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The Benthic Boundary layer is a region close the ocean bottom
with features distinct from the oceanic interior. Near the bottom
the ocean is turbulent and the resultant mixing leads to a neutrally
stratified bottom layer. Turbulent closure models have been applied
to investigate how the structure of the Benthic Boundary layer is
affected by the flow and the stratification above the layer.

The object of the present research is to analyze how the
benthic region affects the dynamics of the forcing flow. More
specifically, a numerical model based on the level 2 1/2 closure
scheme of Mellor and Yamada is developed to examine the decay of
deep mesoscale eddy-like flows.

It is found that the decay of the flow occurs through
conversion of kinetic to potential energy and through dissipation by
bottom friction. The relative importance of both processes is
expressed by the Rossby number ¢=U/fR and by the stratification
parameter s=N2HZ2/f2R2 (where H is the total depth of the eddy, R the

radius, U the velocity scale, N the Brunt-Vaiasala frequency, and £




the Coriolis parameter). A larger Rossby number and stratification
parameter lead to a larger conversion of kinetic to potential
ehergy, but a smaller mechanical dissipation of the same energy.

Examination of the structure of the Benthic Boundary Layer
indicates that a clear distinction should be made between the mixed
layer, or the region neutrally stratified, and the Bottom Boundary
Layer, or the region where most of the turbulent activity occurs.
It is found that the structure of the Bottom Boundary Layer depends
also on the magnitude of the flow above the benthic region, but the
mixed layer depends also on the sign of the mesoscale activity.
Under a cyclonic flow, the mixed layer is defined by vertical
advection and it is usually much thicker than the Bottom Boundary
Layer. The mixed layer of an anticyclonic flow is the result of
both vertical advection and near bottom turbulence, and the

émbiguity between the mixed layer and Bottom Boundary Layer is

notably reduced.
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1. INTRODUCTICN.

Measurements of temperature and salinity made close to the
bottom of the ocean showed a well-mixed bottom layer a few tens of
meters thick bounded by a sharp interface above which there is a
nearly-uniformly stratified region. The characteristic well-mixed
region of this Benthic Boundary lLayer generally dces not form a pcol
or have a distinctive water mass; thus the layer is formed by mixing
of the stratified deep ocean (Armi and D'Asaro, 1980; Armi and
Millard, 1976; Bowden, 1978; Weatherly and Niiler, 1974). The
spatial variability of the bottom region sometimes exhibits evidence
of a differential horizontal advection suggestive of forcing due to
mesoscale activity. Armi and D'Asaro (1980) reported explicit
variations in the horizontal structure of the layer with length
scales up to 20 km. Energetic fluctuations within the mixed bottom
layer respond mainly to near-inertial and tidal frequencies. Near
the bottom there is less near-inertial energy than in the upper
levels, but more energy in the high frequency band. These high
frequency velocities, which are modulated by tidal currents and by
the variations of the flow above the layer, have been considered as
measures of the boundary layer turbulent activity (D'Asaro, 1982).

Thus a clear distinction should be made between the mixed layer, or

the region neutrally stratified, and the Bottom Boundary Layer (BBL)
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or the region where most of turbulent activity occurs.

The dynamic role of the BBL was first investigated in relation
with coastal and fluvial regions. Its role in sediment transport
processes is determinant (Nowell, 1983). Typically in such
regions, the near-bottom velocities are not negligible compared to
the near-surface flows, and the BBL has been considered as the
dominant mechanism by which the input of energy by winds and tides
is dissipated (Csanady, 1978).

On the other hand, very little is known about the role of the
BBL on the dynamics of the ocean circulation, and the few
observations available are often controversial. Weatherly (1972)
indicated that bottom friction under the Florida Current is not
important, but the same author (1984) estimated that bottom friction
in the North Atlantic Ccean may effectively dissipate the energy
input by the wind at the surface.

According to Worthington (1976) and the observations of
Richardson et al. (1981), and Schmitz (1977), the general
circulation of the deep North Atlantic Ocean is composed of a
well-defined southward flow along the American continental slope and
a northward flow further to the east enclosed in an anticyclonic
subtropical gyre. The northward and eastward flow of the gyre is

adjacent to the Gulf Stream axis, and it is a fundamental question

——

whether or not the Gulf Stream extends to and interacts with the

OCean bottom circulation. Recent studies (Kelley et al., 1982;

S i ——
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Richardson, 1983; Weatherly and Kelley, 1984) supported the
hypothesis that the Gulf Stream system influences the entire water
column and excursion of the surface Gulf Stream affects near-btottom
currents.

Following the hypothesis that the Gulf Stream may extend to the
pottom, Clarke (1976) suggested that warm core eddies in the Slope
Water region may extend to the bottom as well. The assumption was
supported by McCartney et al. (1978). The authors reported that the
ﬂ structure of cold core rings appears to extend all the way to the
bottom. The vertical profile of velocity showed a cyclonic flow in
the upper levels and a level of no motion near 2000 m of depth with a
weak anticyclonic circulation beneath. Kelley (1984) indicated that
energetic fluctuations with time scale of 30-90 days in the records
of near-bottom deep ocean current meters in the lower Scotian Rise
are the results of the barotropic components of Gulf Stream meanders
and warm—core rings. Holland (1978) developed a quasi-geostrophic
two layer model and postulated that the deep flow might be due to
barotropic and baroclinic instabilities generated by the motion in
the upper strata of the ocean. Numerical simulations of the model
indicated that a mean flow is induced in the lower layer in the same
direction as the cufrent in the upper layer. Schmitz and Holland
-(1982) made a detailed comparison of deep ocean observation in the
Gulf Stream region with the results of Holland's model and indicated

that although the model is a crude formulation of the North
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Atlantic circulation, it provides a convincing explanation of the
deep high energetic circulation.

Despite the fact that all those studies have suggested that bottom
friction forces may be an efficient dissipative mechanism in the
spin-down and decay of rings, up to now this physical process has
peen neglected. In general, the decay of mesoscale eddies has been
attributed to dissipation of kinetic energy either through internal
viscous effects or through dispersive spreading of Rossby waves at
their own characteristic wave speed. Flierl (1977) examined the
decay of isolated linear vortices in absence of frictional forces and
showed that they dissipated rapidly under the dispersive effect of a
beta-plane. Mied and Lindemann (1979), McWilliams and Flierl (1979)
showed that nonlinearity stabilizes the eddies against beta-
dispersion and allows the vortices to propagate westwards as a stable
entity for longer pericds of time. The decay of a ring under the
influences of momentum and bouyancy diffusion has been considered by
Molinari (1970) and Flierl (personal communication), but both authors
neglected bottom friction. Thus in these studies the primary
mechanism for the decay is the absorption of the ring in the
surrounding waters.

The aim of the present study is to investigate how bottom
‘friction may contribute to the decay of an isolated vortex extending
to the bottom of the ocean. Highlights of the sections in which the

work is divided are as follows:

In Section Two we present the model formulation which consists

-
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of two distinct parts: one for the flow far from the bottom, and one
for the Benthic Boundary Layer together with appropriate matching
conditions. In deriving the governing equations for the interior, we
develop the model on an f-plane and we assume that the flow is
incompressible and hydrostatic. In modelling the turbulent BBL
equations, we adopt a modified Mellow and Yamada level 2 1/2 closure
scheme (1982).

Section Three is the explanation of the numerical mcdel., Compu-
tational efficiency requires consideration of a two-dimensional
formulation of the model. This is achieved by assuming that the
motion is uniform in one of thé horizontal coordinates and parame-
trizing a mesoscale eddy as an infinite slab. Perhaps, the best
justification for such a model is its wide range of applications.
Section Four includes an application of the model for analyzing
the structure of the Benthic Boundary Layer forced by a steady flow.
Under the assumption that the motion is horizontally homogenecus, we
verify the validity of the medel by comparing results obtained for
neutrally and stably stratified flows with the correspondent values
derived by other turbulence models. When the Benthic Boundary Layer
is forced by mesoscale activity with a steady barotropic component,
the numerical experiments emphasize the different roles that the mixed
- layer and BBL play in the dynamics of the system.

The decay of an homogeneous and linear vortex is presented in

Section Five. 2An analytical formulation of the problem is presented
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and compared with the results of the numerical experiments. Since
the analytical model has been conceived as an independent entity, we
apologize for the unavoidable repetitions and the different symbols
in this sectiocn.

Section Six combines the results of Sections Four and Five, and
considers the spin-down of a stably stratified and nonlinear flow.
Under the hypothesis that the eddy is stationary, the effects of
stratification and advection on its decay are analyzed. When the
eddy is assumed to be nonstaticnary, the study investigates how its
spin-down is affected by a uniform and steady westward translation

Finally, Section Seven summarizes and discusses this research.



2. MODEL FORMULATION.

We consider a deep eddy-like flow extending from the bottom of
the ocean to the thermocline. The eddy has radius R and total depth
H. The bottom of the ocean is taken to be flat. The problem is
formulated on an f-plane with a Cartesian coordinate system (X,y,2)
chosen such that in the northern hemisphere the x-coordinate-
increases eastwards, the y—coordinate northwards, and the vertical
coordinate, z, is zero at the bottom and increases upwards.

We assume that the flow is homogeneous in the north-south
direction. The ocean is hydrostatic and incompressible and the
density is a linear function of temperature alone (Fofonoff, 1962).

Since close to the bottom the horizontal frictional force due
to turbulent mixing of momentum becomes dominant, the most convenient
approach to the problem is through boundary layer theory. Thus it
is appropriate to present the model equations for the interior and

the BBL separately.

2.1, The model equations for the interior flow

The equations governing the motion are those of momentum,

mass and heat conservations, viz:



' 1
(Z‘l‘la) U.t + qu + WUZ - fV - gn‘x - E pX + (AXU.X)X + VU.ZZ

(2.1-]—b) Vt + UvVy + WVg + fu (AXYVX)X + Wgzz

(2.1.1d) Uy + Wy =0
(2.1.1e) Ty + uTy + Wl = (A Ty)y + KTyz

(2.1.1F) 0 = poll = (T = Tg))

The subscripts (xX,z,t) denote partial differentiation; the
variables (u,v,w) are the components of the eastward, poleward, and
vertical velocities respectively. The variable n (henceforth
indicated as the displacement of the thermocline) is the barotropic
forcing; o and T are the deviétions of density and temperature from
density and temperature associated with a state of rest expressed by
the constants of reference oy and To. The variable p is the
hydrostatic pressure associated with the density distribution p; Ay
and A; and Ayy are the eddy coefficients of horizontal viscosity
and conductivity respectively; v and k are the eddy coefficients of
vertical<viscosity and conductivity respectively; ¢ is the
coefficient of thermal expansion; g is the gravitational
acceleration, and £ the Coriolis parameter.

The matching conditions between the interior and the BBL
solutions provide the dissipative mechanism that governs the spin-

down process of the flow.
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Equations (2.1.1) must be satisfied in the region h < z < H,

- X5 ¢ X < Xo(Xo > R). At the top of the BBL the boundary conditions
are specified by matching the BBL and the interior solutions; at the
free surface the heat flow is assigned and the velocities u, and v
kept equal to their relative barotropic components. Outside the
region of interest, the ocean is in a state of rest. The specific

conditions are:

(u,v,w) = (GIGIVT)

(2.1.2) at z = h
T =T

where bar indicates the BBL solutions.
(u,v) = (Uq,Vq)

(2.1.3) 9’9 at z = H
Tz = og
(u,v) = (0,0)

(2.1.4) at x| = %o
T = Tr(z)

where Tgp(z) is the temperature distribution of the ocean at rest.

2.2. The model equations for the Bottom Boundary Layer

Using the same notations introduced in Section 2.1 the BBL

equations are written as follows:

1
o
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(2.2.1b) Vg + Wy + WUy + fu = (AXYGX)x - (W'V')y
(2.2.1c) 0=-py; -gp

(2.2.1d) Ty + Wy = 0

(2.2.1e) Tp + UTy + Wiy = (A}‘FX)X - (We')g

In the equations, the terms - uéui, and - uée' (we will use the
usual tensor notation when it does not create ambiguities) represent
Reynolds average turbulent fluxes. The equations (2.2.1) must be
satisfied in the region 0 < z < h, = X5 < X < X5. At the top of the
layer and at the lateral boundaries, the boundary conditions are
specified as in (2.1.2) and (2.1.4), respectively. At the rigid
surface, the boundary conditions are specified by prescribing the
no-slip boundary condition and no flux of heat, viz.:

(4,v,w) = (0,0,0)
(2.2.2) at z = 0

Since we have assumed that turbulence is mainly confined to the
BBL region, we must require that the Reynolds stresses vanish at
2 = h. Unfortunately, it is not possible to have a priori knowledge
of the BBL thickness. Therefore, for numerical purposes, it is
convenient to remove the upper boundary at a depth, d, derived from

Observations and measurements, chosen such that: h<d<H and assume:
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= uﬂe' =0 at z = d

)
(2.2.3) - ujui

The remaining problem is to specify the Reynolds stresses, - ufui,

and, - uge', so that the equations (2.2.1) are a closed set of

equations.

2.3 The closure scheme

A rigorous theory for analyzing the structure of turbulent flows
is not available, and most of the difficulties lie in the definition
of the turbulent fluxes. For many applications it is sufficient to

assume:

(2.3.1.) —u:'.]uj'_ = K %%

with the eddy coefficient K kept constant and defined from observa-
tions and measurments. Unfortunately, this assumption is not advisable
for our study. Parameterizing turbulence with constant eddy coeffi-

- clents cannot represent turbulent processes that are of scale smaller
than the grid system of the numerical model. Therefore, the use of

constant eddy viscosity implies a grid so fine that is not suitable

for numerical computations (Scmmeria,l976).
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peardoff (1973) suggested the use of the entire second-order
momentum equations for modelling the Reynolds stresses. In order to
resolve the higher order stresses that appear in the equation, the
method implies the addition of at least ten time-dependent equations,
and the scheme is not efficient.

The most common closure schemes resolve the Reynolds stresses by
postulating empirical definitions for the higher order stresses.
These models are generally derived by one of two different approaches,
depending on the nature of the problem. Thus if the purpose of the
analysis is to study the response of the boundary layer to the
variations of the forcing flow or its spectral distribution, it is
necessary to consider closure schemes where the Reynolds stresses are
defined from individual transport equations. On the other hand, if
the analysis is focused on the effects of the boundary layer on the
circulation above that layer, it is sufficient to develoo closure
schemes that parameterize the effects of turbulence via eddy
coefficients and calculate only the mean value of the quantities.

For the latter approach, Mellor and Yamada (1974) obtained an
expression for the turbulent fluxes. They are related to the shear

of the mean flow via eddy coefficients proportional to the square

root of the local value of the turbulent kinetic energy g2 =-% ata!
3Hi

~and a mixing length scale ¢ dependent upon the distance from the wall
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through a proportional coefficient which takes into account the

stratification of the fluid, i.e.:

(2.3.2a) (=whu', =w'vh) = Syeq(uz,vz)

(2.3.2b) - w'g' = SpgT,

Thus the problem is closed when one specifies:
i) an equation for the turbulent kinetic energy, g2
ii) an equation for the mixing length scale, 2

iii) the functions Sy and S

2.3.1 The turbulent kinetic energy equation

The equation for the turbulent kinetic energy of the flow may be
derived by formulating the dynamics equations for the velocity
fluctuations and forming the time-averaged equations for the stress
components (Monin and Yaglom, 1971). This yields an equation which
contains correlation terms that must still be parameterized. The
nature of the assumptions made in order to close the g2—equation
leads to different turbulence models. We adopt the turbulent kinetic
energy equation according to the level 2 1/2 closure scheme of Mellor

and Yamada (1982). The equation is written as follows:

(2.3.3) 1/2(ql + ugl +wal ) = PR3 + Pg + Pp - o

J
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where the term Pg represents vertical diffusion of the turbulent
kinetic energy. In analogy with the definitions (2.3.2), it is

defined as:
(2.3.4a) Pg = (1/2)(Sprd(q?) )z

The function S is usually kept constant.
The term Py is the production of turbulent kinetic energy by

the mean flow, i.e.:
(2.3.4b) Pg = = (w'u' ug + w'v' vy)

The term Py is the gravitational potential energy of the

turbulent flow, i.e.:
(2.3.4cC) Py = ga wW'e'

The term -¢ represents dissipation of the turbulent kinetic
energy by internal friction. Under the Kolmogorov hypothesis it is

dimensionally correct to define:

(2.3.4d) - e =q3/ce

where the constant ¢ must be defined empirically.
2.3.2 The turbulent length scale

There are many ways to define the turbulent length scale. It

may be specified empirically from the gross features of the flow



15

geometry, Or it may be predicted from a semi-empirical dyﬁamical
differential equation. Using the latter approach, Rotta (1951)
derived an equation for the quantity gZ-z. However, in order to
specify the terms in the equation, it is necessary to introduce more
parameters than in the case of the Reynolds stresses equations, where
many of the terms are determined precisely without recourse to
further parameterization. Therefore, the g%g¢ equation is less
convincing than some other model equations and more likely to be
substituted by other g-closure schemes.

Vager and Nadezhina (1975) used a differential equation for ¢
obtained by manipulation from the original qZ-g equation. The
expression is still dependent on many constants that must somehow be
determined. The Laykhtman-Zilitinkevich relation, which is basically
a further simplification of the g—equation, is widely used in the
Soviet literature.

It appears fairly clear that the turbulent length scale cannot
exceed some some fraction of the total spread of the turbulent region
(represented by the variable, g,), and that somewhere in the
‘neighborhood of the wall, it should be proportional to the distance
from the wall. Therefore there are two fundamental conditions for

the quantity g:

4 ~2 as z + 0

»Q,NzoaSZ-)-m.
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From those simple constraints, Mellor and Yamada (1974) used an
algebraic expression for g:

<Z

(2.3.5) 2= TEE7ES_:_ET

where ¢ is the Karman constant.

The maximum scale 25 is defined as follows:

(2.3.6) to = v [y 2qdz/[) qdz

where y is an empirical constant.
In this study, the variable g is determined from (2.3.5) and
(2.3.6) rather than from the g2-g equation which is an intrinsic

component of the level 2 1/2 closure scheme.

2.3.3. The functions Sy and Sq.

From the Mellor and Yamada (1982) level 2 closure scheme, it is
possible to derive algebraic expressions for the functions Sy and Sp
as functions of either flux Richardson number:

(2.3.7) Re = Py/Pg

or gradient Richardson number :

T
(23.8) Ri = (o7 )

The level 2 closure scheme differs from the 2 1/2 level as the

eddy kinetic energy equation does not contain a time derivative and
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the diffusion terms. It is our belief that the model will not be
particularly susceptible to variations of the functions Sy and Sp

and, following Yamada (1983), we take:

1.9¢ £0.1912 - Re)(0.2341 - Re)

(I - Rg) (0.2231 - &) R < 0.16

(2.3.9a) Sy =
0.085 Re¢ > 0.16
Sy E%f%%%%—:—%%;l.318 R¢ < 0.16

(2.3.9b) Sp =
0.095 Re > 0.16

Therefore our closure scheme is intermediate to the Mellor and

Yamada levels 2 and 2 1/2 and we propose calling it a level 2.3.




3, THE NUMERICAL MODEL.

Turbulent closure schemes have been intensively applied to study
the atmospheric planetary boundary layer, and many numerical models
are available for that purpose (Brown, 1970; Mason and Sykes, 1980;
Sommeria, 1976; Yamada, 1979, 1982, and 1983). However, there exists
a need at present to develop numerical models for the Benthic
Boundary Layer to understand the dynamic role which that region has
on the oceanic circulation.

Weatherly and Martin (1978) developed a one—dimensional mcdel
derived from the level 2 closure scheme of Mellor and Yamada (1974);
Richardson (1982a, 1982b, and 1984) presented one-dimensional and
two-dimensional models applied to a multi-layered ocean, where the
Reynolds stresses are defined from individual transport equations.
The aim of all those studies is to investigate how the flow and the
stratification above the BBL affects the structure and the thickness
of the benthic region. However, to my knowledge, no attempts have
been made to analyze how the Benthic Boundary Layer affects the
structure of the forcing flow.

The numerical model described in this section is specifically
designed to examine the decay of a deep eddy-like flow subjected to

bottom friction forces.

18
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3.1 The numerical model equations

pefine (uy,vo) to be the velocity components representing the
migration of the eddy in the ocean; in order to reduce the number of.
the mesh points and increase the efficiency of the scheme, the model
equations are rewritten in a coordinate system (X,v,2z) moving with

the eddy. This is achieved by applying the transformation:

X = X + Upt
(3.1.1) y =9 + vot
z = Z

If uy and vy are assumed to be constant, in the new coordinate system

the model equations are as follows:

(3.1.2a) ug + uug + wug = £(v + vpy)

- gng ~ Px + (Aguyg)x + (Rvuz),

1
PO

(3.1.2b) vg + wvg + wvy + £(u + ug)

(Agyvx)x + (Kvvz)z
(3.1.2¢) 0 =-py; - 9gp

(3.1.2d)  uyg + wp = 0

(3.1.26) 1/2(qf + ua’ + wal) = 1/2(Kq(a?)z)z + Ru(u’ + v3) + Kp(- gaTy)

- q3/cz




20

(31.29) Ky = v + Smad ; Kp = kK + S7ed; Ko = Soid

where tilde has been dropped.
¥ The set of equations (3.1.2) is resolved in the region 0 < z < h;

- X5 < X < Xo, with the boundary conditions:

(4, v,w) = (= Uy, = Vo, 0)
(3.1.3) at z =0
TZ = qz =90
= (a,v) = (Ug,Vq)
(3.1.4) 9r’s at z = H
T, = 0
8.1.5) q=20 at z = d
L’ (Uv) = (= Uy, = Vo)
(3.1.6) T = Tp(z) at x| = xo
q=20

| .
The value of the depth d and of the other constants used in the

1
numerical simulations are given in Table 3.1.

[

Let h be the thickness of the BBL, integration over depth of the

continuity equation (2.1.1d) leads to:

(3.1.7a) fﬁ ugdz =g—%+we
. .
(3.1.7b) W = T+ w(i,h(x))



21
Equations (3.1.7) imply that the spin-down process acts primarily
on'the depth averaged components of the motion. Thus it is convenient

to rewrite the functions u,v, and T as:

u=u'+ ug
(3.1.8) v =v' + Vg
T=T" +Tqg

" where ( )g represents the barotropic component of the motion
associated with thermocline displacement.

With the deccn@ositionr(3.l.8) it is possible to intrcduce two
different time scales intrinsic to the physical nature of the problem:
the larger time scale (hereafter, expressed by the variable, t) that
controls the decay of the flow, and the smaller time scale (hereafter,
expressed by the variable, t) that controls the deviations of the fields
from their barotropic components (which can be regarded as constant with
respect to this time scale). (See Section 5.1.1 for a complete
dimensional analysis of the equations 2.1.1). 1If Qe assume that
advection, diffusion, and thermal wind effect respond to the sma;ler

time scale, we derive the following equations for the barotropic motion:

I
(@]

(3.1.9b) Vg + £l
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(3.1.9¢) Tgr =0
(3.1.94) Ugx + mop Ve = O
pquation (3.1.9d) has béen written under the rigid lid approximation.
The term we/(H-h) of (3.1.9d) is defined from average value over the
period At. Furthermore, in resolving equations (3.1.9) it is necessary
also to define the thickness of the BBL. In general, the thickness of
the BBL is defined as the height at which the flow is parallel to the
forcing flow but slightly greater in magnitude, or as the height at
which the turbulent kinetic energy is reduced by a factor of 99% with
respect to its value at the surface. Since the model includes advective
terms and the thermal wind effect which affects the vertical profile of
the velocity distribution, we prefer to relate the BBL thickness to the
turbulent kinetic energy.

No special treatment is required in the integration of the
equations (3.1.9). Therefore we focus our attention on the resolution

of the system (3.1.2).

3.2. The grid system.

The equations (3.2.1) are solved using a grid of spatially stag-
" gered variables,chosen so that application of the boundary conditions is

made easier. Since the vertical structure of the turbulent eddies is
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small near the bottom and increases upwards, a vertical grid equally
spaced in a log-plus—~linear vertical coordinate is often used. This
varies approximately logarithmically at the bottom and linearly at
the higher levels; i.e.

Z = c1z +coln(z/20)

where 7 is the transformed coordinate, z, the roughness parameter, cj
and cy constants (Yamada,1978). Because our study is not
particularly focused in the lower levels of the BBL, but in the
region of transition between the boundary layer and the interior
flow, we prefer to introduce a variable vertical grid, where the

distance between two levels is function of height.

3.3. The treatment of the equations.

The numerical scheme chosen in the treatment of the equations
(3.1.2) is based on the centered difference method. Since the
system uses a variable vertical resolution, the value of any given
function ¢ at any mesh point between two consecutive g-levels (not
necessarly the middle point) is computed by linear interpolation.
All the terms are leapfrogged in time except for horizontal and
vertical diffusion and for the term, -¢, of equation (2.3.4d), that
- are treated using the Dufort-Frankel, The Crank-Nicholson, and a
semi-implicit scheme, respectively. This scheme is affected only by

the CFL stability condition applied to the advective terms:
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WAt

Lt < 1
(AZ)min

(3.3.1)

where W is the scale of the vertical velocity and (AZ)pin the
smallest distance between two consecutive levels.

with the Crank-Nicholson scheme, the equations containing
vertical diffusion are reduced to a system of linear algebraic
equations for the variables at time step (n+l) and horizontal
location j, where all the variables at the time steps n and (n-1) are
known. Because of its tridiagonal nature, matrix solutions can be
efficiently obtained by a special form of the Gaussian Elimination
Method (Carnaham et al., 1969).

Unfortunately, the Crank-Nicholson scheme requires that the
vertical eddy coefficients be computed at time step (n+l). This
constraint complicates the solution of the gZ—equation. A reasonable
approximation is to compute the eddy cocefficient Ky of (3.1.2f) at
time step n. However, once g is known at time step (n+l), the eddy
coefficients Ky and Kp can be defined at the new time step, and the
Crank-Nicholson scheme is applied naturally in the resolution of the
momentum and heat conservation equations.

Following Yamada (1978), the horizontal eddy coefficients are

defined as follows:
(3.3.2) Ay = A} = Agy = 2a(ax) *lugl + v

where a is a constant of proportiocnality.



25

The numerical procedure described above 1s computationally very
efficient; the time step is suitable for long term simulations and
computer storage is limited. We retain the variables for two
consecutive time steps except for the eddy coefficients Ky and Ky,
which must be saved for three time steps. Furthermore, no artificial
conditions are required during the numerical experiments except in
the definition of g when the g2-equation presents negative values of
the turbulent kinetic energy. In this éase, dissipation exceeds
production of the same energy, and the variable g is set equal to
Zero.

Unfortunately, if numerical computations are performed for an
extended pericd of time (greater than 8-9 months), it is necessary to
correct the scheme to prevent nonlinear instability. It is well
known that the use of the leapfrog scheme in the treatment of the
advective terms induces a distortion in the values of speed and group
velocities. The computational error affects the short waves: the
smallest waves resolved by the scheme (wave-length 2ax) have zero
computational speed velocity and their energy is propagated in the
opposite direction to the correct group velocity (Grotjahn and
O'Brien, 1976). In order to control computational inaccuracy,
numerical schemes are usually developed that include such additioral
frictional terms such as harmonic or biharmonic terms (Richards,

1984) or smoothing procedures (Yamada, 1978). However, the
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corrections might alter the physics of the problem, reducing the
contribution of advection in favor of a merely dissipative regime.
In our case, we must modify the numerical scheme to prevent the
consequences of the nonlinear instability essentially at the center
of the eddy where the short waves induce a hofizontal convergence or
divergence of energy contrary to the physics of the problem. Thus
in order to improve the accuracy of the leapfrog scheme, horizontal
advective terms and the continuity equation are resolved by a
centered fourth-order space differencing (Grotjahn and O'Brien, 1976)

and the horizontal eddy viscosity coefficients are specified as

follows:v

AX = A' = vy + lOa(AX)Zl:uxl__
(3.3.3)

where yy is a computational horizontal eddy viscosity coefficient.
Although the choice of the horizontal eddy coefficients has been
suggested merely by computationai arguments, equations (3.3.3) may be
partially justified as follows. According to Ragallo and Monin
(1984), for three-dimensional numerical models, the horizontal eddy

coefficients may be computed from:

2 ]./2.
y)

2
AXY = 2anay(uX + v;)l/2

_ Ag = A; = 2aaxAy(u§ + v
(3.3.4)
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Furthermore, a two—dimensional formulation of the model equations

(3.1.2) implicitly contains the assumptions:

Ly << Ly

(3.3.5)

UKV

where Ly and Ly are the dimensional length scales of x- and
y_directions, fespectively, and U and V the dimensional scales of the
x- and y-components of the geostrophic motion respectively. Thus
with the constraints (3.3.5), equation (3.3.4) can be reduced to

(3.3.3).

3.4 The treatment of the boundary conditions

At the lower boundary it is assumed that the velocity varies

logarithmically with height above the bottom :

(3.4.1) lu(z) | = % U, n(z/zg)

where ux is the friction velocity aﬁd < 1s the Karman's constant
(Bowden, 1978). Measurements made close to the oceanic flcor
indicate that the relation is certainly applicable in the region
just above tﬁe surface (Wimbush and Munk, 1971; Kundu, 1976;
Weatherly, 1977). Thus our model considers the lower boundary not
.at the effective rigid wall but at a height zj; where the logarithmic
Profile is still valid. Therefore, in order to apply the new

boundary condition we must specify the friction velocity ux and the

direction of the flow at the level zj.
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Consistent with the level 2 1/2 closure scheme and

observations, the friction velocity is computed from the turbulent

eddy kinetic energy at the lowest grid point:
(3.4.2) ux = q/(B)1/3

where B 1s constant.

The direction of the flow at the loweét grid points is specified
equal to the direction of the flow at the second level, henceforth
represented by the angle . The assumption is justified by
observations and experiments that indicate that the Ekman veering is
about constant in the lowest levels of the BBL (Kundu, 1976).

A new problem now arises because of the chosen coordinate
system. We assume that the logarithmic layer is moving with the eddy

as unity and the boundary conditions (3.1.3) are changed into:

u = U5 + %-u* cos(a)in(z1/20)
(3.4.3) V= =y + %-u* sin(a) in(z1/20) at z = z7
Tz‘—‘qz:O

At the lateral boundaries the ocean is assumed to be at rest.
However, the eddy induces a recirculation in its closest neighborhood
which must supply (absorb) the mass of water pumped in (out) the BBL.

Thus in order to preserve the number of mesh points without closing
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the recirculation inside the domain, the boundary conditions (3.1.6)
are modified by requiring that both the u-velccity and the

temperature distribution be horizontally uniform.

3,5 The initial conditions

In the following discussion, let the superscript o indicate the
initial values of the relative variables, assigned for two

consecutive time steps. The thickness h© of the BBL is taken to be:
(3.5.1) he = 0.4 uQ/E

where the friction velocity uf is computed as:

(Weatherly and Martin, 1978).

Above the BBL the functions u®, v©, and T° are specified and @
is kept equal to zero., At the lowest grid points the initial value
q© is computed from (3.4.2) and the velocity components from (3.4.3),
specifying a ten degree Ekman veering. After the functions u, v, and
q are defined at the lowest levels, they are matched with their
relative values above the BBL by linear interpolation.

The initial temperature profile considers a bottom layer

- Neutrally stratified, assuming a complete mixing of the temperature
distribution. Although the initial mixed layer and BBL are identical,

it is advisable to underestimate their thickness so as not to
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alter the final temperature profile. If the initial mixed layer

is too thick, no physical process can reestablish stratification
inside it.

The vertical eddy coefficients are computed from the initial
distribution of the turbulent kinetic energy, with the functions Sy
and Sp given for neutrally stratified flows.

The scheme results not particularly sensitive to the

adjustment process from the previous initial conditions. 1In general,
the steady state configuration is reached after about three or four

days, the period necessary to mix the upper strata of the BBL.

3.6 The choice of the time steps

Numerical tests indicate that if a coarse near-bottom vertical
resolution is used, the logarithmic layer does not instantaneously
respond to the variations of the flow at the upper points. Thus to
oreserve the computational efficiency of the scheme, it is necessary
to apply equations (3.4.3) with the variable q of (3.4.2) and values
of the angle o averaged values over a period aTg.

Therefore the numerical procedure illustrated in the previous
sections depends upon which of the following parameters is chosen:
At the time step used for the resolution of the equations
(3.1.2).

the time step used for the correction of the barotropic

flow.
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-~ ATf the average pericd used for the adjustment of the
velocity field at the lower grid points.

- AS the shift between the time steps At and ATg.

It appears natural to consider the time steps a1, ATg, and as
multiples of At and to choose At as a multiple of AT¢ to avoid the
shift As being a function of time.

First, let us consider the parameter ATg. Since turbulent flows
respond to inertial oscillations (D'Asaro, 1980), the natural choice
is AT¢ = 12 hours.

With respect to the parameter aAr, we must choose a time step
short enough to avqid the flow reaching a steady state at each
correction (we do not want to start repeatedly from initial
conditions), but long enough to allow the BBL to adjust itself to the
new state. Numerical simulations indicate that the evolution of the
flow above the BBL is not sensitive to the choice of aAr1; however, for
large time steps a noise of frequency 1/(2at) can appear in the BBL
thickness configuration. The phenomenon, known as 2ax—-instability
(Lilly, 1965; phillips, 1959), is a consequence of the fact that the
BBL time variations are modulated on two different time scales: the
inertial period associated with the BBL time scale and the much
larger time scale that controls the variations of the forcing flow.
Thus if At is too large, the scheme cannot adequately resolve the

inertial oscillations that are incorrectly interpreted as frequencies
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of order 1/(2at). To filter the high frequency noise as much as
possible , numerical experiments suggest a period At = 48 hours.

In order to define the parameters as, we have essentially
considered the cases as = 0 and As = 6 hours. Numerical tests
indicate that inside the BBL, for any given intexrval ar, the flow
might present different instantaneous configurations, but averaged
values over the period AT¢ and the evolution of the flow above the
layer do not present substantial differences. Thus we conclude that

the scheme is not affected by the shift as.
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Table 3.1: Values of constants used in the numerical experiments.

symbol Value Remark

o 2x10—4(co)-1 Thermal expansion coefficient.

v lcméds—1 Vertical viscosity coefficient.
105cm2s—1 Computational eddy coefficient.
0.lcm2s—1 Vertical conductivity coefficient.

2 C° Reference temperature.
1 gmcm—3 Reference density.
10—4s-1 Coriolis paramater.
981lcm2s—1 Gravitational acceleration.
107cm Radius of the eddy.
1.75x107cm - Domain extent.
4x105cm Total depth of the eddy.
1.3x104cm Level of maximum possible penetration for
turbu;ence.
1.25x106cm Horizontal grid-size.
(AZ)q 100cm Minimum vertical grid size.
(az)y 2x104cm Maximum vertical grid size.
lhour Time step.
48 hours Time step for the barotropic components.
12 hours See Section 3.4.

0 See Section 3.4.



25cm
0.2
15.
0.20

0.01

l6.6
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See Section 3.4.
See equation (2.3.6a)
See equation (2.3.6d)
See equation (2.3.8)
See equation (3.3.2).
See equation (3.4.2).

Karman's constant.



4. PRELIMINARY ANALYSIS COF THE MODEL: STRUCTURE AND DYNAMICS OF THE

BENTHIC BOUNDARY L[AYER.

The aims of this section are to study the structure of the
Benthic Boundary Layer forced by a mesoscale activity and to inves—
tigate how the Benthic Boundary Layer might affect the dynamics of
the forcing flow. For the present, we assume that dissipation by
pbottom friction dces not affect the barotropic component of the
motion, so that the the thermocline displacement is kept constant
with time.

As we have already discussed, the numerical model described in
the previous sections has been developed with particular attention to
its applicability to long term simulations. Storage and computer time
are reduced by the use of an unequally spaced vertical resolution and
of the logarithmic law at the lowest levels. Although for an accurate
analysis of the Benthic Boundary Layer structure the model should be
applied with very fine mesh point, we prefer to present results
obtained with a coarse grid (the minimum vertical increment is 1lm),
and discuss how computational efficiency affects the accuracy of the

solutions.,

4.1. Horizontally homogeneous flow.

Although the present case is irrelevant in the dynamics of
mesoscale motions, it makes it possible to analyze the structure of

35
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the Benthic Boundary layer as a function of various velocities and to
test the accuracy of the scheme by comparing the numerical results
with predictions derived by previous works on turbulence.

Working on the hypothesis of horizontally homogeneous flows,
most of the studies have related turbulent quantities such as the BBL
thickness, friction velocity, and Ekman veering to the forcing flow.
It can be showed that the friction velocity and the Ekman veering

satisfy the relations:

— 2 2,172
[ ] L] L] = C +V
(4.1.1.) ux = Y Cp (Ug g)

where ux is the friction velocity, Uy and Vg are the velocity
components of the forcing flow, o is the magnitude of the Ekman
veering at the surface, Cp the dfag coefficient, and bp a constant of
proportionality (Csanady, 1967; Blackadar and Tennekes, 1968; Monin
and Yoglom, 1971; Tennekes and Lumley, 1972). It is usually
considered that the drag coefficient is a monotonic decreasing
function of the surface Rossby number Ro =|Uql/£25, such that for a
representative oceanic range 106<Ry<107, 0.03<,/Cp<0.04 (Deardoff,
1970; Weatherly, 1972). Yamada (1975) suggested a value bp = 7.55
for flows with small velocities and weak stratification,such as those

considered in our experiments.
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More intriguing is the definition of the BBL thickeness. Several
authors have defined the BBL thickness as the height, hE, at which the
flow is parallel to the forcing flow but slightly greater in magnitude
(Wimbush & Munk,1970; Kundu,1976; Caldwell,1976). The same and other

authors predicted the thickness of the BBL as the height hx such as:

(4.1.3) hx = .4 ux/f

(Weatherly, 1972; Richards, 1984). A physically more realistic
definition is to consider the height, hq, at which the BBL~generated
turbulence goes to zero (Weatherly & Martin,1978). Finally, Richards
(1982a) has related the BBL thickness to the temperature profile and
defined the BBL thickness as the height, hp, at which the temperature
gradient is maximum. This definition is the least convincing because
it identifies the BBL with the mixed layer. As we will discuss later,
this relation creates some ambiquities and imprecisions.

In the following sections, we present the values of turbulent
quantities for neutrally and stably stratified flows. All the
numerical simulations have been made for forcing flow within the
range of the deep ocean values. However, values have been restricted
to those greater than 0.03ms~l because the coarse grid dces not allow

a correct application of the logarithmic law for smaller velocities.
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4.1.1. Neutrally stratified flow.

The results of the case are depicted in Fig. 4.l., 4.2, and 4.3.
The values of the friction velocity were determined by considering
the values of the turbulent kinetic energy at the lowest levels as

in equation (3.4.2) or by evaluating the bottom stresses, i.e.:

(4.1.4a) ol = (% ()22
where
H
X = ff (v—Vg)dz
20
(4.1.4b)
¥ =

H
~£[  (u-Ug)dz
20

Gbviously, the magnitude of the drag coefficient computed from
equation (4.l.4a) is in a better agreement with observations and
predictions, but in neither case are the drag coefficient or the Ekman
veering a decreasing function of the forcing flow. However, the range
of velocities used in our experiments is too narrow for presenting
marked evidence of monotony.

The ambiguity in defining the depth of the BBL is clearly
illustrated by the numerical simulations. The defintion (4.1.2) leads
to the thinner BBL, but the function, hx, is definitely correlated
with the variable hg. The best fit between hx and hg is obtained for

hx = 0,65ux/f. On the other hand, relating the BBL thickness to
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the turbulent kinetic energy gives the largest value: turbulence not
inhibited by the buoyanecy forces propagates upwards where the last

residuals of the Ekman spiral can be still found.

4.1.2. Stably stratified flow.

All the results presented in the following section consider a
Brunt-vVaiasala frequency N=7.6x10~4s~1l,

Both Ekman veering and drag coefficient have the same distortion
found for neutrally stratified flow (Fig. 4.1, and 4.2), but the
ambiguity between the functions hx, hg, and hq is highly reduced
(Fig. 4.4). However, the numerical simulations confirm that the mixed
layer and the BBL cannot be identified with one another. The mixed
layer is much thicker than BBL and is a measure of the level at which
the Ekman spiral vanishes. In the upper strata of the mixed layer
the work done against the buoyancy forces balances the input of
turbulent kinetic energy by the shear of the mean flow, and no
turbulent activity can be maintained at those heights.

For the completeness of our analysis, the vertical profiles of
the mean flow, temperature distribution, turbulent kinetic energy,
and momentum vertical eddy viscosity coefficient are depicted in Fig.
4.5, Since those quantities exhibit similar patterns for neutrally
'Stratified flows (except for the level of zero turbulence), we do not

Present the relative profiles.
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4.1.3. Discussion.

we now briefly compare the results relative to neutrally
and stably stratified flow. Both Ekman veering and drag coefficient
are slightly greater when the flow is stably stratified, but the
level of zero turbulence is much lower. Those results confirm a well
known statement that stratification atfects the depth of the BBL at a
rate much greater than that of the level of turbulent activity inside
the layer (Weatherly and Martin,1978). Furthermore, since Ekman
veering is a measure of the bottom friction forces acting on the
flow, an increment of turbulence (ux) must correspond to an analogous
increment of Ekman veering.

Our numerical results are consistent with most of the theories
and models of turbulence. However, the vertical coarse mesh point
sensibly affects the values of Fkman veering and friction velocity. A
finer vertical resolution increases those values, but does not
particularly change the value of the bottom stress.

In order to verify that those inaccuracies are due to the coarse
resolution rather than to a mistake in the scheme (viz, the
boundary conditions), we compute the Ekman veering from equation
(4.1.2) with the drag ccefficient evaluated from ux specified as in
equation (3.4.2) or (4.1.4), and we compare those results with the
.values predicted by Deardoff (1970). As Fig. 4.6 indicates, there
are no substantial differences between the values given by the

numerical experiments and the Ekman veering as computed from the
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kinetic energy at the lowest level (i.e., a coarse fesolution affects
turbulent kinetic energy and Ekman veering equally). On the other
nand, the best fit between results and Deardoff's predictions is
obtained by computing the friction velocity from equation (4.1.4)
(i.e., a coarse resolution does not influence the value of the bottom
stress).

All things considered, we conclude that the inaccuracies of the
scheme do not alter the dynamics of the motion, and the small
distortions due to coarse mesh point are compensated for by the

computational efficiency of the model.

4.2. The interaction between the Benthic Boundary Layer and meso—
scale motions.

In this section we wish to show that the interactions between
the Benthic Boundary lLayer and a mesoscale eddy-like flow are a
consequence of the constraint imposed on the motion by the
quasi-geostrophic approximation. Such an assumption requires that
the vorticity changes be geostrophic and the temperature changes be
hydrostatic (Pedlosky, 1979). The adiabatic temperature variations
due to rising (sinking) of water parcels must also keep the vorticity
changes geostrophic, and the vertical motion keep the temperature
variations hydrostatic (Holton,1979). Since both adiabatic

temperature variations and vertical velocity are proportional to the
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Rossby number, only the magnitude of those general features of the
quasi—geostrophic model are basically affected, if the motion is
fully nonlinear.,

In view of those observations, we focus our attention to the
structure of the Benthic Boundary Layer associated with cyclonic
(cold), and anticyclonic (warm) eddies.

There is an old questién whether or not the point of maximum
velocity of mesoscale flow is close to the edge. The paucity of
observations for deep motions makes it impossible to resolve the
controversy. Therefore, in order to define the stucture of the
motion, we refer to observations made for Gulf Stream rings, which
indicate that the point of maximum velocity is more likely to be
located at about 2/3 of the radius (Olson, 1980; Joyce, 1984).
Therefore, the numerical experiments are performed for deep eddy-like
flows of total depth H=4000m, total extension R=150km, and a linear
velocity distribution of maximum Uy = 0.15ms~l at 100km from the
center. The initial temperature distribution far from the bottom is
horizontally homogeneous and stably stratified with a Brunt-vVaiasala

frequency N=7.6x10=4s-1,

4.2.1. Cyclonic flow.

In order to understand the evolution of the temperature

distribution as depicted in Fig. 4.7, we recall that inside a cyclenic
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eddy the Ekman velocity associated with the bottom friction forces has
the form of an upwelling. Recirculation implies that there must be a
downwelling at the edge, which pumps warm water in the lowest levels,
removing the original cold bottom water. Conservation of mass requires
that the environment supply water to the BBL beneath the eddy. As this
water is injected in the BBL, it is advected upwards and mixed by
turbulence. Thus the thickness of the mixed layer increases and the
isotherms of the interior temperature distribution are lifted upwards.
Once the original cold water is removed from the bottom, warm water is
supplied to the Benthic Boundary Layer at the edge of the vortex, the
temperature of the mixed layer increases, and the sharp interface
between the mixed layer and the interior is slowly eroded.

As the thickness of the mixed layer increases, the BBL is
imbedded in a neutrally stratified layer, and the level of zero
turbulence increases as described in Section 4.1.1. and depicted in

Fig.4.8.

4.2.2. Anticyclonic flow.

With respect to cyclonic flows, the distribution of the vertical
velocity is reversed. There is a downwelling inside the vortex and
an upwelling at the edge. However, the physical mechanisms
associated with the vertical velocity are identical to those described

in the previous section.
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Downwelling inside the eddy has the tendency to remove cold
water from the bottom and reduce the thickness of the mixed layer.
Turbulence inside the layer, which is primarily determined by the
magnitude of the forcing flow, does not allow complete erosion of the
mixed layer. Thus as warm water is continuously pumped downwards
from the upper levels of the eddy, the interface between mixed layer
and interior becomes sharper and sharper, and the bottom layer is

heated only by the heat flux across the interface (Fig. 4.9).

4,2.3. Discussion.

The features illustrated in the previous sections indicate that
the structure of the Benthic Boundary lLayer is quite different for
cyclonic and anticyclonic flows.

Under a cyclonic eddy, the structure of the mixed layer is
primarly defined by vertical advection. It is warmer and thicker
than the mixed layer of a correspondent anticyclonic eddy, and its
horizontal extent is equal to the radius of the vortex (Fig. 4.7).
Thé associated BBL is much thinner than the mixed layer and not
Particularly affected by vertical advection.'The dynamics are
equivalent to those found for horizontally homogeneous and neutrally
stratified flows (Fig. 4.3, 4.8).

On the other hand, the mixed layer of an anticyclonic vortex is

the result of both advective and turbulent processes, and the
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ambiguity Petween the mixed layer and BBL is greatly reduced as for
stably stratified flows. Furthermore, since vertical advection tries
to remove water from the bottom, the mixed layer spreads outwards and
the gpatial extent of Benthic Boundary layer is greater than the
radius of the eddy.

Although cyclonic and anticyclonic Benthic Boundary Layers have
quite different structures, their influences on the relative forcing
flow are comparable. The dynamic of the flow far from the bounadry is
primarly affected by the thermal wind effect induced by the vertical
advection of temperature, and the motion deviates from its its

original barotropic configuration (Fig. 4.10).



5, THE DECAY OF AN HCOMCGENEOUS VORTEX UNDER A LINEAR REGIME.

The classical approach in fluid dynamics is to consider the
simplest formulation of the problem in order to derive a mathematical
framework suitable for analytical diagnostic solutions and to verify
whether these simple representations are able to describe gross
features of the motion. In general, the mathematical difficulties
which arise are nonlinearities due to stratification and the presence
of advection in the governing equations. These terms are therefore
generally dropped from the model. Thus as a preliminary study of the
decay of an isolated vortex, we assume that the flow is linear and
homogenecus. A dimensional analysis of the motion equations provides

the limits within which the above assumptions might apply.

5.1. The analytical model.

In the following section, we present an analytical model for the
decay of a deep eddy-like flow. It is necessary during the
formulation of the model to define a correct parameterization of
turbulence, suitable for carrying simple analytical solutions. From
this point of view, it is appealing to represent turbulence with
constant eddy viscosity coefficients, so that the problem becomes

equivalent to the usual Ekman Boundary Layer theory. Thus the

56
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starting point of the analysis is to use, as far as possible, of the
similarities between Laminar Boundary Layer (LBL; viz, BBL defined by
viscosity coefficients that are constant with depth) and Turbulent
poundary layer (TBL; viz, BBL defined by viscosity coefficients that

are function of height) of equal depth and forced by the same flow.

5.1.1. Formulation of the problem.

We consider a deep eddy on a f-plane subjected to bottom friction
forces. The eddy is circular and axially symmetric of radius R and
total depth H. A cylindrical coordinate system is chosen such that
the radial coordinate r* is zero at the center of the eddy and
increases outwards and the vertical coordinate z* is zero at the
bottom and increases upwards. The fluid is assumed to be
incompressible and Boussinesq. We neglect horizontal diffusion of
momentum and temperature (i.e., there is not substantial exchange
between the eddy and the surrounding water). Vertical diffusion is
also neglected inside the eddy but not close to the bottom, where it
defines a BBL of thickness h*. Thus the equations for the flow

away from the BBRL are:

* x * * % v**_ 1 *
.(5.l.la) U + U0 * + WU = (£ + ;;)v = - ;g-pr*
* * * V*
(5.1.1b) Ver t u*vr* + w*vz* + (£ + —:] +u* =0

r
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(5.1.1¢) 0 =-p* ~gp
1 x %y o *
(5.1.1d) ;;(r a)e* + wx =0
* * *
(5.1.1e) o . ¥ u*pr* + w*(pB +o¥)g* = 0

The subscripts (r*,z*,t*) denote partial differentiation, the
variables u*, v* and w* are the mean components of the radial,
azimuthal, and vertical velocities respectively. The variable o* is

the deviation of density from the state of rest, expressed by the

linear function p;(z*). The variable p* is the deviation of the
hydrostatic pressure from the hydrostatic pressure associated with the
state of rest, g is the gravitational acceleration, £ the Coriolis
parameter and o, a constant reference value of density.

The variables are nondimensionalized by assuming geostrophic and
hydrostatic balances, and scaling the temporal variable with the
spin—down time scale forAa bottom layer (henceforth IBL) defined by a
Characteristic thickness D and by an eddy viscosity coefficient
constant with depth (Greenspan, 1968). Therefore, the variables are

scaled in the following manner:

r* = Re 2" = Hz h* = ph
(5.1.2) (u*, v¥) =U(u,v) w* = Egﬂ p* = oofULp
* fUR * Df
= _— £t = (— -1
PrE o gy e (g e
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Introduce the parameters:

(5.1.3a) e = U/fR The Rossby number
(5.1.30) E = (D/H)2 The Ekman number
(5.1.3c) N2 = (= gp_ /poH) The square of the Brunt-Vaisala
Bz frequency.
N2H2 e
(5.1.3d) S ='§Z§Z The stratification parameter

Therefore, the momentum equations in the nondimensionalized form

are:

(5.1.4) el u-(l+ed)v=-py
(5.1.4b) cpevt(lter)us=o0
(5.1.4c) | 0=-py - o
(5.1.4d) £ (r)y +wg =0

(5.1.de) 2 p-sw=0

where

(5.1.4f) %E = %E +u %E +w %E

The boundary and initial conditions of the problem (5.1.4) must
~be carefully assigned. Since we are concerned with the decay of the

eddy, we neglect the early stages of the evolution of the flow.
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Thus we assume that dissipation by bottom friction starté being
effective after the geostrophic flow of the eddy is fully developed.
The equations (5.1.4) are satisfied within the region 0O<r<l, 0<z<l.
The bottom of the eddy is at z = 0 and the thermocline displacement
at z = 1. The azimuthal velocity, v, must vanish at the center of
the eddy. We assume that at the edge the pressure is the hydrostatic
pressure associated with the state at rest (i.e., the eddy is at rest
with respect to the surrounding water). We do not close the problem
with lateral boundary layers. This is equivalent to assuming that
all the water exchanged between the eddy and the surrounding water is
exchanged via the BBL. At the bottom of the eddy the boundary
conditions are specified by matching the interior and the boundary
layer solutions. 1In particular, since the BBL is characteristically
a well-mixed region, stratification does not affect the order of
magnitude of the vertical velocity pumped out of the bottom layer;
i.e.,

(5.1.5) W=V E W

where the tilde indicates the BBL solution and ws = 0(l) (Pedlosky,
1979).

Assume:

(5.1.6) e << 1

. and expand all the variables in their asymptotic expansion with
respect to the parameter ¢. Thus the variables are scaled in the

following manner:
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V=VO+EV]'+00

u = Eul + o e o
W = Swl + e o 0
(5.1.7)
S - - -
p = /E (P + ep + o
€
=0 +enl 4. . . +3E (° + eol +
P n n e
D _ 3
e = A T + 0(¢)
Assume s

(5.1.8) SYE << g2

Thus in first approximation it follows:

(5.1.8a) VO = = no

(5.1.80) avp +ul =0

(5.1.8¢) -i—_'—(rul)r + w% =0

(5.1.8d) 0 =-py - 30

(5.1.8e) A ;% -wl =0

Here the variable p represents the displacement of the thermocline.

Thus for the range of the parameters:

(5.1.9) Sg Ke << 1
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it follows that the effects of bottom friction on stratification are
of secondary importance on the spin-down process of the eddy and the
eddy decays homogeneously.
In order to verify the applicability of the model to a deep—eddy-
like flow, let us consider typical values for such a flow located at

middle latitude (Armi and D'Asaro, 1980):

H=4x103m D=20m R = 105 m
(5.1.10a)

U

10—4s—1 N2 = 0.7 x 10=7s—2

Hh
i

15 ans—!

These values imply:

YE = 0.5 x 10-2
e = 1.5 x 10—2
s = 1.1 x 10"2
(5.1.10b)
S/E_ = 36 x 1072
€
A = 0.3

and the relation (5.1.9) is satisfied. Integration over depth of the

continuity equation (5.1.8c) and equation (5.1.8b) lead to:

R o] ~ 1
(5.1.11) x(gjznt = A% = o A T (rV9)pe = 0 '
where Lp = /gH/f is the barotropic radius of deformation. The term
containing ny represents the contribution of the free surface

variations to the potential vorticity by vortex-tube stretching
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(pedlosky, 1979). Since R << Lp, this contribution is unimportant
and can be neglected (i.e., the free surface appears no different
from a rigid lid). Therefore, we simplify equation (5.1.11) by

neglecting this term.

5.1.2. The Bottom Boundary lLayer solution.

To close the problem, we mﬁst now define the functions wy and h
of the equation (5.1.11) from the BBL solutions. The mathematical
difficulties of the problem depend on the turbulent nature of the BBL
In order to present simple analytical solutions, it is appealing
to parameterize turbulence via eddy viscosity coefficients that are
constant with depth. Thus we compare the dynamics of a Turbulent
Boundary Layer (henceforth TBL) with the dynamics of a IBL of equal
depth and forced by the same flow.

Let the superscript L indicate values for the IBL; thus the LBL
is defined by the eddy viscosity coefficient vl (constant with

depth):

2
(5.1.12)  oL(r) = %hz(r)

In Appendix A we show that the constant eddy viscosity
coefficient L is a good estimate of the mean value of the eddy
viscosity coefficient Ky(z) which defines the TBL. However, there is

a fundamental difference between the assumptions that the eddy
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coefficient is constant throughout the boundary layer or that it is a
function of height. One of the main disagreements observed between
Bls and TBLs is that close to the rigid wall, the Ekman veering is
45° and 10° respectively, (Weatherly, 1972). Thus phencmenon is a
measure of the different friction forces that drive laminar and
turbulent motions.

Cutside the boundary layer, the Coriolis forces F. balance the
pressure gradient forces Fp exactly (Fig. 5.la); inside the layer,
the forces that act on the layer as a whole are the pressure gradient
forces Fp (depending only upon the thickness of the layer and the
geostrophic flow of the interior), the friction forces Fg¢ and the
Coriolis forces Fo (Fig. 5.1b). If we require that the Ekman
veering is at an angle g with respect to the flow above the layer it

follows that:

_ B B L -
Fp'+ FC cos g8 + Ff sin 8 =0

(5.1.13)

B < _wB =
Fc sin g Ff cos 8 0

where the superscript g indicates values for the given Ekman veering

at the rigid wall. Equations (5.1.13) imply:

(5.;.14) E‘E/E‘p = sing



<
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(a)

(b)

Figure 5.1. The balance of forces acting at the top (a) and at
bottom (b) of the boundary layer. F_=pressure gradient forces;
F =Coriolis forces; F.=friction forces; v _=direction of the for-
c?ng flow; v=direction of the flow at thegrigid surface.
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and therefore,
(5.1.15) FLO/FE> = .25

Therefore we conclude that [BLs are more dissipative than TBLs

for equal boundary layer depth and equal forcing geostrophic flow.

a). The Ekman velocity

As the previous analysis indicates, a IBL cannot satisfactorily
parameterize a TBL. Therefore, in order to derive an appropriate
expression for the term w, we assume that the Ekman Boundary Layer

theory is applicable only above the logarithmic layer. Thus the

non-slip boundary condition at the rigid surface is transformed into:

(5.1.16) (4,v) = (upcosg,upsing)

where up is the magnitude of the velocity at the top of the

logarithmic layer and g the Ekman veering. It can be showed that

(Holton, 1979):

Uy = (Cosp - sins)(u§ + Vé)l/2

where (Ug,vg) are the velocity components of the forcing flow. Thus,

neglecting terms O(¢),the solution above the layer is given by:

(5.1.17a) u = =vPe~Esing + vO(cosg—-sing)e~&sin(s~g)



67

(5.1.170) v = vO(l-e~fcosg) + vO(cosg-sing)e~Ecos(g~8)

where .
2/(YE h(r))

Y
1

Thus the Ekman velocity at the top of a TBL is :

~

~

(5.1.18a) w

sin2g

(5.1.18b) %k =

(5.1.18c) Wo = =(rav)y
An Ekman veering g=10° leads to the value k=0.08.
b). The thickness of the Bottom Boundary Layer

We first recall that the thickness of a IBL does not vary with

time and it is independent of the forcing flocw, but the

characteristic scale of a TBL thickness must somehow be related to
the forcing flow. Usually the thickness of a TBL is taken to be

(Wimbush & Munk, 1974; Weatherly, 1972; Weatherly and Martin, 1978):
(5.1.19) D = 0.4ux/f

where the friction velocity ux can be related to the flow above the

bottom layer:

(5.1.20) ux = au

The constant of proportionality, a, is usually assumed to range from
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0.03 to 0.04 (Kundu, 1976). Therefore, with the non-dimensionalized

variables we might assume:
(5.1.21) h = |vO| + 0(¢)

The relation (5.1.21) is particularly appealing because of its
simplicity; however, it must be applied under the correct
circumstances. As we bave pointed out, during the decay of the
vortex, the effects of stratification are of secondary importance,
but during the phase in which the interior flow builds up the BBL,
stratification plays an important dynamic role, mixing the bottom
layer and creating the sharp interface that inhibits the upward
propagation of turbulence. For steady state flows, the mixed layer
is the region in which most of the turbulent activity occurs and the
relation (5.1.21) applies. On the other hand, as the forcing flow
decays, we might expect a reduction of turbulence and a consequent
reduction of the TBL thickness. However, once the initial TBL has
been mixed, there are no mechanisms (except molecular diffusion) for
reestablishing stratification, and therefore, turbulence can still
propagate upward to the upper levels of the mixed layer. Then, the
TBL retains some memory of the original forcing flow which highly
complicates the relation between the BBL thickness and the interior
flow. Thus we can conclude that the relation (5.1.21) might be

applied at least in the early stage of the spin—down process, when

the mixed layer and the TBL are in balance.
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Independent of the validity of equation (5.1.21), substituting

(5.1.8), (5.1.9) in (5.1l.3e) it follows:

(5.1.22) x =/ E/c = O.day = 0 5( x 1072)

Thus the parameter )\ is related only to the spatial dimensions of
the vortex.
5.1.3. The model equation

Substituting (5.1.16), (5.1.17), and (5.1.21) into (5.1.11) using

the rigid lid approximation, the model equation is reduced to:

(5.1.23) (rvO) e + Ar|vPle + K(x|vC|vP)r = 0 £30

subjected to the boundary and initial conditions:

| (5.1.24a) vO(0,t)

1}
o

(5.1.24b) vO(r,0)

V(r) t<0

Furthermore, because of the boundary condition at the center of the

eddy, the initial velocity distribution V(r) may be written as follows:

(5.1.24c) V(r) = Arof(r)

~where A is constant, f(0) = 1, and 0.

Consider equation (5.1.23) and its term [vP[y. Since the

thickness of the BBL is related to the magnitude of the forcing flow,
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the term |v|y is always negative and in the decay process of the flow
might be considered equivalent to an apparent upwelling. Then, we
conclude that the BBL time variations are a dissipative mechanism for
cyclonic eddies, but they imply a production of relative vorticity for
anticyclonic eddies. Therefore, we expect that cyclonic vortices decay
faster than anticyclonic with equivalent features.

Although the nonlinear nature of equation (5.1.23) does not make
it possible to present an expression for the general solution of the

problem, additional information can be derived. Introduce the new

variables :

1)

AL
(5.1.25)
Tt =kt

BEquations (5.1.23) and (5.1.24c) are transformed into:

(5.1.26)  (pW), ¢ + oIl + (pl¥CI¥)y = 0

T

(5.1.27) V= A\"opaf(g/A)

Bquation (5.1.26) implies that the eddy does not respond

— e ————— -—— D A e — e~

simultaneously to dissipation by bottom friction, but with a time
shift expressed by the factor )~a, - Then we conclude that the solution

is of the form:

(5.1.28) v = (\r, kt + vy)
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and the associated decay time scale Tg is given by:

Y" Efk

where vy representé the shift factor. The essence of the solution
(5.1.28) can be sumarized as follows:
i) A1

During the spin-down process "fat" eddies spread and lose most
of their kinetic energy in the early stage of the decay. However,
the case is of purely academic interest. "Fat" eddies require a
radius so large that the rigid lid approximation is no longer valid
and (5.1.26) cannot be applied.
ii) A<<1

"Slim" eddies contract and respond with a delay to dissipation
by bottom friction. Here, we recognize two different phases of the
decay: the early stage during which éddies preserve their initial
features almost unchanged, and the final stage during which eddies
rapidly lose their kinetic energy.
iii) A =1

We first assume ) = 1. During the decay the horizontal
scale of the eddy does not change, and the eddy responds

simultaneously to bottom friction dissipation. ©On the other hand, if

we assume )\ = 1, the flow might evolve in accordance with any of the

previous cases. We recall that the previous possibilities can never
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pe found in the decay process of the same eddy; during the spin-down
fat eddies become fatter and slim eddies slimmer.
Finally; we recall that according to the values of (5.1.10a)
typical deep eddy-like flows evolve as illustrated in case ii), and

the associated time scale of the decay is:
(5.1.30) Tq = 1.2 years

On the other hand, if we suppose that the eddy is subjected to a IBL,

the associated time scale is :

(5.1.31) Tf; = (v E £)-1 = 1 month,

It is unnecessary to emphasize that the Tg value expresses a much
more realistic estimate than Tg and that the evolution of the flow
| according to our model is also in good agreement with observations

(The Ring Group, 1981).

l
l
5.1.4. Discussion.
The model suggests that spin-down occurs on a time scale of
l about one year. The result is indeed in good agreement with
! Observations and measurments. A dimensional analysis indicates that

dissipation affects primarly the barotropic component of the motion,

. provided that the stratification parameter s and the square root of
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the Ekman number E is much smaller than the square of the Rossby
number ¢. Thus if we assume also that the Rossby number is much less
than unity, the eddy might be considered linear and homogeneous.

The results of the model might be summarized as follows:
- LBLs are more dissipative than TBL of equal depth and forced by the
same flow. The Ekman velocity at the top of a TBL is proportional to
the Ekman velocity of the correspondent LBL through a constant of
proportionality which is a function of the Ekman veering at the wall.
- The BBL time variations are a dissipative mechanism of kinetic
energy for cyclonic flows, but they imply a production of relative
vorticity for anticyclonic flows. Thus cyclonic eddies decay faster
than anticyclonic eddies of equal features.
- The evolution of the flow depends upon the range between the
radius and the total depth of the vortex. For realistic values of
those spatial dimensions, eddies contract and the spin-down occurs in
two phases: the early phase, during which eddies preserve their original
features, and the final stage, during which eddies rapidly lose their

kinetic energy.

5.2, The numerical experiments.

Inspite of the assumptions made throughout the formulation of
the problem, the analytical model is able to reproduce most of the
features observed during the decay of mesoscale eddies and suggests

a simple parameterization for the BBL turbulent activity. Therefore we
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apply the numerical model to investigate the decay of a deep
eddy-like flow under linear regime. The eddy is assumed to be
homogeneous except close to the bottom where density is a linear
function of depth. The condition is required for generating a bottom
mixed layer and for maintaining a sharp temperature gradient at the
top of the layer which inhibits turbulence for propagating upwards.

The eddies considered in the numerical experiments have the
typical dimensional values given in (5.1.10), and linear initial

velocity distributions.

5.2.1. Cyclonic and anticyclonic flows.

We consider two eddies of equal spatial dimensions, but initial

velocity distributions of opposite sign. Numerical simulations
indicate that the decay patterns are virtually identical inside the
vortices (Fig. 5.2, and 5.3). Both eddies lose more than 30% of
their initial energy in the first year of the spin-down. The result

is in good agreement with the estimated decay time scale of the

analytical model.
On the other hand, cyclonic and anticyclonic eddies induce
different circulations in the surrounding waters. As Fig. 5.4

illustrates, the radius of the anticyclonic eddy contracts about

2% of its initial value in the first year of the spin-down, but the
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cyclonic eddy preserves its original radius. The features are a
consequence of the role played by the BBL time variations during the
decay of the flow.

et us consider a cyclonic eddy. At the edge of the vortex the
Ekman velocity has the form of a downwelling, but the BBL time
variations are equivalent to an upwelling. Thus each effect
opposes the other, tending to preserve the original radius of the
eddy. In contrast, at the edge of an anticyclonic eddy both the Ekman
upwelling velocity and BBL time variations work to increase the

gradient of the forcing flow and an anticyclonic eddy must contract.

5.2.2. The Ekman velocity.
We consider the decay induced by an Ekman velocity computed as:
(5.2.1) we = < k(hVg)y/(H-n) >

where the constant k is defined in (5.1.18b) and < > indicates
average value over the period ar.

As Fig. 5.5 indicates, no substantial differences are found in
the evolution of the flow when the Ekman velocity is computed as in
(3.1.7b) (the term hy being neglected) or defined as in (5.2.1).
Thus we conclude that the definition (5.1.18) is the correct

parameteriziation of the Ekman velocity present at the top of a TBL.
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Figure 5.3. The displacement of the thermocline at time t=0,
6,and 12 months from the beginning of the dissipative process;
anticyclonic eddy (a), cyclonic eddy (b).
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5.2.3. The evolution of the Bottom Boundary lLayer

The evolution of the BBL thickness is depicted in Fig. 5.6.
although the rate of the decay for the forcing flow is uniform, the
BBL evolves in four distinct phases:

i) The initial stage, during which the BBL decreases (the high
frequency noise of Fig. 5.6 is a consequence of the 2ax-instability
and an indication that the inertial oscillations have been excited).
ii) The early stage (about 1.5 months), during which the BBL
preserves the new configuration.

iii) The intermediate stage (about 2.5 months), during which the BBL
thickness decreases with a well-defined pattern.

iv) The final stage (after 4 months fron the begining of the decay),
during which the BBL appears to maintain a steady configuration.

These features might be explained as follows. At time t=0 of
the decay, the BBL and mixed layer are in a condition of equilibrium.
When dissipation is primed, there is an initial loss of kinetic
energy and a reduction of the BBL thickness. Then the BBL is
imbedded in a neutrally stratified layer and turbulence, not
inhibited by the buoyancy forces, can propagate upwards in the upper
levels of the mixed layer. As the forcing flow continues to decay,

the supply of kinetic energy from the mean flow cannot support
turbulent activity in the upper strata of the mixed layer and the BBL
decreases at a rate faster than that of the forcing flow. From Fig.

5.2 and 5.6 we estimated that the BBL thickness is not responsive to
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a reduction of the kinetic energy of the forcing flow up to 25% of its
original value. Four months after the begining of the decay, both
BBL and forcing flow are reduced by a factor of 30%, but the mean
kinetic energy is now sufficient to mantain turbulence in the upper
levels of the new BBL, and the BBL thickness reaches a new constant

configuration.

5.3. Comparison between analytical model and numerical experiments.

The numerical experiments confirm most of the results of the
analytical model, but some of the features suggested by the mcdel are
reproduced only in minimal measure or not at all. The numerical
simulations ratify that the Ekman velocity has been correctly parame-
terized as in (5.1.18), and the decay time scales of both analytical
model and numerical tests are in good agreement.

The discrepancies depend upon the dynamic role of the BBL time
variations. In the formulation of the analytical model, we have
supposed that the BBL thickness is proportional to the magnitude of
the forcing flow. This includes the implicit assumption that the BBL
time variations are of the same order of magnitude as the time var-
iations of the forcing flow. Under such an hypothesis, the BBL
variations beccme responsible for the different decay pattern for
cyclonic and anticyclonic eddies, for the contraction, and for the

delay with which the flow responds to dissipation by bottom

friction.
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Thus the numerical experiments indicate that the weakness of
the analytical model is due to the definition of the BBL. The BBL
thickness was related to the forcing flow through the friction
velocity (equations (5.1.19), (5.1.20)), but the ratio between
friction velocity and forcing flow is found to be constant during the
spin-down of the motion (Fig. 5.7).

The evolution of the BBL thickness depends upon the dynamic role
of the buoyancy forces. Thus a correct parameterization of the BBL
thickness presents an intriguing problem which does not have an easy
solution. From our analysis, we might propose to modify the relation

(5.1.21) as follows:
(5.3.1) h = g|vCl| + O(¢)

where ¢ is an empirical (unknown) function dependent upon the
magnitude of the initial velocity distribution and stratification.
However, the problem requires an analysis which is beyond the bounds

of the present research.
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6. THE DECAY OF A DEEP MESOSCALE EDDY-LIKE FLOW.

The analysis presented in the previous section indicates that
bottom friction forces are an important mechanism for the decay of
isolated vortices. However, the formulation of the mcdel precludes
certain types of spin-down mechanisms and observed features.

Perhaps the most important omissions are the assumptions that the
eddy does not interact with the surrounding water, that the Rossby
number, ¢, is much less than unity, and that the product of the
stratificatioﬁ parameter, s, and the square root of the Ekman number,
E, is much less that the square of the Rossby number. Scaling
arguments do not completely support the validity of the last
conditions. Here we analyze how the physical mechanisms of
advection and stratification affect the dynamics of a deep mesoscale
flow during the decay induced by bottom friction forces.

Since the simulations are performed for extended pericds of
time, the numerical scheme is modified to prevent nonlinear
instability as has been described in Section 3.3. The correction
does not alter the dynaﬁics of the problem (Fig. 4.7a, 6.la; 4.9a,
6.2a). The new horizontal eddy coefficients affect the structure of
the mixed layer, reducing the horizontal gradient of temperature at

the edge of the vortex. This also prevents any instability that

85
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might be caused by adiabatically advecting parcels of fluid through

a strong thermal front.

6.1. Stationary flow.

Here we analyze the response of stationary flows to
dissipation by bottom friction. When it is not indicated otherwise,
all the numerical experiments‘consider the initial values given in
Section 4.2. These features imply a Rossby number ¢=1.5x10"2, an
Fkman number E=0.25x10~4, and a stratification parameter s=9.2x10-2.
In that case the assumptions (5.1.8) of Section 5 are violated. We
also assume that spin down starts being effective after one month of
numerical simulation, so that the flow may adjust from the initial
coﬁditions.

The importance of advection in the dynamics of the motion is
represented by the Rossby number, which can be modified by altering
either the velocity scale or the spatial scale of the flow. Changes
of the velociﬁy field imply changes in the turbulent activity of the
BBL and, consequently, changes in the evolution of the decay. On
the other hand, changes of the horizontal scale affect both the
Rossby number and the stratification parameter without requiring
'additional alterations of the flow structure. Thus numerical
experiments in Section 6.1.2 are performed only for different values

of the radius of the vortices.
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6.1l.1. Cyclonic and anticyclonic flows.

First let us consider the decay pattern of cyclonic and
anticyclonic eddies of equal spatial features but with initial
velocity distributions of opposite sign.

Fig. 6.1 and 6.2 illustrate the evolution of the mixed layer
which might be explained with arguments  similar to those used in
Section 4.2, and which are therefore not repeated here. The decay
of the maximum velocity and the evolution of the thermocline
displacement are depicted ih Fig. 6.3 and 6.4 respectively. It
follows that spin-down occurs mainly in the first six months, after
which the flow reaches an almost-steady configuration.
Unexpectedly, although both eddies lose approximately 50% of their
initial kinetic energy at the location of maximum velocity, in their
total extensions the cyclonic eddy decays faster than the
anticyclonic. Furthermore, the cyclonic eddy expands and the
anticyclonic contracts.

Before explaining these features, let us recall that if the
eddy is nonlinear and stratified, the thermal wind effect, caused by
vertical advection of temperature, implies a reduction in magnitude
of the bottom velocity regardless of its sign at the free surface
(Fig. 4.10). Under such a circumstance, turbulent activity inside
the BBL is reduced and consequently nonlinear and stratified

flows decay on a larger time scale than the time scale of the

correspondent linear and homogeneous flows. In addition, most of
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Figure 6.4. The displacement of the thermocline at time
t=0, 6, and 12 months; (a) cyclonic flow, (b) anticyclonic
flow.
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the dissipation must occur in the early stage of the decay, when
turbulence inside the BBL is strong enough to control the dynamics of
the motion.

From these premises, it follows that both advection and
stratification work to amplify the effects of the BBL time
variations. ILet us consider an anticyclonic eddy. The downwelling
inside the vortex has the tendency to reduce the thickness of the
mixed layer. If the forcing flow is steady, turbulence inside the
BBL does not allow a complete erosion of the mixed layer; but as the
forcing flow decays, turbulent activity is reduced and the BBL
decreases as a result of both vertical advection and decay. Therefore
the BBL time variations are not a dissipative mechanism.

In the case of a cyclonic flow, vertical advection and
spin-down play opposite roles in determining the thickness of the
BBL. Thus the BBL evolves similarly to the linear case of Section
five, and cyclonic eddies decay faster than the correspondent
anticyclonic eddies.

Analogous arguments might be applied to the dynamics of the
flow at the edge of the vortices to explain the features of Fig. 6.3

and 6.5.

6.1.2. Flows for different spatial extensions.

The numerical simulations described above have indicated that

vertical advection of temperature and consequent thermal wind work



"X93J40A 3yl Jo (uolsuedxa) uolldeAJUOD

03 Spuodsaudod MO} DLU0| 24D u0j AJ120|3A (9AL3ebau) 3AL]LSO4 -uoljow (dul}
paysep) DLuo|2AdL3ue pue (Bul| pL|0OS) DLU0|2AD Joj paInduiod Mo[4 4L |-Appd 3| eds
-0sawm Jo 3abpa 143 3yl e AIL20[3A puemd|od 3yl JO UOLIN|OAd 3Y| "G°g 3unbiy

(GHINAHWT 3IHIL

(G/WJ) ALIJ873A "XEH




96
against dissipation by bottom friction, reducing turbulent activity
inside the BBL. Furthermore, vertical advection and stratification
emphasize the role of the BBL time variations during the decay of
the flow.

Although the BBL time variations are an important feature for
differentiating the decay of cyclonic and anticyclonic eddies, the
thermal wind introduces a much more determinant factor in the
dynamics of the motion. Several experiments, whose features and
parameters are described in Table 6.1, have been considered.

Since the difference between eddies of opposite velocity signs have
been discussed in the previous section, we compare results relative
to cyclonic and anticyclonic flows separately.

Fig. 6.6 illustrates the evolution of the flows at the location
of maximum velocity, whose initial vertical profiles are depicted in
Fig. 6.7. We do not present the vertical profiles for cyclonic
flows because they are virtually identical to those of the
correspondent anticyclonic. Finally, the evolution of the
thermocline displacement is depicted in Fig. 6.8.

It is evident that experiments 3 and 7 confirm the validity of
the analytical model. If the motion is defined by a small Rossby
number and stratification parameter, eddies decay as homogeneous and

linear. On the other hand, flows subjected to a stronger thermal

wind effect decay on a much larger time scale.




- U | 2.2 .
Experim, R(km) D(m) = Jg=D N°H E
§= syE
£R =27 !
Cyclonic Flow
)

1 100 29 1.5x107° | .75x10-2 0 0

2 100 27 1.5x10-2 | .5x10~2 [9.2x10-2 | 3.x107¢

3 200 32 .75x1072 | .75x107% | 2.3x1072 | 2.3x1072

4 50 21 3.x10-2 | .5x102 | 3.7x10°! | 6.x10"2
Anticyclonic flow

| -2 -2

5 100 28 1.5x107¢ | .75x10 0 0

6 100 28 [1.5x10~% | ..5x1072 | 9.2x10-2 | 3.x107°

7 200 33 .75x1072 | .75x1072 | 2.3x1072 | 2.3x10~2

8 50 21 | 3.x107%| .5x107% |3.7x107 | 6.x107
Table 6.1. The characteristic dimensional scales and parameters relative

to the experiments.

A1l the experiments have the following common

features: H=4000m, U=0.15ms-1, and N=7.6x10-4s-1. The length scale D
is derived from the initial values of the BBL thickness. See section
5.1. for definition of terms.
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In order to explain those features, a simple modél for the
thermal wind is presented in Appendix B. The model furnishes a
diagnostic solution to the decay of nonlinear and stratified flows
when the velocity at the thermocline and the stratification
parameter s are known. As Table 6.2 confirms, the predictions are in
gocd agreement with the numerical simulations. 1Indeed, the model
does not take in account the nonlinear terms of the momentum
equation, and in deriving equation (B.4) we referred to predictions
relative to linear and homogeneous flows.

We have already discussed how the weakness of the analytical
model of Section 5 depends on the definition of the BBL thickness and
the consequences of such definition. Nonlinearity and
stratification further complicate the evolution of the BBL.
Experiment 8 may be considered a good.example of the last
statement.

The case is defined by a large stratification parameter and
Rossby number. The velocity, vy, at the top of the BBL is very small
compared with the velocity, vy, at the thermocline, and there is a
strong downwelling inside the vortex. As the flow decays and
turbulent activity is reduced inside the BBL, both mixed layer and
BBL decrease. The ultimate configuration is a complete erosion of

the Benthic Boundary Layer and, after about three months, the flow

decays only from the effects of molecular dissipation. (Fig. 6.9).
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The decay of the barotropic component of the flow

at the location of maximum velocity; (a) experiments 1-4, (b)
experiments 5-8.
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Figure 6.7. The initial vertical velocity profile
at the location of maximum velocity relative to
experiments 5-8.
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Figure 6.8. The displacement of the thermocline at time
t=12months. The ordinate represents the horizontal extent of the
eddy nondimensionalized with respect to the original radius of
each experiments. The abscissa represents the thermocline displa-
cement nondimensionalized with respect to the initial maximum
displacement. (a) experiments 1-4, (b) experiments 5-8.




Predictions Values

- - - -1

Experim, vﬁ(ms 1) Ts(years) vH(ms 1) vﬁ(ms 1) vH(ms 1 K/ KO
Cyclonic flow

1 .15 1 .055 .15 .06 81%

2 .136 1.1 .11 .109 .109 56%

3 .146 1 .057 .142 .065 86%

4 .094 1.5 .139 .061 .134 23%
Anticyclonic flow

5 .15 1 .055 .15 .055 81%

6 .136 1.1 11 11 .10 40%

7 .146 1 .057 .142 .07 84%

8 .094 1.5 .139 .074 .137 19%

Table 6.2. Comparison between predictions and numerical computations
relative to each experiment. The velocity, vy, is computed after one
year of decay. In order to reduce the distorsion due to our paremete-
rization of the thermal wind, the values in column 3 are computed from
the raltive values, v9, of column 4. The last column indicates the frac-
tion of initial kinetQC energy which has been dissipated. See Appendix

B for definition of terms.
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Experiment 8 also highlights the inadequacies of the diagnostic
solution that assumes a smooth exponential decay which is not
supported by the numerical computations. This may indicate that the
agreements between predictions and numerical tests are a result of a
mere coincidence rather than of the validity of the model. 1In
defense of the model we present the following arguments.

The model assumes that turbulence is determined by the value of
the velocity at the top of the BBL independent of the barotropic
component of the motion. It does not seem unreasonable to postulate
that although thermal wind does affect bottom friction forces, the
barotropic component of the motion also contributes to defining
turbulence inside the BBL. This might be confirmed by Tables 6.1
and 6.2: the initial thickness of the BBL is not proportional to
the values of the velocity,vw,. In our model we have underestimated
the effects of dissipation in the early stage of the decay when
dissipation is more efficient, and spread the surplus of friction

forces along the time scale of the decay.

6.2. Nonstationary flow.

We have previously considered stationary eddies and a
motionless ocean. Both assumptions are unrealistic. It is well
known that GQulf Stream rings move westward (The Ring Group, 1981);

Nof (1984) indicated that the translation is the result of the

balance between pressure, Coriolis and beta-effect forces that act




L &

)
SR

lllllll
§§§§§§







|
\

106
over the vortex as a unity. Tides, currents, and large-scale deep
ocean circulation models confute the hypdthesis of a motionless
ocean.

Therefore, we now assume that the vortices move westwards with a
uniform and steady velocity. The assumption that .the eddy is moving
is important in our analysis because the resultant new motion does
not preserve symmetric properties, but adds a new source of bottom
turbulence, so the migration of the eddy furnishes a background
of bottom turbulence available for the spin-down of the mesoscale
flow.

Although the direction of the motion has been chosen to be
consistent with the features of Gulf Stream rings, the following
study cannot be considered an application for investigating the
migration of eddies. The correct formulation of the problem is
fully three-dimensional and cannot be parameterized by our
two—dimensional mcdel. 1In addition, the original formulation of the
problem does not require particular conditions at the center of the
vortex. As we have discussed in Section 1, formulating the problem
in a more appropriate cylindrical coordinate system does not allow a
two—dimensional formulation of the migration of the vortices. Thus
the numerical tests described in this section cannot be considered a

direct simulation of the decay of nonstationary vortices, but an

indication of the tendencies induced by the migration.
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6.2.1. Cyclonic and anticyclonic flow.

The numerical tests discussed in this section consider the
initial features of experiments 2 and 6 of Section 6.l., with the
vortices advected by an uniform oceanic current ug= -0.05ms=1.

The evolution of temperature distributions near the bottom are
depicted in Fig. 6.10, and 6.11. It follows that the mutual
interactions between mixed layer and BBL are basically preserved
inside the vortices as discussed in the previous sections. However,
the background of turbulence due to the translation of the eddies
does not allow a complete erosion of the Benthic Boundary Layer when
the anticyclonic flow weakens under the effect of the decay. Under
such a circumstance, the flow maintains a well defined mixed layer,
about 30m thick, separated by a sharp interface from the interior
stratified region. Furthermore, the effects of the translation are
more determinant in the recirculation of the surrounding water,
where a clear downstream wake is generated.

The loss of symmetric properties is even more evident in the
evolution of the forcing flow. As Fig. 6.12 indicates, there is a
downstream deepening of the thermocline, regardless of the initial
velocity distribution, but the location of the maximum thermocline

displacement of cyclonic and anticyclonic flows moves downstream and

upstream, respectively.
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6e2+24 Discussion.

First let us recall that, according to the usual Ekman laminar
boundary layer theory, the inclusion of a uniform and steady
current modifies the structure of the boundary layer (viz, the
vertical profile of the velocity components) without altering the
decay of a mesoscale flow (viz, the Ekman velocity at the top of the
layer). Under more realistic circumstances, we must always take in
account the differences between the structure of the Benthic Boundary
Layer and the dissipation induced in the forcing flow. Furthermore,
the nonlinear nature of the relationship between turbulent activity
and forcing flow does not grant that dissipation is an invariant
with respect to stationary and nonstationary flows.

In order to understand how the translation affects the dynamics
of the motion, in Appendix C we derive an expression for the Ekman
velocity at the top of the BBL. We have assumed constant eddy
viscosity coefficients and imposed a given Ekman veering at the top
of the logarithmic layer. For the purposes of our study, it is
convenient to rewrite the solution (C.3) in nondimensionalized

variables as follows:
(6.2.1a) W = wgg + WET

where:

(6.2.1b)  wgg = ¢ E (sin2g/2m) Vgy
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Figure 6.12. The displacement of the thermocline at time t=0
(dashed 1ine) and t=12 months. (S) stationary flow, (T) non-
stationary flow. (a) anticyclonic flow, (b) cyclonic flow.
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2 2 2
(6.2.1c) WET = /_ET'(Ué(l - sin 2g) - Ugvgcos23)v;3x/(21r(Ug + Vg))
where wgpg is the Ekman velocity relative to stationary flow, and wgp
the perturbation due to the uniform translation.

With the aid of equations (6.2.1) we are able to attempt an
explanation for the features described in Section 6.2.1. However,
pefore proceeding in our analysis it is necessary to remember
that the ultimate aim of spin-down is not a zero forcing flow or a
zero thermocline displacement, but is rather constant values of these
variables,

Let us consider an anticyclonic flow. In Fig. 6.13 we briefly
sketch how translation affects the decay of the flow with respect to
its correspondent staﬁionary eddy. The assumption that the flow is
unperturbed upstream, and the fact that dissipation is more efficient
at the left edge assure a greater smoothing of the thermocline than
that of the correspondent stationary flow. In region B, where
friction forces are less dissipative, the thermocline preserves most
of its original gradient. The matching condition between regions A
and B leads to the downstream deepening of the thermocline. Since
Ekman pumping is more efficient at the left side of the center of the
vortex than at the right side, it follows that the location of maximum
thermocline displacement (viz, the location of zero forcing flow)
moves upstream, implying a contraction of the region of positive

forcing flow (Fig. 6.12a).
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The differences between regions A and B are also responsible
for the temperature distribution near the bottom. At the left edge
of the eddy, the upwelling is stronger than at the right, leading to
the features as depicted in Fig. 6.11.

Reverse arguments must be applied when the flow is cyclonic.
The eddy contracts at the left edge under the influence of
translation, and the gradient of the thermocline is not sufficiently
smoothed inside region B. Since the friction forces are more
dissipative in region A, the thermocline deepeens slightly in the
first portion of this region (viz, the forcing flow preserves
negative values). Thus there is a contraction of the region of
positive forcing flow and a downstream deepening of the thermocline

(Fig. 6.12b). Once more, the differences between regions A and B

lead to the temperature distribution depicted in Fig. 6.10.




Figure 6.13. The effects of a uniform westward translation

on the decay of anticyclonic (a), and cyclonic flow (b).
Regions A and B indicate regions where dissipation is more

and less effective with respect to the correspondent stationary
flow, respectively. Arrows represent the direction of the

Ekman velocity at the top of the BBL.
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7. SUMMARY AND CONCLUSIONS.

Although the primary goal of the present research has been to
analyze the effects of the Benthic Boundary Layer on the decay of an
isolated vortex, the study also provides additiocnal contributions to
the understanding of the nature of turbulent motions and of the
structure of the Benthic Boundary Layer. For this reason, we prefer
to describe the findings of the investigation in three different
statements.

i) Methods of analysis of turbulent flow.

| In this research we are using the principle that: "In the
absence of a general and rigorous approach to the‘solution of
problems in turbulence, it is impossible to make accurate
quantitative predictions without relying heavily on empiriéal data"
(Tennekes and Lumley, 1972). Therefore our analysis develops from
the classical Ekman Boundary layer theory, corrected with the
introduction of new elements derived from observations and
measurements. Basically we have depended strongly upon the
existence of a near bottom logarithmic layer and upon a priori
knowledge of the thickness of the bottom layer and of the Ekman
veering close to the wall.

It is found that the depth of the BBL furnishes an appropriate

reference for defining a laminar-constant eddy viscosity
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coefficient, which is a good estimate of the mean value of the
turbulent momentum eddy ccefficient, and that the Ekman veering is a
suitable measure of the friction forces that drive the motion.

Therefore we have concluded that laminar boundary layers are
more dissipative than turbulent boundary layers of equal depth and
forced by the same flow. The Ekman velocity at the top of a TBL is
proporﬁional to the Ekman velocity of the correspondent LBL through
a constant of proportionality which is a function of the Ekman
veering at thé rigid surface. Furthermore, the assumption that at
the rigid wall the flow is not at an angle g= 5/4 (counterclockwise
looking down) with the forcing flow implies that dissipation is not
an invariant with respect to an uniform and steady translation of
the mesoscale flow.

Comparisons between the model and numerical simulations
confirm that this modified Ekman Boundary Layer solution is suitable
for deriving satisfactory diagnostic estimates of the frictional
forces associated with the Benthic Boundary Layer.

ii) The structure of the Benthic Boundary Layer

A numerical model based on the level 2 1/2 closure scheme of
Mellor and Yamada (1982) has been applied to investigate the
structure of the Benthic Boundary Layer. The study ratifies that
"a clear distinction should e made between the height of the mixed
layer and the height at which the flow is affected by the presence

of the boundary" (Richards, 1984). More orecisely, a preliminary
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analysis on horizontally homogeneous flows confirms that the most
appropriate definition of the BBL thickness is the height at which
the BBL~generated turbulent kinetic energy goes to zero, that the
stratification reduces the depth of the BBL, and that the mixed
layer is thicker than BBL.

On the other hand, if the Benthic Boundary lLayer is forced by a
mesoscale activity, the dynamics are strongly affected by vertical
advection. A near-bottom downwelling has the tendency of removing
the mixed layer, but turbulence inside the layer does not allow a
complete erosion of the layer. The resultant balance leads to a
Benthic Boundary Layer structure equivalent to that associated with
horizontally homogeneous and stably stratified flows. On the
contrary, a near-bottom upwelling implies the growth of the mixed
layer. The BBL is then imbedded in an homogeneous region and the
Benthic Boundary Layer evolves as expected for horizontally
homogeneous and neutrally stratified flows.

Furthermore, recirculation outside the mesoscale activity
implies different temperature distributions for cyclonic and
anticyclonic motions. If the motion is cyclonic, the mixed layer
receives the warm water which is adiabatically advected downwards at
the edge of the flow. Cyclonic flows usually develop a mixed
layer warmer than the mixed layer associated with equivalent
anticyclonic activities.

These findings are in good agreement with the observations on

the Madeira Abyssal Plain reported by Saunders (1983) and Thorpe

N
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(1983). In our study, two major events occurred at the mooring
sites: the passages of an anticyclonic and a cyclonic flow at days
70 and 130 respectively, as indicated by Saunder's figure 9. In the
first case, before the transit of the flow (viz, during an upwelling
activity), stratification is weak in the whole sample column (about
80 m), but the depth of the mixed layer is clearly reduced when the
high pressure is over the site (viz, during a downwelling activity).
On the other hand, the passage of the cyclonic flow is related to
marked evidences of a near bottom warm front.

Another interesting place for our study is the station DEEP
(39° 53'N, 62° 82'W) in the HEBBLE Area. This mooring site is
particularly important because Koenig, Harkema, and Weatherly (1983)
made a complete compilation of the data from Oct. 1980 to Oct. 1981,
and Kelley (1984) represented the frontal position of the Gulf Stream
and rings relative to the station for the same pericd of time.
Although the records present several events that might reinforce the
validity of our results, we focus our attention to the period Dec.
28, 1980 - Jan. 9, 1981.

For almost the entire length of that period, the mooring site is
clearly under the influence of the recirculation associated with a
Gulf Stream meander (viz, an upwelling region), and the Benthic
Boundary Layer presents a warm mixed layer about 50 m thick. The

region above the mixed layer is weakly stratified. On January 4,

R
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1981 the station appears to be under the direct influences of the
Gulf Stream meander (viz, a downwelling region), and the mixed layer
becomes colder. Its thickness decreases and the region above is
more stratified. Furthermore, the records confirm that the
thickness of the mixed layer is not proportional to the magnitude of
the forcing flow: the maximum bottom velocity occurred during
January 1-3, when the depth of the mixed layer started to decrease.
iii) The effects of the Benthic Boundary Layer on the decay of

isolated vortices.

The approach to the problem is to develop an analytical
model for investigating the decay of linear and homogeneous flows.
The study indicates that the spin-down occurs on a time scale
proportional to the order of magnitude of the vertical velocity
pumed in (out) the bottom layer. During the decay, reductions of
the BBL thickness are dynamically equivalent to .an apparent
upwelling. Furthermore, under the assumption that the BBL time
variations are of the same order of magnitude as the forcing flow
variations, and for realistic values of the spatial dimensions of
the vortices, eddies contract.

Comparisons between the model and numerical simulations confirm
the dynamic role of the BBL time variations. However, the numerical
experiments emphasize that during the decay of the flow, the

evolution of the BBL depends strongly on the dynamic role of the
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buoyancy forces, so that the relation between BBL thickness and
forcing flow is complex and not easily understood.

With the assumption that the flow is stably stratified and
nonlinear, the study suggests that vertical advecticn of temperature
and consequent thermal wind effect work against dissipation by
bottom friction and reduce turbulent activity inside the BBL.
Furthermore, both vertical advection and stratification amplify the
role of the BBL time variations during the spin-down of the eddies.

Finally, this work investigates the decay of a mesoscale flow
advected by an uniform and steady oceanic current. The analysis
indicates that a translation of the mesoscale flow implies a loss of
symmetry of the motion features and a downstream deepening of the
thermocline regardless of the initial velocity distribution.

Two fundamental questions remain unanswered. Are the bottom
friction forces a capable dissipative mechanism? If so, in which
regions of the ocean are they dominant? A satisfactory answer to
these questions can be given only by applying the results of this
work to the general ocean circulation. As representative samples we
choose three regions: the Florida Current, the Gulf Stream warm
core rings 81D, and the Subtropical Gyre.

- The Florida Current

This region has been selected as representative of flow

characterized by a marked vertical shear for which the effects of

bottom frictions are rather small (Weatherly, 1972).
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Typical values of the Florida Currents are total depth H = 700
m, width L = 50 km, near surface velocities ranging from l-2ms—!,
bottom currents of about 0.3 ms—!, and a Brunt-Vaiasala frequency
N = 7.2x10-3s~! (Brooks and Niiler, 1977; Weatherly, 1972). Those
features imply a Rossby number ¢=0.5, and a stratification parameter
s = 0.94. From these parameters, we estimate thét the thermal wind
implies a reduction of the bottom velocity of about 94% with respect
to the near-surface current and that therefore bottom friction
cannot be dynamically efficient.

- The GQulf Stream warm—-core ring 81D.

Following Joyce (1984), the features of the ring can be
parameterized by a two layer system of radius R = 100 km, with the
upper layer of depth H; = 1000 m, and maximum near surface velocity
vy = 1 ms™l; and the lower layer of depth H, = 4000 m, and maximum
velocity v, = 0.15 ms~!. In the lower layer, the flow appears to be
cyclonic and essentially barotropic.

Our study predicts that the BBL dissipates about 84% of the
kinetic energy contained in the lower layer during the first year of
life of the ring. If we assume that velocity distribution of the
upper layer is linear with depth, we estimate that the kinetic
energy of the lower layer is about 54% of the kinetic energy of the
upper strata. Consequently, the BBL dissipates about 25% of the

kinetic energy contained in the whole water column.
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Dissipation by bottom friction could have been an important
mechanism in the spin-down process of ring 81D.
- The Subtropical Gyre.

Weatherly (1984) indicated that the interactions of the Gulf
Stream and rings with the bottom dissipate something between 50-100%
of the energy input by the wind in the subtropical gyre and that
this dissipation occurs in only about 20% of the total extent of the
gyre. Fofonoff (1980) estimated the rate of energy input by the
wind for unit area to be about 2 ergs s—1,

From the point of view of our analysis, the subtropical gyre
can be considered a large-scale eddy-like flow. The system is
therefore represented by very small Rossby number and stratification
parameter. We might expect that bottom friction is dynamically
important. Using the values of the area between estimated céntours
of the deep kinetic energy reported in Weatherly's Table 3 and from
the modified Ekman Boundary Layer solutions, we compute the
dissipation rate, P, of the system, assuming that the thickness of
the BBL is D =0.04 vg/f and the Ekman veering is g = 10°. It
follows that the dissipation rate ger unit area in the region of the
Gulf Stream is P = 8.82 ergs s~!. Since the Gulf Stream System
covers only 20% of the total area of the gyre, the rate of
dissipation for unit area in the whole subtropical gyre is about 1.7
ergs s~! or about 86% of the energy input by the wind in the same
region. Therefore, our estimates are in very good agreement with

Weatherly's study.
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In conclusion, odr answer to the questions at the orening of
this discussion is: Yes, bottom friction forces are a capable
dissipative mechanism, provided that the flow is represented by a
small stratification parameter and a small Rossby number. Bottom
friction is dynamically important for large scale motions, such as

the subtropical gyre, or for weakly stratified mesoscale flows, such

as deep eddies.
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Appendix A. An approximated vertical profile of the turbulent eddy
viscosity coeffiecient.

It is well known that close to the rigid surface, in the
log-layer, eddy viscosity coefficients are linear functions of height
(Krauss, 1972) and it is usually observed that they are monotonic
decreasing functions from the top of log-layer to the top of the
total boundary layer (Wyngaard et al., 1974). Therefore, with the
boundary condition that the eddy viscosity coefficient Ky goes to
zero at the rigid wall and at the top of the TBL, it is possible to
approximate Kyq(z) by linear interpolation once the thickness Dlog ©of
the log-layer and the value Kpax = Kv(Dlog) are known.

* From this vertical profile we deduce that:

(A-l) <K{Vx> = % ngo,‘(Z)dZ = 0.5 Krnax

In order to estimate the variable Dyoq and Kpay, we refer to the

studies of Weatherly (1972) and Wyngaard et al. (1974), respectively:

(A.2) Dlog = 0.1 D

(A.3) Kpax = 0.02 ul/f
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Therefore,
(A.4) K> = 1.x102 u’/f

Equations (5.1.12) and (5.1.19) imply:

(A.S) <Kv> = 0.04 D2f = 0.82 VD
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Appendix B. The effect of stratification on the decay of a deep
mesoscale flow: a diagnostic solution.

Assume that the flow is uniform in the poleward direction,
geostrophic and Boussinesq. Assume that density distribution is

under a purely advective balance. Thus the motion equations might

be written as follows:

(B.1la) fvy = =-g L pX
PO

Scaling the equations as in (5.1.2) leads to:

(B.Za) \’}"‘ = - 5

(B.2b) G5y - 57 = 0

where tilde indicates nondimensionalized variables. Equation

(B.2b) implies SN = 0(s), and therefore:
X
(B.3) Vh = vg(l-s)

where the subscripts h and H represent values at the top of the BBL

and at the thermocline, respectively.
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As preliminary results we conclude that the therﬁal wind
reduces the velocity at the top of the BBL by a factor (l-s) with
respect to the value at the free surface. If we assume that the
initial thickness of the BBL is proportional to the magnitude of the
velocity vy, it follows that the time scale of the decay Tg is given

by:
(B.4) Ts = 1/(/ E £kl1-sl)

Thus we estimate that the decay of the velocity vy is expressed as:

(B.5) Vh = vﬁ exp(~t/Tg)

where the superscript o refers to initial values. From equation
(B.5) we are finally able to derive an expression for the evolution
of the flow at the thermocline. Since we have assumed that
spin—down acts only on the barotropic component of the motion, Vg

the velocities vy and vy can be written as follows:

Vg = Vg + Vg - Vg
Vh = Vg + vg - Vg
or,
(B.6) vg = vy + v% - vg

Substitution of (B.3), (B.5) into (B.6) leads to:

(B.7) vy = vO((1-8)exp(-t/Ig) + s)
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Appendix C. An analytical expression for the Ekman velocity at
the top of the Bottom Boundary Layer.

Following the analysis and the symbolisms of Section 5, we
consider a laminar boundary layer of constant height D, forced by a
geostrophic flow of components (Ugr Vg)- Generalizing the study
presented in Section 5, the velocity ccmponents at the top of the

logarithmic layer are:
(C.1a) (u,v) = (upcos(y + 8), upsin(y + g))

where g is the Ekman veering and

(C.1b) U = (cosg - sins)(U; + V’é)l/2

(C.1lc) y = atan(Ug/Vg)

The solution above the logarithmic layer is:

(C.2a) u = Ug(l-e‘Ecosg) - Vge‘ising +
(cosg - sinB)(Qé + V;)l/ze'icos(g - v = 8)
(C.2b) v = Uge‘ﬁsing + Vg(l—e‘icosg) +

. 2 2,172 .
- - Uus + VvV
(cosg sing)( - g) e

Esin(g = v = 8)
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where
(C.2c) £ = 1z/D

In deriving (C.2), we have repeatedly used the relationships:

_ 2 2,172, . _ 2 2,1/2
Ccosy = Ug/(Ug + Vg) ; siny = V'g/(Ug + Vé)

Assume that Ug is constant; then the Ekman velocity at the top

of the layer is given by:

o D - _D = _
(C.3) Wgp = - fO ugdz = - fO ugdg =
2 .
D (sin23 + Uq(1l=s1n2g) =~ 2U4V4COS28 )V
2m u? + v? 9
g9 g

For g = ¢/4, the mcdified spiral (C.2) and the Ekman velccity

(C.3) reduce to the solution of the classical Ekman Boundary Layer

theory.






