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ABSTRACT

A radiation open boundary condition based on vertical normal modes is
introduced. This boundary condition has been applied to both a nested and a coupled
Equatorial Kelvin wave propagation test using the Naval Research Laboratory Coastal
Ocean Model (NCOM), which is a sigma-z-level hybrid coordinate model. This
boundary condition has also been applied to the more computationally difficult problem
of coupling the Naval Research Laboratory Layered Ocean Model NLOM), which is an
isopycnal coordinate model, to the NCOM for the test case.

The NCOM is a primitive equation ocean model which employees the hydrostatic,
Boussinesq, and incompressible approximations and uses a free surface. The NLOM is a
primitive equation ocean model, which is hydrodynamic (isopycnal) and utilizes a free
surface. Because both of these models use the full primitive equations, vertical normal
mode theory shows that the form of the modal equations is identical for the two models in
the linear limit. This allows a physical linkage between the two models that can be used
in a boundary condition application that is advanced in many ways over standard
radiation boundary condition approaches.

This approach is shown to be superior to standard radiation open boundary
conditions in NCOM coupling tests in which the number of vertical levels in the forcing
domain are fewer than the number of vertical levels in the area of interest. The

superiority comes both in the reduction of reflected outgoing waves, and in the ability to
viii



recognize and adjust the differences in the physics, of the two models, that affect wave
speed. An advantage to the latter superiority is that the noise created by the numerics of
the boundary condition and the error created by the differences in the physics of the two
models are distinct from each other. Another advantage is that the forcing data does not
need to be vertically interpolated at any time to be used in this calculation, thus reducing
one source of numerical noise or error.

The lack of vertical interpolation and the use of a physically motivated linkage are
advantages over numerical techniques when the forcing model uses different physical

equations than the model used to investigate an area of interest.



1. INTRODUCTION

Ocean models allow oceanographers to explore ocean physics without the
expense and time of scientific voyages but with the added benefit of denser data
coverage. Yet, modeling is not without monetary and time expense. As the base of
ocean knowledge expands, models with finer and finer resolution are desired to
investigate smaller and smaller ocean features. Because even small-scale dynamics are
influenced by the basin scale dynamics of the ocean, it quickly becomes expensive to run
a model of an ocean area of interest and all of its forcing area at the desired grid
resolution and time step.

Two techniques for handling the computational expense of modeling small-scale
ocean dynamics are coupling and nesting. Coupling uses data saved from a previous
integration of a basin scale model at a course grid resolution and time scale to force a fine
grid resolution model of the area of interest. Nesting links the basin scale and fine scale
models as the models run simultaneously. There are two types of nesting one-way
(passive), where only the fine grid is influenced in the interaction and two-way
(interactive), where both models influence each other. The key to either coupling or
nesting successfully lies in the handling of the communication between the grids. The
communication between the grids must not only handle the passing of forcing
information, but also control potential noise created at the artificial interface by

1



reflections of improperly specified waves trying to cross the boundary. The purpose of
this paper is to describe a new technique, which can be used for either nesting or coupling
ocean models. This paper will focus on passing information without interpolation of
vertical grid information yet allow the coarse and fine grids to have different vertical
structure.

Atmospheric models were the first to use nesting as an approach to solve
primitive-equations in domains of differing horizontal resolutions. Interactive nests use
separation of the dynamic and mesh interface (Kurihara et al, 1979) among other
techniques to reduce noise at the nest interface. A summary of atmospheric techniques
appears in Zhang et al. (1986). One of the first uses of interactive nested models in
oceanography was reported by Spall and Holland (1991). Fox and Maskell (1995)
expanded Spall and Holland’s work from increased resolution in the horizontal only to
increased resolution in the vertical and horizontal. Most interactive nesting methods are
founded on the idea of designing an interpolation scheme to transfer information from a
global or large-scale domain to a regional domain, and designing an averaging scheme to
transfer the data from the regional domain to the large-scale domain (Alapaty et al., 1998;
Laugier et al., 1996; and the references there in). Interpolation and averaging techniques
are inherently noisy, which creates numerical errors on the boundary. Often this
computational noise is best described as a form of aliasing (Perkins and Smedstad, 1998).
This type of aliasing is analogous to the aliasing found in data analysis caused by under
sampling a continuous time series. In nesting the aliasing is caused by the difference in

wave frequency between the two grids.



The Naval Coastal Model (NCOM) used to model the area of interest in this study
can be configured as a passive nested or a coupled model. Currently, an increase in
resolution is allowed in the horizontal but not the vertical. An interactive version of the
NCOM is in development. Passive nested models use open boundary conditions to pass
information from the large-scale grid to the fine mesh just as coupling does. The goal of
open boundary conditions is to allow all outwardly propagating waves to leave the
domain freely without causing reflections or spurious resuits at the boundary. Many open
boundary types have been suggested, and studies (Jensen (1998), Palma and Matano
(1998), and Palma and Matano(2000)) have shown that each can do a good job for certain
modeling configurations. In ocean modeling the most commonly used boundary
conditions are of the radiation type. These boundary conditions are based on the

Sommerfeld condition,, +c¢, =0, where ¢ is a model variable, c is the wave speed

required to transmit the wave with no reflections, and the subscripts are time and space
derivatives where x is the direction normal to the boundary. The major problem with this
boundary condition is that the modeled and real oceans contain many waves, which travel
at differing ¢’s. Orlanski proposed to calculate c for the dominant wave at a point just
inside the boundary using a leapfrog method to approximate the Sommerfeld boundary

condition. An easier to understand upstream difference form is given as (Reed and

Cooper, 1986)

y T ==Yy +réy,
where n is the time level, b is the boundary point, and r =cAr/Ax. ris calculated

numerically from

r =@’:-1 ‘¢::ll)/@::zl‘ ::ll .
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r’s values are confined to the limit 0<r<1 for stability reasons. Unfortunately, Orlanski
actually proves worse in many cases than just setting a constant ¢ because small
numerical errors corrupt the calculation (Durran, et al., 1993).

A simplification to the Orlanski boundary condition, called the Camerlengo and
O’Brien radiation boundary condition is used in this study (Camerlengo and O’Brien,
1980). Camerlengo and O’Brien uses only the direction of the Orlanski boundary
condition. This modifies the Orlanski relation such that if >0, then r=1, and if <0, then
r=0. Camerlengo and O’Brien showed that this method was better than Orlanski’s
method for problems with Kelvin waves exiting the domain. One reason it works better
is because it is a step toward a constant ¢ solution, which deliberately overestimates the
actual value of c, thus allowing more energy out of the domain.

Computational noise created by finite difference boundary conditions can be
mistaken for physical results (Skamarock and Klemp, 1993 and Kurschner, 1994). This
led Perkins and Smedstad (1998) to perform a frequency-decomposition to restrict
conservation and continuity to the frequencies shared by the coarse and fine grids. A
similar idea is employed here to reduce aliasing. In this paper, a technique based on
vertical normal mode solutions at the boundary is constructed to force the fine grid with
only the coarse grid information that is modally allowed on the fine mesh grid. Because
radiation boundary conditions are applied to the modes and not the data values, it is easier
to spot numerical noise versus physical signals in the results. The modal calculation also

allows the solutions to be checked to see if the grids are physically compatible with each

other.



The technique developed here is applied to a passive nesting NCOM test case of
an Equatorial Kelvin wave. This technique is then applied to the same test case in two
coupling situations in which the number of levels (layers) is not the same as the fine
mesh; first with a NCOM coarse grid solution and secondly with a Navy Layered Ocean
Model (NLOM) coarse grid solution.



2. NORMAL MODE BOUNDARY CONDITION BASICS

2.1 Model Formulation

The model used to test the normal mode open boundary conditions NMOBC) is
the Naval Coastal Ocean Model NCOM) developed by Paul J. Martin at the Naval
Research Laboratory — Stennis Space Center (Martin, 2000). This model is a hybrid
sigma-z coordinate model that is designed such that the free surface is a sigma level, and
the levels below the free surface are a specified number of sigma and z-levels. The
model can be run with all sigma or all z-levels (except for the free surface), or any
combination as long as the sigma levels overlie the z-levels. The configuration here is all
sigma levels.

The model equations with the hydrostatic, Boussinesq, and incompressible
approximations are given by Martin (2000) equations (1) to (8), with equation (5), the

sigma equation, excluded here as
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p= p(T’ S, 2))
where ¢ is the time, x, y, and z are the three coordinate directions, u, v, and w are the three

components of the velocity vector, Q is a volume flux source term, v is the vector

velocity, T is the potential temperature, S is the salinity, V, is the horizontal gradient
operator, f is the Coriolis parameter, p is the pressure, p is the water density, p, is a
reference water density, g is the acceleration of gravity, F, and F, are horizontal mixing
terms for momentum, 4,, is the horizontal mixing coefficient for scalar fields (potential
temperature and salinity), K,, and K,, are vertical eddy coefficients for momentum and

scalar fields, respectively, O, is the solar radiation, and y is a function describing the
solar extinction.

The NCOM has the capability to do one-way nesting. It currently comes coded
with several different boundary conditions including Orlanski radiation boundary

condition or an advective scheme for the baroclinic variables, and specified or Flather



radiation boundary condition for barotropic variables such as the surface elevation. The

NMOBC developed here are applied to the baroclinic variables only.

2.2 Normal Mode Open Boun Conditions

NMOBC for nesting a model of a single configuration is based on the work of
Jensen (1998), which compares different open boundary conditions for layer ocean
models. In this article vertical normal modes are used in conjunction with several
different types of boundary conditions to determine whether a mode passes across an
open boundary. Jensen assumes in his calculation that the stratification does not change
during the model run, therefore the normal mode matrices are calculated only once at the
beginning of the calculation. In the work presented here that assumption is not made,
therefore the normal mode matrices are recalculated at every time step for every
boundary point both for the coarse and fine meshes.
The normal modes are determined by solving for the eigenvalues and
eigenvectors of the Sturm-Liouville type partial differential equation of the form
(R./N?). +(ghy 'R =0 )
(See Appendix A for the derivation of this form from the NCOM model equations.)
where R is only a function of z, the double z subscript denotes a second-order z
derivative, ¥ is the Brunt-Viisili frequency, g is gravity, and 4 is the equivalent depth.
The eigenfunctions are found from the relation
AE =AE, (10)
where 4 is the n x n tridiagonal array formed by (9), E is the eigenvector array, and A is
the eigenvalue vector. The eigenvectors give the vertical normal modes of the model,



and the eigenvalues give the equivalent depth of each mode. Once the vertical normal
modes are known the related modal component of a model variable is determined by

(Jensen, 1993)

~ N
U=, U, (11)

7=l

where U is a model variable at a level j and can be a velocity component or a scalar such

as potential temperature or salinity, (1 p )" is the inverse of the eigenvector matrix, and

U, is the related modal component for mode k. Once I is determined for each mode, a

radiation boundary condition is applied to it. For the purpose of this study, the simple
Camerlengo and O’Brien (1980) radiation boundary condition is sufficient, but more

complex boundary conditions may also be used. After the radiation boundary condition
is applied (11) is inverted to reconstruct the model variable.

Because the Camerlengo and O’Brien radiation boundary condition is a
simplification of the Orlanski method, much of the existing NCOM Orlanski model code
was used in the implementation of the NMOBC. In the NCOM, the Orlanski radiation

condition uses a leapfrog temporal scheme and is formulated as (Rochford and Martin,

2001)

V(BN +1)=——[1-a¥(B,N ~1)+ 2a¥(B-LN)} (13)
a
where V, is either a velocity or scalar at a given boundary point ¢, B denotes the grid

point location of the boundary, B-1 denotes the first interior grid point location from the

boundary, N denotes the time level, and a is given by

a = max[0, min[l, cAz / Ax]} (14)
9



where

cAt V(B-L,N-1)-V(B-1LN +1) a15)
Ax V(B-LN+1)+V(B-LN-1)-2V(B-2,N)
This requires values of ¥, at the three time levels N-1, N, and N+1.

The NMOBC, using the Camerlengo and O’Brien radiation condition, calculation

is completed similarly to the Orlanski calculation, but instead of ¥, being a baroclinic

velocity or scalar it is the corresponding modal velocity or scalar. Also, a is calculated
but it is assigned such that if a<0, =0 and if a>0, a=1. This acts as a direction, such that
a =0 is flow out of the domain and a=1 is flow into the domain, and reduces equation
(13)to
V(B,N +1)=(Q1-a)V(B,N -1)+aV,(B-1N) (16)

This calculation is performed on both the fine mesh and the coarse mesh. The incoming
and outgoing signals are then combined in the following manner. If the direction
calculation of both grids suggest that the wave signal is into the fine mesh interior then
the coarse mesh solution is used. If the direction calculation of both grids suggest that
the wave signal is out of the fine mesh then the fine mesh solution is used. If the
direction calculation of the two grids disagree then the average of the two solutions is
used. The determination of signal propagation direction is performed for each mode
separately. Once the new modal solutions are formed using the Camerlengo and O’Brien
radiation boundary condition, they are summed using the inverse of (11) to find the
updated baroclinic velocity or scalar at a point along the boundary.
2.3 Numerical Example

A numerical example is offered to clarify the NMOBC'’s procedure. In this

example, the calculations will be performed for an actual scalar boundary point of the
10



first numerical test case that is discussed in the following section. For this test case there
are 14 sigma levels that are uniformly distributed in the vertical. There are 13 scalar
sigma levels at the midpoints of the main z-grid levels. Potential temperature is
initialized to 20.0 °C for all 13 vertical levels, and salinity is initialized as a linear
distribution from 35.0 ppt at the surface to 40.2 ppt at the bottom. The salinity
distribution approximately gives the desired stability value of N = 8.8x10>s. To keep
the coarse and fine mesh values from being identical, the example calculations will be
given after a one-day integration period.

The first step is to calculate the density distribution from the temperature and
salinity profiles. The method used for the NMOBC density calculation is proposed in
Brydon et al. (1999) and is used because they claim that this method is as accurate as
Mellor’s (1991) UNESCO calculation but is more computationally efficient. This

method calculates density from a seven-term polynomial cubic in potential temperature

and linear in salinity such that

o(T,S, p) = C(p) + Co(P)T + Cy(p)S + Cy(P)T* + C(p)ST + C(p)T* + C(p)ST?, (17)
where 6 = p —1000 kg m™. The coefficients, Ca(p), are calculated through a two-stage
least square fitting procedure and are of the form C,(p) =a, + B,p +7,p’ where p is the

pressure. To calculate the Briint-Viisild frequency the pressure differences are ignored,
i.e. p=0. The density calculation results for the test case are in Table 1.
Next, the square Briint-Viisild frequencies are calculated for the 14 sigma-levels. This is

done by calculating N* =-gp; 'c. using center differences for the interior 12 levels and

then linearly interpolating to the ends. See Figure 1 for the N? finite difference

11



Table 1: Density calculation input and results rounded to the nearest thousandths. CM is
the coarse mesh calculation. FM is the fine mesh calculation. T is the potential
temperature. S is the salinity. o is the density.

L CM-T CM-S CM-o FM-T FM-S FM-o
e o @) | Ggm®) | (O) @ | kegm?)
1 20.00000 35.19968 | 24.93680 20.000 35.19973 | 24.93684
2 19.99995 35.59764 | 25.23873 20.000 35.59771 | 25.23877
3 19.99995 35.99606 | 25.54100 20.000 35.99610 | 25.54102
4 19.99995 36.39454 | 25.84332 20.000 36.39460 | 25.84335
5 19.99997 36.79295 | 26.14557 20.000 36.79297 | 26.14558
6 19.99997 37.19141 | 26.44787 20.000 37.19155 | 26.44797
7 19.99997 37.58988 | 26.75018 20.000 37.58987 | 26.75017
8 19.99997 3798836 | 27.05249 20.000 37.98838 | 27.05250
9 19.99997 38.38677 | 27.35475 20.000 38.38675 | 27.35473
10 19.99997 38.78524 | 27.65706 20.000 38.78523 | 27.65705
11 19.99997 39.18366 | 27.95933 20.000 39.18366 | 27.95932
12 19.99997 39.58210 | 28.26161 20.000 39.58211 | 28.26162
13 20.00000 39.98006 | 28.56353 20.000 3998018 | 28.56362

locations. Use the density values from Table 1 and py, which has a model assigned value
of 1025 kg m>, to give the N* values recorded in Table 2.

The calculation of the eigenvalues and eigenvectors at the 13 scalar sigma levels
are next. First equation (35A) is put in its finite difference form with R=p(z) and

A=(gh)".

1 [ 1 (p,,,.-p,,) 1 (pq—pq-l]]
- +Ap, =0, (18)
zk+l - zk l:Nkzd k zq+l - zq Nkz zq - zq-l !

12



] =

)% h 2=0,k=1
 J

% k-1

e q-1

¥ Kk

¢ q
—¢ k+1

o Qq+1

>

o

s s T << 2=Hk=L

®
N
1]

r

Figure 1: z-grid showing positions of N’ and p. p is given at the locations marked with a
dot, and N’ is located at points marked with and x.

where the relative positions of N° and p are given in Figure 1. Rewrite equation (18) as

-1 1
P 3 2 +A
q[:Nl:q(zm - kazqq - zq) Ni(z... - kaz., - zq-l) :I (19)

1 1
+ p + 2 + p - = 0’
! l|:N k+l(zk+l - sz;qH - zq)] ! ll:N kz(zkd - kazq - zq-l)]
where the coefficients of p, will be placed on the diagonals of a tridiagonal matrix, and

the coefficients of p,.; are the subdiagonals and the coefficients of p,., are the
superdiagonals of the matrix. Note that the tridiagonal matrix is symmetric about the
diagonal. To solve for the coefficients of (19) boundary conditions need to be applied.

The boundary conditions applied here are those of Gill (1982) where R = p.

—+—p=0 at z=0. (20)



and

dz at z=-H 210

Table 2: Square Briint-Viisili frequencies (V) calculated by the model. CM is the
coarse mesh values. FM is the fine mesh values.

CM - N FM-N°
levels N "
) )
1 7.49743x107 7.49823x10”
2 7.50572x10” 7.50582x10”
3 7.51402x107 7.51340x10~
4 7.51506x10” 7.51549x10™
5 7.51364x10° 7.51316x10”
6 7.51463x107 7.51644x10™
7 7.51502x10” 7.51255x10™
8 7.51501x10” 7.51549x10”
9 7.51383x10° 7.51326x107
10 7.51487x10° 7.51516x10”
11 7.51407x10” 7.51397x10”
12 7.51431x10” 7.51464x10™
13 7.50510x10” 7.50719x10
14 7.49590x10” 7.49974x10™

Using the N°’s in Table 2, the diagonals and subdiagonals are calculated and placed in

Table 3. This tridiagonal matrix is then solved using the LAPACK eigenvalue-

eigenvector solver SSTEVX. The eigenvalues are the A’s of equation (19) and the

eigenvectors are the normal mode solutions. The eigenvalues, 1", are equal to the square
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Table 3: Calculated values of the coefficients from equation (19) where the diagonals are
the coefficients for p, and the subdiagonals are the coefficients for p,_;.

Levels CM cM FM FM
diagonal subdiagonal diagonal subdiagonal

1 9.01179 e 9.01167 e

2 18.00301 -9.00648 18.00364 -9.00637
3 17.99182 -8.99653 17.99202 -8.99727
4 17.99227 -8.99529 17.99233 -8.99478
5 17.99278 -8.99699 17.99119 -8.99755
6 17.99114 -8.99580 17.99194 -8.99364
7 17.99069 -8.99534 17.99307 -8.99830
8 17.99210 -8.99534 17.99221 -8.99477
9 17.99227 -8.99676 17.99261 -8.99744
10 17.99199 -8.99551 17.99176 -8.99517
11 17.99268 -8.99648 17.99239 -8.99660
12 18.00341 -8.99619 18.00051 -8.99579
13 9.00722 -9.00722 9.00471 -9.00471

of the phase speed, c, and also equal to gh, so the dynamic height of each mode is known.
Table 4 gives the eigenvalues and the phase speeds of Table 3’s tridiagonal matrix and
Table 5 gives the barotropic and first three baroclinic normal modes.

Notice that the baroclinic modes are sine waves with the number of zero crossings
equal to the mode number. This pattern continues for modes not included in Table 5.
There is now only one step left before applying equation (11) and changing to modal
space. That step is to invert the eigenvector matrix. This is accomplished by applying
the LAPACK subroutines SGETRF and SGETRI. SGETRF preconditions the matrix by
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Table 4: Calculated eigenvectors and their corresponding phase speeds. Recall mode
number 0 corresponds to the barotropic mode, and mode numbers 1 — 12 are the

baroclinic modes.

Mode number M ); CMc FM I; FMc¢
(s/m) (m/s) (s/m) (m/s)
0 4.07695x10~ 49.52585 4.06742x10™ 49.58387
1 0.52363 1.38194 0.52363 1.38193
2 2.06184 0.69642 2.06180 0.69643
3 4.52621 0.47004 4.52626 0.47003
4 7.77412 0.35865 7.77380 0.35866
5 11.61624 0.29340 11.61615 0.29341
6 15.82947 0.25134 15.82871 0.25135
7 20.16833 0.22267 20.16736 0.22268
8 24.38018 0.20253 24.37998 0.20253
9 28.22042 0.18824 28.21929 0.18825
10 31.46421 0.17828 31.46458 0.17827
11 33.92640 0.17168 33.92579 0.17169
12 35.46170 0.16793 35.46228 0.16793

performing a Lower-Upper factorization. SGETRI calculates the inverse of the output
from SGETRF. Note that the inverse of the eigenvector matrix is approximately equal to
the transpose of the matrix.

Next, the modal components are calculated using equation (11) and the results for
salinity are shown in Table 6. Note: for temperature and salinity a mean value must be

removed from U; before (11) is applied to reduce numerical error in the calculation.
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Table 6: Modal components of salinity upon application of equation (11) where the mean
salinity value has been subtracted. CM is the coarse mesh results. FM is the fine mesh

results.
Mode CM — modal salinity FM — modal salinity

1 9.34383 9.34397
2 -5.32836 -5.32833
3 -7.74860x107° 6.06775x10”
4 0.58062 -0.58066
5 2.28882x10” 3.45707x10”"
6 -0.19912 -0.19914
7 -1.19209x10” -7.09295x10”
8 -9.24672x10* -9.24729x10™
9 1.26362x10” -8.70228x10
10 4.63802x10™ -4.63663x10™
11 8.76188x10”° 6.02007x10°
12 -1.98931x10™ -1.98981x10™
13 3.57628x10™° -1.80304x10”

Next ¢ A7fAx is calculated using equation (15) and a propagation direction, a, is
found. The propagation direction is given in Table 7 for each mode. Note that the values
calculated from (15) represent inflow or outflow of the grid it is calculated on.

Therefore, the coarse mesh values must be switched to reflect inflow or outflow on the
associated fine mesh, for example, if the coarse mesh value from (15) equals 1.0 it is
changed to equal 0.0. Next the radiation condition (16) is applied to the modal salinities

for the coarse and fine meshes. The coarse and fine mesh modal components are
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combined to form a single new modal component. Here the combining is done by using

the coarse mesh value if the direction of both meshes is into

Table 7: The direction of propagation calculated from the sign of the results of equation
(15). Direction equal to 0.0 results in propagation into the fine mesh. Direction equal to

1.0 results in propagation out of the fine mesh. CM is the coarse mesh results. FM is the
fine mesh results.

Mode CM - direction FM — direction
1 0.0 1.0
2 1.0 1.0
3 1.0 0.0
4 1.0 0.0
5 1.0 0.0
6 0.0 1.0
7 0.0 1.0
8 0.0 1.0
9 0.0 1.0
10 1.0 1.0
11 1.0 0.0
12 1.0 0.0

the fine mesh, the fine mesh value if the direction of both meshes is out of the fine mesh,
and average the fine and coarse mesh values if the directions oppose each other. This
gives the new modal component given in Table 8.

Next the inverse of equation (11) is applied to revert from modal space to model

space. This gives the new boundary values for salinity, shown in Table 8, after the mean

value has been re-added.
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Table 8: Modal Salinity after the radiation condition has been applied and the combining
of the fine and the coarse mesh solutions is completed. Final Salinity is the result of
applying the inverse of equation (11) and adding back the mean salinity value.

Mode Modal Salinity | Final Salinity
1 9.34397 35.19970
2 -5.32836 35.59767
3 451891x10° | 35.99606
4 -0.58063 36.39459
5 3.57054x10° |  36.79299
6 -0.19913 37.19157
7 -5.01253x10° | 37.58992
8 -9.24796x107 |  37.98841
9 -3.49681x10° | 38.38680
10 4.63756x107 | 38.78525
1 8.53450x10° | 39.18366
12 -1.99141x107 | 39.58207
13 5.38815x10° | 39.98016
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3. NUMERICAL TESTS

3.1 Gaussian Perturbation — Nested NCOM
An Equatorial Kelvin wave propagation study is used as a numerical test for the
NMOBC. In particular, a gaussian perturbation symmetric about the equator is added to

salinity and then allowed to evolve in an ocean initiaily at rest. The perturbation is

determined by

5=S+8s exp{i";—y—)] 22)

where x = (A-Ag)cosd, y = (¢-9o), Ao and ¢ are the values of longitude and latitude at the
center of the perturbation, respectively. For this study, A is equal to 164.390625°W, and
¢o is equal to 0.0°N. L is 500 km, S is the original value of salinity, which is a linear
transform with 35.0 ppt at the surface and 40.2 ppt at the bottom, which gives a constant
N2 profile, and 3s is the first baroclinic mode salinity perturbation. See Appendix C for
the calculation used in this study. Similar tests have been conducted using layer models
of the ocean (Ginis et al., 1998) and ocean-atmosphere coupling (Philander et al. 1984).
The NCOM for this test case is run with a 1:2 nesting ratio. The large domain of
the study is 109.125°E to 70.875°W and 21.0°N to 21.0°S with a grid of 248x81 and Ax =
0.703125° and Ay = 0.5°. The nest domain of the study is 151.559°W to 130.816°W and

9.875°N to 9.875°S with a grid of 60x80 and Ax = 0.3515625° and Ay =0.25°. The large
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domain contains the Pacific Ocean coastline, but the bathymetry for it and the small
domain is set to a flat bottom of 500 m to simplify the modal calculations for the test
case, islands; however, are retained. The northern and southern boundaries of the large
domain are closed. Both models are run with 14 sigma levels evenly spaced in the
vertical. The perturbation is centered in the large domain. The time increment is 30
minutes for the coarse mesh and 15 minutes for the fine mesh.

Because the ultimate goal of this research is to link unlike physics, the goal of this
test is to have model results as good as using the boundary condition options included
with the NCOM, e.g. Orlanski radiation boundary conditions for scalars and normal
baroclinic velocities and a zero gradient condition for tangential baroclinic velocities.

Figures 2 and 3 illustrate the salinity field and currents of this test case where the
axisymmetric perturbation propagates as a Rossby wave to the west and as a Kelvin wave
to the east. The salinity and currents show a smooth transition in the fine mesh region
from the constant density per level with no flow state to the perturbed state. When the
Kelvin wave perturbation leaves the fine mesh region there is minimal reflection as the
wave initially impacts the open boundary. Especially notice that the salinity reflections
in these plots are on the order of 2x10°; therefore in most modeling cases these
reflections would not even be noticeable. The NMOBC gives similar results as

compared to the Orlanski and zero gradient solution and can be considered a successful

nesting boundary condition.
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Figure 2: Salinity results of the CM NCOM for days 0, 15, and 30, with contours of the
NMOBC salinity result in the left column and contours of the Orlanski results in the right
column. FM bounding box is in gray. Contours match the color-scale interface values.
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Figure 3: U-Velocity results of the CM NCOM for days 0.25, 15, and 30, with contours
of the NMOBC salinity result in the left column and contours of the Orlanski results in
the right column. FM bounding box is in gray. Contours match the color-scale interface

values.
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3.2 Gaussian Perturbation — Coupled NCOM

In this test case, the coarse mesh model is the same as in the test case presented in
section 3.1 except that instead of 14 sigma levels the model now only has 6 sigma levels
with a time step of 20 minutes. This reduction in sigma levels is comparable to the
operational NLOM set up of 6 layers. The fine mesh is also the same except now there
are 40 sigma levels with a time step of 800 seconds. The number of sigma levels is
chosen to be approximately the value commonly used in coastal simulations. The NCOM
does not currently allow differences in the number sigma levels between the coarse and
fine mesh in a nested simulation so the model is run in a coupled situation. The coarse
mesh is run with the Gaussian perturbation first, saving output every six hours. This
output is then used as input to the fine mesh model with the data interpolated to each fine
mesh time step inside the NCOM model run. The coarse mesh simulation is also run at
the fine mesh horizontal resolution with 40 sigma levels and a time step of 400 seconds
for comparison purposes.

Two runs are completed for the fine mesh. First, an Orlanski radiation boundary
condition case is run where the input data is interpolated from the coarse mesh grid to the
fine mesh horizontal and vertical grid structure. In the portion of the vertical grid where
no information on the coarse mesh is known, i.e. near the surface and near the bottom,
filling of the nearest value is performed. Second, a NMOBC case is run where the input
data is interpolated in the horizontal but not in the vertical. Because there is a difference
in the number of eigenvectors in six-level coarse mesh and the 40-level fine mesh there is
no longer a one-to-one ratio for radiation boundary conditions to applied to each mode.
In this case, the NMOBC'’s are applied to the first six modes where both models have
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Figure 4: Difference plot for level 3 U-Velocity of the coarse mesh NCOM run at the fine

mesh resolution and the NMOBC solution for the coupled NCOM to NCOM fine mesh at
days 10, 20, 30, and 40.

26



Difference Plot for V-Velocity Day 10 , 193 Difference Plot for V-Velocity Day 20 , 19~

8 4 8
] 3 6
s 2 4
2¢ 1 2
5 of o § O
-2 -1 -2
- -2 -4
-6 -3 -6
-8 -4 -8
1020 215 220 225 0 %0 215 220 225
lon lon
Difference Plot for V-Velocity Day 30 , 192 Difference Plot for V~Velocity Day 39.5 , 1072
s sti
6] 6§
4 4r
2 | 2
E O | 8 O

{
N

b &

20 215 220 22 210 25 220 | 225
lon lon

Figure 5: Difference plot for level 3 V-Velocity of the coarse mesh NCOM run at the fine

mesh resolution and the NMOBC solution for the coupled NCOM to NCOM fine mesh at

days 10, 20, 30, and 40.
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Figure 6: Difference plot for level 3 Salinity of the coarse mesh NCOM run at the fine
mesh resolution and the NMOBC solution for the coupled NCOM to NCOM fine mesh at
days 10, 20, 30, and 40.
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Figure 7: Difference plot for level 3 U-Velocity of the coarse mesh NCOM run at the fine
mesh resolution and the Orlanski solution for the coupled NCOM to NCOM fine mesh at
days 10, 20, 30, and 40.
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Figure 8: Difference plot for level 3 V-Velocity of the coarse mesh NCOM run at the fine

mesh resolution and the Orlanski solution for the coupled NCOM to NCOM fine mesh at

days 10, 20, 30, and 40.
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Figure 9: Difference plot for level 3 Salinity of the coarse mesh NCOM run at the fine
mesh resolution and the Orlanski solution for the coupled NCOM to NCOM fine mesh at
days 10, 20, 30, and 40.
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Figure 10: Time series plot of salinity along the equator of the coarse mesh domain run
with the fine mesh resolution (left), NCOM-NCOM coupling with Orlanski boundary
conditions (middle), and NCOM-NCOM coupling with NMOBC's.
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Figure 11: Time series plot of salinity along 132°W of the coarse mesh domain run with
the fine mesh resolution (left), NCOM-NCOM coupling with Orlanski boundary
conditions (middle), and NCOM-NCOM coupling with NMOBC’s.
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corresponding eigenvectors, and the remaining 33 modes of the fine mesh are allowed to
follow a basic open boundary condition without any influence of the coarse mesh.

The NMOBC'’s have to be carried out a little differently in a coupling case than a
nesting case. In the nesting case Camerlengo and O’Brien (1980) is used to calculate the
phase speed of the baroclinic variables. In the coupling case better resulits are given if the

phase speed of baroclinic velocities are calculated from the associated eigenvalues. The

eigenvalues associated with the normal modes are given as A = —1; = iz , therefore the

phase speed is easily calculated. Also, in this case, the phase speeds are never negative
so the phase speed always shows an outgoing wave. This actually helps the solution, as
could be predicted from results reported by Durran et al. (1993). Durran et al. states that
constant values of phase speed produce less numerical boundary noise than values that
vary. Even though Camerlengo and O’Brien (1980) use phase speed of 0.0 or 1.0, the
value at a single point and a single mode could oscillate between the two extreme from
one time step to the next creating boundary noise.

The baroclinic results for the Orlanski and NMOBC cases are differenced from
the baroclinic results of the coarse mesh run at the fine mesh resolution. These results are
plotted in Figures 4-9 for days 10, 20, 30, and 40 for level 3 (~32 m depth). It can be
seen from these figures that the interior solution for the two fine mesh cases are very
similar; however, the results near the boundary are very different. The Orlanski solutions
contain boundary noise that propagates into the interior solution. This does not happen in
the NMOBC solution. The noise in the Orlanski solution is most likely a result of the

noise produced because by density mismatches caused by the vertical interpolation
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scheme used in the boundary values. This mismatch produces strong density gradients at
the boundary, which induces opposing velocities only one grid spacing apart. This is
seen in animations of the solution. This gives a very strong argument for the use of
normal modes in coupling situations. With the use of vertical normal modes filling is not
needed and the vertical information is passed more accurately.

The edge effects in the NMOBC salinity results are most likely the result of an
error in the coding. This effect was not present in early forms of the code, but attempts to
find the error have not been successful. However, because the errors do not destroy the
stability on the boundary they do not propagate into the interior. This is result of the
numerical errors of the NMOBC scheme being separate from the physical errors.

The large differences in the interior solution between the coarse mesh model run
at the fine mesh resolution and the results of the coupled fine mesh runs appear to the be
the results of the difference in the phase speeds of the incoming waves produced by the 6
level coarse mesh and the phase speed of the same wave on a finer mesh. On the coarse
mesh the phase speeds of the barotropic mode and the first two baroclinic-modes are
49.5585, 1.3945, and 0.7223 m/s respectively. On the fine mesh the phase speeds of the
barotropic mode and the first two baroclinic-modes are 49.4969, 1.3790, and 0.6904 m/s
respectively. Although the differences between these phase speeds are small, they are
significant enough to impose a wave that propagates at a different speed than if the entire
calculation was done on the finer mesh.

Another way of looking at the numerical boundary error produced with Orlanski
or NMOBC’s is to look at time series plots (Figures 10-11). Here two 1-D slices for
salinity in the horizontal at 96 m depth are plotted showing results of the coarse mesh run
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at the fine mesh resolution, the fine mesh using Orlanski radiation boundary conditions,
and the fine mesh using NMOBC'’s. A slice along the equator of the fine mesh (Figure
10) shows a dominate Kelvin wave propagating through the domain, but it also shows the
numerical error propagating off of the eastern and western boundary in the Orlanski case.
This error is not present in the NMOBC case. Also, a slice near the eastern boundary of

the fine mesh at 132°W and perpendicular to the eastern boundary shows numerical noise

in the Orlanski case but not in the NMOBC case.

3.3 Gaussian Perturbation — NLOM Coupled to NCOM

In this test case, the coarse mesh solution is obtained from a six layer,
hydrodynamic Naval Layered Ocean Model (NLOM) with the same horizontal grid as the
previous coarse mesh model, equal thickness layers, and a 28-minute time step. Because
this is a layered model, the physics of the model are quite different from the NCOM (see
Appendix B for the NLOM model equations). Yet, it is often attractive to use a large-
scale layered model in the deep ocean because of the capabilities of the layered system,
while sigma level models work better in coastal regions where topography is variable and
vertical density and current structure varies rapidly. This makes the coupling of these
two types of models a desirable proposition. Yet, vertically interpolating NLOM
variables to the NCOM vertical grid introduces a large source of noise on the NCOM
grid. This is where normal modes are helpful. As shown in Appendix B, the vertical
normal modes of the NCOM and the NLOM are identical. This supplies physical means
to couple these differing models. In addition, Lighthill (1969) gives a more precise and
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simpler calculation for the matrix, 4, in equation (10) for a layered model. 4 is formed

by

4, = E4Puinsn 23)
P,
where j and k are the matrix indices, g is gravity, H; is the layer thickness of layer j, and p;

is the density of layer j. As in the previous section, the NMOBC’s radiation portion are
applied only to the first six levels and open boundary conditions are applied to the
remaining 33 levels of the fine mesh NCOM, and the eigenvalues are used to provide the

phase speed.

In this test case the fine mesh model is identical to the model in the previous
section. The source of the coarse mesh boundary conditions is the only set-up difference
between section 3.2 and section 3.3. For the Orlanski case, the input temperature and
salinity are interpolated from values calculated from the Brydon et al. (1999) equation of
state where density is known from the NLOM results and temperature is setto be a
constant equal to 20°C for all layers. The NMOBC case uses the Brydon et al. results,

but the vertical interpolation is not completed.

The NMOBC and Orlanski cases are again compared to the coarse mesh run on
the fine mesh horizontal grid and 40-levels which was presented in the previous section
(Figures 12-17). Like the coupled NCOM to NCOM case, the interior solutions for the
two runs are similar, but again the Orlanski case has boundary errors that propagate into
the interior. In this test case for the NMOBC'’s, the coarse mesh does not significantly
influence the temperature and salinity because the modal values are too dissimilar

between the NLOM and NCOM grids. Therefore, the model relaxes to temperature and
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salinity values that are consistent with the baroclinic velocity structure. This is not an
unusual idea; current techniques used to couple the NLOM to the NCOM do not always
take into account the temperature and salinity. In these techniques, either the temperature

and salinity are not forced at all, or the temperature and salinity are forced using

climatological values from Levitus data.

Comparing the results of the coupled NCOM case to the coupled NLOM case
reveal the differences between forcing a model with input from a model with the same or
differing physics. As previously discussed, the coupled NCOM case shows phase speed
error in the interior solution. The coupled NLOM case do not show phase speed errors
but instead show magnitude errors, especially in u-velocities. This is a result of the phase

speeds being more accurate with Lighthill’s eigenvector calculation.

Time series plots of U-Velocity at 96 m depth for this test case also reveal the
propagating numerical error in the Orlanski solution (Figures 18-19). U-Velocity is
plotted instead of salinity because the velocity is calculated on the NLOM grid while the
salinity has to be calculated from density. The NMOBC case is clean of propagating

numerical error originating at the boundaries.
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Figure 12: Difference plot for level 3 U-Velocity of the coarse mesh NCOM run at the

fine mesh resolution and the NMOBC solution for the coupled NLOM to NCOM fine

mesh at days 10, 20, 30, and 40.
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Figure 13: Difference plot for level 3 V-Velocity of the coarse mesh NCOM run at the
fine mesh resolution and the NMOBC solution for the coupled NLOM to NCOM fine
mesh at days 10, 20, 30, and 40
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Figure 14: Difference plot for level 3 Salinity of the coarse mesh NCOM run at the fine

mesh resolution and the NMOBC solution for the coupled NLOM to NCOM fine mesh at
days 10, 20, 30, and 40.
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Figure 15: Difference plot for level 3 U-Velocity of the coarse mesh NCOM run at the
fine mesh resolution and the Orlanski solution for the coupled NLOM to NCOM fine
mesh at days 10, 20, 30, and 40.

42



Difference Plot for V-Velocity Day 10 192 Difference Plot for V-Velocity Day 20 , 102
— 5 I O 5

lat
lat

210 215 220 225
lon

Difference Plot for V-~Velocity Day 39.5 y 192

lat
lat

210 215 220 225
lon lon

Figure 16: Difference plot for level 3 V-Velocity of the coarse mesh NCOM run at the

fine mesh resolution and the Orlanski solution for the coupled NLOM to NCOM fine

mesh at days 10, 20, 30, and 40.
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Figure 17: Difference plot for level 3 Salinity of the coarse mesh NCOM run at the fine

mesh resolution and the Orlanski solution for the coupled NLOM to NCOM fine mesh at

days 10, 20, 30, and 40.
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Figure 18: Time series plot of u-velocity along the equator of the coarse mesh domain run
with the fine mesh resolution (left), NLOM-NCOM coupling with Orlanski boundary
conditions (middle), and NLOM-NCOM coupling with NMOBC’s.
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Figure 19: Time series plot of u-velocity along 132°W of the coarse mesh domain run
with the fine mesh resolution (left), NLOM-NCOM coupling with Orlanski boundary
conditions (middle), and NLOM-NCOM coupling with NMOBC'’s.
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4. CONCLUSIONS

The results given in the previous sections demonstrate that normal mode open
boundary conditions are a viable alternative to the commonly used Orlanski radiation
boundary condition. This is especially true when the linkage requires vertical
interpolation between the coarse and fine mesh in a coupling situation. This study was
carried out in minimal flow situations. The low velocity values contribute to the noise in
the radiation solutions. Yet, the NMOBC’s handle low velocity situations with minimal
numerical noise. Because radiation boundary conditions appear to have better results in
situations of faster flow, it is reasonable to predict that the NMOBC’s will also perform

well under these conditions.

It should be noted that normal modes in their theoretical calculation assume that
the ocean floor is flat. That necessity was taken into consideration when the previously
discussed test cases were developed. It is unclear from this study how “flat” the bottom
is required to be in the proximity of the boundary to apply NMOBC’s. However, a slight
modification to normal mode theory by Charney and Flierl (1981) allows non-flat
bottoms. This modification may prove to be an improvement to NMOBC’s in the future

if flatness of bottom appears to be a hindrance to NMOBC'’s further development.

A benefit to using NMOBC'’s is the separation of numerical errors from physical

errors. Because the modes are handled individually it can be easily found if the modes on
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each grid match or if a mismatch in modal strength will produce aliasing. If aliasing has
a potential of occurring, alternatives to the solution can be added to the code to limit the
effect of the physical error. When the modes are not handled separately, the physical

mismatch between the coupled models is disguised as numerical error.
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Figure 20: Bottom topography of coarse mesh grid proposed for future work. Inner box
represents location of proposed fine mesh.
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5. FUTURE WORK

Further studies to see how robust this method is are currently being developed.
The study, currently being proposed, looks at eddy formation at Cabo Corrientes, Mexico
(Figure 20). Eddies in this region are generated when a coastally trapped wave passes the
cape at Cabo Corrientes. Zamudio (2001) showed that these eddies are the result of the
intensity of the coastally trapped wave and the radius of curvature of the cape itself.
Because the eddies are not a result of bottom topography or wind, new complexities can
be added one by one to investigate the effect on the NMOBC’s. Such complexities to be
added include non-equal layer/level thicknesses, realistic thermocline structure, and

realistic bottom topography. Plus, looking at eddies tests the NMOBC’s with non-normal

flow impacting the boundary.
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APPENDIX A

NORMAL MODE DERIVATION OF NCOM EQUATIONS

Using the method put forth by Philander (1990), the normal modes of the NCOM
model equations are here derived. The NCOM equations are as given in equations (1) to
(8). To perform the normal mode calculation the model equations first need to be

reduced to five equations. The reduction begins by examining the time dependence of

the equation of state, (8)

dp 6_p| dT _dp| dS dT ds
ap _ < 5 i —+Bp, —. (1A)
a otk dr Tasha T Poa TPy
Expanding the material time derivatives as
_.ap--) (ar-_)(as-_)
= +V. =-a|—+V.(T —+V.(¥S (3A)
pi(L+9-00) = o(Z+7-61))+ 8(Z+9-69)

allows equations (6) and (7) to be substituted to obtain the form

p:'(p. +V-Gp))=-alOT +V,(4,V,1)+(K,T.). + Oy ]+

4A)
B [QS +V,(4,V,5)+ (KHS:):]
where the subscript z equals §/6z and the subscript f equals d/or .
By again using equation (1A) it can be shown that
Po lvh(AHVhp) =-aV,(4,V,I1)+BV,(4,V,S) (5A)
and
s '(Kyp.). =-a(K,T). + B(K,S.).. (6A)
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Substituting (5A) and (6A) into (4A) gives a prognostic equation for density

Ps'P. =—P; 'V -(Fp) + Q(-aT + BS)+ p;'V,(4,V,p) + ps'(Kyp.). —2Qy. (TA)
that can replace equations (6) to (8). Equation (7A) along with equations (1) to (4) are
the reduced set of equations from which to solve for the normal modes.

The next step in forming the normal mode equation is to linearize the five reduced
equations. When linearizing, the ocean is assumed to be in its basic state, motionless,

and motion and density variations are small perturbations to the basic state. The vertical
variation in density is the square Briint — Viisald frequency: N* =-gp;'p., where p, is
set as a model constant. Let K,, = K,, = A/ N>. Also substitute in correct forms of F,
and F, (Martin et al., 1998); F, =V, (4,,V,u) and F,=V,(4, V,v), where 4y, is the

horizontal mixing coefficient. With these assumptions, the linearized form of the

NCOM equations become
" A
U~ fo+p, p,=Qu+V,(4,V,u)+ ("N—z“:) (8A)
- A
Vit fu+p,p,=Qv+ v, (4,V )+ (FV:) (9A)
u,+v, +w. =Q (10A)
pg+p.=0 (11A)

_ N'w - AN?
Po P, ———=Q(-aT +pS)+ po'V,.(AHV,.p)-( 3 ) -aQy.  (124)
Pog Ng).

Further simplify these equations by letting Q equal zero and having a negligible effect

from solar radiation. Note that (4N?/N?g). =(4/g). =0.
With this form of the equations it is possible to solve for the normal modes as in
Philander (1990). First, eliminate p by substituting (11A) into (12A) to obtain
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P, +Nw=V,(4,V,p.) (14A)
For the normal mode decomposition apply a separation of variables to the simplified

equations (8A) to (10A) and (14A) of the form

u=Yy U,x,y,0R () (15A)

v=>Y V(% .0R,(2) (16A)

P =2 n.(xy0R,(2) (17A)

w=Y W,(x,y.0)S,(z) (18A)

Substitution yields

A

UR- VR +pn.R ={ S5 UR. ) (194)
A

VR+ fUR+pn R = (-F VR:) (20A)

UR+V.R+WS_=0 (21A)

R+ N*WS =V ,(4,VnR.
nK. #(A44VnR.) (224)

where the subscript m has been dropped. By rearranging (21A) to isolate the dependance

on the z coordinate one finds
U+V, 8§
et SIS T Y "
—W R (23A)
Therefore, if L =1/gh
R= —ghS: (24A)

By separating the z-dependence in (19A) one obtains
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AU R

U-/+n, 1(R 1 (25A)
== w )=
This gives the separated equations i

== _-5,

U-fV+n,=-4U/gh (26A)
and
R
(F)_ =-R/gh. (27A)
To separate (22A) divide by N°, apply 8/8z and substitute in equation (21A) to obtain
R, R,
"(F) -RU,.+V,)= Vh(AHVm(N—a):} (28A)

A separation of variables then yields

U, +V, I(R,) 1

n, - Vi(4,Vn) TR T gh (29A)

Equations (26A), along with the corresponding V form, and (29A) represent

the (x, y,f) normal mode equations:

U~V +gn, =-AU/gh (30A)
Vl.{.ﬂj-i»g'ny:-AV/gh (B1A)
N -Vi4,Vn)=-ghU, +V,) (32A)

The vertical mode equation related to the vertical velocity is formed by combining

equations (24A) and (27A) to get

(i-—_) + i =0
N gh (33A)
This has the general solution
NZ
S.+—S=
=t S=e (34A)

for which the arbitrary constant, c, can be chosen to have the particular solution ¢ =0

without a loss of generality. This differential equation is of the Sturm-Liouville form and
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can be solved via standard numerical methods. Likewise, the vertical mode equation
related to the density and horizontal velocities is given by (27A) and is written in Sturm-

Liouville form as

(1 OR 1
—{ e e +—R=0. 35A
62:(N2 62) gh (334)

This is the form of the vertical normal mode equation used to calculate the eigenvalues

and eigenvectors for the open boundary conditions in the presented method.
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APPENDIX B

NORMAL MODE DERIVATION OF NLOM EQUATIONS

The normal modes for the NRL Layered Ocean Model (NLOM) are derived
similarly to the NCOM case. The current NLOM is a descendent of the layer model by
Hurlburt and Thompon (1980). It has significant enhancements that are discussed in
Wallcraft (1991), Wallcraft and Moore (1997), and Moore and Wallcraft (1998). The
NLOM is available reduced gravity and finite depth versions. Also, the NLOM can be
run in either a hydrodynamic mode, which is spatially and temporally constant density
within each layer, or a thermodynamic mode, which has density varying spatially and
temporally in each layer, i.e. density is a prognostic variable.

The vertically integrated equations of motion for the NLOM are of the form:

v, P s d
St G4V Y, +kx fV,=-hY GV (b~ H)

I=1

+max(0,®,)¥,,, - (max(0,~»,) + max(0,0,_, , + max(0,~»,_)V,_, (1B)
+@ —T.) Po + ARV,

P -

FRAR AN (2B)

where
h, = k-th layer thickness
V. = k-th layer velocity
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Vlz = hy,
Hj = k-th layer thickness at rest

H,= D(x,y)—Z:HI

D(x, y) = total depth of the ocean at rest
f = coriolis parameter
Ay = coefficient of horizontal eddy viscosity

P, = k-th layer density, constant in space and time

g forl <k
G/d=

g-2(p,—Pe) Po forl > k

f\v fork =O

T = kPole —del(i;k ‘i’.lm) fork=1...n-1

C,Po V.| ¥, fork=n
Ci = coefficient of interfacial friction
C» = coefficient of interfacial friction
T, = wind stress

{0 fork=0,n

max(0w;) - max(0,0;)-ho, fork=1...n-1

m-:g;ﬁ(;-L)
SR CET R
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s Jleax0r)-mask00:)
‘ JIA,

®, = k-th interface reference vertical mixing velocity

h; = k-th layer thickness at which entrainment starts

h, = k-th layer thickness at which detrainment starts.

For the purpose of forming the normal modes the mixing terms in equations (1B)
and (2B) will be ignored because these effects are usually local and relatively small scale.
Also, because the normal modes are linear approximations, boundary regions where
strong mixing occurs are not appropriate locations for the normal mode boundary
conditions to be applied.

It is desirable to have all the components involving velocity to be in transport

form. Following the suggestion put forth by Hurlburt and Thompson (1980), the
horizontal friction is rewritten as 4, V¥, instead of 4,4,V%,. According to Hurlburt
and Thompson, there were only small quantitative differences between the two forms in

their study. The interfacial stress can also be rewritten in terms of transport, such that

where the z subscripts are z-derivatives. -

Next, the perturbation equations are formed assuming that the ocean is in its basic
state, motionless, and motion and height variations are small perturbations to the basic
state, such that,

h =h +H, 4B)

Ve=(h + H)v, +¥,) = hv, =V} (5B)
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Linearize and rewrite (1B) and (2B) as

v, . = 2 a v ~
—+ 4k = G VGH+ K ——%| + 4. V¥V
2 x fV; h§ u Vi ( "z Hk): HY Vi (6B)
oH, =,
E +V. Vk =0 (7B)
To form the normal mode equations let K, = 4/ N*. Then apply a separation of
variables of the form (dropping the primes and the layer indices)
V=3 V., (x30R(2) (8B)
h = Z Wm(x9 y’ t)gm(z) (9B)
to equations (6B) and (7B) to yield
v Y Al 5 2 5N
RV, +kx RV = HZGVSW +(FF&V)-+A”V-RV (10B)
SW,+R(V-V)=0 (11B)
for each mode m.
Take 8/0t of (10B) and substitute (11B) into the new equation to form
- - - - A~ R. -
R’V” +kaRV =-HZ GVR(V'V)+EM(X"T)-+RAHVZM (128)
Separate the horizontal and vertical components of (12B) such that
'\-;,,+12xf'\7+HZGV(V-'\7)-AHVr\Z 1( R,
= F ) (13B)

i ‘

Set (13B) equal to —A = -1/ gh and form the separated vertical normal mode equation

RY 1 ,_
(Nz):+ghR 0 (14B)

which is the same as equation (27A) for the NCOM.
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Separating the horizontal components from the vertical components in equation

(11B) gives

Therefore, the horizontal normal modes for the NLOM are

T’,,+12xf\7+HZGV(V~'\7)-AHVZ\2+‘—g—h‘éI_—I-'\7,=O

(v-‘\7)+ﬁw,=o

And the vertical normal mode for the layer thickness is

(

S
NZ

),

+LS=0

gh
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APPENDIX C

CALCULATION OF &s

To excite a first baroclinic mode wave in the NCOM a salinity perturbation is
calculated as follows. First, R in equation (35A) is set equal to a pressure perturbation,

P’s N equal to a constant, and assuming a rigid lid for simplification purposes a solution

to the Sturm-Liouville PDE is

p'(z) = cos(knz/H) (10)
and
NH
=T T V& 20)

Since only the first baroclinic mode is of interest set &—=1. To keep the results of this
study comparable to that of Ginis et al. (1998) and Philander et al. (1984) set c;=1.4 mvs.

Thus with a maximum depth of H=500 m, the equivalent depth is #,=0.2 m, and the

Brunt-Viisili frequency is N =8.8x10~ s~'. From the hydrostatic approximation it can

be shown that
@’ _
z P& (3C)

Using this relation with (1C) gives

o'z =ism(ﬁ).
gH \H 4C)



The equation of state calculation used in this study is the one put forward by Brydon et al.

(1999). In this calculation density and salinity are linearly related, so to a first

approximation 8s can be setequal to p".
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1996.
Topic Title: “ Wind Driven Effects on the Yellow Sea Warm
Current”.
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(¢) Teaching:

(d) Research:

Princeton Ocean Model Users Meeting, Princeton, NJ. 1996.

1992-1993 Laboratory Assistant, University of Southern
Maississippi, Physics and Astronomy Department.

Laboratory Courses in: Introductory Physics with Calculus and
Modermn Physics.

1992-1993 (summers) Physical Scientist Aid, Naval Research
Laboratory, Stennis Space Center, Mississippi.
Research topic: Acoustic study of fish migration.

1994 (summer) Physical Scientist I, Sverdrup Inc., Stennis Space
Center, Mississippi.

Research topics: Ice movement in the Artic ocean and
Mediterranean current system using satellite imaging.

(e) Oceanographic Campaign: Participation aboard “KNORR” ship in the WOCE

Oceanographic Campaign on leg A2.



