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THE DESIGN AND IMPLEMENTATION OF A THREE-DIMENSIONAL,
PRIMITIVE EQUATION OCEAN CIRCULATION MODEL

(Publication No. )

John D. McCalpin, Ph.D.
The Florida State University, 1990

Major Professor: James J. O’Brien, Ph.D.

The development and implementation of a new, primitive equation ocean
circulation model is described. The model employs finite-difference discretization
in the horizontal directions and a linear, Galerkin finite-element discretization in
the vertical direction. A novel coordinate transformation is employed to retain

fourth-order accuracy in the vertical.

The main emphasis of this work is an extensive discussion of the decisions
concerning physical, numerical, and computational issues, including discussions
of several competitive (and currently interesting) numerical schemes which were
not chosen. The model is compared and contrasted with the current generation
of ocean circulation models. The performance of the model is %csted in several
simple cases. Finally, some future applications of the model are outlined.

A series of high-resolution experiments with the barotropic part of the code are
used to discuss the flow along a seamount chain, modelled after the the F ieberling
Guyot and its neighbors. The basic features of the flow are described and the
numerical convergence of the model is demonstrated. The full three-dimensional

code is applied to a the single-seamount geometry with a variety of amplitudes.

iii



Other specific results of this work include: (1) An analysis of the incomplete
cancellation of the pressure terms in the transformed coordinate system, with
a simple estimate for the spurious acceleration. (2) An analysis of the semi-
Lagrangian advection scheme used in some atmospheric models. The damping
of the scheme is described in terms of an equivalent Laplacian or biharmonic
viscosity coefficient, and formulae are derived for calculating the resolution re-
quired to obtain damping below a desired threshold. (3) A discussion of the
three-dimensional semi-implicit scheme. It is shown that the scheme becomes

physically ill-posed as the stratification of the fluid goes to zero.
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Chapter 1

Introduction

The “Grand Challenge” of physical oceanography is the description of the large-
scale flow of the world ocean and the understanding of its mesoscale variability.
It has become increasingly clear in the last two decades that numerical simula-
tions must play an irreplaceable role as = supplement to observations and analytic
theory in this quest. Barring unexpected breakthroughs in remote sensing, ob-
servations will remain far too expensive to provide a truly comprehensive view of
the state of the ocean for the foreseeable future. Analytical theories, though still
a center of vitality of physical oceanography, are ultimately unable to attend to
the level of detail required to understand the cumulative effects of nonlinearity
and the complex basin geometry that are responsible for the richness of detail of
the ocean circulation.

Numerical modelling occupies an ill-defined region between the traditional
emphases of physical oceanography and the field of applied mathematics. Unlike
the situation in meteorology and in the engineering sciences, oceanography is only
slowly coming to accept the necessity of a significant investment of personnel
and resources to acquire an expertise in the tools of applied mathematics and

computational science pertinent to ocean modelling. The questions of consistency
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and stability of the numerical methods have generally been treated rather well,
but relatively little attention has been paid to the difficult problem of achieving
and verifying convergence in realistic nonlinear simulations.

From a philosophical point of view, the use of a numerical model takes us
two steps farther away from the ocean than analytic theories. We may view the

hierarchy as:

1. The ocean.
2. The continuous model equations.
3. The discrete model equations.

4. The computer program.

To equate the output of the computer program with the solution of the discrete
model requires the assumption that the computer program is correct, and that
the finite-precision arithmetic does not introduce substantive errors. To equate
the solution of the discrete model equations with the solution of the continuous
model equations requires the assumption that the discrete system has converged.
These assumptions are necessary before the physical question of the validity of
the continuous model equations can be tested by comparison of the model output
with observations. Therefore, this concern for convergence is not an abstract
mathematical quest, but is directed at the very practical question of verifying
that the output of the program is essentially the same as the solution of the
continuous model equations.

Ocean models span a broad range of complexity, depending on the specific
application. Although the same questions concerning the convergence of the nu-

merical methods apply to all sets of continuous model equations, the current work
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limits itself to the design and implementation of a three-dimensional primitive
equation model. Special attention has been paid to maintaining consistent lev-
els of truncation error in the differencing schemes, and to avoiding any a priori
assumptions about the relative importance of the terms in the equations.

'The model described here is among the most complex of ocean models, in-
tended for detailed and realistic simulations of ocean flow. The complexity of the
implementation of an ocean circulation model is not due only to the dynamics and
physics of the primitive equations, but is increased by numerous considerations
from numerical analysis and computational science. The calculations involved
in a large-scale model require a very efficient use of computer resources in order
to obtain answers with our necessarily limited resources. Although it may seem
inelegant, the design of this model has been significantly affected by the state of
the art of computer programming languages and computer architectures. This
topic will be discussed in some detail in the next chapter.

The remainder of this chapter is devoted to a review of the various approaches

to large-scale ocean modelling, and how the current work fits into the field as a

whole.

1.1 Review of Large-Scale Ocean Modelling

The fundamental equations governing the flow of a fluid have been known since
the last century. These Navier-Stokes equations are believed to be “correct” in
the sense of properly accounting for the various physical forces which govern fluid
motion, but they admit few useful analytic solutions and are computationally
intractable for geophysically relevant flows. This intractability has led to the

development of a sequence of approximations (based on scaling arguments) for



the fluid systems studied by various scientific and engineering disciplines.

1.1.1 The Primitive Equations

The beginning point for atmospheric and oceanic models are the so-called “Prim-
itive Equations”. These equations are a relatively straightforward simplification
of the Navier-Stokes equations in a rotating coordinate system, based on the scal-
ings appropriate to large-scale oceanic and atmospheric motions. The equations
are called “primitive” not because they are simplistic, but rather because few
approximations have been applied to derive them.

The simplifications made to obtain the primitive equations are: the hydro-
static approximation; the Boussinesq approximation; the assumption of incom-
pressibility; the approximation that the vertical component of the Coriolis force
is negligible; and the assumption that the dissipative and diffusive processes can
be parameterized in terms of large-scale variables.

The hydrostatic approximation is based on the observed fact that the large-
scale flow in the ocean is in a very strong hydrostatic balance. Scaling analysis
shows that the vertical pressure gradient is balanced by the local density to an
accuracy of at least 3 decimal digits. This approximation, while very robust
in terms of scaling, causes the most difficulty with numerical methods because
it destroys the purely hyperbolic character of the Navier-Stokes equations. Be-
cause the equations are not hyperbolic, much of the extensive theory from nu-
merical analysis and applied math is inapplicable. A consequence (discussed in
Appendix C) is that it may not be possible to produce an unconditionally stable

integration scheme.

The Boussinesq approximation states that density deviations mayv be ne-
J Y
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glected except in calculating the pressure. This is a very accurate approximation
in the ocean, though not in the atmosphere. It has the added benefit of linearizing
many terms, and making the energy terms quadratic rather than cubic.

The assumption of incompressibility removes the fast compression (sound)
waves from the equations. These are not believed to interact with the large-scale
flow of the ocean. This assumption also destroys the purely hyberbolic character
of the equations.

Finally, since the Coriolis force is neglected in the vertical momentum equa-
tions (due to the hydrostatic approximation), it is necessary to neglect the cor-
responding components in the horizontal momentum equations. This is required
for energetic consistency, since the Coriolis force is not allowed to produce or
destroy energy.

These approximations produce the “standard” primitive equations (Bryan,
1969; Semtner, 1986a). Many other decisions regarding physical parameteriza-

tions must also be made and will be discussed in the next chapter.

1.1.2 More Simplified Ocean Models

Numerical models are used in two rather distinct roles in physical oceanography.
First, they are used in “process studies” as an adjunct and enhancement to
analytical studies of idealized geophysical fluid dynamical processes. Second,
they are used in “simulation” to attempt to describe the state of the real ocean
at some specific time.

Numerous simplifications of the primitive equations have been used in at-
tempts to isolate and better understand various specific physical phenomena.

Almost all of these simplifications can be grouped into two categories: simplifica-
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tion of the dynamics, and simplification of the vertical structure. In this section
I will briefiy review the approaches and point out why the full three-dimensional

primitive equations are necessary for a general-purpose model.

Simplifications of the Dynamics

‘Two simplifications of the dynamics are commonly used: the linear primitive
equations; or, a low-order perturbation expansion of the primitive equations
about a geostrophic state.

Linearization of the equations is justified by the observation that much of the
large-scale variability in the ocean can be described by linear wave dynamics.
The linearized equations retain both the Rossby waves and the gravity waves,
and have proven to be quite useful in the equatorial regions of the world ocean,
where Kelvin wave and Rossby wave dynamics dominate the ocean’s response to
the wind (Busalacchi and O’Brien, 1980). The linearized equations fail, however,
in strong currents (such as the western boundary currents of the oceans) in which
nonlinear instabilities are important.

A perturbation expansion of the dynamics is based on the observed fact that
the large-scale flow of the oceans is strongly geostrophically balanced. Thus the
flow can be described as the sum of a geostrophic part and a small ageostrophic
part. The most common schemes result from retaining zero, one, or two terms in
the expansion. These choices yield the geostrophic, the general geostrophic, and
a variety of balance equations, respectively.

Systematic analyses of the equations resulting from the retention of one term
of the series expansion have been presented in (Williams, 1985; Cushman-Roisin,

1984). These “nearly-geostrophic” equations (which include the traditional quasi-

[SEPTNO
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geostrophic approximatica as a special case) appear to capture the important dy-
namics of the ocean in middle and high latitudes, but do not contain the Kelvin
waves which are crucial to the equatorial ocean’s dynamics. The question of how
well these models handle the significant levels of nonlinearity in western boundary
currents and strong eddies is still open, but it is not expected that these models
will be useful for general-purpose simulations.

The retention of two terms in the Rossby number expansion of the primi-
tive equations leads to a variety of balance equation models (McWilliams and
Gent, 1980). The global balance equations of Gent and McWilliams (Gent and
McWilliams, 1983) retain all the linear terms of the divergence equation as well
as the first terms of the perturbation expansion of the vorticity equation. These
equations have an approximation to the equatorial Kelvio waves, and so might
be appropriate for large-scale simulations. It is too early to tell if these models

capture enough of the important dynamics to serve as a general-purpose ocean

model.

Simplification of the Vertical Structure

Most large-scale models also include substantial simplifications to the vertical
structure, based on the observed fact that most of the energy in the ocean is
contained in the first two or three vertical modes.

A simple and useful approximation is the assumption that the ocean consists
of two or more homogeneous, immiscible layers of fluid of different densities. This
lead to the layer equations, which reduce the vertical degrees of freedom of the
model to the number of layers.

Careful choice of the layer thicknesses and density contrasts can produce ac-
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curate simulations of many regimes of the large-scale flow. However, there are
significant difficulties with layered models when layers vanish or outcrop which
render this scheme unsuitable for general-purpose calculations at the present time.
Some progress has been made at applying stable numerical schemes to this prob-
lem (Bleck and Boudra, 1981; Bleck and Boudra, 1986; Bleck and Smith, 1989),
but their accuracy is not yet validated. The more sophisticated front-tracking
schemes applied in some engineering disciplines have not yet been applied in any
substantial ocean calculations.

Another possible simplification of the vertical structure is the modal formula-
tion. This allows continuous vertical variability of the flow variables by expanding
the equations in terms of the eigenfunctions of the linear equations. The modal
expansion allows more accurate representation of nonlinear interactions and to-
pographic interactions than the layer formulation, but requires that the basic
state be horizontally uniform. This scheme is therefore typically associated with
the traditional quasigeostrophic approximation, and is not suitable for realistic,

large-scale calculations.

1.2 The New Model - Background

The model described in the following chapters is a primitive equation model in-
tended for i‘ea.listic ocean simulations, or for process studies that require the full
primitive equations. Combining the requirements of the research with the char-
acteristics of the various approximations and numerical schemes sharply limits
the choices available for the new model.

The requirements for a model to be able to run realistic simulations are:

e The model must be able to handle the full physics and thermodynam-
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ics of the incompressible, Boussinesq, primitive equations. This excludes
quasigeostrophic ard balance equation models, and weighs against layered

models.

e The model must be able to handle the observed irregular geometries of the
oceans in both the horizontal and vertical directions. This excludes any

reasonably easy spectrai model, and causes severe difficulties for layered

models.

e The model must use numerical schemes that are consistent with optimal
performance on current high-performance computers. The model must ad-
ditionally be able to make use of multiple processors. Versatility in this last
regard is an advantage, since it is not yet clear what parallel architectures

are going to be available in the near future.

The decisions on the design discussed below are very highly interdependent,
so the order of discussion is somewhat arbitrary. A surprising aspect of this
study has been the way that the special considerations of the various numerical
techniques seem to fit together in cnly one way. Comments will be made where
alternative techniques are possible — often, though, changing one decision causes
the other decisions to be made unworkable, unhelpful, or unnecessary.

Interspersed through the discussion will be comparisons to the Bryan/Cox
model (Bryan, 1969) (also known as the GFDL model). The current model
formulaticn is specifically intended to remedy some of the shortcomings of the
Bryan/Cox formulation, and to provide a tool that is most effective in those areas
in which the numerics of the Bryan/Cox model are the weakest.

Throughout the design of the model, an overriding priority has been to pro-
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duce a model which can be used to study the convergence of the numerical
schemes being used. It is impossible to answer the scientific question, “Do these
model equations adequately describe the ocean’s flow?”, if one does not have
strong evidence that the solution of the discrete version of the equations has con-
verged to the solution of the continuous model equations. It is hoped that this

model will prove useful in beginning to address this major unknown aspect of

ocean modelling.



Chapter 2
The New Model

In this section, I will discuss the major design decisions of the new ocean circula-
tion model. The discussion will be technical, but not highly mathematical. The
detailed derivations of the transformed and discretized governing equations are

presented in the next chapter.

The heart of the model is contained in the options for the horizontal and
vertical discretization. The strong vertical density stratification in the ocean,
coupled with the large aspect ratio of the ocean geometry and forcing, produces
a strong anisotropy in the ocean dynamics. Therefore, the “best” decisions for

discretization in these two directions may not be identical. They are dealt with

here separately.

2.1 Horizontal Discretization: FD vs FE vs
Spectral

Since the development of the first generation of ocean models in the late 1960’s
(Bryan, 1969), there has been a great deal of progress in the application of finite-
element methods and spectral methods to fluid mechanical problems (Fletcher,

1984). Because of the current interest in these techniques, it is appropriate to

11
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contrast these two techniques with the finite-difference method chosen here and

show that the decision to continue with a finite-difference scheme was not a naive

one.

The horizontal discretization chosen for the first version of the model uses
standard second-order finite differences on a uniformly-spaced staggered grid (the
Arakawa C-grid). The following subsections will present the rationale behind
these decisions by comparing the finite-difference (FD) technique with the finite-

element (FE) and spectral techniques in the following categories:

e Accuracy

1. linear phase and group speed errors
2. truncation errors

3. conmservation and aliasing errors
e Computational Efficiency

1. Work Estimates
2. Storage Requirements

3. Vectorizability /Parallelizability

2.1.1 Accuracy

There are many directions from which to view the differences between the accu-
racies of the finite-difference, finite-element, and spectral methods. One helpful
viewpoint is to compare how the three methods make the inevitable tradeoff be-

tween resolution and accuracy for a fixed computational resource. In this context,
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“resolution” refers to range of allowable wavelengths in the system, while “accu-
racy” refers to the truncation error in the estimation of derivatives. For a fixed
computational resource, the usual second-order finite-difference method can be
considered to yield the most resolution at the least accuracy. Conversely, for the
same computational effort, global spectrai methods yield the most accuracy but
the least resolution. Finite-element and spectral-element methods occupy the
middle ground.

The errors of finite-difference methods for hyperbolic-like problems are well
known, though their cumulative effects are not always well understood. These
errors can be conveniently divided into three categories: phase and group speed
errors for the linear dynamics, truncation errors for the nonlinear dynamics, and

conservation errors (including aliasing errors).

Linear Phase Errors

Phase speed errors in second-order finite-difference methods are scale dependent,
and are typically quite severe for waves with wavelengths of less than about 8
times the grid scale. Errors decay to about 1% for waves with 20 grid inter-
vals per wavelength (Haltiner and Williams, 1979; Grotjahn and O’Brien, 1976).
Increasing the order of the scheme can decrease the magnitude of these errors
considerably as shown in Table 2.1. The compact-differencing schemes (Chang
and Shirer, 1985; Haltiner and Williams, 1979) are especially accurate for phase
speeds. Finite-element methods exhibit the same pattern of phase speed errors as
the finite-difference compact-differencing schemes since they are mathematically
identical in one dimension. Spectral methods, on the other hand, give essentially

exact results for linear wave phase speeds. The errors are ameliorated in finite-
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3Az | 4Az | 6Ax | 8Ar
Second order 59% | 36% | 17% 9%
Fourth order 39% | 15% 4% 1%
Fourth order compact | 17% 4% 1% | <1%
Spectral collocation |~ 0% [~ 0% | ~ 0% | ~ 0%

Table 2.1: Percent phase speed errors for a linear advection problem. Results
are shown at various wavelengths for second-order, fourth-order, and spectral
schemes with exact time differencing.

difference models by adding sufficient diffusion to the system to strongly damp

the waves in the 2—4 grid interval range.

Truncation Errors in Nonlinear Terms

‘Truncation errors in nonlinear advection arise from the same numerical source as
linear wave phase speed errors, but the results are interpreted differently from a
dynamical point of view. The primary advantage usually cited for spectral tech-
niques is the spectral convergence of the solution as the resolution is increased.
This is clearly going to be important for simulations in which high accuracy is
required. What is not known is whether or not very high accuracy is needed
in ocean simulations. As a numerical example, spectral convergence is likely to
be crucial if one desires accuracy of five or more significant digits in the solu-
tion. If only a few digits of accuracy is needed, then second- and fourth-order
finite-difference schemes can provide adequate convergence rates.

With regard to the accuracy of ocean models, the traditional thinking has
often been that since the forcing functions are known to be only approximate,
and since the dynamics are known to be truncated, there is no need for highly
accurate numerical techniques. This approach is reasonable for linear, steady-

state problems, but is invalid with nonlinear time-dependent problems. There is
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no a prior:i way to determine the effects of small errors on the long-term behavior

of nonlinear systems.

Conservation Properties

Conservation of integral invariants in ocean models has two aspects. The first
is bulk conservation of quantities such as mass and energy, and the second is
nonlinear aliasing of energy and enstrophy from the short waves back into the
long waves.

The need for bulk conservation of integral invariants is an open issue with
respect to ocean models. The conservation of linear quantities (mass and mo-
mentum) and quadratic quantities (energy and enstrophy) is usually considered
to be “a good thing”, but (modest) explicit damping (which destroys such conser-
vation) is not usually considered to be a major problem. The numerical scheme
must not lose so much energy that the flow fields are significantly decelerated,
but small variations do not seem important.

The more important problem concerns aliasing. It is widely held that con-
servation of energy and potential enstrophy are important for (at least) the hor-
izontal discretization in large-scale models. A lack of conservation of energy and
enstrophy both removes energy from the short waves (which are actively engaged
in nonlinear processes) and puts it (incorrectly) into long waves which should not
be participating. A lack of conservation of potential enstrophy is often associ-
ated with numerical instabilities in nonlinear inodels. This forces the modeller
to apply more explicit damping to maintain stability. In strongly nonlinear cases
(such as modelling of western boundary currents and ring formation) this extra

damping can completely change the character of the solutions. In less nonlin-
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ear cases, the solutions appear to be less sensitive to both the damping and the
conservation properties.

For the quadratic nonlinearities of the primitive equations, the problem of
aliasing in finite-difference models can be overcome if the 2-3 grid-length waves
are filtered out of the solution at every time step (Orszag, 1971). The addition
of scale-selective dissipation to the system tends to accomplish the same result,
though without 100% effectiveness.

Finite-element methods for fluid mechanical problems are usually derived by
a Galerkin procedure, which guarantees freedom from aliasing. Galerkin spec-
tral methods are also free of aliasing, though they are too expensive to apply
directly, and approximately dealiased schemes are usually used. Spectral collo-
cation methods are not guaranteed free of aliasing, but typically show very little
in well-resolved simulations.

Both second-order and pseudo-fourth-order finite-difference schemes for the
Arakawa C-grid have been developed that conserve energy and enstrophy (Abram-
opoulos, 1988; Takano and Wurtele, 1982). (Pseudo-fourth-order schemes are
fourth-order accurate only for the non-divergent part of the flow). For prob-
lems involving nonlinear instability, the conservation properties appear impor-
tant, while for stable, quasilinear problems, the Taylor series accuracy of the
scheme is more important. There are significant unanswered questions in this
area, especially comparing the relative importance of phase errors and conserva-
tion errors. For non-linear problems, the phase relationship of the waves making
up a field is clearly going to be important, and finite-difference schemes typically
produce significant phase errors. This line of reasoning appears inconsistent with

the more common thinking that conservation properties are more important, but
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is in agreement with the good performance of the semi-Lagrangian advection

schemes used in atmospheric models (see Appendix A).

2.1.2 Computational Efficiency

The balancing consideration to the accuracy discussed in the previous section
is computational efficiency. The primary drawback of the finite-element and
spectral methods is their excessive céniputationa.l cost when applied to realistic
problems in irregular domains.

For use in irregular domains, spectral methods require transformation of the
coordinate system into a logically rectangular box so that Fast Fourier Trans-
forms (FFT’s) can be used to calculate the derivatives. These coordinate trans-
formations can be quite complicated and difficult to derive for realistic ocean
geometries, and the extra metric terms in the equations add substantially to the
total work requirement. For domains that are multiply-connected, the domain
must be decomposed to produce a set of singly-connected domains, which then
must be patched together. |

The time step restriction on a Chebyshev collocation method is proportional
to N2 (where N is the number of collocation points in each direction), due to the
quadratic convergence of the collocation points at the ends of the domain. Thus,
doubling the resolution requires four times as many time steps, compared to twice
as many for finite-difference techniques. The variable grid spacing exacerbates
this problem, ir: that the stability limitation is based on the smallest grid distance
in the entire domain. If an implicit integration scheme is used to overcome this
time step limitation, the structure of the matrices is such that fast (e.g. FFT)

techniques cannot be used.



18

The current “state-of-the-art” approach to spectral models is the “spectral
element” technique. The spectral element technique divides the domain into a
number of subdomains, then uses standard spectral interpolation scheme within
each subdomain. This technique has two advantages over the globally interpo-
lating schemes: first, the domain does not need to be so severely distorted, since
awkward pieces can be put in separate domains; and second, higher accuracy
can be obtained with only a linear increase in the number of time steps required
by increasing the number of domains (with the same order interpolation inside
each). A disadvantage of this scheme is that the matrix equations are even less
regular than in the global spectral technique.

The efficiency concerns are quite similar for finite-element techniques. Al-
though the mapping of the governing equations can be replaced by the construc-
tion of a nonuniform mesh, the sparse matrix equations that must be solved to
calculate the derivatives have irregular structures and must be solved by slow
direct or iterative matrix techniques. Direct techniques have work requirements
of O(NN?) operations for each derivative calculation at all the points of an N x NV
grid. By contrast, the derivative calculations in finite difference methods scale
linearly with the number of grid points, and so require only O(N?) operations
for estimating the derivative at all the points of the same N x N grid. Since
for a large-scale ocean calculation, NV will be in the range of 100-600, the extra
factor of N in work can be prohibitive. The compact finite-difference schemes
require the solution of tridiagonal systems for the evaluation of derivatives, which
requires O(1) operations at each grid point, for a total of O(V 2) operations.

The memory requirements of the finite-element schemes are perhaps more

constraining than the work requirements. A simple finite-element scheme for a



19
two-dimensional problem requires O(NN3) storage locations for each of the pre-
factorized matrices used for calculating derivatives along the coordinate axes.
Since this matrix must be accessed at least once per time step, it must be stored
in fast lccal memory.

Some progress has been made at improving the performance of sparse matrix
solvers on supercomputers (Duff and Reid, 1983; Duff and Reid, 1984), but the
codes are complex and the efficiency is still not comparable to the explicit deriva-
tive calculations in the finite-difference equations. Much of the effort in sparse

'matrix calculations has been directed toward the solution of very large systems of
equations one time, rather than toward the repeated solution of one moderately
large system, as would arise with a time-stepping ocear model.

The computational efficiency issue is mitigated somewhat by the need for
fewer grid points, and on a simple operation-count comparison, the kigher-order
schemes appear competitive. However, because of its regular structure, the finite-
difference scheme is much more highly vectorizable than the others, and this
advantage skews the results in favor of the finite-difference schemes.

As an example problem, consider the linear hyperbolic problem:

Table 2.2 compares the work requirements of several techniques to obtain a
phase error of less than 10% when advecting the solution over J periods. This
work estimate includes the number of grid points per wavelength, the number of
operations per step per gridpoint, and the number of steps necessary to advect
the solution over each period. For the compact-differencing schemes, the work
estimates have been adjusted to count unavoidable floating-point division opera-

tions as 6 operations. This correction reflects the actual time required to perform
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Order N | Work | # steps | Total Work | Comments
2 | 20j2 3 1 605z | 2nd-order FD
4 7j% 6 4 30j¢ | 4th-order 5-point FD
4 4j5% 16 g 10071 | Compact 4th-order FD
6 555 10 ~ 2 100j¢ | 6th-order 7-point FD
6 3j% 21 ~ 2 120j¢ | Compact 6th-order FD

Table 2.2: Work requirements for a simple linear hyperbolic problem at various
discretization orders. The requirement is for 10% phase accuracy after j periods of
advection. N is the number of grid-points per wavelength, Work is the equivalent
number of floating-point operations, # steps is the relative number of time steps
required, and Total Work is the product of these. The data is extracted from
(Kreiss and Oliger, 1973; Chang and Shirer, 1985; Haltiner and Williams, 1979).
division on most current computers, and shifts the estimate of the most efficient
scheme to the wide-stencil fourth-order discretization.

Work estimates for spectral schemes would be difficult to fit into the format of
Table 2.2 since the time stepping schemes and work estimates are so different. The
Tchebyshevy collocation scheme requires only 3 collocation points per wavelength
to obtain essentially exact phase response for the sample problem. The work
required is of the order of 10N log, N + 2N operations for each evaluation of
the right-hand-side of the equation in the time-marching scheme. The time step
is proportional to N2, but the constant of proportionality depends on the time
marching scheme chosen and the exact physics of the problem.

The characteristics of current computer architectures also figure prominently
in the estimates of the work and computational efficiency of the various schemes.
The fastest available computers are now either shared-memory, moderately par-
allel vector computers (as in the Cray machines) or the massively parallel, single-

instruction-multiple-data (SIMD) machines (exemplified by the Thinking Ma-

chines Corporation’s Connection Machine). The shared-memory vector machines
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are considerably more versatile with respect to the range of algorithms that may
be efficiently employed, but the massively-parallel machines should provide an
easier growth path for scaling to higher performance. The massively parallel
machines are not well-suited for sciicines like the compact-difference method, for
example, because not enough of the tridiagonal systems need to be solved at
once to keep all of the processors busy. Standard or wide-stencil finite-difference

schemes will run very efficiently on the massively parallel machines, however.

2.1.3 Discussion

The basic question is whether the enhanced accuracy of the spectral, finite-
element, and higher-order finite-difference methods is more important than the
loss of the short waves in the spectrum (since the higher-order schemes will not
be able to achieve the same resolution for the same amount of computational
effort). In the atmosphere, studies have shown that a change from second-order
to fourth-order differencing can improve the forecast skill of a weather model
more efficiently than an increase of a factor of two in resolution (Williamson
and Browning, 1973). Further studies have shown that most of the advantage
of the fourth-order scheme can be obtained by applying it only to the nonlin-
ear advection terms, leaving the terms controlling the linear wave dynamics at
second-order accuracy (Campana, 1979).

For linear problems, the effect of spectral truncation on the solution is obvi-
ous — the short waves are simply removed, and the long waves are unaffected.
For nonlinear problems, however, all wavelengths interact, and there is no way
(short of “brute force” experimentation) to determine how the truncation of the

spectrum will effect the solution.
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In light of this, it is not at all clear where the “best” balance lies in the tradeoff
of resolution vs. accuracy. The theory for linear problems is well-developed
(Kreiss and Oliger, 1973), but for nonlinear problems, theory does not take one
very far, and substantial experimentation must be done on the system of interest
in the parameter range of interest in order to begin to be able to formulate a
quantitative answer to this problem.

Because of this significant uncertainty it was decided to retain the finite-
difference approach used in current models. Although the newer techniques may
eventually prove superior in the ocean context, they should be tested in more
specialized codes — not in a new general-purpose model. The work that is
currently being done in this area has been either for simple geometries (LeProvost,
1986; Jensen and Kopriva, 1988), or for coastal, limited-domain models (Davies,
1987).

The initial version of the model uses standard second-order accurate finite-
differencing schemes in the horizontal directions. The design of the model allows
the replacement of the horizontal derivatives with a higher-order or more con-
servative scheme without excessive difficulty. In particular, the “compact differ-
encing” scheme can be used to obtain fourth-order accurate derivative estimates

using the same stencil as the second-order schemes and requiring no additional

(unphysical) boundary conditions.

2.1.4 The Arakawa C-grid

Oceanic and atmospheric models have traditionally used staggered grids for the
horizontal distribution of variables. Earlier ocean models have chosen the Arakawa

B-grid in order to facilitate an implicit treatment of the Coriolis terms, and have
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retained it because it has been thought that it performs better than the C-grid
when the relevant radius of deformation is not resolved. In addition, several re-
searchers have attempted to produce C-grid models, but have given up due to
excessive noise in the higher vertical modes (Semtner, 1986b). This model ad-
dresses that problem by a change in the vertical discretization, as will be discussed
in the next section.

For this model, the Arakawa C-grid was chosen because both gravity waves
and planetary waves on the C-grid mimic the characteristics of the continuous
solutions better than those on the B-grid whenever the radius of deformation is
resolved (Wajsowicz, 1986). If the radius of deformation is not resolved, then
neither grid gives good results, but it is difficult to decide which is better (or
worse). This model is intended to be run in high-resolution simulations, as it is
not reasonable to expect good results from any model if the baroclinic radius of

deformation is not resolved.

2.2 Vertical Discretization

The primary new features of this model pertain to the vertical discretization,
and are intended to remedy the major shortcomings of the models based on
the Bryan/Cox/GFDL formulation. The GFDL model uses standard finite-
differences in the vertical, and moves the bottom to the closest vertical velocity
point. The grid is generally chosen to be non-uniform, with much tighter grid
spacing in the upper layer of the ocean. Two substantial difficulties arise with
this scheme. First, the non-uniform grid spacing means that many of the vertical
derivative calculations are not centered, and are therefore of first-order accuracy.

This decreases the accuracy of the simulation of both vertical advection and ver-



24
tical diffusion processes. Second, the quantization of allowed depths drastically
alters slopes in the bottom topography. This has a strong impact on the wave
dynamics by concentrating the topographic 3-effect and nonlinear vertical mode
interactions of broad sloping regions into discrete, narrow bands, rather than al-
lowing the continuous spatial dependence. The combination of these two factors
makes a large number of vertical levels necessary. This increases the requirements

for computational effort, execution-time storage, and storage of archival data.

2.2.1 Coordinate System

'To avoid the topography problem, the new model uses a boundary-fitted vertical
coordinate — in the style of the “sigma-coordinate” scheme popular in meteo-
rology. The vertical variable is replaced by a scaled variable whose value is 0 at
the bottom of the ocean and 1 at the surface. Thus the bottom topography is
continuous and has a continuously variable slope.

To avoid the problem of the loss of accuracy in the non-uniform grid, an
analytic stretching is applied which allows uniform increments in the transformed
variable to correspond to nonuniform increments in the old variable (Kalnay de
Rivas, 1972). A stretching function has been derived which allows increased
resolution in the upper ocean (and optionally in the bottom boundary layer)
while still retaining the advantages of a uniform grid in the vertical variable.

A novel feature of the stretching function used here is that the degree of non-
linearity of the transformation is a function of the local depth. The full stretch-
ing is only applied in the limit as the ratio of the local depth to the minimum
depth becomes large. As the minimum depth is approached, the transformation

becomes linear (which produces uniform vertical grid-spacing). This feature is
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needed to prevent the levels from getting too close together and causing time step
restrictions associated with vertical advection and diffusion to become important.

The stretching function used in the model is

==-(1-3) [1_(1-%9)5], (2.1)

where z is the vertical location, D is the depth of the bottom, Dy is is a scaling
parameter, s is the new vertical coordinate. The scaling parameter Dy must be
chosen to be less than or equal to the minimum depth in the domain, and it
determines the depth at which the stretching function is linear.

For shallow water, the equation tends to

-2— = —(1-3s),
while in deep water (D > D), the equation tends to

5 = —(1 - 8)2.

"To make the upper level as uniform as possible in thickness, the scheme has the

property that the metric term is independent of the topography at the surface

ES‘. = D, atz = 0.

The depths of fixed s-levels in an 11-level discretization are shown in Figs. 2.1-
2.2. The whole range of depth values are shown in Fig. 2.1, while Fig. 2.2 shows
how the stretching becomes uniform in shallow water. If desired, the stretching
function can be shifted to produce higher resolution near the top and bottom
with least resolution in the middle depths.

The quadratic stretching function used fits nicely with the linear finite-element

scheme (discussed below) since the vertical derivative of the stretching function is



26
linear just like the basis functions. If a user desires a higher-order stretching func-
tion, then the subroutines which calculate the vertical integrals in the Galerkin
finite-element scheme must be replaced with more sophisticated versions. In par-
ticular, the stretching function should be a polynomial, since this allows the use
of efficient Gauss-Lobatto quadrature schemes for the vertical integrals.

The sigma-coordinate system has not been used very often in oceanographic
models. A potential problem with sigma-coordinate models is that, in the pres-
ence of topography, the pressure gradient term in the momentum equations splits
into two terms. One term is the pressure gradient along surfaces of constant s,
and the other is a correction term proportional to density and the gradient of
the topography. A recent note by Batteen (Batteen, 1988), as well as experience
with this model, suggests that the subtraction of the mean density and its as-
sociated hydrostatic pressure from the equations of motion can greatly decrease
the noise generated by topography with this scheme. When topography interacts
with strong stratification, the problems become very severe and there is not yet

a satisfactory solution available. This will be discussed in chapters 4 and 5.

2.2.2 Linear, Galerkin Finite-Element Scheme

Recent experience in atmospheric modelling has suggested the superiority of the
finite-element technique for vertical representation (Beland et al., 1983; Hart-
mann, 1988). Based on this, the new model employs linear Galerkin finite ele-
ments instead of the usual finite differences. The linear Galerkin finite element
scheme produces the same matrix equations (with tridiagonal matrices) as the
fourth-order compact differencing scheme also occasionally used in atmospheric

models (Haltiner and Williams, 1979). We expect that this fourth-order accurate
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Figure 2.1: Depths of uniformly-spaced s-levels in an 11-level discretization of a
sample ocean basin.
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Figure 2.2: Depths of uniformly-spaced s-levels in the continental shelf area of
the 11-level discretization of a sample ocean basin.
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scheme, with continuously variable bottom topography, will greatly increase the
accuracy of the model, or allow adequately accurate simulations to be run with
significantly fewer grid points in the vertical. This superiority of the finite-element
scheme has been demonstrated for an atmospheric problem by Hartmann (Hart-
mann, 1988). His results point out that the finite element scheme is especially
useful for coarse vertical resolution of nonlinear instability processes.

The experience with respect to conservation properties for the horizontal dis-
cretization may not apply to the vertical discretization. Counterexamples to
the rule “conservative is better” exist in the literature, based on the fact that
conservative schemes have larger truncation errors than their non-conservative
counterparts with the same order of accuracy. Williamson (Williamson, 1988)
demonstrated that a nonconservative vertical discretization gave better results
in the NCAR community climate model than a discretization which conserved
energy. Cullen (Cullen, 1979) showed that the conservative finite-element scheme
for advection produces much larger errors for short waves than a non-conservative
version.

There is an added benefit to the use of a higher-order scheme in the vertical
direction. By reducing the number of vertical nodes, the number of vertical
modes present is reduced, and those modes that are present are treated much
more accurately. It is hoped thai this removal of the higher modes (which have
poorly resolved horizontal radii of deformation) will alleviate much of the trouble
experienced by previous modellers with the C-grid (Semtner, 1986b).

Another minor point related to the vertical discretization is the treatment
of the upper boundary condition. This model applies a free-surface condition,

as opposed to the rigid-lid approximation more commonly used. This will be
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discussed in the section on the time integration of the gravity waves and in the

section on the solution of the elliptic equation for pressure.

2.3 Time Integration Schemes

Given the conflicting requirements for high resolution and computational effi-
ciency in ocean models, it is imperative to use the most efficient time integration
scheme possible. For atmospheric models, typical scaling arguments suggest that
time differencing errors are a factor of 40 or more smaller than spatial differencing
errors for large-scale meteorological motions (McDonald, 1986).

The primitive equations can be considered to be composed of a hyperbolic part
(consisting of the advection and gravity wave terms) and a parabolic part (con-
sisting of the horizontal and vertical diffusion terms). The integration schemes

for each of these four parts will be treated separately here.

2.3.1 Advection Schemes

Several time integration schemes were investigated for possible application in
this model. The results were occasionally surprising, and point out the need for
care in the application of numerical schemes used in atmospheric models to the
ocean. The semi-Lagrangian scheme (which is an unconditionally stable method
for handling the advective terms) was tested and shown to contain excessive im-
plicit dissipation (McCalpin, 1988). This reference is reproduced in appendix A.

Ritchie (Ritchie, 1986) has developed a non-dissipative version of the semi-
Lagrangian scheme which has been applied successfully to atmospheric models. In
appendix B, this non-interpolating semi-Lagrangian scheme is shown to provide

no benefit in time step in the ocean without the use of the semi-implicit scheme
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(which is dismissed below).
After dismissing these two current approaches, it was decided to retain the
standard Eulerian approach. The medel currently employs the “quadratic aver-
aging” scheme to help with stability, but it would not be a major effort to replace

these terms with a more sophisticated differencing scheme.

2.3.2 Gravity Waves

The large density contrast between the ocean and atmosphere causes a large ratio
in the phase speeds of the external and internal gravity waves. Therefore mod-
els have traditionally treated these waves separately, with some sort of implicit

treatment on the barotropic mode and explicit treatment of the baroclinic modes.

Baroclinic Modes

An earlier formulation of this model attempted to treat all the vertical modes
implicitly, using the three-dimensional semi-implicit scheme (Robert et al., 1972).
The scheme was shown to be physically ill-posed when applied to the stratification
present in the ocean (McCalpin, 1989) — see appendix C.

It may be possible to produce a model that treats the first several internal
modes implicitly and the rest explicitly, but the implicit scheme maintains sta-
bility by slowing down the fastest waves in the system. If the first internal mode
gravity waves are important, the semi-implicit scheme will produce large phase
errors. The equatorial Kelvin waves are the primary concern here. Since these
waves are crucial to equatorial dynamics, the semi-implicit approach is unaccept-

able here. In the new model, the baroclinic gravity waves are treated explicitly.
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Barotropic Mode

The external waves travel at some 200 m s™!, compared to 3-5 m s~! for the
fastest internal waves. Therefore, for numerical stability, it is necessary to handle
the external gravity modes in some special way.

A standard approach (applied in the Bryan/Cox and Haidvogel models) is to
apply the “rigid-lid” upper boundary condition. This condition prohibits vertical
motion at the sea surface, and forces the vertically integrated flow to be non-
divergent. External gravity waves do not exist in this system, so the stability
requirement is substantially relaxed. Unfortunately, the physics are also slightly
distorted. In addition to removing the external gravity waves from the system,
the rigid lid also eliminates vortex stretching in the barotropic vorticity equation.
The vortex stretching term affects the phase speed of long waves, causing them
to slow down as the external radius of deformation scale is reached. In mid-
latitude oceans, the barotropic radius of deformation is typically the basin scale
(or large), so it is a good approximation to neglect this term. In the Southern
Ocean, however, the external radius of deformation decreases to under 2000 km,
and it is possible for significant energy to exist in barotropic waves of this scale.
There are no published studies of the impact of such phase errors on large-scale
simulations.

An alternative technique is the semi-implicit scheme, used here. In this
scheme, the terms responsible for the external gravity waves (the external pres-
sure gradient and the vertically integrated horizontal divergence) are treated
implicitly by averaging in time. The barotropic part of the pressure gradient ac-
tually contains two parts: that due to the free surface anomaly, and that due to

the mean of the vertically averaged perturbation pressure gradient. This scheme
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only treats the sea surface anomaly implicitly (Madala and Piacsek, 1977), since
that is the part of the solution which moves at the external gravity wave phase
speed. The vertical mean of the perturbation pressure gradient is due to a depth-
independent density perturbations which evolve on advective time scales and so
do not require the implicit treatment.

The semi-implicit approach is appropriate for calculations for which the speed
of the external gravity waves is not important. For simulations involving tides
or tsunamis, the barotropic mode may be calculated explicitly (asynchronously)
using a shorter time step. The current version of the code contains the semi-
implicit scheme, but the explicit/decoupled scheme can be installed in a few
hours. Of course, the entire model can be run explicitly with a very short time
step. In this case, the barotropic flow is calculated with the baroclinic flow. This

modification is trivial, but the resulting code would be rather expensive to run.

2.3.3 Horizontal Diffusion

The leap-frog technique which is so successful for the hyperbolic part of the
primitive equations is unconditionally unstable for the parabolic part. Many
models avoid the stability difficulty by simply calculating the diffusion terms at

the oldest time level of the 3-time-level leapfrog scheme. This technique is stable

for
AgAt
Az?

For values of Ay, At, and Az typical of ocean simulations, this condition is

<z
— 4

much less restrictive on the time step than the restrictions due to advection and
gravity wave propagation.

A difficulty of this scheme is that it is only first-order accurate in time. The
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alternative used here is the duFort-Frankel scheme. This scheme is implicit in
that one term is time-averaged, but the time-averaged term is not differentiated,
so the scheme can be solved directly, without the need for any matrix inversion.

A careful analysis of the scheme shows that the truncation error is of the form
(Haltiner and Williams, 1979)
At
O(At?) + 0(Az?) + O(x-3)-

Therefore the scheme requires

AgAt
Az?

L1

for consistency. A typical set of values for use in high-resolution ocean models

would be Ay = 1000 m%~!, At = 2000 s, and Az = 10000 m, producing

AgAt
Az?

=~ 0.02,

which ensures the consistency of the scheme. For higher-resolution cases typical
parameters would be Az = 1000 m, Ay = 20 m%™!, At = 200 s, producing
even smaller values of this error term.

If the formulation of the model includes a full tensor form of the diffusion
(discussed in a later section), then the diagonal elements corresponding to hor-
izontal momentum fluxes should be treated with the Dufort-Frankel scheme as
described here. The off-diagonal elements (containing the cross derivatives) are
likely to be very small corrections, and can be treated either explicitly (in which

case the unconditional instability is unlikely to show up) or by lagging in time.
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2.3.4 Vertical Diffusion

The vertical diffusion in the model is treated with a constant vertical eddy vis-
cosity, K. A general implicit integration scheme is employed of the form
n+l 2\ n—1

oK (%_) F(1-0)K (g_) , (22)
where @ is a time-differencing control parameter which the user may set to be
between zero and one. For 8 > -;-, the scheme is unconditionally stable, while for
< %, the scheme is conditionally stable. For § = %, this is the Crank-Nicholson
scheme, which is second-order accurate in time, otherwise it is only first-order
accurate in time. For § = 0, the scheme is explicit and conditionally stable.

The Crank-Nicholson scheme is generally preferred, except that it has the
property that waves which have wavelengths of 2A¢ and 2Az are not damped.
Since a major function of the viscous terms is to remove the'2Az waves, a value of
6 slightly greater than % is desired. This choice combines “almost-second-order”
accuracy in time with damping of all short wavelengths.

The tridiagonal system of equations which results from any choice of 8 > 0
is combined with the tridiagonal system which must be solved for the vertical
derivatives in the finite-element scheme, and so adds essentially no work to the
model.

The combination of the uniformly-spaced finite-element grid and the nonlinear
coordinate transformation produces a fourth-order accurate scheme. This should

provide significantly more reliable results than the first-order accurate schemes

in current use.
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2.3.5 Coriolis Terms

The Coriolis terms must be explicit on the C-grid, since an implicit treatment
prodﬁces a pentadiagonal system of equations to solve at each time step. This

imposes a stability restriction of

At <

?

| o

where f is the Coriolis parameter. This time step restriction is much less restric-
tive than those due to advection and gravity waves, allowing time steps of almost

4 hours in the most restrictive case.

2.4 Physics

Any model of a large-scale fluid system must parameterize unresolved processes.
In this model, as in many others, the choices for these parameterizations do not
significantly affect the choice of the differencing schemes and are often easily
replaceable. Despite this, the importance of these parameterizations must not
be played down. The following sections discuss the choices made for the initial

version of the model.

2.4.1 Diffusive and Dissipative Processes

"The modelling of sub-grid-scale diffusion/dissipation is one of the most subjective
aspects of large-scale ocean simulations. Vertical diffusion has been the subject
of intense study in recent years (Peters et al., 1988; Gargett, 1986), and some
progress is being made at its parameterization. For horizontal diffusion, the case
is not so clear. In fact, for some high-resolution simulations, it is possible that

zero horizontal diffusion is an appropriate approximation.
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Vertical Diffusion

Most models of vertical diffusion attempt to apply some results from turbulence
theory. For the upper tropical ocean, a vertical eddy diffusivity based on the
Richardson number provides a good fit to the data (Peters et al., 1988). The
Richardson number is the ratio of the square of the vertical density gradient to
to the square of the vertical shear of the horizontal velocity. When this ratio is
small (< 1/4), the mixing is turbulent and the vertical eddy viscosity becomes
as large as 1072-10~3 m2s~!. For larger Richardson numbers, the mixing is much

slower, with vertical eddy viscosities in the 107%-10~% m?s~! range.

Horizontal Diffusion

Horizontal diffusion in most numerical simulations exists more to remove energy
from the poorly resolved wavelengths in the system than to model the sub-grid-
scale turbulent diffusion. The initial version of the new model assumes a uniform
Laplacian eddy viscosity. This could be replaced with a biharmonic formula-
tion, but there are several alternative approaches which should be considered:
for example, the periodic application of a very sharp filter, or the introduction
of a nonlinear viscosity parameterization based on two-dimensional geostrophic

turbulence theories (Leith, 1968; O’Brien, 1986a).

Isopycnal/Diapycnal Diffusion Tensor

It is becoming increasingly recognized that it is important to have the diffusion
tensor in ocean simulations oriented with its major axes along isopycnals and it
minor axis normal to the isopycnals. The derivation of a coordinate rotation to

transform the tensor from isopycnal coordinates (where its form is assumed to be
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known) to Cartesian coordinates (which most models work in) was presented by
Redi (Redi, 1982), and simplified by Cox (Cox, 1987).

The isopycnal formulation of the diffusion tensor is often presented as being
necessary to correctly model the diffusion due to mesoscale eddies in a non-eddy-
resolving model. It is true that it is needed there, but it is also needed whenever
the slope of isopycnals exceeds the ratio of vertical to horizontal diffusivity. This
occurs at many scales, and the application of the standard horizontal/vertical
mixing thereby produces excessively strong diapycnal mixing. Another side effect
is that the non-rotated version contains insufficient vertical mixing in the case
when an isopycnal occupies a large range of depths.

Mellor and Blumberg (Mellor and Blumberg, 1985) have examined the prob-
lem of diffusion in their sigma-coordinate model. They implemented a flux form

of the diffusion in sigma coordinates which did not damage the representation of

the bottom boundary layer.

2.4.2 Convective Adjustment

‘The primitive equations contain the assumption that the flow is hydrostatic. In
situations in which the vertical density gradient becomes positive (dense wa-
ter overlying less dense water), the system is statically unstable and responds
by a nonhydrostatic convective adjustment process. In the current model, this
is implemented by locally increasing the vertical viscosity coefficient to about
10 m?s~!, or about 10000 times a typical large value. This quickly allows the
vertical density field to adjust. Since the vertical diffusion is handled with an im-
plicit scheme numerically, there is no trouble with exceeding the vertical diffusive

stability criterion.
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A technique used in earlier models was to vertically average adjacent densities
repeatedly until a statically stable profile was obtained. This technique works,
but is awkward, since it may need to be iterated. It is also considered to produce
more spurious gravity wave energy than the enhanced diffusion approach (Bill

Holland, Michael Cox, Frank Bryan, personal communication).

2.4.3 Boundary Conditions

The boundary conditions are another aspect of the model which are not tightly
coupled to the fundamental numerical scheme, but which exert a strong influence

on the overall quality of the simulation.

Surface

The surface boundary conditions in the model are applied stresses based on stan-
dard parameterizations. The finite-element scheme is expected to be more accu-
rate than finite-difference schemes with respect to boundary conditions, because
the derivative boundary condition enters the equations analytically, rather than
by a finite-difference approximation. Therefore the effect of a particular stress

should be much less dependent on the grid resolution near the surface.

Bottom

The bottom boundary layer is not expected to be resolved in most large-scale cal-
culations. The model parameterizes the stress that the benthic viscous boundary

layer applies on the interior flow by a simple scaling:

ou .
= = —Cplu

Oz
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where cp is a drag coefficient and @ is the value of u in the interior near the

boundary.

Lateral Closed Boundaries

The debate about how to treat lateral boundaries properly in large-scale ocean
models has been active for years, and shows no signs of slowing down. In the
current model, both the free-slip and the no-slip boundary conditions are rejected
as being unrealistic, being replaced by a parameterized boundary layer with a
“partial-slip” boundary condition.

"The usual model for lateral boundaries in an ocean model is an infinitely high,
impermeable vertical wall. Given this assumption, the no-slip condition is the
correct boundary condition for viscous flow — if the boundary layer is resolved.
For the very small values of horizontal viscosity used in eddy-resolving models,
this is probably not the case. There are several combinations of the frictional
coefficients with the other parameters of the problem that lead to length scales
associated with the viscous terms. The best known are the Stommel and Munk
scales, associated with bottom and lateral friction respectively. These arise in

simple linear vorticity models which do not necessarily include all of the important

boundary layer dynamics. The Stommel scale is given by

T
Lg =~
B
where r is the inverse of the linear bottom-friction time scale, and £ is the gradient

of the Coriolis parameter. For decay time scales of O(100) days, this boundary

layer is less than 6 km in width. The Munk layer scale is given by

b= 22
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For eddy-resolving models, values of Ay are in the range of 100-500 m?s~!,
yielding a Munk layer scale of 17-30 km. While it might be said that this is
“resolved”, since there is usually one grid point in the layer, it is not reasonable
to expect the answers to be quantitatively correct, since finite difference schemes
typically require several grid points per characteristic scale to get errors down
below 10%.

It is crucial that the models incorporate the correct behavior in the boundary
layer because the stress at the boundary is the relative vorticity of the fluid. In
the case of mid-latitude boundary currents, for example, the instability of the
separated boundary current can be expected to be quite strongly dependent on
the vorticity of the fluid being advected off of the boundary and carried along
with the free jet.

The alternative approach of using a free-slip condition does not allow viscous
stresses to introduce any vorticity at the boundary. This is likely to produce
boundary currents at least as inaccurate as those the no-slip case produces. It is
also inconsistent with the non-negligible levels of viscosity still required in eddy-
resolving models, since the free-slip condition arises from the inviscid equations.

Therefore, the most reasonable alternative is to allow the parameterization of
the stress at the boundaries. Considerable work remains to decide on what this
parameterization should be, but the model allows easy experimentation to deter-
mine the effects of various choices. Important open questions relate to the effects
of more accurate schemes on the vorticity produced by the western boundary
layer, and on the relative roles of side-wall and bottom friction in the continental
shelf regions.

The implementation of a specified-stress boundary condition is straightfor-
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ward along zonal and meridional boundaries, but is problematic along sloping
boundaries. The usual strategy of applying “stair-step” boundary geometries
allows the direct application of the kinematic (no normal flow) condition, but
does not allow the direct application of the normal derivative of the tangential
velocity to the finite-difference scheme. This is complicated by the fact that the
tangential velocity is a linear combination of the v and v velocity fields, which

are not defined on the same grid points.

Lateral Open Boundaries

Open boundaries in ocean models are even more suspect than closed boundaries.
It has been shown that it is not possible to produce a mathematically well-posed
problem for the inviscid primitive equations at an open boundary (Oliger and
Sundstrom, 1978) in terms of the spatial variables. These results suggest that
it is possible to produce a well-posed open boundary condition in vertical-mode
space, but the application of such an open boundary condition has not yet been
published.

The usual implementation strategy for open boundaries is to over-specify
Somerfeld radiation conditions at the boundaries and then to smooth along the
boundaries to remove the resulting short-scale noise from the solution. This has
not been implemented in the model, though it should be straightforward. As with
most of the model, the implementation of the boundary conditions is isolated to

a single set of subroutines for simple modification.
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2.4.4 Equation of State

The equation of state is contained in a separate subroutine, and is easily re-
placeable. The basic model contains a simple bilinear relation, with constant
coefficients for the temperature and salinity dependence. Since the density is cal-
culated at all grid locations simultaneously, good performance will be achieved

for any analytic formula. The usual polynomial approximations execute at full

machine speed.




Chapter 3

Derivations and Differencing

3.1 Introduction

This chapter presents the details of the derivations of the equations of motion
which result from the numerical decisions outlined in Chapter 1. This includes
coordinate transformations, time differencing, and space differencing. This chap-
ter is intended to be complete, rather than readable, and I have made an effort
to describe the details of the effort to piece these techniques together. I have at-
tempted to provide at least a brief explanation of each numerical technique, but
there is not room here to provide substantial background material. The reader

is referred to the references for further explanation.

3.2 Governing Equations

The governing equations are the Navier-Stokes equations in a rotating, Cartesian
coordinate system, modified by the usual oceanic approximations: small aspect
ratio, hydrostatic, Boussinesq, and no vertically-directed Coriolis force. In the

usual notation, the basic equations are:

44
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ou 1 dp
= tLW)-fv = = 9s + Fr(u) (3.1)
v - _19p
5t L(v) + fu = =03y + Fn(v) (3.2)
(3.3)
%’_ = —pg (3.4)
V- V=0 (3.5)
% +L(T) = Fy(T) (3.6)
‘Zt—s +L(S) = Fs(S) (3.7)
p= p(T, S, p). (38)

In the above: L(a) is the three-dimensional advection operator
L(a) =V;- Vo (3.9)

equation (3.8) is the equation of state, which may be modelled by a variety of
polynomial approximations; and F,, Fr, Fs represent the diffusion of momentum,
temperature, and salinity, respectively. The symbols are defined in Table 3.1.
The numerical treatment of each of the terms in the above equations is dis-
cussed in the following sections. An effort has been made to separate the treat-

ment of the terms to allow easy modification of the code.



z,y,z Cartesian coordinates
z,y,s transformed coordinates
h metric term = g—f
g gravitational acceleration
f Coriolis parameter
-
y
D depth of water (positive)
Dy  minimum depth (positive)
K,, coefficient of vertical momentum diffusion
Kr  coefficient of vertical temperature diffusion
Ks  coefficient of vertical salinity diffusion
Am coefficient of horizontal momentum diffusion
Ar  coefficient of horizontal temperature diffusion
As  coeflicient of horizontal salinity diffusion
g selector for vertical diffusion scheme
u,v,w Cartesian velocity components
u,v,8 velocity in transformed coordinates
U,V vertically averaged velocity components
Po mean density of water
¢ density anomaly
P total pressure
i baroclinic pressure anomaly
n free surface height anomaly
T temperature
S salinity
173 horizontal velocity vector
Vs three-dimensional velocity

Table 3.1: List of Symbols

46
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3.2.1 Boundary Conditions

This model formulation includes a free surface. Since the position of the free
surface varies by no more than one meter or so due to geophysically relevant
flows, some approximations are possible to simplify the boundary conditions.

The wind and thermohaline forcing are applied at z = 0, by

0 _ iz .y
pOKmE(uvv) - (T ’T) (310)

polEr, Ks)e(T, S) = (F7,F9), (311)

where K, is the coefficient of vertical momentum diffusion at the sea surface,
and K7 and K are the coefficients of vertical temperature and salinity diffusion
at the surface.

At the sea floor, the lower Ekman layer is parameterized by a simple drag coeffi-

cient model, and the fluxes of heat and salt are zero:

pgKm%(u,v) = cp(u,v) (3.12)

%(T, 5) = 0. (3.13)

The momentum boundary condition can be viewed as a “partial-slip” condi-
tion. The no-slip condition produces excessive momentum loss if the boundary
layer is unresolved, while the free-slip condition yields no momentum loss. This
partial-slip can be tuned to produce an intermediate value of drag more closely
approximating an actual Ekman layer (though the lateral Ekman transport does
not exist in this simplification). The model formulation allows the drag coeflicient
to be a user-defined function of space and time. This can be used to include the

changes in bottom drag caused by topographic roughness, for example.
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The kinematic condition at the free surface (2 = 5(z, y,t)) is

Dn
E = w, (314)
where
D a

and Ly() is the two-dimensional advection operator. The boundary condition at

the bottom (2 = —D(z,y)) is
w=-V;-VD (3.16)
for the case of a free-slip boundary, or (as a special case)

w =0, (3.17)

for a no-slip boundary.

3.3 Coordinate Transformations

The formula used in the current implementation is:

% =-(1-5) [1 - (1 - %) s] . (3.18)

TLe derivatives of the governing equations transform as (following (Cane, 1986)):
s=s(z,y2), 2= 2(e,5s). (3.19)

Define
7]
h(z,y,s) = % (3.20)

so that
(3.21)
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(7). = (o), - & (). 5 o2

The pressure term is written as

and, with{ =z ory

p=p' + pogz + pogn, (3.23)
where
a /
-a—pz- =—gp (3.24)

The middle pressure term has no dynamical significance, as it disappears from
the horizontal gradient terms. Therefore, it is removed from the following cal-
culations. Transforming into the new vertical coordinate converts the pressure

gradient term to

1 op'
Vapl, = Vap'|, - % V2|, —Z +gVn. (3.25)

By use of the hydrostatic equation this may be rewritten as
Vp' +go'Vz + gV, (3.26)

Where the gradient operators are now implied to be two-dimensional and with
respect to constant s. The new middle term is the topographic correction term,
and is the cause of considerable trouble, as will be discussed later.

Applying these rules to the governing equations (and removing the mean density

and associated pressure terms) results in:

ou 19p p 0z dn

5 T - fo = T 07 —gp05—95;+Fm(u) (3.27)
v 19 o0z  dn
5 T Liv)+ fv = 20 By gp0 9y gay + Fn(v) (3.28)
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op' ,0z

5 = 9P 5, (3.29)

- a ...
V- (V) + 5-(h3) =0 (3.30)
% +L(T) = Fr(T) (3.31)
% + L(S) = Fs(S) (3.32)
p=p(T,S,2). (3.33)

Now the three-dimensional velocity vector has components u, v, §, where

s's%(w—ﬁz-w). (3.34)

Note that the hydrostatic equation has gained a metric term and that the conti-

nuity equation is now in flux form.

3.3.1 Viscous/Diffusive Terms

"The second derivatives present in the viscous and diffusive terms cause the trans-

formed versions to be rather complex. The constant-coefficient diffusion terms

transform as
0%a 18% 1 0hda

2 W W 9s s (3.35)

Po| _ #a_20: &%
oz? . 9z2 hOz0zx0s
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(208200 10h(02\* 18%) b
h20x0x h330s \ Oz hoz? | Os
1 (82\? 0%
+E§ (a) w (3.36)

For the vertical terms, the nonconstant-coefficient version is

b5l aa 8%a OKdO8a K Ohda
255 = (K 52 T 5595 za—s'a';) (3.37)

The nonconstant-coefficient formulation of the lateral viscosity is extremely com-
plex and is included here for reference only. It would be far too costly to actually
calculate all of these terms — especially in a correct finite-element formulation.

The formula is

0 Oa
Frarrl

(524 (%)) - 1940 L ohoh 5z
h2ds \ oz hdxdx h3 9sds \ IOz
_lAazz 2 Bzﬁh]aa

o2 v 25252 95

9z\° 8%«
+ A(az) = (3.38)

=452 T\ oz "75502) 3z~ 7452 9708

5 8A 10A0z\ 0a 2 8z {%
0x2

As an alternative to this calculation, it is possible to interpolate the fields
to be diffused onto level surfaces and to calculate the viscous terms at constant
z. Since the functions are prescribed to be linear in s, this interpolation can be
made exactly. The difficulty lies in the application of lateral boundary conditions
in the interior produced by the presence of topography. This was a primary
reason for switching to a boundary-fitted coordinate in the first place, but in
this case, maintaining the boundary-fitted coordinate is clearly too expensive for

non-constant-coefficient lateral diffusion terms.
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The current implementation uses constant-coefficient vertical viscosity accord-
ing the formula above, and implements “lateral” viscosity along along constant
s surfaces. Obviously, the usefulness of this approximation will depend on how
important diffusion is to the physics — the current implementation is only valid

for nearly inviscid flow regimes.

3.4 Vertical Discretization Scheme

The vertical discretization of the transformed equations is by Galerkin finite
elements. The nodes are taken to be uniformly spaced in s, and linear basis
functions are used for u,v,T,S. Since the equation of state does not involve
integration or differentiation in z, it follows that p’ is also piecewise linear in s.

The diagnostic variables p’ and § have a more complex vertical structure
governed by the need for consistency with their defining equations. This will be
discussed later.

In the Galerkin scheme, the residual of the discretized equations is forced to
be orthogonal to each of the basis functions. Since this is a finite-element scheme,
the basis functions are local — in this case, piecewise linear functions in s. For
uniform grid spacing, calculating the inner product of the independent variable

o against the basis functions yields the tridiagonal matrix expression

[ 2 17 a1 ]
1 {a;

L SN
e e

as
as |- (3.39)

1
4 1 Qs
I 1 2] as |

Nonlinear terms are, of course, more complicated and cannot be expressed by

. As
Ma = 5

—




53

matrix operations. Simple quadratic terms are written as
w=uy =

1 1 1
Muw = E(Uk + U1 (v + vp—y) + UKk + Té(uk + ey1)(Vk + Ves1)  (3.40)

where « and v are piecewise linear functions, M is the matrix equation from the
previous paragraph, and w is the result, which is the contribution of this term
to the equation for this node. Many simple examples are worked out in (Cullen,
1979).

The result of this procedure is a set of K equations (for a discretization with
K nodes in the vertical) which express the orthogonality of the residual with
respect to each of the K basis functions. Since the unknown variables are linear,

the whole system reduces to a statment of the form
Muw = Q, (341)

where w is a vector of any of the unknown prognostic variables, and Q is a very
complicated expression resulting from integrating the right-hand-side of the equa-
tions against each of the basis functions. Note that M is a matrix representing
only the vertical structure of the solutions, so (3.41) consists of one independent
tridiagonal system of equations for each point in z and y. These equations can
be solved independently, either in parallel, or by vectorizing across the systems
of equations. This latter approach is implemented in the present code.

It is important to note here that for consistency, this scheme must be applied
uniformly to all the terms in the equations. The finite element scheme is not
the same as simply treating the vertical derivative operators with a higher-order

scheme. The benefit of applying the scheme is a guarantee of freedom from
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aliasing, and conservation of quadratic invariants. Because of the metric terms,
the momentum and mass are both quadratic invariants. The energy is a cubic,
and is not guaranteed to be conserved, though it is conserved to fourth-order
accuracy.

The diagnostic variables p’ and $ have a more complex vertical structure. The

perturbation pressure is the easier term,
E)
- p(s) = —g/p’hds'. (3.42)
1

Since p’ and h are piecewise linear, p' is piecewise cubic in s. The finite element
approximations to the pressure gradient terms must make use of the full cubic
structure of p’ to guarantee the conservation properties of the Galerkin scheme.
For maximum efficiency, the model integrates these terms using a 4-point
Gauss-Lobatto integration scheme (Abramowitz and Stegun, 1972). This scheme
is exact for polynomial functions up to fifth order, and so is exact for integrals of
p' multiplied by basis functions and integrals of p' multiplied by the metric term
h. This latter calculation is used in averaging operations for the calculation of the

barotropic flow. The weights and nodes for 4-point Gauss-Lobatto integration

are

A
w = 1—;{1,5,5, 1} (3.43)

5= {03 (1 - %) 3 (1 + %) 13, (3.44)

where the z; are mapped into each interval [s,Sk-1]- The hydrostatic equation
is integrated to evaluate p’ on the finer grid of the Gauss-Lobatto points and
integrals are evaluated as simple weighted sums of pressure terms multiplied by

linearly interpolated basis functions or metric terms A.
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The vertical velocity in the new coordinate system is more difficult to treat

correctly. Integrating the continuity equation yields
1 s
o —— —— . T I
i(s) =~ 0/ V- (hV%) ds'. (3.45)

Since h is a piecewise linear function, $ is a rational function composed of a cubic
poynomial in s divided by a linear polynomial in s. No simple pointwise integra-
tion schemes are available for integrating this function, and the evaluation of the
analytic integrals is quite expensive. In order to maintain reasonable efficiency, I
have chosen to apply the same scheme to the vertical advection terms as is used
for the pressure gradient terms. The vertical velocity is evaluated on the finer
Gauss-Lobatto grid, and integrals of vertical advection terms are approximated
by four-point Gauss-Lobatto integration. This has an error propértional to AsS,
and is therefore fifth-order accurate. The vertical advection scheme with this dis-

cretization is not guaranteed to be conservative, but the high order of the scheme

will force the errors to be small.

3.5 Horizontal Discretization Scheme

The basic horizontal discretization scheme is the Arakawa C-grid, shown in fig-
ure 3.1. The grid is ideal for integration of the gravity-wave part of the dynamics,
since pressure gradient terms are easily calculated at the appropriate horizontal
velocity points, and the divergence terms are easily calculated at the vertical ve-
locity points. Other terms require spatial averaging to be available at the desired
places, and there is some degree of flexibility in the calculation of those averages.
In the present model, T, S, p,p’, ands are all evaluated at the same points in the

horizontal, while « and v occupy their usual C-grid positions. Thus the Coriolis
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Figure 3.1: The Arakawa C-grid in a sample geometry

term must be based on a velocity interpolated in both the z and y directions in

order to be available for each momentum equation.

3.5.1 Advection Terms

The most important interpolations required in the horizontal momentum equa-
tions are for the nonlinear advective terms. The naive approach of discretizing
V-Vu directly as u%‘:‘- + vg—; has poor stability properties due to excessive alias-
ing. A simple modification which increases the stability of the scheme is the

q-adratic-averaging approach, which comes from the identity

V.-Va=V. (aV) —av. 7. (3.46)
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In Cartesian coordinates in the three-dimensional case, the final correction term
vanishes identically since the flow is non-divergent. This form is used in at least
some versions of the GFDL model (Bryan, 1969). Due to the nonlinear vertical
mapping and finite-element discretization of the present model, this approach is
awkward, and is modified slightly to

~ - 5 . Oa
V.Va=V-(alh) —aV - Vh+ i, (3.47)

Here only the horizontal terms are in the quadratic averaged form. The form
of the vertical advection term is unimportant, since it will be integrated ana-
lytically against the basis functions in a nearly conservative way, as discussed
in the previous section. This representation of the nonlinear terms was stud-
ied by Grammeltveldt (Grammeltveldt, 1969) and shown to be more stable than
the naive schemes, but less stable than the more sophisticated and expensive

energy-conserving schemes.

On the finite-difference grid, the difference and averaging operators will be

denoted by
1
(5,,0! = EE— (a,- - 0!,'._1) (348)
1
52,_-& = m (a,-+1 - a,-_l) (349)
1
& = > (o + @iy) (3.50)
and .
o =o' =av". (3.51)

Note that the 6, and averaging operators are one-sided, to enable evaluation of
values on the other node-types on the finite-difference grid. These are applied in

either the positive or negative offset direction, depending on which variables are
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being differentiated /interpolated to which grid. Since the grid is set up with Pij
to the east of u;; and to the north of v;;, the context determines the direction
of the offsets. So now the finite-difference form of the horizontal part of the

advection terms can be written as:
V. Vu=5,((@)°) + 6, (@) — u ((G;u + 8,0)') , (3.52)

with entirely analagous terms for the v-momentum equation. The formulation
for the advection of temperature and salinity differs slightly from this due to

the different grid locations of the variables. The scheme appropriate to those

variables is
V-VT =6, (ul*®) + 8, (vT¥) - T ((Gu + 50)"), (3.53)
with an identical equation for salinity.

3.5.2 Diffusion Terms

"The lateral diffusion terms for the barotropic mode are currently treated explicitly

with the simple finite-difference operator
1
Vi~ A 3 (G+15 — 265 + gi15) + — AyE (@ij+1 — 205 + @ij—1) . (3.54)

The Dufort-Frankel scheme for the lateral viscosity of the baroclinic modes is

obtained by time-averaging the center term in the stencil,
v2 ~ 1 —~t 1 1
v (915 — 248 + gi-14) + Ag? (gi541 — 28 + Gij-1).  (3.55)

This can then be simplified to

i = (@ - s (@ -a), @)
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where the term at the new time level n + 1 has been moved to the left side of the

equation.

For later use, define

1 1
= —_—t— .87
a = Ap2At (sz +Ay2), (3.57)
and
B =24, [T+ 2. (3.58)
Az2  Ay?

Then the Dufort-Frankel scheme can be written

(1+a)g**! = (1 — a)g" " + Fu(g™). (3.59)
3.6 Time Discretization/Integration Scheme

The model allows the treatment of the the barotrbpic mode in several ways. The
simplest is to simply retain the barotropic component of the explicit equations
and use a very short time step. This approach will be discussed in the section on
the internal modes. A more generally useful technique is to treat the barotropic
mode implicitly, which will be discussed here.

In order to bypass the very stringent time step limitation associated with
the barotropic gravity waves, the free-surface anomaly, 7, is integrated using the
semi-implicit scheme (Kwizak and Robert, 1971). Unlike the rigid-lid scheme, this
technique retains the barotropic gravity modes, but slows them down enough to
be stable. More importantly, the free surface condition retains the vortex stretch-
ing term in the barotropic vorticity equation. This term is usually negligible, but
can be of importance for long barotropic Rossby waves in shallow water or in

high latitude regions (particularly the Southern Ocean).
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In the semi-implicit scheme, the terms responsible for barotropic gravity waves
are treated implicitly by averaging in time. These terms are: the pressure gradi-
ent due to the sea-surface height anomaly in the momentum equations, and the
vertically integrated divergence terms in the continuity equation.

Leapfrog time differencing is used on the acceleration terms. All the remaining
terms are calculated at the center time level, except for the diffusion terms, which
are treated separately. For the baroclinic modes, the horizontal diffusion terms
are calculated by the Dufort-Frankel scheme, while the vertical diffusion terms are
treated by a general implicit scheme, discussed in the previous chapter. For the
(implicit) barotropic mode, the vertical diffusion is integrated out analytically,
and becomes a boundary-forcing term, while the horizontal diffusion is caiculated
from the old time level velocities. While this is only first-order accurate in time,
it is not deemed to be a problem, since the high-frequency gravity waves are
already severely distorted by the semi-implicit scheme, and since the dynamically

important Rossby waves are of low frequency, and are thus well-resolved in time.

3.6.1 Solution of Vertically Integrated Flow

The semi-implicit scheme is applied here to the vertically averaged velocities and
the sea-surface height anomaly. First, the equations for the vertically integrated
flow must be derived and treated separately. The scheme is very similar to that
outlined in Appendix C, so I will not review it again here. I define U, and V to
be the vertically averaged « and v fields. Then applying the semi-implicit scheme

to the vertically integrated momentum equations yields:

ann-i-l ann—l
n+1 -1 — n—1 __ —_
U™ + gAt p U gAt E
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1
1 a
—28t = 0/ L(u™)ds
+2At [+fV" + F(U™™) + Fy(U™)]
1
1 op’ ,0z ,
—2At5;(;! (8:1; + gp 81‘) Os (360)
ann+1 _ ann—l
VMl pgAt=— = vrlogap 2l
gt o 9ot 5
1 1
= n ’
2AtD O/L('v )0s
+2At [—fU™ + Fy(V* 1) + Fy(v™1)]
1
1 op' az)
—2At— [ [ + g0 05 3.61
Dpoo(c?y 93, (3.61)

The third equation for the semi-implicit calculation of the barotropic flow comes
from the vertically integrated continuity equation. In order to make the resulting
equations have constant coefficients, the depth is divided into a mean, D, and a
perturbation, D’. The part of the divergence associated with the mean depth is

treated implicitly, and the remainder is treated explicitly to get
b(v-V)"" +hst = Dy, (3.62)
where
Dy=-D(v-V)"" ~hi"! — 2D/ (V. V)" = 27" vD. (3.63)
Next, I take the divergence of the vertically integrated horizontal momentum
equations in order to substitute for the divergence terms in the vertically inte-

grated continuity equation. If I now define the right-hand-sides of the vertically

integrated horizontal momentum equations as Uy and V¥, I can write

V-V = V.V, — gAt V2pHL, (3.64)
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Substituting this into the vertically integrated continuity equation (3.62) yields
~ gDAt Vil 4 hg™l = D, — V. V. (3.65)

Finally, n**! and ™! must be related in order to turn this into an elliptic
equation for 7**!. The desired relationship comes from the implicit version of

the surface kinematic boundary condition

Dﬂ_ <t __ 3T
D= U = hs. (3.66)

Notice that here the other terms in the definition of § (3.34) drop out since z
and s are co-planar at the sea surface, and notice that the metric term is just a

constant scale factor at the sea surface.

Expanding the implicit surface kinematic boundary condition gives

"t — Aths™l =g, at s=1, (3.67)

where

ng ="+ Aths™t - 24t (V- ). (3.68)

Now the elliptic equation for 7 can be constructed

n n 1 » % 1
Vit - gDAt2n +1 _ _g_DAt [Df -DV-Vi+ A_tnf] . (3.69)

This equation is solved for n™*!, and then the barotropic velocities are ob-
tained by back-substitution into the momentum equations (3.60) and (3.61). The
implicit surface boundary condition (3.67) can then be used to obtain the vertical
velocity at the surface if desired. This is the preferred technique for obtaining
the vertical velocity at the sea surface, as it is much less prone to noise than the

vertical integral of the two-dimensional divergence.
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The boundary conditions for the elliptic equation are derived from the hori-
zontal momentum equations. At a closed boundary, the normal flow is zero, and

the normal momentum equation reduces to

ann+l ann—l 62Un—1
_ - bl | n i =
gt 57 gAtz  H2E | FFV"+ 20 Ay
1 n
1 op’ ,0z ,
—oAt— [ (£ 4 gp 22 .70
24 Dp00/(3x+gpax) ds', (3.70)

where I have chosen a meridional boundary for illustration. This equation is an
explicit expression for the normal gradient of n™*1, so it is a consistent boundary
condition for the Helmholtz equation. The terms involving 7, and V are straight-
forward, but the second derivative of the normal velocity and the integral of the
normal gradient of the perturbation pressure pose additional problems. The vis-
cous term is neglected based on a scaling argument, though this is not rigorously
justifiable. The pressure gradient term is assumed to vanish in viscous simula-
tions since the normal gradient of perturbation density is assumed to vanish in
the absence of density fluxes across the boundary. This argument fails in the
absence of dissipation, and a linear extrapolation of the normal pressure gradient
from the interior values is used in those cases.

The efficient solution of the elliptic equation for the sea-surface height anomaly
is the subject of an entire literature in itself. In this model, I have chosen to for-
mulate the equation as a constant-coefficient Helmholtz equation, so that Fast
Fourier Transform (FFT) techniques can be used for the solution. In the case
of irregular geometry, the capacitance matrix method can be used to solve the
problem with about 2-3 times the work required for the regular geometry case.
On vector computers, the FFT’s are calculated “sideways”, by setting up the cal-

culation for all the rows simultaneously and then vectorizing across the systems
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of equations. After the FFT’s, the equations are decoupled in the other coor-
dinate direction. The resulting independent tridiagonal systems are also solved
“sideways” by vectorizing the simple Gaussian elimination algorithm across the
systems of equations, just as is done for the tridiagonal systems that result from
the vertical finite element discretization.

More recently, an iterative method has been developed which extends the
usefulness of the capacitance matrix method to non-constant-coefficient problems
(Pares-Sierra and Vallis, 1989). This method has not been applied here, though
it would not be prohibitively difficult to modify the barotropic code to treat
the whole divergence implicitly, rather than just the part associated with the
reference depth. This would produce a non-constant coefficient elliptic equation
of the form

1 1
n+1 —_ — _
gAt? s gAt

[V.Dvy"*! - ) v.(DvV), (3.71)

gAt?
which can be solved with the method referenced above. This technique has the
advantage of not requiring any time-averaging of the continuity equation. Since

it uses the continuity equation with every term remaining in flux form, such a

scheme might have better conservation and stability properties.

3.6.2 Solution of the Internal Modes

The calculation of the baroclinic modes is independent of the barotropic calcula-
tions just described. The leapfrog scheme is modified by the implicit treatment of
both the vertical and horizontal momentum diffusion terms as discussed below.

The basic discretization is
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18" p oz ,
—_——— — - L n n
+2At [ o P (u™) + fo
+2At [F,(u+,u"1) 4 Fy(u™, u, )] (3.72)
,vn+1 = ,Un—l
10p" p oz ]
+2A¢ | ———— —g—— —~L['(v") - fu"
[ P00y ooy @) =1
+2At [F,(v",0"7) + F(v™, 0", v )] (3.73)
17 .
an+l o © . !
o= s 0/ V.1V s (3.74)
T+ =T"1 4+ 2At [-L'(T) + F,(T) + Fu(T)]" (3.75)
S = S 4 2A¢ [—L'(S) + Fo(S") + Fu(S)]" (3.76)

The hydrostatic equation is integrated exactly as discussed in the section on
vertical discretization, and it is assumed here that the pressure is known at all p
points when needed. Similarly, the equation of state is evaluated at the density
points when it is needed.

Next let K be the matrix resulting from the finite-element integration of the
constant-coefficient vertical diffusion formula (3.35), let M be the matrix for lin-
ear finite-element terms (3.39), and let FE indicate the finite-element integrations
that have been discussed in previous sections and which are not displyed in detail

here. Then the u-momentum equation can be written

(M(l + Q) - 0AtK) u"“ = (M(]_ — a) + (1 _ o)AtK) a1
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+2A¢ M (fo" + Fy(u™))

—2At FE(Ly(u™)) — 2At FE(s’%)

28t 3p'"

nn 92

+2At (Eop + Fbottom) . (377)

The right-hand-side is evaluated and then the tridiagonal system of equations
implied by the left-hand-side is solved at each horizontal grid point. The equation
for v is completely analogous, and the equations for T and S are similar, but less
complex. The combination of the tridiagonal systems for the vertical structure
and the vertical diffusion eliminates the need for a second tridiagonal solver and,
in effect, makes the implicit treatment of the vertical diffusion free.

Once the momentum equations are solved for the new velocities, the vertical
means are removed and replaced with the barotropic velocities which were cal-
culated separately, t}len the vertical velocities are calculated on the fine vertical
grid at the new time level. After the temperature and salinity have been updated,
a new perturbation density field is calculated, and the perturbation pressure is

calculated on the fine vertical grid in preparation for the next time step.

3.7 Implementation

As in any research project, the current implementation of the code is continously
evolving. Some of the design goals have not yet been met, but care has been
taken to ensure that the implementation of these extra features will not prove
inconsistent with the fundamental structure of the code.

The entire code is written in a language called ‘PREP’, written by Roger

Ove. PREP is a variant of FORTRAN-77 and is implemented by a preprocessor
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(written in C) which accepts PREP input and produces FORTRAN output. The
package is publicly available in the USENET source archives. PREP has several
advantages over FORTRAN as an implementation language for finite-difference
codes. It provides an array notation which removes the need for most DO loops,
and it provides macro expansion, conditional compilation, and enhanced flow
control constructs. The resulting code is significantly more compact than FOR-

TRAN, and hopefully more readable.




Chapter 4

Barotropic Model Tests

In order to debug the model, a variety of tests runs were performed. The test
cases discussed here include both linear and nonlinear experiments chosen to
isolate each piece of the equations for comparison against either known analytic
solutions or well-known nonlinear model results.

The four basic tests are:
o Stommel and Munk single-gyre solutions.
o Isolated vortex drift and decay.

e Flow over an isolated seamount.

¢ Flow over multiple seamounts.

4.1 Stommel and Munk Single-Gyre Tests

The idealized solutions of Stommel (Stommel, 1948) and Munk (Munk, 1950),
provide important tests of the Rossby wave dynamics and of the bottom and
lateral viscosity of the model. The linear cases are very helpful, since analytic

solutions exist, and the nonlinear versions are among the best-studied in the

literature.
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Figure 4.1: SSH anomaly for Barotropic Stommel/Munk tests

The numerical model in this case is constrained to be barotropic, and spun
up from rest. The model is integrated until a steady state is achieved. Cross-
sections of sea-surface height anomaly across the middle of the gyre are presented
in Fig. 4.1. The corresponding meridional velocity fields along the same cross-
section are presented in Fig. 4.2.

The sea-surface height anomalies for the two cases show the expected features.
The Stommel case shows a smooth curve with a peak in the western basin, while
the Munk case shows the characteristic dip just east of the maximum which
corresponds to the recirculation region.

The meridional velocity field in the Stommel model shows a clear maximum
at the boundary. with an exponential decay toward the interior. The observed

scale of the exponential curve is about 2.5 grid points, while the analytical scale
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Figure 4.2: Meridional velocity in Western boundary current for Barotropic Stom-
mel/Munk tests

is
r 50days™!
14—3 =% 10-TgoTesT = 11.7km = 2.34Azr,

which is an excellent agreement.

For the Munk model, the analytical scale is

A, 10m2s-!
(/7 = \/2 ot = 8:0km = 1.60Az.

This agrees well with the observed location of the current maximum at about 1.5

grid intervals from the wall. Another experiment run with a larger grid spacing
(and a predicted boundary laver width of 0.8 Az ) had no grid points in the
boundary layer, and hence showed no evidence that the maximum in the velocity
is separated from the wall.

The nonlinear versions of these cases showed the classical behavior as dis-

cussed in (Bryan, 1963; Veronis, 1966; Pedlosky, 1979). The nonlinear Stommel
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model tends toward the Fofonoff free mode, while the nonlinear Munk model
shows the expected standing Rossby waves in the outflow region. An example

of the nonlinear response of a model with both lateral and bottom friction is

presented in Fig. 4.3.

4.2 Isolated Vortex Tests

‘The behavior of an isolated vortex on a 4-plane has been studied extensively both
analytically (Flierl, 1977; Smith and Reid, 1982), and numerically (McWilliams
and Flierl, 1979; Mied and Lindemann, 1979; Smith and Reid, 1982). Analytical
results for the linear case include not only the solution (Flierl, 1977), but also
closed-form expressions for many integral measures of the solution, such as the
center of mass (Smith and Reid, 1982).

An isolated vortex was placed in a 3-plane channel and allowed to evolve freely.
When sufficient resolution was provided relative to the radius of deformation
(in this case, the resolution was 5.5 grid points per radius of deformation), the
observed westward drift of the center of mass was within 2% of the analytic
solution. The observed westward drift of the pressure maximum was about 5%
higher than the analytic solution, but I estimate at least a 3% uncertainty in
reading the solution from the figure of (Smith and Reid, 1982). In addition, the
position of the pressure maximum is determined by a bi-quadratic interpolation,
which adds another uncertainty to the result. I conclude that the results agree
to within measurement error.

The nonlinear test cases are more difficult to analyze. The most unambiguous
result is that the southward drift of the pressure maximum was bounded above

by 1/4 of the maximum Rossby phase speed (to within measurement error) in
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all cases. This result is common to all of the numerical papers except (Mied and
Lindemann, 1979).

The other results from the nonlinear cases are very difficult to compare to
(Smith and Reid, 1982) because of several errors in that paper, and because the
authors of that paper did not realize that the nonlinear response of cyclonic and
anticyclonic vortices is different. For example, the paper shows that nonlinearity
decreases the rate of westward propagation of the center of mass, while the current
model shows it to increase slightly. Their results are correct for cyclones, while

the current result is correct for the anticyclones that were tested here (Nof, 1983).

4.3 Flow over an isolated Seamount

In order to test the topographic terms in the barotropic mode, flow over an iso-
lated, idealized seamount was chosen. The parameter space amenable to quasi-
geostrophic modelling has been documented in (Verron and Provost, 1585).
‘Two parameter regimes are of interested: strong topography, and strong non-
linearity. The case of strong topography is represented in Fig. 4.4. In this case, the
seamount extends through one half of the water column. The resulting stream-
lines are identical to the strong topography case in (Verron and Provost, 1985),

their Fig. 3.

4.4 Flow Over Fieberling Guyot

The first application of the new model to a test case for which the answers are not
well known is the simulation of flow over multiple steep seamounts. In this case,
the topography is an idealized representation of the Fieberling Guyot, located at

approximately 128° W, 32° N, in the California Current system. The seamount
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Figure 4.4: (a) Topography of isolated seamount. (b) Sea-surface height anomaly
approximating the streamfunction.
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extends from the sea floor at 4500 m depth to a peak at just 438 m depth. The
guyot is nearly circular, and is well-represented by a Gaussian structure with an
e-folding scale of 12 km. The very steep slopes of the seamount (exceeding 30°
in some locations) pose significant difficulties for many numerical schemes.

The geometry for the initial numerical experiments contains one seamount
and is shown in Fig. 4.5. The north and south boundaries are closed, with no
applied stresses. The east and west boundaries are periodic. The domain is
256 km by 256 km.

Some further experiments are performed with two additional seamounts in-
cluded to the east of Fieberling. Fieberling II is 55 km distant at an angle of 20°
south of east, and extends up to a depth of 1050 m. The third seamount in the
chain is another 30 km east-southeast along the same line, and extends up to a
depth of about 1100 m. Both of the minor seamounts have e-folding radial scales
of 6 km. This geometry is presented in Fig 4.6.

The flow is spun up from rest by a uniform zonal wind stress of 1 dyne/cm?.
The bottom drag coefficient was fixed at 50 days so that the solution would equi-
librate in a reasonable amount of time. Most of the calculations were performed
with an extremely small explicit lateral viscosity of 10 m2s~!.

Because of the expense of calculations with the full three-dimensional model,
most of the experiments regarding convergence and sensitivity were performed
with just the barotropic component of the code.

The goal of the barotropic tests was to determine the resolution required to
adequately resolve the flow’s interaction with the topography and to determine

the sensitivity of the flow to changes in the horizontal viscosity coefficient.
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Figure 4.5: Contours of depth for the idealized Fieberling Guyot iest cases. The
far-field depth is 4500 m, and the minimum depth is 438 m. The lateral scale of
the seamount is 12 km, and the box is 256 km by 256 km.
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4.4.1 Single Seamount Tests

The approach of the model to steady-state is shown in Fig 4.7. The maximum
velocity in the domain increases steadily to about 15 cm s™! in the first 200 days,
while the total energy incrzases to about 10;5 J in that period.

The barotropic response of the ocean to strong topography is best understood
by examining the conservation of patential vorticity. In this case, the variations
in f/h are so strong that bulk of the fluid above the seamount cannot acquire
enough relative vorticity to move off of the seamount into deeper water. This
trapped fluid constitutes the well-known Taylor column. As will be seen below,
a small amount of water does leak off the SE corner of the seamount.

Experiments were run with 4 km and 2 km grid spacing to determine reso-
lution required to converge to the continuous solution. The sea-surface-height
(SSH) anomaly for both calculations are shown in Fig 4.8 for day 100 of the
simulation. Only very minor deviations are apparent, particularly just upstream
of the seamount, and on the SW corner.

More detailed comparisons are presented in Fig 4.9 and Fig 4.10. The anomaly
of SSH due to the seamount is calculated by removing a mean slope from the SSH
signal. The main SSH anomaly pattern is the maximum on the north side of the
seamount. This does not change much in structure between days 100 and 150,
but does increase slightly in amplitude. The difference field was produced by
averaging the 2 km solution in x and y to evaluate at the same physical locations
as the SSH points in the 4 km case. At day 100, there are coherent differences of
up to 2 mm in amplitude. This corresponds to a phase error in the initial pinching
off of a “bulge” from the SE corner of the seamount, as shown in Fig 4.9d. By

day 150, that phase error has disappeared, and there are no coherent regions of
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difference between the two solutions with amplitudes larger than 1 mm.

4.4.2 Three Seamount Tests

The geometry of the seamount chain containing the Fieberling Guyot is approx-
imated by the three seamounts of Fig 4.6. The spinup of these experiments is
quite similar to the previous single-seamount cases, but requires slightly longer to
equilibrate. The sea-surface-height anomaly at day 300 is shown in Fig 4.11. The
important difference to note is the the plateau in SSH over the two downstream
seamounts. The flow around the upstream seamount is nearly identical to the
single-seamount experiments. The SSH anomaly due to the topography is shown
in Fig 4.12, and is very similar to the anomaly shown in Fig 4.10 for the earlier
test.

More details are shown in Fig 4.13, which isolates the important contour
levels at day 300. The field shows clear evidence of three taylor columns, with
stagnation points at the southwest corner of Fieberling I, due west of Fieberling I,
and slightly south of west of Fieberling III. There is a uniform flow due southward
in the gap between Fieberling I and II, and essentially no flow between Fieberling
IT and III. The flow which was diverted northward around the upstream seamount
bifurcates at the stagnation point on the west flank of Fieberling II, and about
half travels southward through the gap, while the other half rides the north side

of Fieberling IT and III until it can return south along the east side of Fieberling

IIT.

4.4.3 Convergence Tests

The model geometry with three seamounts was used in a series of tests designed

to explore the convergence rate of the numerical model calculations. The model
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Figure 4.9: Barotropic response of the Fieberling Guyot at day 100 of the simu-
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Figure 4.10: Barotropic response of the Fieberling Guyot at day 150 of the sim-
ulation. (a) Sea-surface height. Range is +7 cm. (b) Sea-surface-height anomaly
due to seamount. Range is £3 cm. (c) Difference between 2 km and 4 km reso-
lution experiments. Range is +1 mm. (d) Potential vorticity field, showing some
water leaking off of the SE corner of the seamount.
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Figure 4.11: Sea-surface height at day 300 for the barotropic Fieberling Guyot
experiment with three seamounts. The range is £7 cm.
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Figure 4.12: Anomaly of the SSH due to barotropic flow over three seamounts of
the Fieberling Guyot chain at day 300.
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was run with resolutions of 16, 8, 4, and 2 km, with the 2 km case assumed to be
the exact solution. The topography was defined on each grid by the three Gaus-
sian shapes defined above, and then was smoothed separately for each case with
a single pass of a Wallington filter (Navon and Riphagen, 1979). The Wallington
filter consists of two fourth-order (5-point) filters with staggered poles. It identi-
cally removes the 2Az signal, but damps the 4Az and longer components much
less than a simple Hanning filter. This fitering was deemed necessary to avoid
exciting short waves in the solution, which would have led to stability problems.

Figure 4.14 shows the normalized maximum error and normalized RMS error
for each of the cases relative to the 2 km resolution case. The figure shows a
decrease in error of approximately 3 for each doubling of the resolution. The
discrepency from the expected value of 4 is believed to be primarily due to the
smoothing of the topography. The time discretization errors differ for the four
cases since proportionately longer time steps were taken for the cases with coarser
resolution, however the solution was very nearly steady, so these time differencing
errors should not be a major influence. It is important to note that this test does
not demonstrate the quadratic convergence of the model for a fixed (coarse-grid)
geometry, though the results are consistent with quadratic convergence. What
the test does suggest is that the fine scales present in the topography in the
higher-resolution tests cases cause the sequence of experiments to converge at a

rate slightly slower than quadratic.
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Chapter 5

Baroclinic Model Tests

It is substantially more difficult to find useful baroclinic test cases than to find
useful barotropic test cases, since there is so much more experience with layered
models than with three-dimensional models. The difficulty is compounded by
the fact that it is quite difficult to calculate the vertical modes of the current
model because of the nonlinear vertical stretching and the non-local derivatives
in the finite-element scheme. Therefore the tests shown below are somewhat
more qualitative than the previous cases. Each of the modules of the model (e.g.
the calculation of vertical velocity, vertical advection, pressure, etc.) was tested
extensively against analytic solutions, so the following test cases exist mostly
to see if the modules fit together properly and if the boundary conditions are

handled correctly.

5.1 Single-Gyre Tests

The classical Stommel model for wind-driven ocean circulation is not well-suited
for a stratified model, as the stratification hides the bottom friction from the
baroclinic flow, and the upper layer flow accelerates to unrealistic velocities. The

Munk model uses lateral friction as the energy sink, and this is perfectly suited
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to a stratified model.

The model shows the desired qualitative behavior for this test case. The
Ekman convergence in the upper layers causes an increase in sea-surface height
and a deepening of the thermocline. Associated with this comes the expected
clockwise gyre circulation. The temperature at 533 m after 50 days of integration
in one test run are presented in Fig. 5.1. The asymmetry in the field is caused
by upwelling in the NW and SE quadrants where the wind is blowing the water
offshore, and downwelling in the NE and SW quadrants where the wind is blowing
the water onshore. The westward intensification of the gyre is clearly beginning,
though the response is still linear at this point in the integration.

Some interesting numerical anomalies show up in this test case as well. The
most obvious is that the finite-element vertical discretization does not preserve
the extrema of the temperature field at the top and bottom boundaries. In
a finite-difference model, the bottom temperature minimum is guaranteed since
there is no velocity through the bottom boundary. Since the advection equation is
evaluated pointwise, the advection term therefore vanishes. In the finite-element
scheme this is not so. The vertical advection term is integrated over the entire
interval, so that the effective vertical velocity at the bottom node is not zero.
If there is a gradient of temperature between the bottom two nodes, then the
temperature of the bottom node may decrease, despite the fact that the flux is
known to be zero across the boundary. Of course, since the finite-element scheme
is a Galerkin scheme, the total temperature is actually conserved by the advective
part of the equations. This is an example of how an integral scheme can produce
pointwise errors while minimizing a global error norm.

The other numerical anomaly that shows up in these cases (as well as in the
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Figure 5.1: Temperature at 533 m at day 50 of a baroclinic single-gyre calculation.
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channel cases discussed below) is related to the boundary conditions on pressure
and sea-surface height. The boundary conditions required for the implicit inte-
gration of n depend on knowledge of the vertical integral of the normal gradient
of the perturbation pressure at the boundaries. It is not possible to externally
specify this boundary condition, since the system is fully specified by the bound-
ary conditions on velocity and temperature. Therefore a boundary condition
which is already implied by the equations must be discovered, as was discussed
in an earlier section. Experiments with the combined barotropic/baroclinic code
have demonstrated that the stability of the model is quite sensitive to the par-
ticular estimate employed for the normal gradient of perturbation pressure. The
best results so far have been obtained with a simple linear extrapolation of the
perturbation pressure gradient, but these calculations tend to gradually become
unstable after about 10,000 steps. The instability manifests itself as 2Az noise
in the velocity fields near (and tangential to) the boundary. This noise is much
easier to produce in this model than in a rigid-lid model because the boundary
condition is on the normal gradient of #, while the rigid-lid case has a boundary
condition on the tangential gradient of n which clamps it to a single value along
closed boundaries. Further work is in progress to identify the precise cause of the

instability and to develop means to eliminate it.

5.2 Channel Tests

In this series of tests, the geometry was set up to be a recirculating channel,
closed on the north and south boundaries. The solution for the baroclinic case
is quite different than the barotropic case for this geometry. In the barotropic

case, one observes a linear sea-surface height anomaly balancing a uniform zonal
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current. In the baroclinic case, one finds a meridional cell superimposed on
this basic circulation. The surface flow has a southward component due to the
Ekman drift. Upwelling occurs at the northern boundary and downwelling at the
southern boundary as the water turns under and flows back north at depth. This
configuration was run successfully for 100 days of simulated time.

The next step was to include a seamount in the middle of the channel to
test the baroclinic code’s treatment of the terms introduced by topography. The
seamount was modelled after the Fieberling Guyot, with a 12 km e-folding scale,
but was employed with various heights, ranging from 400 m to 3000 m.

The primary activity in the baroclinic tests has been to attempt to overcome
the problems caused by the imperfect cancellation of the two components of the

baroclinic pressure gradient term for the case of flat isopycnals:
Vp' +gp'Va. (5.1)

In the case of an initially resting fluid with flat isopycnals and non-flat topogra-
phy, these terms do not identically cancel — thus producing spurious accelera-
tions. Although the precise cause is not known, for sufficiently steep topography
intersecting stratified water, this energy input to the system causes catastrophic
instability. This problem, which will be quantified by some examples below,
has also been observed by Haidvogel in his sigma-coordinate model (Haidvogel,
personal communication).

A two-dimensional Taylor series expansion of the z-component of the pressure
gradient vector shows that the error is due to the incomplete cancellation of two
of the ten second-order truncation error terms, specifically the third derivatives
in z of the p and z functions. Working out the expansions and assuming that the

density field is linear in z and uniform in z leaves the following expression for the
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error in the right-hand-side of the u-momentum equation

2 4 op 2]

11 s
923 * I B3

— 2At ——Ar? [ (5.2)

Po 24

By use of the hydrostatic relation, it can be seen that the two terms scale like

1 gpAz?A,
T (5.3)

where § is a characteristic scale for the variations in p’, A, is a characteristic height
of the topography, and L, is a characteristic horizontal scale for the topography.
Now assuming the following scaling numbers for the baroclinic cases tested here:
A =1000 m, L =12000 m, At =600s, p =1kgm™3, Az = 4000 m, then the
error term (and hence Au over one time step) is approximately 5 x 10~3 m s~2.

This is a large acceleration, oceanographically, as it would produce flows of
about 30 cm s™! after one day. The test cases here did not observe such large
errors, probably due to partial cancellation of the error terms, but the errors ob-
served were of the same order of magnitude. It is clear that extreme caution must
be used with this technique since the upper bound on the spurious acceleration
is so large.

Two approaches for ameliorating this problem are tested here. The “heating”
technique consists of attempting to find the minimum potential energy state
of the resting ocean by heating a stationary, homogeneous fluid from above,
without any lateral viscosity. This is based on the hypothesis that the energy
that goes into the flow is available because the model has a slightly different
idea of what the minimum potential energy state is than the user. The “re-
normalization” technique simply consists of calculating the pressure imbalance
for an initial resting state, and subtracting that imbalance at every time step.

The technique is expected to have trouble if the flow causes the density field
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Seamount Time to Blowup | Surface
Amplitude (m) | (days) Temperature
400 > 80 0

1000 > 80 0

1500 > 80 0

2000 25 0

3005 11 0

1000 20 15

1000 53 10

1000 58 5

Table 5.1: Stability of test cases with topography. The table shows the number
of model days before the model went unstable as a function of the seamount
amplitude and the temperature gradient. The temperature gradient was defined
to be linear over the far-field depth, and is quantified by the surface temperature.

to change markedly from the initial conditions, but should work well for cases
without strong baroclinicity near the topography.

The tests performed with the “heating” technique were all failures. In the
presence of topography, the heat was not transmitted uniformly (in z) and there-
fore caused lateral pressure gradients and associated large currents. The cases all
became unstable after a few days of integration.

The tests performed with the “re-normalization” of the pressure gradient
terms were somewhat more successful. A variety of seamount sizes and strat-
ification strengths were tried, as summarized in table 5.1. Without the renormal-
ization, the cases with strong topography became unstable in less than two days
of simulation time.

The stability of the scheme was greatly improved by occassional filtering of
the velocity and sea-surface height fields. The results shown in table 5.1 included
one pass of a Wallington filter every 19 time steps. The Wallington filter consists

of consecutive passes of two 5-point, fourth-order filters. It identically removes
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the 2Ar wave, and is only weakly damping for waves longer than 6Az. Since
it is a fourth-order filter, it corresponds to the addition of biharmonic viscosity
in the momentum equations. It acts much the same as a de-aliasing operator for
the momentum equations.

By increasing the frequency of the filtering operations from every 19 time
steps to every 5 time steps, the stability of the 1000 m, 5°case was extended to
beyond 100 days. It is not possible to apply the same strategy for filtering to the
temperature field, however, so short-scale noise is not completely eliminated from
the system. When filtering is applied to the temperature field along s surfaces, it
causes unphysical pressure gradients and spurious flows around the topography.
'This leads to inaccurate results and eventual instability.

Three sections from this experiment are shown in Fig. 5.2. The top frame is a
meridional section of the zonal velocity through the seamount center. Note that
the vertical axis of the figure is s rather than z, so the seamount is not visible.
The seamount is located in the center of the domain, with a lateral e-folding scale
of three tick marks in the left-right direction. The immediately evident features
of the flow are the boundary layers along the north and south walls, the Taylor
column above the seamount and the surface-intensified baroclinic jet in between.

‘The middle frame of Fig. 5.2 is the temperature field along the same axis as
top frame (the zonal velocity). The depression of the isotherms in the center
of the domain is simply a manifestation of the coordinate transformation. The
dynamically interesting part of this figure is the downwelling at the southern
boundary and upwelling at the northern boundary. Note that this vertical motion
is restricted to the upper level, which is consistent with the surface intensification

of the zonal velocity field.
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The bottom frame of Fig. 5.2 is a zonal cross-section of the meridional velocity
field. The southward velocities of the surface Ekman layer are present everywhere
except over the top of the seamount, where the water is nearly stationary. On the
leading edge of the seamount there is a northward bottom current reminiscent
of the northward flow observed in the barotropic experiments. As the topogra-
phy gets higher (still on the upstream side), the flow becomes southward, then
northward again at the top and along the downstream side.

This meridional velocity profile is very difficult to analyze, since it is not
possible to distinguish flow due to errors in the pressure gradient term with the
“correct” results. Since the pressure gradient error term is so large, it is impossible
to know how much of the “re-normalization” is incorrect due to the change in the
density field. It is very easy to imagine a situation for which one can come up
with a “plausible” explanation for the model’s behavior, when in fact the model’s

behavior is merely an artifact of the incorrect pressure gradient terms.
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Chapter 6

Summary and Conclusions

The task of developing a three-dimensional primitive equation ocean model is a
difficult and complex one. It is difficult because of the breadth of the problem
implied in the wide range of physical processes contained in the primitive equa-
tions, and it is complex because of the subtleties of the relationships between the
finite numerical methods and the continuous governing equations. This study
has contributed to the enterprise of ocean modelling in several ways, including
the development and implementation of a new model and the analysis of several
numerical techniques applicable to ocean simulations.

A three-dimensional numerical model employing a vertical boundary-fitted
coordinate and finite-element vertical representation was produced. The model
combines a novel vertical mapping with linear Galerkin finite elements to obtain
fourth-order accuracy in the vertical discretization. This is contrasted with the
first-order accuracy of current non-uniformly-spaced finite-difference models.

The barotropic part of this code was used for a variety of experiments to
study the flow over a chain of seamounts modelled after Fieberling Guyot and its
neighbors. A careful analysis of the convergence of the finite-difference scheme

suggests that a resolution of at least 3 grid points per characteristic scale of the
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topography is necessary to obtain convergence to within 1% of the continuous
solution. The inclusion of finer scales in the topography for the higher resolution
cases also decreased the rate of convergence of the scheme to less than quadratic,
though still faster than linear.

‘The model appears to have met the goals of efficiency and modularity. The
vertical discretization appears to be effective and accurate in flat-bottom cases.
On the negative side, the problems associated with the imperfect cancellation of
the pressure gradient terms in the presence of topography and stratification have
not yet been overcome. These problems include spurious flows in the vicinity of
topography and numerical instability. Attempts to overcome these problems by
(1) heating an initially homogeneous fluid from above; and (2) subtracting off the
pressure gradient error (calculated from an initial resting state) have not been
successful enough to warrant much confidence in the techniques.

Several other results of the current research have been in the evaluation of
numerical techniques for the primitive equations. The semi-Lagrangian and semi-
implicit integration schemes have been studied in some detail, and the effects of
the sigma-coordinate transformation on the pressure gradient calculation have
been investigated.

The semi-Lagrangian advection scheme was analyzed to establish quantita-
tive measures of the implied dissipation. Formulae are provided to estimate
the equivalent Laplacian eddy-viscosity (for linear interpolation) or biharmonic
eddy-viscosity (for quadratic or cubic interpolation) as a function of grid spacing
and time step. For the grid resolutions currently used in ocean models, the semi-
Lagrangian scheme was shown to contain excessive implied diffusion for long-term

integrations, and so was not used in the present model. On the other hand, the
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excellent phase response of the semi-Lagrangian scheme makes it ideally suited for
short-term integrations involving tracers, such as pollutant or oil-spill trajectory
modelling, or in the atmospheric forecast models where it is now popular.

The three—dimensional versign of the semi-implicit scheme was analyzed for
possible application to three-dimensional ocean models. It was shown that the
scheme is physically ill-posed in the limit as the stratification of the fluid becomes
neutral. The scheme is still arithmetically well-posed, however. Further research
is required to analyze the precise nature of the error introduced by the semi-
implicit scheme and to document its consequences for realistic profiles of vertical

) stratification.
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Appendix A

The Dissipation of the
Semi-Lagrangian Advection

Scheme

A.1 Introduction

In the search for more efficient numerical techniques for the integration of the
atmospheric equations of motion, a number of authors have recently been ex-
perimenting with the so-called semi-Lagrangian advective scheme. This scheme
works by back-tracking along particle trajectories and interpolating on the flow
fields to update the values at the fixed grid points. It differs from a pure La-
grangian scheme in that the parcels followed are different at each time step.
When the grid points used in the interpolation are the nearest neighbors to the
parcel’s departure point (rather than its arrival point), then the scheme is called
“multiply-upstream.” Advection with a multiply-upstream scheme is uncondi-
tionally stable.

There are many options in the implementation of semi-Lagrangian advection.
Several authors have used a split scheme (Bates and McDonald, 1982; Bates,

1984), in which the equations are divided into pure advection and linear relax-

111



112
ation, and integrated independently. Then the time step for the advective portion
can be based on accuracy considerations, rather than stability criterion. Alter-
natively, the equations may be integrated in a single step, with the non-advective
terms being moved to the right-hand-side and evaluated along the trajectory
(Robert et al., 1985; McDonald, 1986). For simplicity, the analysis here is for a
pure advective scheme.

McDonald (McDonald, 1984; McDonald, 1987) has discussed the accuracy
of semi-Lagrangian advection using Lagrangian interpolation schemes. He and
others have noted its dissipation (Bates, 1984; Robert et al., 1985; Ritchie, 1988),
but have not quantified it in terms of more common measures of viscosity. In this
study, the dissipation inherent in semi-Lagrangian advection will be quantified
in terms of the dissipative decay time scale and the effective eddy viscosity as

functions of the horizontal scale and the residual Courant number.

A.2 Amplification Factors

McDonald (McDonald, 1984) has calculated the amplification factors for a par-
ticular implementation of the semi-Lagrangian advection of plane waves using
Lagrangian interpolation. The amplification factor of the Lagrangian interpola-
tion scheme is separable into multiplicative z and y components, which makes
the analysis much simpler. Since we are only concerned with the amplitudes
here (not the phase), it is sufficient to deal with only the magnitudes of the
amplification factors. Following McDonald, the interpolation points are chosen
such that the fractional part of the Courant number lies between 0 and 1 for
the cases of bilinear and bicubic interpolation, and between —% and +% for the

cases of biquadratic and biquartic interpolation. Hereafter, the fractional part
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of the Courant number will be referred to by o, and will be called the “residual
Courant number”. With the definition: ¢ = 1 — cos(kAz), the magnitudes of the

amplification factors for the four schemes are thus:

M2 = i-2a(1-a)e (A1)
A2 = 1-0%1-0?c?
Asl? = 1-a(2-a)(1 —a®)c?[3+2ca(l — a)]/9

[Aq)? 1—0%(1 - e?)(4 — a®)c?4 + (1 — a?)]/36,

where a is the residual Courant number, & is the wavenumber, and At and Az
are the usual finite difference time and space increments. The subscript indicates
the order of the interpolation.

Needless to say, these are not the only possible choices for the interpolation.
Spline interpolations are known to have some properties that are superior to
Lagrangian interpolation, and have been used with semi-Lagrangian advective
schemes (Purnell, 1976; Pudykiewicz and Staniforth, 1984). Low-order trigono-
metric interpolations have also been investigated for semi-Lagrangian advection
in storm surge modelling (R.O. Reid, personal communication). Therefore, the
details of a particular implementation may differ from the results presented here,

but the orders of accuracy should be the same for varying interpolation tech-

niques.

A.3 Decay time scales and “equivalent” viscos-
ity
The amplification factors shown above all have magnitudes less than or equal

to unity, ensuring stability for the schemes. However, the magnitude of the
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Figure A.1: Contours of the dissipation decay time scale in days as a func-
tion of residual Courant number (U At/Az) and wavelength for the case of one-
dimensional semi-Lagrangian advection with linear interpolation. Note that the
vertical axis and contour interval are logarithmic. The vertical contours near
a =0 and a =1 are artifacts of the contouring.

amplification factor is not a very understandable measure of the dissipation in a
finite-difference scheme (unless it is significantly smaller than 1 ! ). A much more
easily understood measure is the dissipative decay time scale. This is defined as
the time required to reduce a signal to e~! times its original amplitude. In terms

of the amplification factor, the decay time scale is

At
= —— A.
Y | (4.2)

An alternate representation of the magnitude of the dissipation is the co-
efficient of viscosity or hyperviscosity which produces the same damping. The
dependence of the damping on the wavelength will show how the dissipation
is more, or less, scale-dependent than the traditional Laplacian eddy viscosity
formulation, which has a &2 spectral dependence.

The dependencies of the decay time scales on @ and wavelength for each of
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Figure A.2: As Fig. 1, but for quadratic interpolation.
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Figure A.3: As Fig. 1, but for cubic interpolation.
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Figure A.4: As Fig. 1, but for quartic interpolation.

the four schemes described in the previous section are shown in Figs. 1-4. Note
that the o axis is linear, and that the wavelength axis and the contour interval
are logarithmic. Note also that since the wavenumber dependence of the decay
time scale appears only as kAz, the vertical axis has been non-dimensionalized
by Az. The grid interval Az also shows up in the residual Courant number, so
the effects of time and space discretization cannot be entirely separated. This
will be discussed in some detail in section A.5. The decay time scale is in units of
days, for a time increment At = 3600s. When it is appropriate to use dimensional
quantities, the values Az = 200km and At = 3600s will be used as representative
numbers. For this “typical” horizontal resolution the figures cover the two decades
from the Nyquist cutoff on the short wave end, to the global mode 1 wave on
the long wave end. F olloﬁring sections will discuss the long-wave and short-wave

characteristics of the semi-Lagrangian scheme separately.
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A.3.1 Long waves

For long waves (kAz << 1), the wavenumber dependent term in the amplifi-
cation factors (1 — cos(kAz)) reduces to approximately %(kAx)2 Inspection of
(A.1) shows that linear interpolation has the same spectral characteristics as
Laplacian viscosity and quadratic and cubic interpolation have the same spectral
characteristics as biharmonic viscosity.

It may often be the case that the advecting velocity is only large in a portion
of the computational domain. For the regions in which the Courant number is

small, the amplification factors can be approximated:

A = 1- %a(kAx)"’ (A.3)

Aol = 1—-;'02(/6A.’1:)4

1
- —alkAx)?
[As] 1 120:( Az)

N = 1--31—6a2(km)6.

This shows clearly that the third-order scheme can have more dissipation than
the second-order scheme, and that the spectral dependence of its diffusivity is the
same. The third-order scheme does, however, have a better phase representation
than the second-order scheme (as pointed out by McDonald (McDonald, 1984)).

Purnell (Purnell, 1976) and Pudykiewicz and Staniforth (Pudykiewicz and
Staniforth, 1984) analyzed a cubic-spline interpolation from which can be ob-

tained an analogous expression for |A3], which reduces to
el = 1 = =o2(kAg)?
12 ’

in this limit. This result shows that the cubic-spline interpolation has slightly less

dissipation than the quadratic Lagrangian interpolation used here, but displays
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the same spectral slope.

For these long waves, it is straightforward to calculate the equivalent eddy
viscosity from the amplification factor. The analytic solution for the amplitude

of a plane wave damped by Laplacian friction is
Pk, t) = P(k,0)e=AuF",
The Taylor series expansion (in time) for the amplification factor is
[Al =1 — Apk®At + O(A?).

"Then equate the first two terms of the long-wave expansion for the semi-Lagrangian

step with these two terms and solve for Ag. The results are:

Ay = iw(a - a?)Az?

Ay = &(a2 - a*)Ar?(kAz)?

Ags = 241At(2a - o? - 283 + o*) Az (kAx)?
Ags = 14; ~ (40® - 5a* + o)Az (kAz)L.

Only the linear case has the k2 spectral dependence characteristic of Laplacian
friction. Since a is in the range 0-1, an upper bound to the equivalent Laplacian

dissipation for this case is

1 /1 1Az?
<—(3)arz=-2L .
Am < 5= (4) ATt = (A-4)

which is approximately 1.4 x 10%m?s~! for the parameters listed at the begin-
ning of this section. For the atmosphere, values of the eddy diffusion coefficient
have historically been estimated at less than 10°m?s~1, though it is generally ac-
cepted that Laplacian eddy viscosity is a rather poor approximation to the actual

turbulent dissipation and diffusion in the atmosphere.
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An analogous comparison may be made for biharmonic viscosity. The equiv-

alent biharmonic viscosities are:

_ 1 2y A 4 -2
ABI = 2At(a (a4 )Al‘ (kAZ‘)
A32 = 8—37(02 - 04)A.’B4
— _L_ — 2 _ 3 4 4
AB;; = 24At(2a o 2a° + o )A.’L‘
1

2 _ & 4_ BYA 4 2
Aps T At(4a 5a* — o®)Az*(kAx)“.

Noting the ranges available for ¢, the upper bounds for the quadratic and cubic

cases are:

3 Azt

3 — R ——

An <a () A = mR
3 Azt

A Sgm (%) 8% = ar

(A.5)

which are both approximately 1.0 x 10®m*s~! for the parameters listed at the
beginning of this section. It is difficult to define this non-physical dissipation
observationally, but the European Center for Medium-Range Weather Forecasting
high-resolution model uses values of about 1.0 X 10®m*~! for medium range

forecasts (Ritchie, 1988).

A.3.2 Short Waves

For short waves, the term (1 — cos(kAz)) does not display the same dependence
on % as for the long waves. Two cases of special interest are wavelengths of 2Az
and 4Az, for which the cosine terms reduce to 2" and 1, respectively, where n
is the order of the interpolation. The dissipation still increases with increasing

wavenumber, but it does so at a much slower rate than the appropriate power
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of k near the shortest waves in the system. Thus, the equivalent eddy viscos-
ity actually decreases for the shortest waves, and the effect gets worse as the
order of the scheme increases. This is unfortunate, as one would usually desire
larger dissipation in this wavelength range to damp out the poorly resolved (and
inaccurate) short waves.

It is instructive to examine the amplification factors for these special cases,

which are simply polynomials in a:

L =2Ax
M2 = 1-40+40?

[A2]2 = 1-—40a?+4a*

[Asf? = 1-20—-29—0a2+8a3+§a4—13—6a5+%a6
16 76 32 4

A 2 - - g? e 6 .8

[Adl 1-5e+a 5o+

L =4Azx
M = 1-2a+2a?

A2 = 1-0?+0?

2 1 4 1 2 2
CRP e o S Rt N S Y- SN -
[As]* = 1 3%~ 5% +3a 9@ — 3¢ +9a

5., 929 5 1
MPE = 1-22+ 24 _ 2618
A4 9% 3% 5@ t 352

For small e, these functional dependences demonstrate that the even-ordered
schemes have similar dissipation for éhort scales, and that this dissipation is much
less than that of the odd-ordered schemes (which also have similar dissipation).
Figs. 1-4 show this to be true for the entire decade of wavelengths just above the

Nyquist cutoff.
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A.4 Comparison te Other Dissipative Schemes

Many Eulerian differencing schemes which have been used for the advection
problem are also non-conservative, and it is of interest to compare their dissipa-
tion rates to that of the semi-Lagrangian scheme. Three representative schemes
are upstream differencing, the Lax-Wendroff scheme, and the Matsuno (Euler-
backward) scheme (Haltiner and Williams, 1979; O’Brien, 1986b). It is easy to
see from its derivation that upstream differencing is exactly the first-order semi-
Lagrangian technique (restricted to being non-multiply-upstream). This tech-
nique produces an equivalent Laplacian (k?) friction (the same as (A.4)) which is

generally considered too dissipative for large-scale atmospheric or oceanic models.

A.4.1 X ax-Wendroff

It can be shown that the Lax-Wendroff scheme in its usual form is simply a
second-order, non-multiply upstream semi-Lagrangian technique. The k* spec-
trum is somewhat surprising, as the Lax-Wendroff scheme can be written in a
form that appears to contain Laplacian (k2) friction with a coefficient of sUAL.

The advection equation

¢t = —'U"p:n

defines a%’ so that we may also write
'¢'tt = U21//'zz-
The Taylor series expansion for the temporal evolution of Y is

At?
P =yt + Atr, + T'wtt + O(A8).
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Substituting in the definitions for %, and 1,; gives

2
P = " — AtUY, + %':—U%m +O0(A).

Although this equation appears to be a first-order (in time) advection coupled
with a Laplacian dissipation, it is better understood as a quadratic interpolation
formula for the value of ¥ at z — UA¢, and is actually second-order in time,
with a dissipation that depends on the accuracy of the spatial derivatives. The
usual Lax-Wendroff scheme uses centered second-order spatial discretizations for
¥, and .., resulting in exactly the same transfer function as for the quadratic
semi-Lagrangian case. Higher-order spatial discretizations yield cubic and quartic
sémi—Lagrangian schemes. Increasing the number of terms in the original Tay-
lor series in time increases the temporal accuracy beyond O(A#?). It should be
noted here that in multiple spatial dimensions, the straightforward Lax-Wendroff
scheme will differ from the semi-Lagrangian scheme using Lagrangian interpola-
tion because Lagrangian interpolation introduces some extraneous terms in the

Taylor series expansion to allow separability.

A.4.2 Matsuno (Euler-backward)

The Matsuno scheme is a well-known two-step integration technique, which can

be written
£ n UAt n n
7//',' = lbj - m(’/)j-y-l - j—1)
UAt .

+1 *
PP o= Y — E( i+~ Yi-1)-
The amplification factor is

[A2 =1 - (asinkAz)? + (asin kAz)?.
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For long waves, this reduces to
A2 =1 — o} (kAz)? + O(K?).

The equivalent Laplacian friction coeflicient for these long waves is

AH = —1—a2A:1:2.

For long waves the dissipation acts like Laplacian friction, while for shorter waves
the higher-order terms act to decrease the order of the dissipation, ultimately
bringing the scheme back to neutral stability at KAz = 7. This Laplacian fric-
tion has a form very similar to that of the linear semi-Lagrangian technique
(or upstream differencing), except that it depends on a2, rather than «. For a

Courant number of 1, the friction reaches its upper bound of

1Aq? 6,124~1
52‘;-—5.6)(101118 .

A.5 Discussion
A.5.1 Dependence on At

The expressions for the amplification factors in sections 2 and 3 all depend on At
(through the o term). For a constant advecting velocity, an expression can be
derived for the ratio of the decay time scales for various choices of the time step.
For convenience, the time step will be halved relative to a standard case, and the
decay time scales for the case of quadratic interpolation will be compared.

The ratio of the decay time scales is simply

T(At) At InA(§)
7(4) ~ In M(At) 4t
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For long waves (small kAz), the Taylor series expansion for quadratic interpola-
tion gives

T(At) _ 2a§(1 - al)

uCy) af(1 - af)

103(1 — ad)(of — ed)(1 — 0} — ) s
_= k
4 ai(l —a}) (kAZ)

+0(kAx)®,

where a; and as are defined below. Let & be the Courant number, then let a;
denote the residual Courant number for the standard case, and oy depote the
residual Courant number for the half-time-step case. These latter two quantities

are defined by

@ = &- NINT(&) (A.6)
@ = &/2-NINT(&/2),
(A.7)

where NINT() is the nearest integer function.

Given these definitions, the coefficient of the second term of (A.6) is small in
all cases (typically 2-3 orders of magnitude smaller than the first term). Coupled
with the requirement that (kAz) << 1 for the expansion to be valid, it is clear
that the first term governs the ratio. Fig. 5 shows the base 10 log of the first term
of (A.6) for a Courant number varying between 0 and 2. Negative values imply
that the shorter time step is less dissipative, while positive values imply that
the longer time step is less dissipative. The ratio goes to infinity at a Courant

number of 1.0, since the time scale for decay of the long time step is infinite at

that value.
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Figure A.5: Base 10 log of the ratio of the decay time scales when the time step
is halved, as a function of the Courant number based on the longer time step.

In practice, it is typically observed that semi-Lagrangian advection schemes
are less dissipative with longer time steps. In light of Fig. 5, this can be seen
as implying that the majority of the flow is contained in the range 0.5 < a <
1.5, which is a reasonable range of values for the requirements of accuracy and
efﬁciency. It is. of course, also possible to estimate a distribution of the Courant
numbers and integrate it against the first term in (A.6) (also using (A.6)) to
obtain single value for the ratio of the decay time scales. Unless the distribution
were strongly weighted to small Courant numbers , the results can be expected

to show a decrease in damping with larger time steps.

A.5.2 Dependence on Az

It has already been mentioned that the dissipative decay time scale is related
to the grid spacing in such a way that the decay time scale is independent of

Az for a wavelength of a fixed number of grid intervals. For a fixed absolute
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wavelength, however, decreasing the grid spacing by a factor of p increases the
decay time scales (i.e. decreases the damping) of the four schemes by factors
of p?, p*, p% and p®. It also doubles the Courant number, which may act to
modify this improvement. This strong dependence of the effective viscosity on
the grid spacing suggests that some care be taken with the choice of discretization

parameters.

A.5.3 Shallow-Water Equation Results

Ritchie (Ritchie, 1988) has performed a series of experiments with a spectral
shallow-water model which provide an excellent illustration of the applicability
of the effective eddy viscosity concept in a more complex situation. He ran several
spectral model simulations with various choices for the advection and diffusion.
The Eulerian model was run with a biharmonic diffusion coefficient of 10%m%s—1,
and the semi-Lagrangian scheme used Lagrangian bicubic interpolation. Ritchie’s
figures 10 and 11 show that after 20 days, the T63 resolution semi-Lagrangian
code lost about 5% of its total energy, which was about twice the dissipation
of the Eulerian case. Increasing the resolution to T126 caused the energy losses
in the semi-Lagrangian case to be negligible (< 1%) over the 20-day integration
period.

The T63 resolution case corresponds to a Az of roughly 200 km, and was
run with a time step of 3600 s. By this analysis, it should then display an
egquivalent biharmonic viscosity with a magnitude bounded above by 101%m4s1.
The experiments suggest an effective viscosity of about 2x 1015m?s~, a reasonable
agreement. The T126 experiments should have {5 the viscosity (6 x 10Mm%s~1),

and the observed viscosity was, in fact, seen to be small compared to 105m4s~1.
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A.5.4 Application to Ocean Models

Large-scale ocean circulation models are run in two distinct regimes. Non-eddy-
resolving simulations typically use grid intervals of 100~400 km and require Lapla-
cian eddy viscosities of the order of 10°m?s~! to account for sub-grid-scale pro-
cesses. These models are run for decades to centuries, and are used in climate
studies. Eddy-resolving simulations have grid spacings in the range of 20-40 km
and are typically used with Laplacian eddy viscosities of the order of 102m2s~!.
These models are run for months to years, and are used in dynamical studies.

Semi-Lagrangian advection with linear interpolation requires extremely fine
grids to produce numerical diffusion values comparable to those quoted above.
Assuming that the time step will be chosen such that an advection of 1 m s~}
produces a Courant number of 1, (A.4) yields Az = éAx. For non-eddy-resoiving
simulations, this specifies a grid interval of 80 km and a time step of 22 hrs, while
for the eddy-resolving case, it specifies a grid interval of 0.8 km and a time step
of 13 minutes. For both regimes the grid spacings are too small, particularly in
the latter case.

Modelling sub-grid-scale dissipation by biharmonic diffusivity is a largely ad
hoc method. Therefore the values to be used for the coefficients are much more
difficult to assign than for the Laplacian case. In the absence of clear knowledge
of the physical dissipé.tion, and noting that the wind-driven ocean circulation is a
forced, almost inviscid system, it should at least be required that the decay time
scales should be longer than the time scales for variability of the forcing. For
the wind-driven flow the dominant signals are seasonal, so the dissipative decay
time scales should be greater than order 100 days for an accurate simulation.

Assuming quadratic or cubic interpolation, fig. 2 suggests that the grid spacing
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be less than 1/10 (preferably 1/20) of the shortest wavelength one desires to
model accurately. This scaling is the same as is typically suggested for accuracy
considerations, however computational resources are not generally available to

perform simulations with this level of resolution.

A.6 Summary

For the simple case of constant advecting velocity, the dissipation due to semi-
Lagrangian advection has been quantified and compared to the dissipation of
other non-conservative integration schemes. The use of linear interpolation re-
sults in dissipation which is effectively Laplacian, while quadratic and cubic in-
terpolation both result in biharmonic dissipation. The coefficients of Laplacian
and biharmonic viscosity are shown to be strongly dependent on the resolution,
so that care must be taken for the use of this method in long-term integrations.
The formulae presented here (particularly (A.4) and (A.5)) can be used to ob-
tain a good estimate for the resolution required to attain the desired degree of
conservation in a simulation. For a completely conservative integration, the non-
interpolating method of Ritchie (Ritchie, 1986) is available.

This paper does not address the errors in the amplification factors due to
incorrect estimation of the departure point, but McDonald (McDonald, 1987)
provides a detailed analysis of the order of the errors from that source. The
variability in the dissipation due to time- and space-varying velocity fields has
also not been addressed. Since this variability would be very difficult to predict
or monitor, the semi-Lagrangian technique should not be used as the sole source
of viscosity in a viscous flow simulation. It can be used as the sole source of

dissipation in a simulation of (nearly) inviscid flow, in which the viscosity is
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only présent to prevent nonlinear instability (Ritchie, 1988; Cote and Staniforth,
1988).

Figs 1-4 show that the decay time scale as a function of the residual Courant
number, a, is near its shortest (i.e. most dissipative) value over most of the range
of a, so that the worst case viscosity coefficients calculated in (A.4) and (A.5)

may be typical values if a broad range of residual Courant numbers are present.



Appendix B

The Non-Interpolating
Semi-Lagrangian Scheme

In (McCalpin, 1988), I showed that the semi-Lagrangian advection scheme using
quadratic or cubic interpolation results in excessive numerical dissipation for
ocean simulations. A version of the scheme which is conservative was presented
by Ritchie (Ritchie, 1986). This scheme splits the advection into two parts: one
which consists of advection from grid-point-to-grid-point on the finite-difference
grid, and a residual. The grid-point-to-grid-point advection is handled by the
semi-Lagrangian scheme, while the advection is handled by an Eulerian scheme
and evaluated at the grid-point nearest the middle of the trajectory.

The stability of the scheme depends on the Courant number of the residual
advection. When the grid point chosen for the semi-Lagrangian part of the ad-
vection is the nearest neighber, then the Courant number associated with the
residual flow can never exceed 0.56. Comparing the stability restrictions of the
standard Eulerian scheme to the semi-Lagrangian and non-interpolating semi-
Lagrangian yields:

Eulerian:
(IU] + c)At <

Az 1.0
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Semi-Lagrangian:

cAt
— < 1.
Az <10

Non-Interpolating Semi-Lagrangian:

cAt
—_— .44
N <0

The non-interpolating semi-Lagrangian scheme can therefore seen to be useful
when advection causes more serious time constraints than wave propagation. In
the ocean, this is never the case. In mid-latitudes, the maximum baroclinic
internal graﬁty wave phase speeds are up to 5 m s™!, compared to maximum
advective velocities of about 1-2 m s~!. In the tropical oceans, the maximum
gravity-wave phase speed is about 3 m s™!, with similar advective speeds.

Based on these values, it is clear that an implicit method for integrating the
wave equations would allow a longer time step than an implicit method for just the
advective terms. In appendix C, I show that the three-dimensional semi-implicit
scheme is not applicable for this purpose. It may be possible to treat only the
first few baroclinic modes implicitly and the rest explicitly, but it is unclear what
sort of stability properties would govern such a system. In addition, the first
baroclinic mode Kelvin waves would still be slowed down by the implicit scheme,

producing inaccurate results in equatorial or Rossby adjustment simulations.



Appendix C

The Three-Dimensional
Semi-Implicit Scheme |

C.1 Introduction

The semi-implicit scheme proposed by (Kwizak and Robert, 1971) for the shallow
water equations and by (Robert et al., 1972) for the three—dimension:;l.l primitive
equations has proven to be a successful scheme for improving the efficiency of
atmospheric models. The scheme has also been shown to be effective for layered
models in the ocean (e.g. (Hurlburt and Thompson, 1980)). In this appendix,
I will discuss the applicability of the scheme to three-dimensional ocean models,

and show that the scheme is unsuitable.

C.2 Application to Shallow Water Equations

"The most stringent time step limitation in the hydrostatic, incompressible prim-
itive equations of geophysical fluid d;amics is the limitation due to the prop-
agation of barotropic gravity waves. With phase speeds in excess of 200 m s~!
in deep water, an explicit model with (for example) 10 km horizontal resolution

is limited to time steps of less than one minute. Many models eliminate these
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waves by employing the “rigid-lid” surface condition, which prevents the verti-
cally integrated flow from having a divergent component. An alternate method of
overcoming this time step limitation is the semi-implicit scheme. In this scheme,
the terms in the primitive equations which are responsible for gravity waves are
treated implicitly by time averaging. These terms are the pressure gradient terms
in the momentum equations and the divergence term in the continuity equation.

For the shallow water equations, this yields:

Du £
D V=% v
Dv an*
o Hfe= 95, (2)
————
Dh ou Ov Ju Ov
ﬁ”(gg*"az) +"($+@)-°’ )

where H is the mean depth of the fluid and h is the perturbation of the free
surface. For convenience, a flat bottom is assumed, though this is not necessary.
The split of the divergence into two terms is also not necessary, but it is conve-
nient, as it makes the resulting Helmholtz equation have a constant Helmholtz
coefficient, as will be seen below.

Now apply the leapfrog time differencing scheme and rearrange:

ahn+1
u™t! 4 gAt 5 = (4)
hn+1
o™t + gAt o™ _ vy (5)

oy



134

oy are (24420 " h (6)

oz Oy Ik
where uy, vy, and hy represent all the terms which are evaluated at time levels n,
and n — 1, which are known. Next, take the divergence of the momentum equa-

tions and replace the divergence term in (6). This yields a Helmholtz equation

for the depth anomaly:

d%h  8?h\" 1 1 (duy Oy 1
<@+ 6_y2) B gHAt2h T gHAt? (6:1: + By) B gHAchf' ()

After this equation is solved, u™*! and v®*! are obtained from (4) and (5) by

back-substitution. The scheme is unconditionally stable (ignoring advection) for

|h| < H.

C.3 Application to Three-Dimensional Equa-
tions

For the three-dimensional primitive equations, the situation is somewhat more
complicated. Following (Robert et al., 1972), and ignoring diffusive processes and

topography, the equations for the oceanic case can be reduced to:

-t
Du v=——1-@ (8)

Dt Po Oz

% + fu= —piog:z:t (9)
% = —gp (10)

du  Ov  Ow -0 (11)

5z T3y 5
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Dp =0. (12a)

Dt

A horizontal mean density and its associated hydrostatic pressure are subtracted

from the eqﬁa.tions, and advection of the mean density field is treated implicitly,

so (12a) becomes

Dy Jp
Bpt' + w‘5§ =0. (12b)

Again, leapfrog time differencing is applied and the divergence of the momentum
equations is used to replace the horizontal divergence in the continuity equation

(applied at time level n + 1) to yield:

w4 %Z_Z;’nﬂ = u; (13)

. %%’"H = o (14)

—g(ﬁ+@)n+l+?ﬂn+l=—<%+%> 15
po \ 0z = Oy? 0z 0z  QJy

7 At wn+1‘;_3§ = o (16)

Solving (16) for w™*! and applying the hydrostatic relation (10) gives

witt = L pmit g T

YN At

+1
net_ 2 9T v
v gAt 9z T ALPr

where v = (8p/9z)".
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Taking 8/9z of this allows substitution into (15) to yield a 3-D Helmholtz equa-

tion for the perturbation pressure

oY IR\ 0 (N (Oy O\ p D
oz2 = 9y? gAt2 9z 78z T At \ 9z ' By At 92 \1P1)

. (17)

After this is solved for p™*!, back substitution into (13), (14), (10), and (16)

yields w™tl, yntl p/ntl and @n+l,

C.4 Discussion

The preceding derivation contains one very significant problem. The scheme
rests on the ability to invert (16) for w™*1. At first glance, this appears possible,
since it is always possible to choose a reference state such that 0p/dz > 0 at
all locations. With such a choice, the scheme is numerically well-posed (i.e. one
never divides by zero). It is, however, physically ill-posed wherever the vertical
derivative of the total density vanishes, because (12a), and hence (16), contains
no information about w in those regions — quite independent of any choice of
the mean reference state.

Unlike the atmosphere, in the ocean the vertical gradient of the total density
field is expected to be very close to zero in the deep ceean everywhere, and may
also vanish in the upper mixed layer. The scheme is therefore probably only safe
to apply in the (vertical) region of the main thermocline. If the vertical density
gradient is small but not quite zero, the problem is very sensitive to noise in the
density field. Looking at the continuous problem, w is inversely proportional to

0p/0z, and the sensitivity to small changes in the vertical density gradient is
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ow 1

a(éﬂ) OC_(@)%;
0z 0z

which rapidly becomes very large for small 8p/0z.

This error is especially pernicious because the scheme is numerically well-
behaved. If the vertical derivative of the total density vanishes, then using this
scheme should produce a division by zero! The apparent information in (16)
about the vertical velocity arises solely from the O(At?) truncation error of the
time averaging of w.

It is easy to see that for the hydrostatic primitive equations, no other robust,
physically well-posed schemes can be developed which calculate w implicitly, since
outside of the continuity equation, w appears only in advective terms. There is
therefore no way to solve for w in terms of the other variables, or vice versa,
without inverting an advection term for w, and this can be expected to fail
routinely in the ocean. This strongly suggests that no unconditionally stable
integration schemes are possible.

Mathematically, the difficulty with this scheme is related to the fact that the
vertical eigenfunctions of the 3-D Helmholtz operator do not form a complete
set when the vertical density gradient vanishes over a region. When the vertical
gradient of the density becomes very small (though not exactly zero), the ill-
conditioning of the problem causes the eigenfunctions to lose their orthogonality
when calculated in finite-precision arithmetic (particularly in 32-bit precision).
Because of this lack of orthogonality, if the Helmholtz equation is solved by pro-
Jection onto the vertical eigenfunctions, then any small-vertical-scale information

in the forcing terms in deep water will be ignored. Such information can come
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from boundary conditions, or from deep flows whose density contrast is not rep-
resented in the basic state.

The situation is not changed for the case in which compressibility is consid-
ered. This case (as would be required in the atmosphere or perhaps the deep
ocean) generates completely analogous equations, except that the vertical deriva-
tive of the mean state density is replaced by the vertical derivative of the mean
state potential density. The scheme is then physically ill-posed if the vertical
potential density gradient vanishes.

Of course the scheme will generate incorrect answers in the atmosphere (as
well as in the ocean) if the stability becomes neutral, but this does not happen
in the atmosphere on large horizontal scales. Static instability, Whicii occurs on
small scales in both the ocean and atmosphere,' is a different problem, and must

be treated by some sort of parameterization of the convection.



