

duce a large meridional velocity component along the eastern boundary
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Fig. 29. The y-t sections along the eastern boundary for (a) upper
layer thickness and (b) meridional velocity component determined by the
nonllnear numerical simulation of the Eeasonal cycle. The contour
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Fig. 29. The y-t sections along the eastern boundary for (a) upper
layer thickness and (b) meridional velocity component determined by the
nonlinear numerical simulation of the seasonal cycle. The contour
interval is 10 m for (a) and 1 cm sec ~ for (b). The dashed lines in
(b) indicate poleward flow.
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(Fig. 29b). These plots are included primarily for comparison purposes

for the E1 Nifio experiments in the following section.




6. MODELLING OF EL NINO

El Nino is an anomalous oceanographic and meteorological event which
is characterized by the sudden appearance of abnormally warm surface
water on the scale of a thousand kilometers off the coasts of Ecuador
and Peru. These warm water anomalies, which can persist for up to a
year or more, also extend thousands of kilometers along the equator.
There are no criteria which clearly define E1 Nifio, because 1) the onset
of the event occurs during the normal seasonal warming period and 2) the
magnitudes of El Nino-like events vary from slightly greater than the
seasonal perturbations to extreme fluctuations. Hence, most studies of
this phenomenon focus on major El Nino events. The most recent occur-
rences of major El Nirfos were in 1957-58, 1965, 1972-73 and 1976. These
primary £l Niflo events are not only catastrophic tc the Peruvian fishing
industry, but also appear to be closely related %o global scale changes
in the circulations of the atmosphere and the ocean (Bjerknes, 13966b,
1969, 1872; Julian and Chervin, 1978; Namias. 1876; Quinn and Burt, 1570;
Barnett, 1978, Weare, et al., 1976; Wyrtki, 1973).

To what extent El Nino is the cause of or the result of large scale
atmospheric anomalies is not well understood. Most studies of the
oceanic manifestation of El Nino ignore complex air-sea feedback mechan-
isms and concentrate, instead, on the following question: Given a pre-

scription of atmospheric forcing prior to and during E1 Nifio, can one

isms and concentrate, instead, on the following question: Given a pre-

scription of atmospheric forcing prior to and during E1 Nino, can one
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account for the oceanic observations of this event? Recent theoretical

studies have been able to account only for the onset phase of the event,

i.e., the first few months (Hurlburt, et al., 1976; McCreary, 1976, 1977).

In this section, the nonlinear numerical model is used to simulate E1 Nifio

from the onset phase to the termination of the event. In spite of the
simplicity of the model, the numerical simulation is able to account for
many of the observed features associated with El Nifio. The dynamics of

the model event are also discussed.

a. Observational and Theoretical Background

There are a number of excellent descriptions of the observational
evidence associated with El Nifo (e.g., Bjerknes, 1961, 1966, Wyrtki,
1975a, 1977, 1979; Caviedes, 1975; Wooster and Guillen, 1974; Namias,
1976; Barnett, 1977 and Zuta, et al., 1974). It is not within the scope
of this section to detail these works; instead, we will focus on the
most salient features which appear to be common to all or most major El
Nino events. The most prominent indicator of El Nifio in the eastern
Pacific is the sea surface temperature (SST) anomaly pattern. Both
Wooster and Guillen (1974) and Zuta, et al., (1974) chronicle El Nifio
in terms of three phases of SST changes. The first phase is character-
ized by a very sudden appearance of warm water along the coasts of
Equador and Peru. The warm water, which is of equatorial origin, advan-
ces rapidly along the coast. Although the onset of El Nifio is coinci-
dent with the normal seasonal warming, the magnitude and extent of the

warm equatorial water go well beyond the usual seasonal limits. The
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warm equatorial water go well beyond the usual seasonal limits. The

initial phase lasts for several months; its termination is characterized

by the retreat of the warm water towards the equator. The intermediate
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phase 1s a quiescent period lasting for approximatsly six months. Dur-
ing this phase, warm SST anomalies persist but gradually diminish in
magnitude. The final phase is similar to the initial period. Very warm
SST anomalies suddenly reappear along the South American Coast. The
magnitude of SST anomalies during this phase are usually not as large as
during the initial period. The final phase generally begins about one
year after the initial onset of El Nino. The duration of the third
phase 1s shorter than the initial period; frequently, the final stage
terminates abruptly.

The occasional appearance of warm SST anomalies in consecutive
years is one of the major mysteries of El Nino. Unlike the events in
1957-58 and 1972-73, the occurrences of Fl Nino in 1965 and 13976 evi-
denced only single peaks in temperature (Wyrtki, 1979). In fact, the
SST in the eastern Pacific and along the South American coast were sub-
stantially colder than normal seasonal values during the first quarter
of 1966.

Wyrtki (1977, 1979) describes El Nifio in terms of the sea level
response, which he also shows is representative of the vertical motion
of the thermocline along the equator. Wyrtki finds that sea level rap-
idly peaks at the start of El Nino along the coast of Peru. The western
Pacific, however, evidences a very different response of sea level dur-
ing the event. In this region, a very slow decline of sea level occurs
throughout the entire El Nino year. This sequence of events occurred in
both the 1972 and 1976 El1 Nino years. However, substantial differences

were encountered between those two events during the year which followed

both the 1972 and 1976 El Nino years. However, substantial differences
were encountered between those two events during the year which followed

each of these occurrences., In 1973 a second peak in sea level was
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observed which was similar in nature to the peak in the preceding year.
No successive sea level peak was observed in 1977. In both 1973 and
1977, the return to a normal sea level distribution occurred very rap-
idly.

Bjerknes (1966a) was the first to suggest that the occurrence of El
Nirio is related to changes in the Pacific trade wind system. It was
Wyrtki (1875b), however, who proposed the specific theory that E1 Nino
is caused by the sudden relaxation of the equatorial trade winds in the
central and western Pacific Ocean. Analysis of the equatorial winds by
Wyrtki and lMeyers (1975) revealed that 1) major El Nino events are often
preceded by a stronger than normal wind which lasts for a year or more,
2) subsequent to relaxation, the winds in the central and western
Pacific remain weak Tor approximately a year, and 3) the winds in the
eastern equatorial Pacific and along the coast of Peru are close to sea-
sonal values during E1 Nino events. Hence, Wyrtki (1975a) hypothesized
that the relaxation or the wind in the central and western equatorial
Facific would allow warm water, which had accumuiated in that part of
the ocean prior to El Nifio, to flow eastward. The eastward flow, would
be accomplished either by an internal Kelvin wave or by an increase in
the transport of the North Equatorial Countercurrent. Eventually, the
warm water would accumulate in the eastern Pacific and subsequently
affect the coastal regions off Ecuador and Peru.

Wyrtki's hypothesis received theoretical support from Hurlburt,
et al. (1976) and McCreary (1976, 1977). Both these modelling efforts

showed that a Kelvin wave, excited by the relaxation of the wind stress,

et al. (1976) and McCreary (1976, 1977). Both these modelling efforts
showed that a Kelvin wave, excited by the relaxation of the wind stress,

could account for the rapid, pronounced warming during the onset phase
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of El1 Nific. The numerical solutions of Hurlburt, et al., reveal that
nonlinear effects may help to explain the extremelyv rapid response
observed during El Nifo., The linear, analytic model of McCreary shows
that a realistic distribution of the wind stress about the equator does
not only produce the necessary Kelvin wave, but also can account for
possible cross equatorial flow at the eastern boundary during E1 Nifio.
Wyrtki's hypothesis, as well as the above modelling efforts, per-
tain only to the omset of El Nino. Generally, it is believed that more
complicated models are required in order to account for the longer time
scale aspects of El Nino, such as the slow decline in sea level at the
western boundary, the reoccurrence of temperature peaks in successive
vears and the rapid end to the El Nino event., This hypothesis is tested
in the next section. The very simple numerical model described in Sec-
tion 2 is utilized to examine a model E1l Nino event from its inception

to its termination.

b. Numerical Results

In Section 5, it was shown that the numerical model results could
account ror a number of observed features of the seasonal cycle in the
equatorial Pacific. Among cther aspects, the model realistically repre-
sents the zonal slope of the main thermocline and the seasonal variation
of its depth at the eastern boundary. The ability of the model to repre-
sent these features makes it & very attractive tool with which to examine
fundamental dynamics related to El Niftio. The strategy of the El Nino

experiments in this chapter is to initialize the model with the seasonal

P N e S T e AN ~ S ep RN ~ -3 e ey T = el oo

experiments in this chapter is to initialize the model with the seasonal
soclution at the end of vear 2, and, subsequently, examine the anomalous

model solutions resulting from the application of El Nino-type winds.
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There are several detailed accounts of the variability of the zonal
equatorial winds related to El Nifio (e.g., Wyrtki, 1975; Wyrtki and
Meyers, 1976; Hickey, 1975). In an attempt to compromise between the
complexity of directly applying real wind data and the over-simplicity
of using highly idealized winds, we have made the following assumptions
about the zonal equatorial winds associated with El Nifio. 1) The zonal
equatorial wind stress at inter-annual time scales has a much smaller
amplitude in the eastern Pacific than in the western regions. 2) Even
during E1 Nino periods, the seasonal cycle continues unchanged through-
out the tropical Pacific. 3) The zonal distribution of the wind stress
amplitude at inter-annual time scales is similar to the distribution of
the mean zonal wind stress. L) During ©l Nifio events, the magnitude of
the wind relaxation is comparable to the value of the mean wind stress
in that region. There mav te no single El Nino event in which all these
assumptions apply. However, it is felt that these assumptions embody
the fundamental behavior of the forcing during a major El Nino event. In
addition, only the symmetrical response about the equator is examined.
Although asymmetrical affects may be important to El Nifio dynamics, it
is the response associated with the Kelvin waves which is dominant, i.e.,
the symmetrical solution.

The initial state for the standard E1l Nino case is the seasonal sol-
ution at the end of year two. Subsequent numerical integration over
threé years represent the intensification of the winds prior to E1l Nifo,
the El1 Nino year and the return to normal conditions, respectively. Only

the mean component of the winds west cf 140°W is modified during the numer-

the El Nino year and the return to normal conditions, respectively. Only
the mean component of the winds west cf 140°W is modified during the numer-

ical integrations. The seasonal components of the trade winds are main-
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tained at their long-term values as well as the mean winds west of 140°W.
During the third year of integration, the mean wind components west of
140°W are increased linearly over a twelve month period, at which time
they are a factor of 1.5 greater than their long-term values. The sudden
relaxation of the equatorial winds occurs at the start of year four. The
mean winds west of 140°W are decreased over a two month period to one
half their normal mean values and are maintained at these values through-
out the remainder of the year. At the beginning of year five, the re-
laxed winds are increased to their long-term magnitudes over a two month
period. After the first two months of the last year, the forcing is
identical to the wind stress used in the seasonal simulation, and no fur-
ther modifications are made.

The details of the standard run are described below. Four addi-
tional numerical simulations are performed; the differences between these
cases and the standard run are shown in Table 3.

The intensification of the mean winds west of 140°W causes a west-
ward zonal acceleration relative to the seasonal response (Figs. 27b,
30a). The jet continues to accelerate rapidly until the arrival of an
equatorially trapped Kelvin wave excited by the time variation of the
wind stress divergence. The Kelvin wave, which propagates eastward,
causes the zonal pressure gradient in the vicinity of the wind to in-
crease, thereby helping to balance the increased wind stress force
(Fig. 30b). In the region to the east of the increased forcing, the
Kelvin wave produces upwelling relative to the seasonal solution (Fig.

31). As the wind continues to increase, so do the westward flow and

Kelvin wave produces upwelling relative to the seasonal solution (Fig.
31). As the wind continues to increase, so do the westward flow and

upwelling at the eastern boundary. At the end of year three, the model
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Fig. 30. The x-t sections along equator for (a) zonal velocity
component and (b) the upper layer thickness during the intensifica-
tion phase of Case 1. During this year the mean winds west of 140°W
are linearly increased to 1.5 times their long-term value. The con-
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component and (b) the upper layer thickness during the intensifica-
tion phase of Case 1. During this year the mean winds west of 140°W
are linearly increased to 1,5 times their long-term value. The con-
tour interval is 10 cm sec™! for (a) and 10 m for (b). '
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thermocline is nearly 40 m shallower than its normal seasonal value at
the eastern boundary (Fig. 31). The east-west slope of the thermocline
across the entire Pacific has intensified (Fig. 30b). These conditions
are representative of the anomalously cold periods observed prior to El
Nifio events in the eastern equatorial Pacific and along the coast of
South America.

The mean winds west of 140°W decrease to one-half their normal value
at the start of year four. The maximum westward wind stress in the model
central Pacific Ocean changes from approximately .75 dynes <:1'n_2 to .25
dynes cm_z. As stated above, the magnitude of the relaxation is depen-
dent upon the value of the mean wind stress in a given longitudinal band.
The response to this decrease in the wind in the central and western
Pacific is what Wyrtki has hypothesized to be the initiating mechanism
of El Nifio. Detailed discussions of the dynamics associated with the
onset of the event can be found in Hurlburt, et al. (1976) and MeCreary
(1976, 1977). Only the major features of the onset of El Nifio are des-
cribed below.

The relaxation of the wind stress west of 140°W destroys the approz-
imate balance between the wind stress and the zonal pressure gradient.
Subsequently, the unbalanced pressure gradient produces an eastward
acceleration (Fig. 32). The divergence associated with the eastward
driven flow excites eqguatorially trapped Rossby and Kelvin waves. In
the vicinity of the decreased forcing, the equatorially trapped waves
tend to bring the zonal pressure gradient into a new balance with the

reduced wind stress. Hence, downwelling is initiated in the eastern por-

tend to bring the zonal pressure gradient into a new balance with the
reduced wind stress. Hence, downwelling is initiated in the eastern por-

tion of the anomalously forced region, and upwelling in the western half.
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Fig. 32. The x-t section along equator for zonal velocity com-
ponent cduring years % and 5 of Case 1. The rapid reversal of the flow
in year 4 is due to the effects of a first mode internal Rossby wave
which is excited by the incidence of the downwelling Kelvin wave at the
eastern boundary. The contour interval is 10 cm sec -1,




[—

100

The leading edge of the Kelvin wave excited by the wind relaxation in-
duces downwelling as it propagates eastward from 140°W. The downwelling
is stopped only by the arrival of the trailing edge of the Kelvin waveQ.

Since there are no waves in the system which propagate faster than
the Kelvin wave, the eastern boundary does not feel the effects of the
reduced wind stress until the arrival of the leading edge of the Kelvin
wave (Fig. 33). The combination of the incident Kelvin wave and the
reflected Rossby waves create intense downwelling at the eastern boun-
dary (Fig. 34). The pycnocline deepens by 100 m within two months and
is finally stopped by the arrival of the trailing edge of the Kelvin
wave (Fig. 33). The slight downwelling which continues between months
4 and 5 (Fig. 33) is a result of the seasonal signal.

The deepening of the model thermocline at the eastern boundary rep-
resents the intense warming event observed during E1 Nifo. The down-
welling response at the equator is propagatecd poleward by a coastally
trapped Kelvin wave (Fig. 35). Hence, along the eastern boundary, a
poleward flow is generated which, in the real ocean, is capable of ad-
vecting warm equatorial water along the coasts of Ecuador and Peru (Fig.
35). The alongshore current has a maximum speed of approximately 20 cm
secml, which is four times the value generated by the seasonal oscilla-

tions.

2 . . .
4 Kelvin and a Rossby wave are excited at each edge of an anomalous

wind stress patch, The waves generated at the eastern edge of a patch
are equal in magnitude but opposite in sign to the respective waves ex-
cited at the western edge. Hence, the effects of the waves generated
at the common boundary between two adjacent patches tend to cancel if
the magnitudes of the forcing are comparable. The largest magnitude
waves are initiated in the region of largest zonal wind stress diver-

R S N A [SPPELA VI Lk s Fanerin gy L B N N . 3 T W WG B W (U L wavco 6CLLCL'QLCL1
at the common boundary between two adjacent patches tend to cancel if
the magnitudes of the forcing are comparable. The largest magnitude
waves are initiated in the region of largest zonal wind stress diver-
gence. It is frequently more convenient to refer to the sum of all the
Kelvin waves generated by an anomalous wind event as a single Kelvin
wave which possesses a leading edge and a trailing edge.
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Fig. 33. The x-t section of upper layer thickness along eguator
during years 4 and 5 of Case 1. The internal Kelvin wave excited by
the wind relaxation west of 140°W reaches the eastern boundary near
menth 2.
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The incidence of the Kelvin wave onto the eastern boundary creates
Rossby waves. The propagation of the Rossby waves away from the boun-
dary broadens the region of poleward flow near the equator (Fig. 36 c-e);
this feature is representative of the large offshore scale of the warming
observed during E1 Nino.

Thus far, most of the described features have been aspects which
were modelled by the earlier simulations (Hurlburt, et al., 1976,
McCreary, 1976, 1977). Let us now examine the model event beyond the on-
set time scale in order to see if such a model can continue to account
for observed features during E1 Nino.

The pycnocline reaches its maximum depth at the eastern boundary in
early June and, subsequently, begins to return to its long-term position
(Fig. 34). Throughout the rest of the year, the pycnocline appears to
be strongly influenced by the seasonal cycle. However, Fig. 31 shows
that even if we disregard the seasonal effect, the model pycnocline
rises during the next four months. This is a rgsult of the Rossby wave
which was excited simultaneously with the Kelvin wave at the time of the
wind relaxation. Since the Rossby wave propagates westward, the leading
edge initiates upwelling, while the trailing edge halts the motion.

After reflection from the western boundary, this upwelling response can
propagate rapidly across the basin as a Kelvin wave. Although the
effects of this wave are not nearly as dramatic as the downwelling Kelvin
wave, this upwelling event causec the pycnocline to shallow b; about 20
meters.

Between June and October of year 4, the pycnocline at the eastern

meters.
Between June and October of year 4, the pycnocline at the eastern

boundary rises by about 50 meters (Figs. 33, 34). The poleward flow
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The vectors, which are not situated on computational grid points, are
The magnitude of the vectors
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Velocity vectors east of 120°W during year 4 of Case 1.

The vectors, which are not situated on computational grid points, are
evaluated at the mid-point of each month.
can be determined using Fig. 32.

The magnitude of the vectors
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zlong the eastern boundary is replaced by weak equatorward flow (Fig.
35). Although the pycnocline remains well below its normal seasonal
value, a certain semblance of the seasonal condition is reestablished.
The numerical solution during the second half of year 4 is consistent
with the quiescent period reported by Wooster and Guillen (1974) and
Zuta, et al., (1974). During this period it was observed that, although
warm water anomalies persisted, the normal seasonal cycle had a signifi-
cant effect. If, however, the seasonal increase of the Southeast Trades
is anomalously weak during the Southern Hemisphere summer, the thermo-
cline might remain far below its normal seasonal depth.

The model response at the western boundary is much different than
the eastern boundary solution (Fig. 33). Throughout most of the El1 Nifio
year, the only wave that can affect the western boundary is the low
amplitude Rossby wave excited by the relaxation of the wind stress. The
single exception tc this statement occurs if there is a significant com-
ponent of the relaxation at the western boundary, in which case the
trailing edge of the Kelvin wave is initiated there. But since a Kelvin
wave directly generated at a western boundary opposes the direct forcing
of the wind stress, only a weak response can be generated at that boun-
dary. The essential concepts of this situation can be seen in Fig. 3,
which is the spin-up case for the linear uniform wind. Note that the
response at the western boundary is much less than the initial response
at the eastern boundary.

The model thermocline depth returns rapidly to near normal values

after the arrival of the large amplitude Rossby wave, which was initia-

The model thermocline depth returns rapidly to near normal values
after the arrival of the large amplitude Rossby wave, which was initia-

ted at the eastern boundary (Fig. 33). This wave, which is responsible
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for the initial downwelling along the eastern boundary, arrives at the
western boundary very nearly one year after the initial relaxation of
the wind stress.

The response of the model pycnocline depth at the western boundary
is consistent with observations of sea level reported by Wyrtki (1979)
for the 1872 and 1976 El Niflo events. Wyrtki suggests that the rapid
response of sea level (after a year-long decline) is caused by the inten-

L oy

sification of the trade winds. Such a response, however, is not consis-
tent with the linear nature of the El1 Nino event. McCreary (1976)
showed that the relaxation phase of El Nino could be modelled by impos-
ing an eastward wind stress to an ocean at rest. Given that the time
scales of the relaxation phase and reintensification period of the wind
stress are comparable (Wyrtki, 1979), the directly forced effects at the
western boundary should be gualitatively similar in both cases; we
should expect a slow direct response at the western boundary during the
return to normal conditions as well. Hence, the rapid response at the
western boundary is consistent with the effects gf a2 large amplitude
wave such as the incoming Rossby wave excited at the eastern boundary.
The large amplitude Rossby wave responsible for the downwelling
also produces a dramatic effect on the interior velocity field. The
wave causes the eastward current at the equator to reverse and flow
strongly to the west (Fig. 32). The only observational evidence of the
current field associated with El Nifio is Wyrtki's indirect analysis
showing that the North Ecuatorial Countercurrent intensified during El

Nifio events (particularly during the latter half of the year). It is

showing that the North Ecuatorial Countercurrent intensified during El
Nifio events (particularly during the latter half of the year). It is

difficult to compare the model results with this observation because the
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model does not include asymmetrical boundary or forcing effects. More
sophisticated modelling will be required in order to realistically com-
pare the off-equatorial response to observations. However, an increase
in the strength of the Countercurrent is not inconsistent with the effects
of a first latitudinal mode Rossbv wave that induces a strong westward
flow at the eguator. The meridional profile of the wave is such that

the zonal current reverses direction between the eguator and the region
of the Countercurrent. During future E1l Niho events, current meter
records from equatorial moorings should be able to record the flow rever-
sal. This is probably the most effective way to determine whether this
Rossby wave, which is of such importance tc the model event, plays an
important role in the real E1 Nino.

inally, we examine the return to normal conditions during year 3

bri

of the model El Nino. The strengthening of the trade winds west of 140°W
induces a response which is qualitatively similar to the relaxation
phase. An equatorial Kelvin wave is excited and propagates eastward.
This Kelvin wave produces an upwelling response &hich, as before, is
most intense at the eastern boundary (Figs. 33, 34). The duration of
the upwelling response is shortened by the incidence of the Kelvin wave
emanating from the western boundary (Figs. 31, 33). This Kelvin wave
was generated by the reflection of the large amplitude Rossby wave near
the end of year 4. The combined effects of the nearly simultaneous
arrival of the downwelling Kelvin wave and the recently indﬁced upwell-~
ing response tend to cancel at the eastern boundary. The remainder of

the year at the eastern boundary is characterized by a gradual return

ing response tend to cancel at the eastern boundary. The remainder of
the year at the eastern boundary is characterized by a gradual return

to normal conditions (Fig. 31).
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The model El Nific event does not produce the second pezk in sea

level which is frequently observed during major El Nirfo events. There-

Fh

ore, it is interesting to inquire whether a difference in the timing
between the relaxation and re-strengthening phases might produce such a
response. Hence, Case 2 is designed to examine the solution at the
eastern boundary for an event in which the relaxed winds remain at anom-
alously low values for a longer period than in Case 1.
The intensification of the winds pricr to the relaxation phase is
identical for both Cases 1 and 2. At the start of year 4, the winds are
decreased in the exact manner as Case 1, except that the relaxation
takes place over a one month period instead of two months. The wind
remains at low values until month 3.5 of year 5, at which time they are
increased as in the standard El Nino run. Hence the difference in the
duration of anomalously low winds between Cases 2 and 1 is 4.5 months.
The response at the eastern boundary is shown in Fig. 37. The down-
welling Kelvin wave reaches the eastern boundary prior to the upwelling
event, and the double peak in pycncocline depth is observed. The second
warming event is rapidly terminated by the upwelling Kelvin wave, which
produces shallower thermocline depths at the eastern boundary during
the remainder of the year.

The differences in the time scales of the relaxations between Cases
1 and 2 produce negligible differences in the zonal velocity field in
year 4, (Figs. 38, 32). The duration of the downwelling or upwelling
period is governed by the time required for a Kelvin wave to cross the

anomalcusly forced regions, which in this case is approximately two

period is governed by the time required for a Kelvin wave to cross the
anomalcusly forced regions, which in this case is approximately two

months. Hence, only relaxations which occur over time scales smaller
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than two months will produce results similar to an instantaneous relax-
ation. For an event in which the winds change on a longer time scale
than two months, the time scale of the relaxation is a parameter of the
problem.

Case 3 is an El Nifio event in which the time between the relaxation
phase and the reintensification period is shorter than in Case 1. Cases
3 ané 1 are identical except that the decrease of the trade winds is
celaved by two months, and the relaxation of the winds take place over a
one menth period. The corresponding E1l Nino events are quickly termina-
ted by the upwelling response inducec by the re-strengthening of the
wind (Fig. 39). The pvcnocline rises to levels that are much shallower
than the normal seasonal values. This anomalously cold period is ended
by the incidence of the downwelling Kelvin wave; conditions are very
quickly returned to normal values.

In Case 4, an El Nino event is examined in which there is nc inten-
sification of the wind field prior to the weakening of the trades. The
magnitude of the relaxation is the same as in the standard El Nifo
event; hence the mean wind west of 140°%W decreases linearly to zero dur-
ing the first two months of year 4. The winds are maintained at these
low values throughout the remainder of the model integration. Although
the zonal velocity during year 4 is not as intense as in Case 1 (Figs.
32, 40a), the induced Kelvin wave front produces pycnocline depth anom-
alies at the eastern boundary which are larger than those found in any
of the experiments (Fig. 40b). Even without the prior intensification

of the wind stress, there is sufficient potential in the mean thermo-

of the experiments (Fig. 40b). Even without the prior intensification
of the wind stress, there is sufficient potential in the mean thermo-

cline slope to induce a major El Nino event. This is provided, of
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course, that the winds relax to much lower values than in the previous
experiments.

The final case is identical to Case 1 exXcept that the linear ver-
sion of the numerical model is utilized. A comparison of Figs. u40-u3
with 31-33 reveals that although the dynamics of the El Nifio event are
essentially linear, important modifications are induced by nonlineari-
ties. The most important nonlinear effect is wave-dispersion which is

o
caused beth by the field acceleration term u%%— amd by the variation of
the layer thickness. As was observed in the numerical experiments by
Hurlburt, et &l. (1976), nonlinear wave dispersion causes the downwell-
ing Kelvin wave to steepen, thereby producing a very rapid downwelling
event. Also, in the linear version, the downwelling Rossby wave arrives
at the western boundary around month 8 of the fourth year instead of at
the end of the year (Fig. 42),. Moreover, as in the seasonal simula-
tion, the nonlinear model prcduces a response which more closely resem-
bles the observations during E1 Nifio.

The above numerical experiments provide further theoretical support
for Wyrtki's hypothesis as to the initiating mechanism of El1 Nifio, i.e.,
it 1s a remotely forced event caused by the relaxation of the equatorial
trade winds in the central and western Pacific Ocean. The numerical
simulations are able to account not only for the onset phase of El1 Nifio,
but also for a number of the observed longer time scale features. These
include such features as the slow response of the western boundary dur-
ing Bl Nifio, the rapid return to normal conditions at the western boun-

dary, and the mysterious occurrence of the successive El Nifio events.

ing 5l Nino, The rapld return TO normal CONAlTlions 4t Tile westierun voun-

dary, and the mysterious occurrence of the successive E1 Nifio events.
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It is recognized that the model equations for this section are the
simplest possible representation of the equatorial Pacific circulation
which can examine equatorial wave dynamics. ruture numerical simula-
tions of El Nifio should include such features as the effects of the mean
current field; a more realistic boundary configuration and forcing dis-
tribution; bottom topography; thermodynamics; and thermohaline mixing.
However, the essential aspects of equatorial wave dynamics will still be
present in these more sophisticated modelling efforts. Hence, the dynam-
ical scenarios of El Nifio in this work are offered as an attempt to
understand the fundamental physics of the E1l Nifio event. It is hoped
that they will be useful not only as an aid in the interpretation of more
complicated models of El Nino but also as a starting point in the examin-

ation of the observations of this complex event.



7. SUMMARY, CONCLUSIONS AND CRITIQUE

The objective of this work was to examine the fundamental dynamics
of the equatorial response to variable zonal winds whose time scales
range from a few months to several years. This would allow us to exam-
ine certain aspects of the seasonal variability and the El Nifio phenom-
enon in the equatorial Pacific. A nonlinear, reduced-gravity numerical
model was used for the calculations; the rectangular model basin realis-
tically represented the size of the tropical Pacific Ocean.

The model equations were the nonlinear, shallow water wave equations
on an equatorial B-plane. Since attention was focused on the fundamental
dynamics of the excitation and reflection of equatorially trapped waves,
such features as the effects of the mean flow, bottom topography and a
realistic meridional profile of the zonal wincd stress were neglected.

Even such a simple model produced a compliéated solution when it
was forced by time-variable winds. Hence, as an aid in the interpreta-
tion of the numerical sclutions, analytic expressions for the vertical
motion of the model interface were derived. The expressions, which are
applicable only along the equator, include the effects of equatorially
trapped Kelvin waves, first laetitudinal mode Rossby waves and the
directly forced response due to a wind stress represented as a body
force in the upper layer. The linear form of the numerical model was

used to determine some cf the unknown parameters of the analytical model,
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used to determine some c¢f the unknown parameters of the analytical model,
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such as the magnitudes of the generated waves and the reflection coef-
ficients for these waves at the eastern and western boundaries. Solu-
ticns were obtained for two types of wind stress distribution: 1) a
wind which is uniform across the basin and 2) a wind stress patch case
in which the wind has the shape of a rectangular pulse. The advantage
of deriving an expression for the latter distribution is that an arbi-
trary wind stress shape may be represented by a sum of these patches.
No meridional variation of the wind stress was assumed. A variety of
experiments were conducted in order to demonstrate the accuracy of both
the linear numerical model and the analytic expressions.

Prior to exanmining the seasonal variabllity of equatorial Pacific,
the analytic model was used to study certain aspects of the fundamental
behavior of the equatorial response to time-variable winds. It was
shown that for the uniform case, the amplitude and the phase of the
response depend upon a single non-dimensional paramter. The parameter
is proportional to the ratio of the length of the basin to the wave-
length of the free equatorial Kelvin wave. It was also shown that, for
any frequency less than the inertial, the maximum amplitude of the ver-
tical motion of the interface occurs at the eastern boundary. The value
of the parameter for which there is a maximum response was also deter-
mined.

Both the numerical and the analytical models were used to test the
hypothesis of Meyers (1979b) that the large semi-annual component of the
vertical motion of the thermocline in the eastern equatorial Pacific is

ey

due to the effects of remote forcing. Using Meyers' analysis of the

vertical motion of the thermocline in the eastern equatorial Pacific is

Py

due to the effects of remote forcing. Using Meyers' analysis of the

long-time seasonal and mean winds, the nonlinear model duplicated the
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observed seasonal motion of the thermocline in the eastern equatorial
Pacific. Subsequently, the analytical expressions were used to show
that the semi-annual component of the thermocline motion at the eastern
boundary can be caused by eguatorially trapped Kelvin waves excited
between 180° and 120°W.

Finally, the nonlinear numerical model was used to examine the
dynamics of the El Nino event. Previous numerical simulations E1 Nifio
examined only the onset phase of the event, i.e., the first several
months. These experiments supported the hypothesis of Wyrtki (1375)
that E1 Nino is initiated by the relaxation of the wind stress in the
central and western Pacific Ocean. It was generally believed that an
explanation of the longer time scale observations of E1l Nino required
the inclusion of more sophisticated dynamical mechanisms than could be
included in simple first barocliinic-mode models. To test this hypothe-
sis, the nonlinear model was initialized with the long-term seasonal
solution. Subsequently, anomalous winds which are representative of the
forcing during E1 Nino, were applied. The model integrations extended
for three years in order to examine the entire El Nino event.

On the basis of the model integration it is concluded that even the
longer time scale aspects of El Nino may be accounted for by the con-
cepts of equatorial wave dynamics. The model is able to represent a
number of the features observed during El Nino events.

During the onset phase of El Nifio, the model thermocline in the
eastern Pacific rapidly deepens by approximately 100 meters. It remains

below its normal seasonal position throughout the El Nino year, although

eastern Pacific rapidly deepens by approximately 100 meters. It remains
below its normal seasonal position throughout the El Nino year, although

a gradual return towards normal values occurs during the second half of
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the year. Concurrently, the height field at the western boundary
responds very slowly to the relaxation of the equatorial winds, i.e.,
the upper layer thickness gradually decreases throughout the El Nifio
year. However, at the end of the year, the thermocline deepens rapidly
to its normal position. Thus, downwelling response is caused by the
incidence of the gravest mode Rossby wave which was generated at the
eastern bounaary by the reflection of the downwelling Kelvin wave. The
subseguent reflection of this large amplitude Rossby wave from the west-
ern boundary initiates a Kelvin wave which continues to propagate the
downwelling response. Hence, the nature of the solution at the eastern
boundary during the first half of the year following a mejor El Nino
event depends upon the relative positions of the downwelling Kelvin wave
and the upwelling Kelvin wave initiated by the re-strengthening of the
trades. If the winds in the central and western Pacific remain weak for
more than a year, then a second El Nino event may occur because the
downwelling Kelvin wave arrives prior to the upwelling wave. However,
if the duration of the anomalously weak winds ié less than about one
year, the eastern boundary is characterized by anomalously shallow ther-
mocline depths. Anomalous conditions during the first half of the year
following an El Nino event are terminated quickly by the arrival of
either the dowvnwelling or the upwelling Kelvin wave.

The numerical model used in these calculations is a very simple
representation of the baroclinic circulation in the equatorial Pacific.
The model does not include such features as the mean flow, realistic

basin geometry, bottom topography, a realistic meridional profile of the
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basin geometry, bottom topography, a realistic meridional profile of the

wind stress, thermohaline mixing and thermodynamics. In addition, only
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one vertical mode has been examined; this excludes the process by which
the low order modes may be established.

The inclusion of these processes will permit the examination of
several important topics which we could not address in this study. For
example, it is essential to examine the effects of the mean currents
(particulariy, the Undercurrent) on the equatorially trapped waves. The
work of McPhaden and Knox (1979) and Philander (1979b) are important
initial steps toward this aim. However, numerical simulations with suf-
ficient vertical resolution to model adequately the Undercurrent are
required for a more complete study cf this topic. Such models may be
able to examine also the mechanisms by which the gravest baroclinic mode
equatorial waves can be established. It is also important to examine
the causes for the meridional asymmetries associated with the E1l Niic
event. To what extent are the asymmetric effects governed by the shape
of the basin or the distribution of the forcing? The effects of bottom
topography on the reflection of equatorial waves and on the poleward-
propagating coastal Kelvin waves is another topic deserving of attention.
Additionally, the modifications to the equatorial waves caused by Island
chains which cross the equator is an interesting topic. For example, it
is not known what effects the Gilbert Island chain, which extends from
3°N to 3°S at approximately 175°E, may exert on the low frequency equa-
torial waves examined in this study. Finally, numerical models which
realistically include the effects of thermodynamics, thermohaline mixing
and can predict sea surface temperatures are also very necessary.

Although the model used in the present study is a very simple one,

ana can prealct sea surrace temperatures are also very necessary.
Although the model used in the present study is a very simple one,

the goal of this research was an examination of the fundamental equator-
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ial dynamics associated with the effects of equatorially trapped waves

excited by time-variable winds. The ability of the model to reasonably
account for a number of observed time-dependent features suggests that
low frequency equatorially trapped waves play a fundamental role in the

dynamics of the equatorial ocean.



APPENDIX

LIST OF SYMBOLS

distance from the western boundary of the westernmost edge
of wind-stress patch '

horizontal eddy viscosity coefficient

speeds of Kelvin wave and the first latitudinal mode Rossby
wave, respectively

width of wind-stress patch

acceleration due to gravity

reduced gravity, g(p2 - pl)/92

upper layer thickness

departure of upper layer thickness from its initial value
initial thickness of upper layer

equivalent depth of n-th vertical mode

wavenumber

zonal extent of model basin, same as LX

dimensions of model basin in the zonal and meridional direc-
tions, respectively

pressure
amplitude of vertical mode for pressure

reflection coefficient at eastern and western boundaries,
respectively

period, 27/w

L'CDPC\,LJ_V CJ_‘Y

period, 27/w
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period of inertial oscillation
zonal, meridional and vertical components of velocity
amplitude of direct interior response due to a zonal wind

amplitudes of Kelvin and Rossby waves generated at western
and eastern boundaries, respectively

amplitudes of Kelvin and Rossby waves generated at the edges
of a wind stress patch, respectively

tangent plane, Cartesian coordinates: x positive upward, y
positive northward and z positive upward

dimensionless parameter given by wL/CK

meridional derivative of Coriolis parameter

difference in density between upper and lower layers
horizontal Laplacian operator

speed of internal Kelvin wave for the n-th baroclinic mode
frequency, 2n/T

phase of the vertical motion of the pycnocline with respect
to the forcing

densities of upper and lower layers; respectively

zonal and meridional components of wind-stress, respectively
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