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Abstract

A variational data assimilation method for a reduced gravity model is
developed. The method is applied to the equatorial Pacific Ocean. In the variational
formalism a cost function measuring the “distance” between the model solution and
the observations is minimized. The phase speed of the model is used as a control
parameter and the optimal spatial structure giving the best fit of the model to the
observations is determined. In the minimization algorithm a conjugate gradient
descent direction is used. The method is computationally effective, and for the
experiments considered convergence is achieved in ten iterations or less.

Several experiments are performed using the model solutions as observa-
tions. It is shown that the assimilation algorithm is able to determine the spatial
structure of the phase speed, even if observations are available at only three sta-
tions. The estimated phase speed is not sensitive to errors in the observations, and
the algorithm gives a unique solution to the problem.

Real sea level observations from three stations are assimilated for two
different periods. The year 1979 was chosen to represent a year without an El Nino,
while 1982/83 was chosen to represent an El Nino year. For 1979 the assimilation
gave a phase speed with higher values in the west and lower values in the east
compared to the initial guess of a constant phase speed. Assimilation of observations
in 1982/83 gave the opposite picture, with lower values in the west and higher

values in the east. This result is consistent with observations. The phase speed is
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proportional to the depth of the thermocline, and during normal conditions the basic
stratification consists of a deep thermocline in the west and a shallow thermocline
in the east. During an El Nino the picture is reversed. Calculating the correlation
coefficient between the model results and the observations shows that the correlation
increased for all the stations during the assimilation, even at stations which were

not a part of the assimilation.
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1. Introduction

The oceanographers will experience an explosion in the number of obser-
vations available in the next decade. Several new observational techniques are being
developed. Satellite measurements (altimetry, scatterometry) around 1990 will give
the oceanographers a large amount of new data. New techniques for observing the
interior of the ocean (such as tomography) will also create a new data set. Tt will be
important to be able to extract as much information as possible from this new data
set. The use of numerical models will play a crucial role in this work, and methods
for four-dimensional data assimilation have to be developed. From a meteorolo-
gist’s point of view, data assimilation is the process through which observations
distributed in time and space are treated in order to specify the initial conditions
of a numerical forecast. The large number of stations taking meteorological obser-
vations at synoptic times make the initializing process possible. Even with the new
observational techniques in oceanography mentioned earlier, the amount of data
will not be large enough for an initialization of the oceanographic models in the
same sense as the meteorological models.

Oceanographers have until now had little experience with four-dimensional
data assimilation. Meteorologists have on the other hand worked with this problem
for a long time. For a review of data assimilation methods used in meteorology,
see e. g. Bengtsson et al. (1981), Lorenc (1986), Navon (1986) or Le Dimet and
Navon (1989). Over the last decade, the development and implementation of four-

dimensional data assimilation techniques have dramatically improved the accuracy
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and dynamical consistency of meteorological analysis. Over the past 30 years of de-
velopment of numerical analysis and assimilation schemes, most presented schemes

belong to one of basically three different classes of algorithms:

(1) Local polynomial interpolation methods
(2) Statistical (optimal) interpolation methods

(3) Variational numerical analysis methods

In the polynomial interpolation method, polynomial functions are adjusted
to the observed data in the close neighborhood of each gridpoint. These methods
were first introduced by Panofsky (1949) and also by Gilchrist and Cressman (1954),
and have the great advantage of being both very simple and economical to use. The
polynomial interpolation methods have been used for a number of years and are still
often used {or various purposes.

The choice of mathematical functions used to approximate the variation
of meteorological variables in the vicinity of the gridpoint is quite arbitrary, and
past experience on e. g. atmospheric scales does not enter into the analysis. In the
second class of assimilation schemes, the statistical (optimal) interpolation schemes,
past experience about the behavior of the atmosphere is used as the main source
of information for determination of the interpolation weights. Eliassen ( 1954) first
proposed the method based on spatial autocorrelation functions of the pressure
field, while Gandin (1965) developed the method for operational use. Weights are
assigned to a linear combination of observed departures from a guess field in an at-
tempt to minimize the mean square analysis error. This requires knowledge of the
statistical properties of the observed and unknown variables. The statistical infor-
mation needed is the first and second moments of these variables. These methods

are now widely used, especially as part of assimilation procedures for large-scale
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prediction models, see e. g. Lorenc (1981). One major advantage of statistical
interpolation is that it produces a practical and internally consistent approach for
treating a large set of heterogenous observations, and it is at present the technique
which produces the best results for operational weather forecasting. However, there
are certain difficulties in using statistical interpolation. Several problems occur
when this method is extended to the time dimension or is used in conjunction with
an explicit dynamical model for temporal evolution of the atmospheric flow. In fact
the procedures now in operational use are already in effect a heuristic generaliza-
tion to the time dimension, but the successive analyses are still performed almost
independently of the evolution equations. The question remains open of how much
could be achieved by making the assimilation process more consistent with these
equations. There are also other defects with statistical interpolation. One is that it
tends in some cases to smooth excessively the analyzed fields. Excessive smoothing
may be particularly troublesome for mesoscale forecasting models, since it may in-
hibit developments which are unlikely from a statistical point of view, but are very
important to predict correctly, just because of the rarity of their occurrences.

The statistical (optimal) interpolation methods are computationally ex-
pensive to use. Large systems of linear equations have to be solved to find the
interpolation weights. Successive correction methods introduced by Bergthorsson
and D&os (1955) and Cressman (1959) and modified by Bratseth (1986) may be
looked upon as an empirical approximation to the statistical interpolation method.
In these methods the interpolation weights are computed explicitly without solv-
ing a system of linear equations, so the number of computations is relatively low
compared with the statistical interpolation method.

For linear models an extension of the optimal interpolation methods is the

Kalman or Kalman-Bucy (K-B) filtering (Kalman, 1960; Kalman and Bucy, 1961).
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The K-B filter is even more computationally expensive to use than the optimal
interpolation methods. In the latter method an estimate of the error covariance
function (the covariance of the model/data differences) is used to compute a correc-
tion to the model solution. In the K-B filter the estimate of the covariance function
is updated each time step. If a sophisticated model is used, the computational
requirements may be unaffordable. The K-B filter has appeared in meteorology, e.
g- Ghil et al. (1981). Lately it has been discussed in the oceanographic literature:
Miller (1986), Budgell (1986, 1987) and Bennett and Budgell (1987). In all these
applications a simple model has been used.

Miller (1986) used a Kalman filter to assimilate data into an eddy resolv-
ing open ocean model. He used the full Kalman filter, but in order to implement
the method, the filter was applied to simplified systems designed to capture some
of the properties of open ocean modelling. Results from Bennet and Budgell (1987)
show that the K-B filter with regular time and space sampling at a certain pe-
riod/wavelength, will not converge for waves of shorter periods/wavelengths. Kin-
dle (1986) got similar results using an eddy resolving numerical model. He found
that the model integration would not converge given observed data unless the data,
had a time/space sampling rate equal to the time/space decorrelation scale of the
model eddy activity. The method Kindle (1986) used was a direct replacing of
observations into the numerical model, and he got essentially the same results as
Bennett and Budgell (1987). So one conclusion from these studies is that use of
the K-B filter does not overcome the problem of resolution, but it does allow for a
more rapid convergence for the periods/wavelengths which can be resolved.

The third class of assimilation schemes consists of variational analysis
methods. In these schemes a given measure of the “distance” between the analysis

and the observations is minimized. The analyzed field must at the same time (ap-
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proximately) satisfy an explicit dynamical constraint. The constraint will normally
be expressed by one (or more) differential equation(s). Variational algorithms have
the great advantage of being able to provide exact consistency between the anal-
ysis and the dynamics. In this respect they appear clearly superior to the other
assimilation techniques. On the other hand, variational schemes have a high math-
ematical technicality and also a high computational cost. Although the usefulness
of variational methods for meteorological problems was pointed out very early by
Sasaki (1955, 1958, 1970), and in spite of a fairly large number of various studies,
e. g- Thompson (1969), Lewis and Bloom (1978) and Bloom (1983), these methods
have not been fully utilized until recently. This is especially true for assimilation
studies which address problems containing explicit time derivatives, see e. g. Lewis
and Bloom (1978).

Le Dimet and Talagrand (1986) studied different variational algorithms for
analysis and assimilation of meteorological observations. They discussed two differ-
ent approaches to data assimilation. In the first approach the original constrained
problem is transformed into an unconstrained problem or a sequence of uncon-
strained problems. Three different classical algorithms are presented, the penalty,
the duality and the augmented Lagrangian algorithm. The latter is a generaliza-
tion of the penalty and the duality algorithms. The second approach uses optimal
control techniques, and is based on the use of an adjoint dynamical equation. This
algorithm seems to work well in the assimilation of observations distributed in time.
The main advantage of looking at unconstrained problems is that these problems
can be solved by classical descent algorithms such as the steepest descent or the
conjugate-gradient method.

In the last few years the variational approach has been studied for mete-

orological application by several authors, e. g. Derber (1985), Lewis and Derber
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(1985), Harlan and O’Brien (1986), Hoffman (1986), Lorenc (1986, 1988), Tala-
grand and Courtier (1987) and Courtier and Talagrand (1987). In many of these
investigations the models used are similar to the oceanographic models and from
the success reported in these investigations it may be inferred that the variational
techniques should be considered for oceanographic data assimilation.

A few remarks about the different classes of data assimilation should be
made. Although they were conceived and developed independently, they do have
mutual relationships. For example the interpolation method of Gilchrist and Cress-
man (1954) can be described as a simple case of statistical interpolation. Kimeldorf
and Wahba (1970) have shown that the statistical interpolation method produces
fields which are the solution of a variational problem in which the function to be
minimized is the sum of two terms with one term representing the distance to the
observations and the other term some measure of smoothness of the fields. The
forward-backward data assimilation introduced by Morel et =L (1271) can be re-
lated to the variational assimilation. In their approach, the model is integrated
forward and backward repeatedly over time to obtain an adjustment of the model
to the observations. In the variational approach the model itself is integrated for-
ward, but the adjoint of the model is used in the backward integration. Talagrand
(1981) has shown that a sufficient condition for convergence of a forward-backward
assimilation scheme as described by Morel et al. (1971), is that the linearized per-
turbation equations are antisymmetric. The adjoint of an antisymmetric equation
is identical to the equation itself, so this explains the success reported by Morel et
al. (1971) in the case of an antisymmetric equation. The assimilation procedures
found from the variational approach are not restricted to antisymmetric equations.

Thacker (1986) discussed the connection between Kalman filtering and the varia-
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tional approach for data assimilation using a linear model. Kalman filtering can be
thought of as an algorithm to solve the variational equations.

As mentioned earlier oceanographers have not had much experience with
data assimilation. If the phrase data assimilation is used in a broader sense, the first
attempts of assimilating data into models for the ocean were the dynamical methods
used to produce maps of the currents from hydrographic observations as in Sand-
strgm and Helland-Hansen (1903). Geostrophic shear can be directly established
from the density data. These early attempts of data assimilation were followed by
more sophisticated models e. g. Stommel and Schott’s (1977) beta spiral or Wun-
sch’s (1977,1978) inverse method. Recently there have been some developments in
the area of data assimilation in oceanographic numerical models. Marshall (1985)
used estimation theory to assimilate simulated data from satellite altimetry into an
ocean model, and at the same time improving the geoid. Webb and Moore (1986)
made use of the projection methods of estimation theory, but they assumed that
the measurements were error free, and that altimeter measurements were available
everywhere. They also assumed that the ocean currents were weak so that the ocean
could be represented by a superposition of linear Rossby waves. A result of this
study was that the determination of the deeper structure of the ocean was limited
by the phase separation that develops over each assimilation cycle between modes
of the ocean with the same horizontal wavenumber but differing vertical structure.
Hurlburt (1986) used a two-active-layer, free surface primitive equation model on
a B-plane to investigate the dynamic transfer of surface to subsurface information.
Perfect altimeter data were simulated by the free surface of the two layer model.
The results showed that the maximum update interval that provided success was

about half the shortest major time scale in the model.
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Bennett and McIntosh (1982) used a variational method in the investiga-
tion of tidal motion. The method is an infinite-dimensional generalization of the
finite-dimensional method used by Wunsch (1978) to determine barotropic circula-
tion in the North Atlantic. Their results show that the choice of data weights are
of great importance. Provost (1983) and Provost and Salmon (1986) have used a
variational technique to assimilate hydrographic station data to estimate the three-
dimensional field of geostrophic velocities. The method of weak constraints (Sasaki,
1970) was used. They determined the smoothest velocity field which was consistent
with the data and at the same time approximately satisfied the dynamical con-
straints. The way they assured a smooth solution was to penalize kinetic energy as
well as enstrophy. Malanotte-Rizzoli and Holland (1986) used a quasi-geostrophic
general circulation model to investigate the effect of data insertion into a numerical
~model, and how data insertion in local, limited regions effect the dynamics of the
model, and also how the dynamics spread the inserted information to different re-
gions. Their model is steady, weakly nonlinear and highly frictional. The method
they use is a naive approach with direct insertion of “observations” in the model.
The “observations” used in this study are identical-twin data, i.e. data generated
by the model. The results show that the region influenced by the insertion and the
improvement of the resuits depend upon the location of the “observed” data, the
orientation of the section inserted and the length of the section. Malanotte-Rizzoli
and Holland (1988) extended their results from the 1986 paper to the transient
eddy-resolving case. One of their major results is that in the transient case a single
data section is very ineffective to drive the model towards the reference ocean over
time scales of ~ 100 days. All the different sections they tried were equally ineffec-
tive. If instead the data are inserted over a period longer than the model equilibrium

time, a single section is quite effective in driving the model to the reference ocean.
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Holland and Malanotte-Rizzoli (1989) studied the effect of along-track
assimilation of altimeter data into a three layer eddy-resolving quasi-geostrophic
model. Again identical twin data were used. They reached the conclusion that if
perfect data are available (i. e. data at every gridpoint and every % day with linear
interpolation in time), a simple (nudging) technique can be very successful in driving
the model towards the control solution. If altimetric data are available only along
actual satellite tracks with repeat periods of either 10 or 20 days, the results are not
as promising. The residual root mean square (rms) errors are close to 70% at the end
of the assimilation period. In Malanotte- Rizzoli et al. (1989) a primitive equation
model was used to study a series of idealized initialization /assimilation experiments.
The first question they ask is whether the initialization shocks are equally important
in ocean models as they are in the atmospheric models. Their conclusion is that the
ocean models do not seem to be as sensitive to unbalanced initializations. All that is
necessary to ensure a smooth evolution, is a geostrophically balanced initialization.
They also studied data assimilation and the effect of different types of data. A
simple insertion technique was used as the assimilation scheme, and identical twin
data represented the observations. The results of this investigation show that the
knowledge of the interior density field is the most effective data in reducing the rms
errors.

In a study by Schroter and Wunsch (1986) the effect of observational
errors in the driving of the models is investigated. The procedure is based upon
nonlinear optimization methods. From their algorithm it is possible to calculate
the qualitative sensitivity of the objective function to change in the data errors and
finding an optimization technique capable of dealing with data uncertainty. Moore
et al. (1987) studied the initialization and data assimilation in two different models

of the Indian Ocean. The models they used were a reduced-gravity model and
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the GCM of Bryan (1969) in the Semtner (1974) coding. The method they used
was a direct updating of the whole temperature and/or the velocity fields. In an
attempt to simulate assimilation of data from the proposed TOGA XBT network,
they used the method of successive correction (Bergthorsson and Ddds, 1955). All
their tests were performed using an “identical twin” approach. The result of this
study showed that the use of temperature data (mass) gave better results than if
velocity observations were used. The effect of using velocity data could be increased
if the ratio between the potential and kinetic energy in the model were changed.
An increase of the kinetic energy made velocity data more useful in the assimilation
process.

In two papers, Thacker and Long (1988) and Thacker (1988), a variational
data assimilation procedure is described. The method is illustrated using a simple
model of the wind-driven equatorial ocean. It is shown how surface elevation and
wind stress observations can be used to recover the model state. In Thacker (1988)
the process of fitting a model to inadequate data is discussed. Results show that for
the simple three wave model of Thacker and Long (1988), a reasonable fit can be
obtained even if the number of data is less than the number of degrees of freedom
of the model.

The approach followed here is the variational data assimilation method.
Sasaki’s (1970) method of strong constraints is used. The assimilation procedure
will be formulated for an equatorial Pacific Ocean model. The goal will be to
determine the solution of the model which best fits the observations. The best fit
solution could be determined in different ways. The meteorological approach of
finding the initial conditions which give the best solution is one method. When the
variational data assimilation method is used, it is possible to adjust other variables

than the initial conditions. Parameters in the model can easily be incorperated
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in the procedure, so that they can be used as control parameters. The variational
algorithm is going to be formulated using the phase speed of the Pacific Ocean model
as the control parameter. The phase speed is then going to be estimated so that
the model solution is as close as possible to the observations. Observations of sea
level from island stations are going to be assimilated into the model. Knowledge
of the spatial structure of the phase speed will give information about the basic
stratification of the Pacific Ocean.

The variational method is described in section 2. A general description
of the variational formalism is given. Similarities between different approaches to
the variational data assimilation method are discussed. The choice of the cost
function and different ways of dealing with insufficient data are also discussed. An
outline of the solution procedure and some computational aspects of the method are
described. Section 3 gives a general description of the conjugate gradient method,
while section 4 discusses some aspects of parameter estimation. In section 5 the
problem of data assimilation in a Pacific Ocean model is specified. The model
equations are described and the corresponding adjoint equations are derived. The
wind stress used as forcing in the Pacific model is presented. A description of
the sea level observations from the island stations in the Pacific Ocean is given.
The method for calculating the data misfit used as forcing in the adjoint equations
is also described. Section 6 presents results obtained using the data assimilation
algorithm. Both simple experiments using the height and velocity field of a Kelvin
wave as initial conditions and realistic results using observed wind stress as forcing,
are discussed. A summary of the results and the conclusions are given in section 7.
The derivation of the continuous adjoint equations are given in Appendix A, while

the finite difference version of the equations are derived in Appendix B.



2. Variational formalism

2.1. Description of the method

The assimilation scheme that will be used is a variational method. As
mentioned in the introduction, this scheme minimizes a given measure of the dis-
tance between the model and the observations. The primary field of interest is time
dependent models of the ocean and a mathematical model may be written as

%=F(x;c) (2-1)

where the components of the vector x are the dependent variables, t is time and
the vector ¢ contains the parameters of the model. The components of x denote
the various oceanographical fields ( velocity, height field, ....) under consideration.
F may be a linear or non-linear operator. It is assumed that the system (2 — 1)
is not closed, i. e. additional information has to be provided in order to obtain a
unique solution to (2 —1). The additional information will be given by y - a control
variable. y can for instance consist of the initial conditions, boundary conditions,
some of the parameters in the problem, or a combination of these. When y is
defined, a unique solution x(y) of (2 — 1) can be found. It is important to realize
that the control variable y must belong to a set of admissible controi, Yad- To
determine y,4 one may use physical information about the initial conditions or the
parameters used as a control variable.

One is interested in obtaining a solution of (2 — 1) which is close to the
observations, x . Closeness may be defined in different ways, and it is usual to define
a cost function J, which measures the distance between the solution of (2—1) and

12
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the observations. The definition of J will be discussed later. The observation, x',

will consist of measurements of oceanographic fields, e. g. the height field or the

velocity field. A variational problem can now be stated as a problem (P):

Find y* which belongs to yaq and minimizes the cost function J.

where y* represents the optimal y.

The problem stated above is a constrained minimization problem with the
model equation (2 — 1) representing the constraint. The way this problem is going
to be solved, is by redefining it so that it becomes a problem of unconstrained
minimization. Standard procedures for solving problems of this type may be found
in textbooks on optimization (e. g. Gill et al, 1981, Luenberger, 1984) or in the
meteorological literature (e. g Le-Dimet and Talagrand, 1986, Navon and Legler,
1987).

Sasaki (1970) introduced two different methods in variational analysis, the
method of weak constraint related to the penalty method and the method of strong

constraint. The weak constraint formalism consists of minimizing the functional E

defined by
E(x,y) = J(x,5) +a || G(x;c) ||? (2~2)

where « is a prespecified weight and G is given by
G(x;c) = %}t—( - F(x;¢) (2-3)

It is important to note that in this formulation E is quadratic in G and the weights
are prespecified. It therefore follows that the constraint is only approximately
verified. In some cases this may be justified since the model used as constraints is

an approximation to the real world and should only be satisfied to its own accuracy.
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The approach that will be followed here is based on the classical Lagrange

multiplier technique. A Lagrangian L(x, \,y) can be constructed
L(x,\y) = J(x,y) + (A, G(x;¢)) (2-14)

where the components of the vector ) are the Lagrangian multipliers. (,)is an inner
product defined on the functional space to which G(x;c) belongs. This is the strong
constraint formalism according to Sasaki (1970). The constrained minimization
problem (P) is thus replaced by an unconstrained problem with respect to the
variables x, A and y. Using this formalism it is insured that the observations will
satisfy the constraints exactly. It can be shown that the problem of determining
the stationary points of the functional J(x,y) under the constraint G(x;c) =0
is equivalent to the problem of determining the stationary points of (2 — 4) with
respect to the variables x, y and A (seee. g. Bertsekas (1982)). The equations which
express that the Lagrangian is stationary, are called the Euler-Lagrange equations

of problem (P). The Euler-Lagrange optimality condition is given by
aL * * *y
a(xa)‘J’)_O (2_5)

XAy =0 (2~6)

B 2%y =0 (2-7)
and determines x*, A* and y*. Equation (2 — 5) gives the original model equation
back. The operator in (2—6) is the adjoint of the operator in (2—5). It is therefore
customary to call equation (2—6) the adjoint equation of (2—5). The model equation
will propagate information forward in time, while the adjoint equation is going to
propagate information backward in time. When the appropriate model equations
have been derived, the interpretation of the adjoint equation will be discussed more

closely. The last equation, (2 — 7), gives the gradient of L with respect to the
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control variable. The gradient plays an important role in determining the best fit
solution, since it is one of the major constituents in the descent algorithms used to
find the minimum of the cost function (the Lagrangian). As can be seen from these
equations the whole variational analysis depends on the choices of the functional
J and the constraint G. The method of solution is also an important part of the
analysis. For most choices of J and G an iterative method has to be used and a
goal will be to keep the number of iterations as low as possible.

There are other classical algorithms for solving the constrained problem

(P). One algorithm introduces the penalized functional

Jelx,3) = J(x,y) + = [| Glxie) |2 (2-8)

where € represents what is called the penalty parameter and is a sequence of positive
numbers tending to zero. It can be shown that under certain hypotheses the solution
x¢ tends to the solution x* of the original problem when ¢ tends to zero. The
similarity between this method and what Sasaki (1970) called the weak constraint
formalism (2 — 2) is evident. However, there is an advantage of using the penalty
method. By varying ¢ instead of using only one constant prespecified weight a, one
can determine the dependence of the solution upon the choice of coefficient.

Numerical problems may arise when the penalty algorithm is used. For
small values of ¢ the method may lead to ill-conditioning and inaccuracy in the de-
termination of the minimum. This can be dealt with by introducing the augmented
Lagrangian

Le(%,y) = Jx,9) + || G ©) [ +(3, G(xic)) (2-9)

where as before A represents the Lagrangian multipliers (see Bertsekas (1982)). The
augmented Lagrangian method would in Sasaki’s terminology be a combination

between weak and strong constraints. The major advantage of the augmented
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Lagrangian algorithm is that it is computationally more efficient than the penalty
method. The augmented Lagrangian alleviates the problems connected with using
the penalty or the multiplier method alone. Navon and de Villiers (1983) used an
augmented Lagrangian algorithm to enforce integral invariants in a shallow water
equation model of the atmosphere.

It is possible to formulate the method of adjoint equations without in-
troducing the Lagrange multipliers. Optimal control techniques which in fact are
techniques for minimizing a functional as the cost function, can be used to calculate
the gradient of the cost function with respect to the control variable(s). Using these
techniques it is necessary to solve the model equation (2 — 1) and then solve the
adjoint of the linearized form of the same equation. This approach is somewhat
more difficult to formulate. It is necessary to write a well-posed problem and care-
fully specify the functional framework of the variational problem. Since the optimal
control techniques do not introduce the Lagrange multipliers it might look like this
is a large reduction in the number of unknowns. But, in fact, in the calculation
of the gradient of the cost function it is necessary to compute the same numbers
of variables. The method of optimal control techniques is discussed in Le Dimet
and Talagrand (1986) (see also Lions (1971)). A review of these techniques used in

meteorology can be found in Le Dimet and Navon (1989).

2.2. The cost function J
The objective of the data assimilation is to find a solution which is close

to the observations. The cost function J is constructed so it measures the distance
(the misfit) between the model and the observations, and it must therefore have the
property of a norm. There are several different functional forms of J which might
be considered, and each one of them will give a different result for the best fit model

solution. The variational method makes use of the derivative of J , and thc cest
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function must therefore be differentiable. It is usual to choose J as the square of a
norm. Let X denote the spatial and/or temporal domain in which (2 — 1) is valid.

J can then be defined as

1 ! T ! 1 ! T 1
J(x,c) = /E(x ~-x) Kx(x—x )da+/§(c— c) Ke(c—c)do (2 - 10)
z z
where as above’ denotes an observed or estimated quantity and the K’s are specified

validity matrices. They depend on the error variance of each observational point,
and give information about the quality of the data. If the observational errors are
uncorrelated, the validity matrices are diagonal. The K’s are always symmetric
positive definite matrices. Observations may not be available everywhere. For
points where there are no observations, the validity matrices are set equal to zero.
The first term in (2 — 10) is called the data misfits and is going to be the forcing
for the adjoint equation. The last term in (2 — 10) is added to the cost function
because the main interest of this study is to estimate the parameters in the model.
By adding this term, one makes sure that the new estimate of the parameters is not
too far from the initial guess. In other words minimizing the cost function results
in a solution which is close to the observations and new values of the parameters
which are close to the estimate. The effect of the last term will be discussed further
in section 4.

It is necessary to have several observations per degree of freedom in order to
get reasonable results from the data assimilation. For numerical models of the ocean
or the atmosphere, the number of degrees of freedom is related to the number of
gridpoints used, or for a spectral model, the number of terms included in the spectral
expansion. Most models already have more degrees of freedom than the available
data bases. One way to supplement insufficient data is by adding a “penalty” or
smoothing term to the cost function. Sasaki (1970) used this idea and he pointed

out that adding a smoothing term to the cost function suppressed high frequencies
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and wave numbers in the solution. Wahba and Wendelberger (1980) have shown
that the degree of the highest derivative in the smoothing term must be at least
two orders of magnitude greater than the highest derivative in the data constraint
if a mathematically well behaved solution is going to be obtained. This idea has
been used by e. g. Provost (1983), Provost and Salmon (1986), Harlan and O’Brien
(1986), Thacker (1988) and Legler et al. (1989). There are many choices of these

penalty terms. For instance the addition of a term of the form

KpV2x (2 -11)

wil! tend to minimize the curvature of the assimilated field. In other words it tends
to make the resulting field smoother.

Another way to add more information would be to use a solution of a
previous model run as observations, or if no such run is available climatological
values for the control parameters could be used as observations, Lorenc (1986).
As long as the weights, K, used for the “observations” from previous forecasts or
climatology are small compared to the K’s of the real observations, the effect of
these data points will have a negligible effect on the solution except for the part

that is not determined by the real data.

2.3. Outline of solution procedure

The procedure for using the variational method for data assimilation and
parameter estimation can be formulated in the following way.

1. Choose a first guess for the control parameters.

2. Integrate the model forward for the period over which the observations
are going to be assimilated.

3. Calculate the data misfits (x - x ).
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4. Integrate the adjoint equations backward in time forced by the data
misfits.

5. Calculate the gradient of L with respect to the control variables.

6. Use the gradient of L in a descent algorithm to find a new value of the
control parameters which make the cost function move towards its minimum.

7. Check if the optimal solution has been found. This can be done by
checking the norm of VJ or the value of J to see if it is less than a prescribed
tolerance.

8. If this is not the case, the procedure described above can be repeated
using the new values of the control parameters as a new guess and continue the
iterative process until a satisfactory solution has been determined.

When trying to find the minimum of the cost function (the Lagrangian)
it is important to realize that one cannot expect the minimum to be exactly zero.
Experience from meteorology has shown that the decrease in the value of the cost
function or its gradient is at most a couple of orders of magnitude. Hydrologist’s
experience in estimating parameters in groundwater flow using the variational tech-
nique, have shown that relying on the gradient norm as the only measure of conver-
gence to the optimal solution may lead to an unnecessarily large number of itera-
tions. A better way of determining if the optimal solution has been found would be
to check and see if ﬁl;-‘]]_olll[ is less than a prescribed tolerance, where || V.Jj || denotes
the norm of the gradient during the first iteration. In view of the meteorological
and hydrological experience the reduction of the tolerance can be expected to be of
the order 102, Similarly, instead of checking the absolute value of J, the ratio jIE
should be less than a specified tolerance. The decrease in the cost function itself
may not be a good measure of how close the solution is to the minimum. Trying

to fit a model to real observations is a difficult task. Depending on the complexity
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of the model and its ability to predict the real world, it may not be possible to
reduce the value of the cost function with several orders of magnitude. If the initial
guess for the parameters is close to the optimal value, one cannot expect the cost
function or its gradient to experience a large decrease. This does not mean that
the minimization has not been successful. Other means of checking the behavior
of the model should be used to see if the results are improved. In the experiments
described later, a correlation coefficient is calculated to show that after the assimila-
tion there is an increase in the correlation between the model and the observations,
even if the decrease in the cost function is less than an order of magnitude.

During the first few iterations the reduction in the value of the cost func-
tion is fast. After this initial decrease, the reduction per iteration is going to be
slower. The goal should be to keep the number of iterations below about 15-20. If
it is necessary to continue with further iterations, the descent algorithm may have

to be changed. Another choice may give a better convergence rate.

2.4. Computational aspects

The variational approach to data assimilation implies the solving of the
system of equations (2 — 5) — (2 — 7). This may be computationally challenging.
For an ocean model the number of variables can easily exceed 10%. The system
(2 —5) — (2 —7) consists of the model equations and their adjoint. The adjoint
equations are of similar complexity as the original model equations. Each iteration
requires one forward integration of the model itself and one backward integration
of the corresponding adjoint equations. Depending on how many iterations are
necessary for the solution to converge, the method may require several times the
computer time used by the integration of the ocean model. The necessity of using
a descent algorithm which will find the minimum of the cost function in as few

iterations as possible is therefore an important part of the variational formalism.
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There are several important aspects which have to be considered when a
descent algorithm is chosen. Some of the simpler algorithms , e. g., the steepest
descent method, are easy to implement, but their slow convergence rate may make
them impossible to use in practical situations. More sophisticated methods such
as Newton or quasi-Newton methods have quadratic convergence rate, but these
algorithms require the storage of Hessian matrices. For problems in oceanography
with a large number of variables, the dimension of these matrices may be too large
to fit on the available computer. Another aspect which is important in the descent
algorithm, is the determination of the step length. The step length determines
the distance which one is moving down the gradient of the cost function. There
are different ways of calculating this parameter. Most of the methods require an
additional integration of the forward model. One iteration of the data assimilation
procedure may therefore result in 3 times the computer time required by integrating

the model itself.



3. Descent methods

3.1. Introduction

There are several different descent methods available for minimizing the
function in (2-4). The oldest and also the simplest way to find the minimum of a
function of several variables, is to use the method of steepest descent. One of the
reasons why this method is still important is that it is one of the simplest for which
a satisfactory analysis exists. Several of the more advanced algorithms are often a
result of a modification of the basic steepest descent method in such a. way that the
new algorithm has improved convergence properties.

The models used in oceanographic studies often have a large number of
variables N, which can easily exceed 10%, and for such cases the only choice for a
descent method is the conjugate-gradient algorithm with its better convergence rate
than the steepest descent. There are methods with better rate of convergence than
the conjugate-gradient algorithm, e. g. Newton and quasi-Newton methods. These
methods have quadratic rates of convergence and superliﬁear rates of convergence,
respectively, but the disadvantage is that they require storage of Hessian matrices
of second derivatives of size (NxN). Conjugate-gradient algorithms require storage
of only a few vectors of length N.

The conjugate-gradient algorithm is an iterative method for unconstrained
minimization of a general function of N variables. The method produces a better
approximation of the minimum of the unconstrained nonlinear function with each

iteration. During each iteration an estimate is made of the best way to change

22
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each component of the vector x in order to produce the maximum reduction in
the function. The descent direction is found by combining information about the
gradient of the function with information from earlier iterations to produce a new
search direction. The algorithm also estimates an optimal step size which must be
used to find the magnitude of the changes along the search direction.

The conjugate-gradient method has been successfully applied in meteo-
rology to minimize the cost function used in variational analysis, e. g. Hoffman
(1982, 1984), Navon and de Villiers (1983) and Derber (1985). Navon and Legler
(1987) compared different conjugate-gradient algorithms by applying them to two
different meteorological problems, and their conclusion was that the most consistent
method was the Shanno and Phua (1980) quasi-Newton limited-memory (memo-
ryless) conjugate-gradient algorithm. An introduction to the conjugate-gradient
method is going to be presented in the next section. To implement the Shanno
(1978a, b) algorithm, the subroutine CONMIN of Shanno and Phua (1980) is going
to be used. This subroutine contains both a limited-memory quasi-Newton conju-
gate gradient algorithm and a quasi-Newton method with a BFGS update (Broyden
(1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970)). Detailed description
of different minimization algorithms can be found in e. g. Gill et al. (1981)
or Luenberger (1984). The conjugate-gradient method was initiated by Hestenes
and Stieffel (1952) and the historical development of the method can be found in
Hestenes (1980).

3.2. The conjugate-gradient method

The conjugate-gradient method, or more generally the conjugate-direction
method is analyzed for a purely quadratic function. The problem which will be

considered is the problem of minimizing the cost function in (2 - 10). Thisis a
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problem of unconstrained minimization and it can be written in the following form
C e 1
minimize J(x) = 3 TQx+blx +c 3-1)

where J(x) represents the cost function and x is a vector representing the N vari-
ables, g, ...,zx_1, of the function. It is assumed that J (x) can be written as a
quadratic function, where Q is a positive definite symmetric matrix, b is a vec-
tor and c is a constant. x7 represents the transpose of x. In general an iterative

algorithm for solving (3 — 1) takes the form
Xp41 = Xg + apd (3-2)

where dy, is a descent direction and ey, is a positive step size parameter. (3 —2) is
referred to as a generalized gradient method (or just a gradient method).
Let
gk = VJ(x) (3-3)

denote the gradient of J with respect to Xp. If the method of steepest descent is

used, the descent direction dy, is simply given by —8k, the negative gradient of the

function.

A couple of useful properties of conjugate-directions are going to be stated.

The definition of conjugacy can be formulated as

Definition: Given a symmetric matrix Q, two vectors d; and d; are said

to be conjugate with respect to Q if d;-Fde = 0fori # j.

If Q =1, conjugacy is equivalent to the usual notion of orthogonality.

Theorem 1: If Q is positive definite and the vectors d; are mutually

conjugate, then these vectors are linearly independent.
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The next step will be to construct a set of mutually conjugate directions.
For a given set of N linearly independent vectors vg, vy, -y VN1, it is possible to

construct a set of conjugate directions dg, d,...,dy_; in the following way. Let

dg = vp (3 - 4)
and then define .
i
d; =V;+Za;jdj (3-5)
s

for : = 1,...,N — 1. The coefficients a;j are chosen so that d; is conjugate to the

previous directions d;_1, ...,dg. Multiplying (3 —5) by Qd; for I =0, ...,i —1 gives
i—1

47 Qd; =vIQd;+ Y a;;d7Qd; = 0 (3-6)
Jj=0

If all the previcus a;;’s have been chosen so that dy, ...,d;_; are conjugate,

then
dfQd;=0 , j#1 3-17
and from (3 — 6) it follows
T
vi Qd;
ajj = — T (3 - 8)
dj Qd;

forall¢=0,..,N—1and 7 =0,...,¢ — 1.

The set of vectors dy, ...,dy_ defined by (3 —4) — (3 — 8) is conjugate
with respect to Q.

The above procedure can now be used to develop the conjugate-gradient
method. The first step is to let

Vo = —go (3 — 9)

i. e. the initial step is in the direction of the negative gradient of J and it is
identical to a steepest descent direction. The rest of the v’s are chosen as vy =

—81,--sVN—_1 = —8N-1. Using (3 — 2) one gets

X1 = Xg + apdg (3-10)



26
The next conjugate direction d; can be found by using (3 — 5) and (3-38)

with Vi = —81.

di=-g1 + dng‘;do (3-11)
From (3 —1)
8k+1 — 8k = Q(Xp41 — Xg) (3-12)
and using (3 — 2)
g1 — 80 = Q(x1 —X0) = apQdy (3-13)

(3 —11) can now be written as

T, _
g1 (81 go)d

di =-—g1+ 0 (3—14)
df (g1 — g0)
The process can be repeated and the result is
g% (8j+1 — &)
=g+ Z (ALY hx d; (3 —15)
=5 4] (81— g))
This expression can be simplified using the fact that
gfd; =0 (3 —16)

for j = 0,..,k — 1. The subspace spanned by d, ...;dp_1 is also the subspace

spanned by gp, ..., gr_1 and hence
gi g =0 (3-17)
for j =0,...,k —1. (3 - 15) now reduces to
dp = ~gr + frdr—y (3-18)
where

8, = g7 (8 — 81—1)
al”_ (e ~ gr-1)

(3 - 19)
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Again using (3 — 16), (3 - 17) and (3 — 18) for d;_1, the expression for 8
can be rewritten as
81 &k
R
Br_18k-1

It is important to note that in order to calculate the new direction dg,

(3-20)

it is only necessary to know the current and the previous gradients of J and the
previous direction dg_j.

There is one problem with using the conjugate-gradient algorithm de-
scribed above. If the number of variables is large as in oceanograpiical problems,
the conjugate-gradient method can produce a direction of search after a few itera-
tions which is not very efficient due to loss of conjugacy. There have been several
attempts to avoid this effect. One of the first applications used periodic restarts
with the steepest descent direction. However, there is a disadvantage using this
method. The reduction at the restart iteration is often poor compared with the
reduction that would have occurred without restarting. Beale (1972) proposed an-

other restart procedure. He showed that using the direction
dj = ~gp + Bpdr—1 + 1rds (3-21)

which is similar to the conjugate-gradient direction with the addition of a multiple

of the restart direction d;. In this method B and 4, are given by

By = (8k—1— &) 8k11
(8k+1 — g1)Tdg

(3—22)

_ (&-1— &) g
(8241 — g)7ds
d; is the last direction of the previous conjugate-gradient cycle along which a linear

Vi (3—23)

search was made. Powell (1977) suggested a condition for when a restart should be

performed. If the inequality

I8t grr1l > 0.2 || g | (3 —24)
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holds or if there have been N linear searches, the conjugate gradient should be
restarted. A restart should also take place if the direction of search is not suffi-

ciently downhill, where an adequate downhill direction is one that satisfies the two

inequalities
T d <-038| 2 (3—25)
8k+19%+1 < —0.8 | g 41 | o
T dpp1>—12| 2 (3 — 26)
8k+19k+1 = —1.2 || gr41 |

This means that frequent restarts will take place.

3.3. Newton, quasi-Newton and limited-memory quasi-Newton methods

Newton’s method is based on the idea that the function J which is going
to be minimized is approximated by a quadratic function. If x* is the minimum of

the function, then a Taylor series expansion of J near a point x;. is given by

1
J(xg +Pp) ~ I(xt) + 81 p + =07 Q(xi)p (3—27)

where as before g, = VJ(x;) and p = x* — xy,, the distance to the minimum. The

right hand side is minimized if py, satisfies the system

Qrpr = —8; (3 -28)

which gives the Newton method. A descent algorithm using Newton’s method is

therefore given by

Xp+1 = Xt — 0 Qg% (3 -29)
where Q;l is the inverse Hessian matrix. It is also assumed that Q;l exists and
that the direction pj, determined from (3—28) is a descent direction, i. e. p{gk <0.
If the Hessian matrix Qy, is positive definite, the direction Pk is clearly a descent
direction, since p{gk = —g{Q;lgk < 0. On the other hand if Q; is not positive

definite, the quadratic function need not have a minimum or even a stationary
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point. To be able to use this method it is necessary to know the zero, first and
second derivatives of J(x) at any point.

Quasi-Newton methods are based on the assumption that information
about the curvature (the Hessian) of the quadratic function can be obtained as
the iterations of a descent method proceed using the observed behavior of J and g.
The whole idea is therefore to compute an approximation to the curvature of the
function without actually forming the Hessian matrix. A quasi-Newton iteration

method can be described by

Xp+1 = Xp, + o dy, (3 —30)
Bidy = —g; (3-31)
where By is an approximation to the Hessian matrix. At the first iteration it is

usual to take Bg as the identity matrix. After each iteration B is updated to

obtain a new approximation of the Hessian, Bry;
Bry1 =B+ U, (3-32)

where Uy, is the update matrix. The new approximation B is required to satisfy

the quasi-Newton condition
Bit1sk =y (3 —33)
where
Sk = Xg41 — X (3—34)

the change in x during the k-th iteration, and

YE = 8k+1 — 8k (3 -35)

the change in the gradient.
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There are several different ways of updating the Hessian matrix. The

update formula used in the subroutine CONMIN is the BFGS formula

B;s;si B, YeyE
T 7
si Besg Yi Sk

Bpi1 =B - (3 —-36)

where s and y; are given by (3 — 34) and (3 —35), respectively. The derivation of
(3 —36) can be found in e. g. Luenberger (1984).

The idea behind the limited-memory (memoryless) quasi-Newton methods
is that the Hessian matrix is not computed, but a limited number of quasi-Newton
corrections are added to the identity matrix. The additional storage required is
only the vectors defining the updates. Different methods exist depending on the
number of vectors used in the updating. The method used by Shanno (1978a, b) is
defined by

T T T
Y YE\PL8k+1 Yi 8k+1
dk+1=—gk+1—[(1+ k ) k —Zk ]Pk

Piy:/ PLyr  Pivk 237
P{gk+1 (3-37)
R
PL Yk
where
Pk = Xp41 — X (3 - 38)

3.4. Computing the step length

In order for the descent method to converge, it is important that the
step length produces a “sufficient decrease” in J at each iteration. The “sufficient
decrease” may be satisfied by several different conditions on ap. An exact line
search would have given

min J(x + apdy) (3 — 39)

but in general the solution of the nonlinear function 3@5—): = 0 cannot be implemented

in a finite number of operations.
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The Goldstein-Armijo principle is one method for choosing the step length
o, so that a sufficient decrease in J is achieved, Goldstein and Price (1967). The

principle states that oy should be chosen so that the following is true
0 < —piopgg i < J(x) — J(xg + ogdy) < —paoyg} di (3 —40)
where p1 and po are scalars satisfying
I<p Spp<1 (3 —41)

The upper and lower bounds of (3 — 40) ensure that oy, is neither “too large” nor
“too small”. It is important to realize that (3—40) alone does not guarantee a good
value of aj. For instance, choosing ag as 10~° would satisfy (3 — 40) for almost all
functions encountered in practice, if #1 and pg are appropriate small values. This
would be an “efficient” way to find the a’s in that a suitable ar would be found with
only a single function evaluation per iteration, but the descent method would be
extremely inefficient if such a step length was chosen. In choosing the step length
it is therefore essential to consider the performance of the algorithm not only in
terms of function evaluations per iteration, but also in terms of the decrease in J
at each iteration.

Another way of interpreting oy, is in terms of univariate minimization
which requires that the magnitude of the directional derivative at Xr + opdy be

sufficiently reduced from that at xy

| g(xk + apd)Tdy |< —ngtd (3—-42)
where
0<n<1 (3-43)

Since (3 — 42) does not involve the change in J, it is not adequate to ensure a

sufficient decrease. Many step length algorithms therefore include the following



condition (Gill et al., 1982)

J(xp) — J(xg + agdg) > —poggr d (3—44)

where

1
0<p<y (3 — 45)

The method for finding the optimal step length which will be followed here
is a method used by Derber (1985). The first step is to use an initial guess for the

step length and then update the parameters in interest according to
Ck+1 =€t + aidy (3 — 46)

where @; is an initial guess for the step length. The model can then be integrated
forward with the new estimate of the parameters. The goal will be to maximize the

reduction in the cost function between the two model runs.
AT = J(xp, ep) — J(xp, € + a;dy) (3—47)

Previous experience will give some idea of what the initial value of the step length
should be.

The new value of the parameters produce a perturbation in the model
representation of the observations. Let §x; denote the perturbation. Using the
definition of the cost function in (2 — 10), the perturbation of the cost function as
a result of the perturbation to the model representation, leads to

8J = / %(k{lﬁ;éxk +2(xp, — XI)TKI‘SXk)d"
%

(3 — 48)

Assume that another choice of the step length, o, would result in a perturbation

6xlk of the model field
6, = ~Lox, (3 49)

?
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For linear dynamics (as for the case studied here) this would be exactly true, but
for nonlinear dynamics it may not be a good approximation. Derber (1985) used
the approximation for a nonlinear atmospheric model, and for the cases he studied,

(3 — 49) worked satisfactory. (3 — 48) now becomes

2
1 a ap ’
6J = / E(a—géx’{Kz&Xk + 2;;(xk —-X )TKz5xk)da (3 — 50)
T : ’
where the prime on 5x'k has been dropped. The goal is to maximize 6J, i. e. the

derivative of §J with respect to oy is set equal to zero.

06J
which gives )

J(xp — x T K bxpdo

b

ap = —q; (3—52)

[ 6x] K 6xdo
)

for the optimal step length. In later iterations a; is replaced by ap_1.

The limited-memory quasi-Newton conjugate gradient algorithm in the
subroutine CONMIN is implemented in the experiments described later. A few
modifications of the routine have been done. The step length is no longer computed
as in the original code, but instead (3 —52) is used to calculate the new step length.
In CONMIN the cost function and its gradient are given in a function call. In the
modified version the values of the cost function and its gradient are calculated and

written to a file, which is read in the subroutine.



4. Parameter estimation
If the parameter estimation is going to be successful, an important question

must be addressed; Under what condition can one expect the proposed estimation
method to give unique and stable results? Similar problems have been studied in
several papers concerning groundwater flow, e. g. Chavent et al. (1975), Neuman
(1980), Yakowitz and Duckstein (1980), Carrera and Neuman (1986a, b, c) and Yeh
(1986). Panchang and O’Brien (1988) studied the estimation of the friction factor
in tidal rivers. In these papers which consider both time-dependent and steady
state flows, important aspects about data assimilation and parameter estimation
are discussed. There are four important terms which must have a clear definition:
well-posedness, uniqueness, identifiability and stability. These definitions will be
given in the following paragraphs.

Strictly speaking, if the method is going to work, the problem should be
well-posed. The inverse problem is often ill-posed, but there are situations under
which a meaningful solution can be found, although in a limited sense. It will
therefore be important to be able to recognize the circumstances which allow a
solution of the problem to be found. The inverse problem can be defined as follows:
Let a functional relationship p(z,y,t) = F(c?(z,y,t)) be given between a parameter
which in our case is the phase speed cQ(x,y,t) and p(z,y,?) where p represents the
variables U(z,y,t), V(z,y,t) and h(z,y,t) of our problem. The inverse problem
will then be to determine ¢? on the basis of p(z,y,t) and the inverse relationship

A(z,y,t) = R(p(z,y,t)). This problem is said to be well-posed if and only if (1)

34
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to every p there corresponds a solution ¢%(x,y,1) ; i. e. a solution exists; (2) the
solution is unique for any given p(z,y,t); and (3) the solution depends continuously
on p(z,y,t); i. e. the solution is stable. If the inverse problem fails to satisfy one
or more of these three requirements, it is said to be ill-posed.
Uniqueness can be defined in the following way. If cg(x,y, ) =

R(pi(z,y,t)) and c%(z,y,t) = R(pa(z,y,t)) are two solutions of the inverse prob-

lem, then

I E(z,9,t) — S(z,9,1) l|= 0 = || p1(=,9,2) — pa(z,,%) ||= 0 (4-1)

where |||| represents a norm over the appropriate space. In practical problems p is
only given at discrete points in space and time, and R represents a minimization of
a functional J as given in section 2.

Parameter identifiability can be defined as
” P1($,y,t) —pz(:t, Y, t) I|= 0 =>” C%(x,:%t) - C%(zv:%t) ”= 0 (4 - 2)

where p(z,y,t) = F(c%(a:, y,t)) and po(z,y,t) = F(c%(:c, ¥,t)). While uniqueness
refers to the inverse problem, R, identifiability refers to the forward problem, F.
If two sets of parameters lead to the same function p(z,y,t), the parameters are
said to be unidentifiable. Uniqueness on the other hand is concerned with the
problem whether different parameters may be found from a given p(z,y,1), if so the
parameters are nonunique.

Stability can be defined in the following way. For every £ > 0 there exists

a & such that for ¢3(z,y,t) = R(p1(z,y,t)) and c%(a:,y,t) = R(p(z,y,t)) one has
It P1(2,9,8) = pa(, 9, ) 1< § =>|| f(2,3,1) — (2, 3,1) < e (4-3)

(4 — 3) states that small errors in the variables must not lead to large changes in

the computed parameter.
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The work done by hydrologists concerning parameter estimation in ground-
water flow considers parabolic partial differential equations, since this is the type
of equations which hydrologists like to believe governs groundwater flow. Kitamura
and Nikagiri (1977) studied the identifiability of continuously varying and constant
parameters in a linear one-dimensional parabolic partial differential equation

g_‘t‘ - % [a(m)g—ﬂ +b(2)u + f(z,2) (4—a)

where a(z) and b(z) represents the parameters. They assume that the parameters
in the system equation are unknown but continuous, together with their first (and
for a(z)) second derivatives, over the whole flow domain. They also assume that
the boundary conditions are known. Their results show that the parameters are
only identifiable under certain fairly restrictive conditions.

The problem of identifiability and also stability can be solved by reducing
the number of parameters which is going to be estimated. In the hydrological litera-
ture the most common way to do this is to approximate the parameters by a known
class of functions depending on a finite number of parameters. If the parameter
dimension is not reduced, it may be difficult or even impossible to determine the
spatial structure of the parameter field. Instability is often characterized by the
fact that during the solution process the parameter values are bouncing back and
forth between high and low values.

As mentioned in section 2.2 the last term in the cost function

J(x,¢) = /%(x - xl)TKx(x - x')da + / é(c — cI)TKc(c — cl)da (4-35)
z b))

is added because the interest of this research is parameter estimation, and the term
makes sure that the new estimate of the parameters is not too far from the initial
guess. In the hydrologist’s nomenclature the term represents prior information

about the parameters. The definition of uniqueness (4—1), implied that the solution
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would be unique if the cost function J was convex. The requirements for this
condition is that the Hessian matrix is positive definite. Writing the cost function

as

where Jx represents the first term in (4 — 5), while J represents the last term
or the term representing prior information about the parameters. The Hessian is

represented by

8:J 8%y . 82J.

dc2  dc? d¢c2 -7

The first term gives

82Jy ax\T [ox ' 78%x
5t = | K [(a_) (5‘) G-xVza|v (-9
2

which can be positive or negative. So the first term in the minimization criterion

does not guarantee that the cost function is convex. The last term in (4 -7) gives

8%J.
dc2

= K, (4-9)

which is clearly a positive term. Adding prior information about the parameters
therefore increases the chance that the cost function will be convex. Of course there
is no guarantee that the term in (4 — 9) will make the Hessian positive definite.
Carrera and Neuman (1986b) discuss the effect of prior information in a few simple
examples of estimation of aquifer parameters. Their examples clearly show that the

addition of prior information lead to unique solutions.



5. Specification of the problem

In this section the variational formalism developed in section 2 is going
to be applied to a model of the equatorial Pacific Ocean. The governing equations
are presented and the adjoint equations are derived. The set of equations will be
able to assimilate sea level observations into the Pacific Ocean model, and the main
interest will be focused on the ability of sea level observations to adjust (estimate)
parameters in the model. The parameter which will be estimated is the phase
speed. In fact it is the square of the phase speed which will be estimated, but
the term phase speed is going to be used. The method is not restricted to the use
of only sea level observations, but could easily be modified so it could assimilate
other types of observations e. g. velocity data. However, this is not going to be
considered in the present study. It is also possible to adjust other parameters than
the phase speed, e. g. the eddy viscosity or even adjusting the windstress, i. e.,
the forcing function, so the model solution fits the observations in an optimal way.
In the initial tests of the data assimilation algorithm, it is important to keep the
problem under consideration as simple as possible, so the focus of this research will
be on estimating only one parameter, the phase speed. As described in section 4,
hydrologists have had some experience with parameter adjustment, and one of their
results is that it is sometimes necessary to reduce the number of degrees of freedom
in order to be able to find unique and stable parameters. The important physics in

the model under consideration consist of equatorial waves propagating across the
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Pacific Ocean, and to reduce the number of degrees of freedom it is assumed that

the parameter is a function of longitude only.

5.1. The numerical model
The model to be used is a reduced-gravity, linear transport model for the

equatorial Pacific Ocean. Due to the large latitudinal extent, spherical coordinates
are used, with ¢ (longitude) increasing eastward and (latitude) increasing north-
ward. In the reduced gravity model the ocean is assumed to consist of two layers of
slightly different density (p, po), with the interface being an approximation of the
pycnocline. The lower layer of the model is dynamically inactive, while the motion
of the upper layer represents the first baroclinic mode. Similar models (but in an
equatorial B-plane) have been successfully used to simulate the ocean circulation in
the equatorial regions (e. g. Adamec and O’Brien, 1978; Cane, 1979; Busalacchi
and O’Brien, 1980).

Let U = uh and V = vh represent the eastward and northward component
of upper-layer transport, respectively, where (u,v) are the depth-independent (4, )
velocity components in the upper layer and h the thickness of the upper layer. Figure

1 shows a schematic picture of the reduced gravity model. The model equations

are:
U  oh 7% 9
8t V=- acos«98_¢+—+AVU (5-1)
v on  1?
at+fU —-—5§+—+AVV (5-2)
oh 1 8U 8

where V2 is given by the simplified form

1 [9? d d
v2 = p T [8¢2 + c050 (c039 9)] (5—4)
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and & = gH (p 2p—p ) is the barotropic gravity wave speed, which is the parameter
that is going to be estimated. ¢? is assumed to be a function of longitude only,
= c2(¢). p2 and p are the densities of the lower and upper layer, respectively. a
is the radius of the earth, f = 2wsind is the Coriolis parameter and w is the rotation
rate of the earth. A is a horizontal kinematic eddy viscosity. The wind stress r =
(T¢, 'ro), is applied as a body force over the upper layer. The values used for some
of the different parameters are : A = 2000m?s~1,w = 0.729- 10~%4s~1 4 = 6378km.
The initial thickness of the upper layer is 300m.

The model geometry extends from 120°E to 75°W and from 20°S to 25°N
as in Kubota and O’Brien (1988), see Figure 2. The effect of the coast at the
eastern and the western end of the basin is included in the model by simulating the
coastline as a closed boundary, i. e. U = V = 0. The northern and the southern
boundaries are open and the open boundary condition described by Camerlengo
and O’Brien (1980) is applied along these boundaries.

In solving the equations (5 — 1) — (5 — 3) the staggered C-grid of Arakawa
(1966) is used, see Figure 3. The gridspacing is %:o in longitude and %o in latitude.
The equations are integrated in time using a leapfrog scheme, with a forward scheme
used every 99 time step to eliminate the computational mode. The timestep is

40 minutes. A Dufort-Frankel scheme is used for the diffusive term.

5.2. The adjoint equations

The formalism developed in section 2 can now be followed using the equa-
tions for the Pacific Ocean model described above as constraints. It is necessary to
define a cost function J, which measures the distance between the observations and

the model solution. J will be chosen as the quadratic function

J(h,c?) = / [I;—h(h .y Ig—c(é ~ 2| do (5-5)
=
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Figure 1. The geometry of the reduced gravity model
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PACIFIC OCEAN MODEL
SEA LEVEL STATIONS
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Figure 2. The Pacific Ocean model domain. The southern and northern bound-
aries are open. The position of the sea level stations used in the assimilation
is also shown.
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where h' represents an observation of the upper layer thickness and ¢ is an es-
timate of the phase speed. It has been assumed that the observational errors are
uncorrelated. Kp and K¢ are validity coefficients. ¥ represents the spatial and tem-
poral domain over which the Pacific model is integrated. The last term in (5 — 5)
makes sure that the final value of the phase speed is not too far from the initial
estimate. This is important since there are certain physical limits for ¢2. The initial
estimate should be a reasonable one so that the minimization process just has to
make a “small” correction to the initial guess.

The next step is to form the associated Lagrange function

L(U,V, hy Mgy Ao hp, €2) =

U ¢ on ¢ 9
‘//\ul:a—fv%-acose'aj;—?—AVU do
z
+/A -3V+fU+c2ah—Tg—AV2V d

v 15t 298 p 7

E b

(5-6)

[ Oh 1 ou o
+ / /\h -52- + _ac050 (55 + %(VCOSB))] do
p)
+ / %(h — 1)2do + / I;_c(é — c¥)2do
b)) p

where Ay, Ay and A are the Lagrangian multipliers for U, V, and h, respectively.
The details of the derivation of the appropriate continuous equations are given in
appendix A. The stationary points of the Lagrange function (which cdrrespond to
the minimum of the cost function) can be found by letting the first variation of L
with respect to the variables U, V, k, Ay, Ay, Ap and 2 vanish. The first variation

of L with respect to Ay, Ay and A gives the following equations:

ou & Oh 1¢ 9

s V__acosﬁ-8—¢+-p—+AVU (5-17)
ov 2on  1° 2
E—-{-fU———-;%-{-?—f—AVV (5—8)
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Jh 1 joU 9
E acosf [8¢ aa(VcosO)] =0 (5-9)

which are identical to the original model equations (6 —1) — (5—3). Letting the

first variation of L with respect to U, V and & vanish, gives the adjoint equations:

3/\ & 3/\}, 2
fv— 03¢ Av/\u (5_10)
aA,, c‘~’a,\,, 9
"fu + AV /\v (5—11)
a 80
a/\h 1 a/\u a - n _
Bt e [34‘) + aa(Avco.SG)] + Kp(h—h)=0 (5—12)

It is worth noting that the adjoint equations are forced by the data misfits repre-
sented by the last tezm in equation (5 — 12). The windstress does not enter into
these equations. Comparing equations (5 — 10) — (5 — 12) to the original model
equations (5 — 7) — (5 — 9) one can see they have a similar form, except that the
adjoint equations correspond to an evolution backward in time. The Lagrangian
multipliers will therefore propagate information about the data misfits back to the
initial time of the data assimilation period. Since the system of equations govern-
ing the Lagrangian multipliers are similar to the model equations, the information
will propagate in the form of equatorial Kelvin and Rossby waves. However, in
the adjoint equations the equatorial Kelvin wave is going to have a westward phase
propagation, while the Rossby waves will have an eastward phase propagation.

In the derivation of the adjoint equations, the natural boundary conditions
for the adjoint variables follow. The “initial” conditions at t=T for the adjoint
variables are homogeneous ones, namely ), = ), = Ap = 0. The adjoint equations
are forced by the data misfits, and after the last computational time level for the
physical model there are no data. Ay = Ay = A = 0 is therefore the natural initial
condition for the adjoint variables.

At the solid boundaries in the western and

eastern part of the basin, the boundary conditions are given by Ay = Ay = 0. These
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conditions are identical to the no-slip conditions used in the model equations, U =
V = 0 at the solid boundaries. Using the open boundary conditions of Camerlengo
and O’Brien (1980) for U and V, the conditions for the adjoint variables can be
derived. It turns out that identical open boundary conditions must be used for ),
and A,.

Letting the first variation of L with respect to ¢ vanish

D Oh N0k o

which gives the gradient of L with respect to ¢2. T and Ly are the period over which
the data are assimilated and a length scale in the latitudinal direction, respectively.

It is important to determine the correct adjoint equations. If there is an
error in the equations calculating the Lagrange variables, the minimization process
may conveige to a solution which is not the one which is sought. The model
equations are going to be solved using finite differences. One has to be careful when
going from the continuous equations to the finite difference representation. Deriving
the adjoint of the continuous equations and then taking the finite difference of the
result may not give the desired adjoint that is the adjoint of the finite difference
version of the model. The adjoint of the finite difference equations are therefore
derived in Appendix B.

The temporal domain in which the cost function (5 — 5) is going to be
minimized must be determined. The spatial domain is given by the spatial domain
of the model under consideration. It is not so clear what to choose for the time
interval. Numerical models are not perfect representations of the real world, and it
would be meaningless to try to assimilate data over too long time intervals. Different
models will require different assimilation periods. The time scales of the model is

an important factor. For instance in a meteorological forecast model it would be
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natural to choose an assimilation period of a few days, since the forecast is not very
accurate after this period. On the other hand, for an oceanographical model such
as the reduced gravity model used in this study, it would not be correct to choose
a period of a few days. The major time scales of the motion in this type of model
are of the order of months. A natural assimilation period would therefore be of
the order of months too. In the initial experiments described in the next section a
period of six months was chosen. When the model is driven by real wind forcing,
1t is important that the information have time to propagate throughout the model.
A Kelvin wave takes about 3 months to cross the Pacific Ocean, while the first
symmetric mode Rossby waves need 9 months to cross. A data assimilation period

of 12 months was therefore chosen in this case.

5.3. The wind forcing

The wind stress data used as forcing of the Pacific Ocean model come
from ship observations. The individual wind observations have been grouped into
monthly values on a 2 x 2° grid (see Legler and O’Brien ( 1986) for more details).
From this coarse grid the data are interpolated to the model grid using a cubic
spline interpolation. Figure 4 shows an example of the interpolated wind stress for
June 1979. The quantity plotted is the pseudostress, i. e. the magnitude of the

wind velocity times the component.

5.4. The observations

Sea surface elevation (SSE) observations from island stations are going to
be assimilated into the model. The model does not include sea level as one of the
dependent variables, and it will therefore be necessary to transform SSE to upper

layer thickness (ULT). The SSE data will be transformed to ULT by dividing by
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Figure 4. Pseudostress for the Pacific Ocean model for June 1979.



49

the density difference between the two layers of the model, i. e.

SSE
ULT = —AT (5 _ 14)

p

Time series of daily observed SSE from the island stations are going to
be used. These observations will contain both high and low frequencies. The
main interest of this study is to be able to determine the basic stratification of the
Pacific Ocean, and the high frequencies will not give important information for this
purpose. The time series are therefore filtered using a low pass filter before the data
are assimilated into the model. As mentioned above the wind stress used to force
the Pacific Ocean model, is a monthly average. The shortest time scale resolved by
the model is therefore 2 months. The sea level data are as a consequence of this low
pass filtered with a pass period of 60 days. As an example of the time series of sea
level observation converted into ULT, Figure 5a shows ULT as a function of time
for the station at Santa Cruz. The figure shows the daily observation for the period
1978-1983. Figure 5b is a plot of the filtered time series for the same period, using
a pass period of 60 days. Missing data have been filled in by linear interpolation or
if data are missing at the beginning or end of the time series, persistence is used.
This is not going to influence the assimilation in this research, since the periods
considered here did not have any missing data points.

The Pacific Ocean model saves time series of the height field once a day
for the island stations in Figure 2. The U, V and % fields are saved every 6 days
for the whole domain. Similarly for the adjoint equations, Ay, A, and A fields are
saved every 6 days. The h, Ay and ), fields are used when the gradient of L with
respect to ¢? is calculated by equation (5 — 13). Saving the variables every 6 days
may seem not to be often enough. But as mentioned earlier, the main interest of

this study is to be able to determine the large scale variation in the Pacific Ocean
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Figure 5. Time series of upper layer thickness (ULT) for the station at Santa
Cruz. ULT in meters is plotted as a function of time. a) Daily observations of
ULT. b) The filtered time series using a pass period of 60 days.
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and the time integral in (5 — 13) will be adequately approximated using data every
6 days.

The adjoint equations are forced by the difference between the model solu-
tion and the observations, the data misfits. The timestep in the adjoint model is the
same as in the original model, 40 minutes. In order to obtain a smooth forcing of
the adjoint equations, the data misfits are linearly interpolated so that the forcing

is a smooth function of time.



6. Data assimilation in the Pacific Ocean model
As initial experiments of data assimilation in the Pacific Ocean model,

a few simple examples are going to be discussed. The primary objective of this
research is to be able to determine the phase speed in the model. Adjustment
of the external forcing is not considered here, and in the first experiments there
is no wind stress applied. The Pacific Ocean model is instead initialized by the
height and velocity field of a Kelvin wave. It is important to be able to check the
performance of the data assimilation algorithm. Identical twin data are therefore
going to be used in the preliminary experiments, that is the “observations” are
results from the model. The simple set up of an initial Kelvin wave gives a nice
picture of how the adjoint equations propagate information throughout the model
domain. The number of waves present is limited, and it is relatively easy to explain
what is happening.

After the initial test of the algorithm, the estimation of the phase speed
in “real” model runs is considered. The Pacific Ocean model was spun up from
rest using the wind stress described in section 5.3. The integration started in 1972,
and the model was run through 1983. As an initial guess for the parameter c2, a
value of 6.0m%s~2 was used. This value corresponds to what Kubota and O’Brien
(1988) used in their calculations. A few experiments using identical twin data are
considered initially. Since ¢? gives information about the basic stratification of the
Pacific Ocean, it would be interesting to be able to determine ¢2 for two different

periods. First, a “normal” year is going to be used as observations. The year 1979
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was chosen to represent what is going to be called the normal situation. Second,
the situation in the Pacific Ocean changes dramatically during an El Nino event
and to investigate the effect of a major climatic event on the estimated value of the
parameter, 1982/1983 was chosen as an example of an El Nino year. The El Nino

of 1982/83 is one of the strongest on record in this century.

6.1. The Pacific Ocean model initialized by a Kelvin wave

In the first experiment the Pacific Ocean model was intitialized by the
height and velocity field of a Kelvin wave. The model was integrated forward for
180 days using a constant phase speed ¢? = 6.0m%s—2. The results from this run
are going to represent the “observations”. The value of the phase speed was then
changed to ¢ = 4.0m?s~2 and the model was again integrated forward for 180
days to create the model results. In Figure 6a-d the results of the model using
c? = 6.0m?s2 are shown. The figures show the upper layer thickness (ULT) and
the velocity field. Upper layer thickness is represented by contour lines, while the
velocity components U and V are represented by arrows. The initial Kelvin wave
at day 0 can be seen in Figure 6a. Figure 6b shows the wave at day 30. The
wave has now hit the eastern boundary of the model, and coastal Kelvin waves are
propagating northward and southward along the coastline. The open boundaries at
the south and north boundary let the coastal Kelvin waves leave the model domain.
The Rossby waves created by the reflection can also be observed. These waves can
be more clearly seen in Figure 6¢, which shows the ULT and velocity field at day 90.
The model results after 180 days are shown in Figure 6d. The Rossby waves have
now propagated into the middle of the basin. Similar results are obtained when a
phase speed of ¢Z = 4.0m2s™2 is used. These results are not shown. Experiments
with a different assimilation period have shown that the obtained results are not

dependent on the data assimilation period in these initial experiments.
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Figure 6. Plot of the upper layer thickness (ULT) and velocity field from the

Pacific Ocean model. A phase speed ¢ = 6.0m2s~2 was used. The initia] ULT

was 300 meter. Contour interval is 10 meter. The Figure shows the results at
a) day 0, b) day 60,
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6.1.1. Ezperiment 1: Constant phase speed and observations everywhere

The experiment considered assumes the best possible situation which can
occur, that is observations of ULT are available everywhere in space. The observa-
tions are assumed to be perfect, i. e. they are not contaminated by observational
errors. The question of what effect such errors will have on the estimation process
is going to be addressed later.

The next step in the variational data assimilation algorithm is to calculate
the data misfits between the two model runs described above. The linearly time
interpolated data misfits (in meters) for the model gridpoint corresponding to the
island station at Santa Cruz are shown as a function of time (days), in Figure 7. The
figure shows the misfits during the first iteration. Note that day 180 corresponds
to the end of the integration period of the model, which is the “initial” time for the
integration of the adjoint equations.

The adjoint equations are integrated “backward” for 180 days using the
data misfits as forcing. In this case there is a forcing term at every gridpoint of
the model. Figure 8a-d shows the time evolution of the fields of the Lagrangian
variables Ay, Ay and Ap. In Figure 8a the three fields are shown after the adjoint
equations have been integrated for 30 days. This corresponds to day 150 in the
forward model. As described earlier, in the adjoint model Kelvin and Rossby waves
move in opposite directions compared to the model itself. From the figures it is
apparent that the Rossby waves indeed move eastward (Figure 8a and b), while the
Kelvin wave caused by the reflection of the Rossby waves is seen to move westward,
see Figure 8c and d. It is interesting to note that the higher mode Rossby waves
propagate in front of the gravest mode Rossby wave in Figure 8a.

The next step in the assimilation procedure is to calculate the gradient

of the cost function with respect to the phase speed using (5 — 13). In Figure 9
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Figure 7. Data misfits during the first iteration for the model gridpoint cor-
responding to the island station at Santa Cruz. Misfits in meters are shown
along the vertical axis, while time in days is plotted along the horizontal axis.



38

PACIFIC OCEAN MODEL
LAGRANGIAN MULTIPLIER FOR H,U AND V

20N
10N
EQ
108
203 T T T T T T T T 7T
120E 160W 120w 80w
.8 CASE = AL2 DAY = 150

PACIFIC OCEAN MODEL
LAGRANGIAN MULTIPLIER FOR H,U AND V

TR
CeTTER
‘ 1
| | I 1 | 1 i { ] | | } 1
120E . 160E 160W 120w 80w
.8 CASE = AL2 DAY = 120

Figure 8. Plot of the Lagrangian multipliers for the case where observations are
available everywhere. The Lagrangian multiplier for the A equation is shown
using contours, while the Lagrangian multipliers for the I/ and V equations
are represented by vectors. The scale of the vectors are shown in the lower left
corner of each figure. Contour interval is 10.0. The Figure shows the results

at a) at day 150, b) day 120,
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the time and longitudinal variation are shown. The latitudinal dependence has
been integrated out. The figure show. the results after the first iteration. It is
worth noting how the information about the gradient propagates in time and space.
Initially, that is at the end of the assimilation period, the information propagates
from west to east with the Rossby wave speed. Calculating the phase speed of the
propagation gives a value of ¢ = 0.64ms ™!, which is very close to the mode 1 Rossby
wave phase speed. The Rossby waves connected with the eastward propagation can
be seen in Figure 8a and b. After the information hits the eastern boundary, the
information propagates westward as a Kelvin wave. Again calculating the phase
speed from Figure 9, the westward propagation can be found in Figure 8c and d.
The Kelvin wave is about to leave the eastern end of the basin in Figure 8c, which
shows the results at day 60. Looking at Figure 9 again, day 60 is exactly when
the information about the gradient starts to propagate westward. At day 0 the
information has come all the way to 160°E. The initial conditions for the model,
see Figure 6a, show that the gradient of the Kelvin wave height field is close to zero
west of 160°E. This gradient is a part of the integral determining the gradient of
the cost function with respect to ¢2. The information does not have a chance to
propagate further west because of the chosen initial conditions. As will be discussed
later, this has an important effect on the ability to determine the spatial structure
of the phase speed. Of course, in a real situation this limitation will not occur.

The simplest test is to determine a constant phase speed. The space and
time dependence of the gradient of L is removed by integrating over the remaining
space direction (longitudinal) and over the time interval of the data assimilation.
Since ¢? and the gradient of the cost function is a constant, a steepest descent
minimization algorithm was used. The step length was calculated according to

(3 — 52). After a new value of the phase speed was determined, the iterative
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(5 —13) after the first iteration. Dashed lines represents negative values of the
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scaled by its maximum value. Contour interval is 0.15.
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procedure continued. The model was integrated forward using the new value of the
phase speed and the adjoint model was integrated backward so that a new value
of the gradient of the cost function could be calculated. A new minimization was
performed and the convergence of the algorithm could be checked. As a convergence
criterion ]-Féq-[ < 1.0 - 102 was used in this and the following experiments. The
results of the iterative process can be seen in Figure 10a-c. Figure 10a shows the
value of the cost function, normalized by its initial value, as a function of the
number of iterations. As can be observed during the first few iterations, there is
a rapid decrease in the cost function. After 3 iterations j’; has dropped to about
1073, i. e. the cost function has been reduced by 3 orders of magnitude. In Figure
10b the value of the gradient of the cost function, normalized by its initial value,
is shown. The gradient also has a rapid decrease in magnitude during the first
couple of iterations. After 4 iterations the value of the gradient has decreased by 3
orders of magnitude, just as the cost function itself. The change in the value of the
parameter c¢? during the iterations is shown in Figure 10c. After 4 iterations the
value of ¢ is 6.0m2s~2, which is equal to the exact value.

Setting ¢ and thus the gradient of the cost function to be a constant, is
the simplest scenario which can occur. To determine ¢? as a function of longitude is
a much more difficult problem. Instead of treating the gradient of the cost function
as a constant, the gradient is allowed to vary with longitude, but not with time.
The time dependence of the gradient was therefore removed by integrating over the
time interval of the assimilation. To find the optimal ¢? the modified version of
the limited-memory conjugate gradient subroutine CONMIN of Shanno and Phua
(1980) described in section 3, was used. This subroutine gave very good convergence
rates for the experiments performed in this research. The algorithm converged in

ten iterations or less for all the cases considered. Compared to the simple method of
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steepest descent, the number of iterations dropped by a factor of about three. Using
the quasi-Newton method with BFGS-updates did not change the convergence rate
appreciably. For most cases the limited-memory version of the subroutine converged
faster. The difference between the two methods was never more than two iterations.
The step length was calculated using the expression in (3 — 52).

The main interest of this research is to determine the large scale variation
of the phase speed which will be a representation of the basic stratification of the
Pacific Ocean. The short length scale variation in the estimated values of ¢ are
therefore removed by applying a filter to the solution. If these short scale variations
were not removed, the estimated values of ¢? varied rapidly with longitude. As the
hydrologists have experienced, this kind of instability can be overcome by reducing
the parameter dimension. Restricting the attention to the large scale variation of
c? is of course one way of reducing the dimension of the parameter.

The results of the iterative process are shown in Figure 11a and b and
Figure 12a-d. The algorithm converged after 7 iterations with a convergence cri-
terium of rl]g%]-h < 1.0- 1072, The cost function normalized by its initial value as
a function of iterations, is shown in Figure 11a. There is a rapid decrease during
the first three iterations. After four iterations the value of the cost function has
decreased an order of magnitude. The value does not decrease much during the
next couple of iterations. In Figure 11b the normalized value of the gradient of
the cost function is shown. The gradient also experiences a rapid decrease in the
beginning. After seven iterations the value of the gradient has decreased below the
convergence criterium.

The evolution of the estimated value of the phase speed is shown in Figure
12a-d. Figure 12a is a plot of the longitudinal variation of the phase speed after the

first iteration. As can be seen there is a relatively strong correction in the eastern



J 1.0

0.8 — a
0.6 —
0.4

0.2 —

0.0 T T T
1 2 3 4 5 6 7
ITERATIONS

g|| 1.0
go ) b
0.8 —
0.6 —
0.4 —

0.2 —

0.0 = > X A '5 '8 7

ITERATIONS
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part of the basin, while the correction is getting smaller and smaller as the western
end of the basin is approached. West of about 160°E there is hardly any correction
at all. Thereason is as mentioned above, the initial conditions of this experiment. In
the area west of 160°E the data misfits are basically equal to zero during the period
of the data assimilation, which means that there is no direct forcing of the adjoint
equations in the area. The dynamics of the model can propagate information given
by the data misfits elsewhere, into the region. The Lagrangian multipliers in Figure
8d are not equal to zero west of 160°E. This does not on the other hand make the
gradient of the cost function much different from zero, since the expression for the
gradient (5 — 13) also contains the terms g% and g—g which both are small in the
area. It is therefore to be expected that the correction in the western part of the
basin is going to be smaller than in the eastern part.

Figure 12b shows ¢? after the second iteration. The correction in the
eastern part of the basin has now given a maximum value of ¢2 slightly higher than
the “correct” value. In the western part the correction is still very small. After
the fifth iteration, Figure 12c, a flat area has developed in the eastern part with ¢?
very close to the value used to create the observations (¢ = 6.0m?s~2). Because
of the reason explained above, the correction in the western end is much smaller
than in the eastern part. Figure 12d shows the results after seven iterations. The
area of “correct” values for ¢ has now spread to nearly half the basin, but there
is still a discrepancy between the real and estimated ¢2 in the eastern part of the
basin. After seven iterations the gradient of the cost function has decreased about

2 orders of magnitude and the algorithm converged.
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6.1.2. Verification of the gradient of the cost function

As mentioned earlier, it is important to get the right gradient of the cost

function. One way to check if the correct gradient is found, is described below. Let
J(h,ck + ak) = J(h,}) + ah Ve J(h,cf) +hoot. (6-1)

be a Taylor expansion of the cost function in (5 — 5). a is a small scalar and 4 is a
random vector of unit length. Rewriting (6 — 1) one can define a function of a by

J(h,c(z) + ah) ~ J(h,c%)

fe)=—23 Ve I (b )

2 1+ h.o.t. (6—2)

The result of the calculation in (6 — 2) is only valid for values of & suf-
ficiently large so that the numerator in (6 — 2) can be calculated accurately. If «
is chosen close to the machine zero one cannot expect to be able to verify that the
correct gradient has been found. For values of a which are not too close to the
machine zero one should expect to obtain a value for f () which is close to 1. For
the CYBER 205 the machine zero is about 10~1% and if « is chosen between say
1073 — 10710 opne would expect to find f(a) ~ 1.

To check if the calculation of the cost function gives consistent answers

one can calculate J(k,c3 — ak) and check if
1
T(hyf + ah) = J(hycf) 5 (J(h, 3 + ah) — J(h,ck — ah)) (6—3)

The experiment performed in section 6.1.1 was used to check the gradient.
The gradient of the cost function with respect to the phase speed was calculated
using (5 —13). Different values of o were chosen and equation (6 — 3) was verified.
In figure 13 a plot of f(a) is shown. It is clearly seen that for o between 10~3 and

10710, (6 — 2) is verified. The correct gradient is therefore found.
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6.2. Assimilation of identical twin data in the Pacific Ocean model forced by real

winds
As mentioned above two different scenarios are going to be investigated,

but first a few test cases are studied. In these initial experiments the results from

the year 1979 are used, with identical twin data as observations.

6.2.1. Ezperiment 2: Constant phase speed and observations everywhere

In this experiment the results from the original model integration are used
as observations. A new integration of the model for the year 1979 was performed,
changing the constant ¢? to 4.0m?s™2. A data assimilation and parameter estima-
tion procedure as described in experiment 1 was performed. Perfect observations
were available at every gridpoint of the model. In the experiments with the model
forced by real winds, the model is restarted using the end of the previous year as
initial conditions. The phase speed determined by the algorithm is a time averaged
Phase speed over the period of the assimilation. After each iteration the model was
integrated for two years, the year prior to the year of the assimilation plus the year
of the actual assimilation. This was done in order for the model to adjust to the
new phase speed even in the beginning of the assimilation period.

In figure 14a and b, the normalized cost function and its gradient is shown,
respectively. As before there is a rapid decrease in both the cost function and the
gradient during the first few iterations. After seven iterations the values have
dropped about two orders of magnitude and the algorithm converged. Figure 15a-c
shows the corresponding evolution of the spatial structure of c2. In figure 15a the
results after the first iteration is shown. There is a correction all over the basin,
with a slightly larger correction in the central region. After the third iteration,

figure 15b, the “correct” value of 6.0m?s™2 has been found in the western part of
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the basin, while there is still a discrepancy between the estimated and the correct
value in the eastern part. Figure 15¢ which is a plot of ¢ after the seventh iteration,
shows that the correct value of ¢ has been determined. ¢2 is now very close to a
constant over the whole domain, and there are only small departures from the value

of ¢ = 6.0m%s2 used to create the “observations”.

6.2.2. Ezperiment 3: Variable phase speed and observations everywhere

The experiments discussed so far have tried to estimate a constant c2.
Even if ¢? was allowed to vary with longitude during the iterative process, the end
result should give a constant phase speed. In a real ocean this is not very realistic,
and an important question arises if the method is able to determine a spatially
varying phase speed. In this experiment the algorithm is therefore tested on a more
realistic case, where the phase speed is a function of longitude. Figure 16 is a plot
of the phase speed used in the model integration creating the “observations”. The
variation of ¢2 is supposed to model what is a realistic variation, since one would
expect to have higher values in the west compared to the east. This is at least
correct under “normal” conditions, i. e. when an El Nino event is not dominating
the Pacific Ocean. The upper layer thickness is shallow in the east and deep in the
west, and consequently ¢2 would have a longitudinal distribution as in figure 16.
The model was restarted in 1977 and integrated through 1979 using the new phase
speed in order to let the model adjust.

As initial guess, ¢ was assumed to be constant with a value of 4.0m3s~2,
Again perfect observations were available at every gridpoint of the model. The
results of the assimilation are shown in figure 17a-b and in figure 18a-d. The nor-
malized cost function is plotted as a function of the number of iterations in figure

17a, while the normalized gradient is plotted in figure 17b. The rapid decrease
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during the first few iterations can be observed. After ten iterations the decrease in
the gradient is more than two orders of magnitude and the algorithm converged.
figure 18a-d shows the evolution of the spatial variation of ¢2. After the first iter-
ation there is a strong adjustment in the western part of the basin and a smaller
correction further to the east. Comparing the results after the first iteration to the
optimal ¢ in figure 16, it is difficult to see if the estimation is going to work. Figure
18b which is a plot of ¢? after three iterations, shows a promising development of
the spatial structure. A slope has become evident with higher values in the western
part compared to the values further east, but there is still a rather large discrepancy
if the results from the third iteration is compared to the real ¢2. After six itera-
tions, Figure 19c, the spatial variation of ¢2 is beginning to look very much like the
spatial variation of ¢? in figure 16. The maximum value in the west is slightly lower
than the real values, while in the eastern part ¢? has a slightly higher value than
it is supposed to. Finally, in figure 18d the results after ten iterations is shown.
The spatial variation is now very close to the variation of the ¢2 used to create the
“observations”, see figure 16. As a conclusion one can say that the algorithm has

been successful in determining the spatially varying phase speed.

6.2.3. Ezperiment 4: Variable phase speed and observations at 3§ stations

In all the experiments described above, observations have been assumed to
be available everywhere. This is not going to be the case in a real data assimilation.
Even with the new satellites, the coverage will not be good enough to give observa-
tion at every gridpoint of the model. The time resolution will also be quite different
from what has been used in the above experiments. The TOPEX/POSEIDON
project is still trying to decide what the repeat period of the satellite should be.
Periods of 10 or 20 days have been suggested, which mean that for a certain position

a new observation will be available every 10(20) days. These repeat periods will



go

J 1.0

6

0.8 a

0.6 —

0.4 —

0.2 —

OO ] T T T T T
1 2 3 4 5 6 t T
ITERATIONS

1.0
0.8 —
0.6 —

0.4 —

00 l_ f, T T T T Y T
1 2 3 4 5 6
ITERATIONS

Figure 17. The results from experiment 3 are shown. a) The normalized cost
function jfg is plotted as a function of the number of iterations. b) The normal-

ized gradient of the cost function ]-}M% is plotted as a function of the number

go|

of iterations.



77

Ce=2

6.4
6.0
5.6
5.2
4.8
4.4
4.0

NN RN

120E

140E

i

160E

T

T

180

T
L6OW

140W

120w

T

T

100w

80w

6.4
6.0
56
5.2
4.8
4.4
4.0

Lt ity i g4t

120E

6.4
6.0
5.6
5.2
4.8
4.4
4.0

140E

160E

T

180

T
160W

T

140w

120%

100w

—

80W

NN

120E

6.4
8.0
5.6
5.2
4.8
4.4
4.0

i
140E

I
160E

T
180

I
16CW

1
140W

I
120w

T
100w

80w

L20E

1
140E

T
L60E

I
180

i
160W

I
140W

T
120w

I
100w

aow

Figure 18. The longitudinal variation of the phase speed during the iterative

process in experiment 3, a) after one iteration, b)

after six iterations, d) after ten iterations.

after three iterations, c)




78
give a spatial resolution of about 320x320 km? (10 days) and 160x160 km? (20
days) in midlattitudes.

The goal of this research is to assimilate sea level observations from is-
land stations. The number of stations are limited and the number of observations
are therefore drastically reduced compared to the cases discussed above. In this
experiment it is assumed that data are only given at 3 stations (the same stations
will be used when real sea level observations are assimilated). The stations are,
Santa Cruz, Jarvis, and Truk, see Figure 2. These three stations are distributed
over the Pacific Ocean, with Santa Cruz representing the eastern part of the ocean,
Jarvis the central region and Truk the western region. The experiment is identical
to experiment 3, with the phase speed in figure 16 creating the observations and the
initial guess for ¢ is 4.0m2s~2. The observations are again assumed to be perfect.

Figure 19a-b and figure 20a-d show the results of the iterative process.
The normalized cost function is shown in figure 19a, while the normalized gradient
is shown in figure 19b. The algorithm converged after ten iterations. Figure 20a-d
show the evolution of the spatial variation of ¢2. After the first iteration, figure 20a,
there is a small adjustment over most of the basin, with slightly higher values in the
west. Figure 20b which is the result after the third iteration starts to show the right
spatial structure. A slope from west to east has developed. The variation of ¢2 after
six iterations is shown in figure 20c. Now a definite resemblance to the “real” ¢2
has developed. The values in the western and eastern part are too high, but overall
there is a quite good agreement. After ten iterations the algorithm converged and
the results are shown in figure 20d. Using observations from only three stations, it

is still possible to estimate the correct spatial structure of ¢2.
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6.2.4. Uniqueness and stability of the solution

An important question is whether the solution is unique or not. If the solu-
tion is unique, the cost function J should be convex, i. e. only one global minimum
of the function should exist. An experiment with observations in only one region
of the Pacific Ocean, showed that the estimated structure of the phase speed could
look completely different from the case when observations were available in more
than one region. However, this does not mean that the parameter is nonunique.
If observations are available at only one station, the algorithm is going to adjust
the parameter so that the cost function has a minimum at this station. Adding
observations in other regions will change the spatial structure of the estimated 2,
in order for the total cost function to decrease. For a given number of stations,
the estimated structure of ¢? is unique. Given observations at only one station it
is difficult and in most cases impossible to determine a spatially varying 2. To be
able to determine a spatially varying phase speed it turned out that it was necessary
to have observations in the different dynamical regions of the model. Observations
should be available in the western region where the model is dominated by the
westward propagating Rossby waves, in the central region where there is a mixture
between Kelvin and Rossby waves influencing the model and in the eastern region
where for the most part Kelvin waves dominate the solution.

The final soiutien is not sensitive to the initial guess of ¢2. Several exper-
iments starting the assimilation with different guesses for the initial phase speed,
showed that the algorithm always converged to the correct solution. The num-
ber of iterations needed for the algorithm to converge, did not depend strongly on
the initial guess either. Changing the initial guess from 4.0m2s~2 to 3.0m2s~2 in

experiment 3, the algorithm converged in 11 iterations instead of 10.
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Another question is whether the estimated parameter is stable, i. e. will
small errors in the variables lead to large changes in the computed parameter. To
investigate this the same scenario as in the experiment 4 was used, but the “ob-
servations” were contaminated by what would represent errors in the observations.
The errors consisted of normally distributed random numbers added to the time
series of the observations. The maximum error would represent an accuracy of
measuring the sea surface elevation of +0.05 meter. Even with this large error in
the observations, the algorithm was able to find the correct spatial structure of the
phase speed. The algorithm converged in ten iterations and the final result of the
assimilation was nearly identical to the result obtained for the case with perfect

observations shown in figure 20d.

6.3. Assimilation of real sea level observations in the Pacific Ocean model

6.3.1. Ezperiment 5: Real sea level observations from 3 station in 1979

Real sea level observations from three stations are used in this experiment.
The stations are the same as in the experiment described above, Santa Cruz, Jarvis
and Truk. The initial guess for ¢ was a constant value of 6.0m2s~2. The results of
the assimilation procedure are shown in figure 21a-b and figure 22a-c. Figure 21a
is a plot of the normalized cost function. The cost function for the three stations
dropped to about 35% of its initial value after six iterations. Looking at the cost
function at the three different stations separately, showed that for the station at
Santa Cruz the decrease was much larger. After six iterations the cost function
had dropped to about 10% of its initial value. For the station in the central region,
Jarvis, there was basically no change at all, while for Truk in the western region,
there was a decrease of about 60%. The cost function in the central region had a
low value during the whole iterative process. The initial value of the cost function

at Jarvis was less than 20% of the value at the two other stations, and at the end
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Figure 21 The results from experiment 5 are shown. a) The normalized cost
function < 35 is plotted as a function of the number of iterations. b) The normal-

ized gradient of the cost function ]%lgio%' is plotted as a function of the number

of iterations.
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Figure 22. The longitudinal variation of the phase speed during the iterative

process in experiment 5, a) after one iteration, b) after three iterations, c)
after six iterations.
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of the assimilation the cost function at Santa Cruz and Jarvis had about the same
value. Since the data misfits (the cost function is a measure of the misfits) are
the forcing for the adjoint equations, a station where the misfits are small will not
have as much influence on the final solution. This could be changed by letting the
validity coefficients be functions of space and not as here constants. On the other
hand, there is no reason to assume that the observations at Jarvis should have
a larger influence on the solution than the other stations. Figure 21b shows the
corresponding normalized gradient of the cost function. The gradient dropped to
about 5% of its initial value. Increasing the number of iterations did not result in
a further decrease in the gradient or the cost function. Even if the decrease is not
two orders of magnitude as in the previous identical twin experiments, the norm of
the gradient after six iterations has about the same value as in the identical twin
examples. The conclusion is therefore that the minimum of the cost function has
been found.

Figure 22a is a plot of the spatial structure of ¢2 after the first iteration.
There is an adjustment in the central and western region, with higher values in
the west and lower values in the middle of the basin. After three iterations, figure
22b, there is a strong adjustment. A slope has developed with high values in the
west and low values in the east. Finally, the result after six iterations is shown in
figure 22c. There is a slope from west to east with most of the slope confined to the
western end of the Pacific Ocean. From about 160°W, ¢2 is more or less constant
with a value of 5.2m2s~2. The maximum value in the west is about 6.5m2s™2. The
spatial structure of ¢? with high values in the west and lower values in the east, is
in good agreement with observations from the Pacific. During normal conditions

the basic stratification consists of a deep thermocline in the west and a shallow
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thermocline in the east, which corresponds exactly to the results obtained, (c2 is
proportional to the depth of the thermocline (ULT)).

A question now arises, did the new ¢? improve the model results? In
terms of the cost function the answer is yes. To investigate this issue further, the

correlation coefficient between the model results and the observations is calculated

for the different stations. The coefficient is calculated using the formula

360
3 hb!
=1

r= T (6 —4)
360 360 9 2
S b2y N
=1 i=1

i=
where h and A’ represents the time series of the model results and the observations,
respectively. The mean value is removed from both A and A'. figure 23 is a plot
of the correlation coefficient as a function of iterations for the stations at Santa
Cruz, Jarvis, Truk, Nauru and Guam. The stations at Santa Cruz, Jarvis and
Truk were used in the data assimilation, while Nauru and Guam are stations which
were not included in the assimilation. The correlation coefficient increases for all
the stations, with a dramatic increase for the station at Santa Cruz. The model
did not do a good job in predicting the ULT at Guam prior to the assimilation,
but at the end of the assimilation there is a significant increase in the correlation
coefficient. It is interesting to note that the new estimate of ¢ was able to improve
the model results at this location, even if Guam was not one of the stations used
in the assimilation. An increase in the correlation coefficient at Nauru can also be
observed. The change is not as dramatic at this station, but there is still a significant
increase. As discussed above the cost function at Jarvis had a low value during the
whole assimilation period. Figure 23 shows that the correlation coefficient for this
station has the highest value of the three stations used in the assimilation. At the

end of the iterations the correlation coefficient at Santa Cruz and Jarvis has about
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the same value, which agrees well with the fact that the values of the cost functions

at the two stations were almost equal.

6.3.2. Ezperiment 6: Real sea level observations from 3 stations in 1982/83

As in experiment 5, real sea level observations from the 3 stations at Santa
Cruz, Jarvis and Truk were used. In this case the assimilation started in June 1982
and continued for one year. The El Nino which occurred in 82/83 is therefore
a part of this assimilation. Again the initial guess of ¢? was 6.0m2s—2. Figure
24a 1s a plot of the normalized cost function. As in the previous experiment the
cost function decreased to almost 35% of its initial value after five iterations. The
station at Santa Cruz experienced the largest decrease in the cost function. After
five iterations the value had dropped to about 10% of the initial value. As in the
previous experiment the cost function at Jarvis was more or less constant during
the iterative process, with a value of about the same magnitude as the final result
at Santa Cruz. The reduction of the cost function at Truk was about 50%. Figure
24b shows the normalized gradient of the cost function, and as in the previous
experiment the gradient dropped to about 5% of its initial value. Further iterations
did not improve the results in this case either. The norm of the gradient after
five iterations had about the same value as when the identical twin experiments
converged, and the minimum of the cost function has therefore been found.

The corresponding evolution of the spatial structure of ¢2 is shown in
figure 25a-c. After the first iteration, figure 25a, there is an adjustment in the
western and central region of the basin. Close to the western boundary the values
of ¢? have dropped, while higher values can be found in the central area. Figure
25b shows the results after the third iteration. Now there is a large decrease in

the western area, while higher values than the initial can be found east of about
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Figure 23. The correlation coefficient for different stations as a function of the
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160°E. A maximum occurs around 160°W. After five iterations, figure 25c¢, a steep
slope has developed with the lowest values close to the western boundary where
¢ = 33m%~2. The maximum value of ¢2 = 7.0m%s~2 occurs around 160°W
with slowly decreasing values as the eastern boundary is approached. As in the
previous experiment, the spatial structure of the estimated phase speed is in good
agreement with observations. An El Nino event is recognized by the fact that the
eastern Pacific Ocean becomes warmer, which correspond to an increase in the
upper layer thickness. The western Pacific is cooler than normal corresponding to
a decrease in the upper layer thickness.

The correlation coefficients for the stations are shown in figure 26. The
general picture is that the model gives better correlation for all the stations during
an El Nino year. During the iterative process the correlation coefficient increases for
all the stations. The stations at Guam and Nauru are not shown, since continuous
observations were not available for the assimilation period. The observations at
Ponape were not used in the assimilation, and as in the previous experiment, the
new estimate of ¢? is able to improve the model results even at locations which are

not part of the assimilation.
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7. Summary and conclusions

A variational data assimilation method for a reduced gravity model has
been developed. The method was applied to the equatorial Pacific Ocean. The
phase speed of the model was chosen to be the control parameter of the problem,
and the optimal spatial structure of the parameter was determined. Knowledge of
the spatial structure of the phase speed will give information about the basic strati-
fication of the Pacific Ocean. In the variational formalism a cost function measuring
the “distance” between the observations and the model results is minimized. The
method consists of integrating the model equations forward in time over the period
which data are going to be assimilated. Data misfits between the model and the
observations are then calculated and the adjoint equations of the model are inte-
grated backward using the data misfits as forcing. It is necessary to determine the
gradient of the cost function with respect to the control parameter. The gradient
can be found using the model and the adjoint variables and it is used in a mini-
mization algorithm to determine a new value of the phase speed. The minimization
procedure utilized a conjugate gradient method to determine the search direction.
The quasi-Newton limited-memory conjugate gradient subroutine of Shanno and
Phua (1980) was implemented with a few modifications. A step length was calcu-
lated using a similar method as in Derber (1985). The convergence criterion for
the algorithm required the value of the cost function and/or its gradient to have
decreased by a specified tolerance. If this was not the case the iterative procedure

must be continued. The new value of the parameter can be used in the procedure
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described above, and it can be repeated until a satisfactory decrease in the cost
function and its gradient has been achieved.

Several different experiments have been performed to test the assimilation
algorithm. The first example used a simple set up of the Pacific Ocean model.
The model was initialized by the height and velocity field of a Kelvin wave and
the model was integrated forward in time using a value of ¢ = 6.0m?s™2 to create
what was called the observations. The assimilation algorithm was started using an
initial guess for ¢ = 4.0m2s~2 and the optimal value of ¢ was estimated. This
simple example clearly demonstrated how information propagated backward in time
through the adjoint variables. Perfect observations were assumed to be available
everywhere, and it was shown that it was possible to determire the original phase
speed. The algorithm converged in seven iterations. Due to the initial conditions
of this experiment, the gradient of the cost function was small in certain areas of
the domain and the final result was not as close to the “real” solution as was the
case in the next experiments.

The Pacific Ocean model was forced with real winds in the experiments
which followed. The model was integrated from 1972 through 1983, and in the initial
experiments, identical twin observations from the year 1979 were used. A similar
experiment as the one described for the Kelvin wave case, was performed. The
algorithm converged in seven iterations and the final result of the assimilation gave
a ¢2 which was constant with longitude. Since a constant ¢2 is not very realistic
as the optimal solution when real data are assimilated, another experiment was
performed. In this case the ¢ used to create the “observations” was a function of
longitude, with high values in the western part of the basin and then decreasing
values as the eastern part of the Pacific Ocean was approached. Again perfect

observations were used, and the assimilation was started with an initial guess of a



95
constant ¢ = 4.0m?s~2. The algorithm converged after ten iterations and the final
result of the estimation was a spatially varying ¢? which had the correct structure
with high values in the west, and low values in the east.

In a real data assimilation, observations will not be available at every grid-
point of the numerical model. Since the goal of this research was to assimilate sea,
level observations from island stations, the next experiment used observations at
only three stations as forcing for the adjoint equations. The stations which was
chosen were Santa Cruz, Jarvis and Truk. These three stations represent the three
different regions of the Pacific Ocean. Santa Cruz representing the eastern part of
the ocean, Jarvis the central region and Truk the western region. The experiment
was identical to the previous experiment except for the number of available observa-
tions. Even in this case the algorithm converged after ten iterations and the spatiz;l
variation of the estimated ¢? was again very close to the correct structure.

Real sea level observations were assimilated during two different periods.
In the first experiment, observations from 1979 were used. This is a normal year, i.
e. there was no El Nino event during 1979. In the second experiment observations
from 1982/83 were assimilated. A strong El Nino occurred during this period. In
both experiments sea level observations from the three stations used in the previous
experiment were assimilated. As an initial guess for the phase speed a constant value
of 6.0m?s~2 was chosen. The results from the assimilation of observations from 1979
gave a spatial structure of the phase speed with higher values in the west and then
a gradual slope towards the east where the values had decreased compared to the
initial guess. This is in good agreement with observations. The general picture of
the upper layer thickness in the Pacific Ocean is a thick ULT in the west and then
a slope towards a thinner ULT in the east. Assimilating the observations during

1982/83 gave a completely reversed picture. Now the phase speed had lower values
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in the west and higher values in the east, which corresponds to a decrease in the ULT
in the west and an increase in the east. This confirms what is happening during an
El Nino. A warming of the eastern Pacific Ocean occurs, which corresponds to an
increase in the ULT and in the west there is a cooling corresponding to a decrease
in the upper layer thickness.

A correlation coefficient between the model results ard the observations
was also calculated. The correlation increased for all the stations considered during
the assimilation period. An important result is that the new estimate of the phase
speed was able to improve the correlation not only at the stations used in the
assimilation, but also at stations which were not a part of the assimilation.

The results have shown that the estimated phase speed was a unique so-
lution to the problem. It has also been shown that to be able to determine the
spatial structure of the phase speed, it was necessary to have observations in the
three different dynamical regions of the model. Observations should be available in
the eastern region where Kelvin waves dominate the dynamics, in the central region
where there is a mixture between Kelvin and Rossby waves influencing the solution
and in the western region where Rossby waves play the most important role.

The estimated parameter is stable, i. e. errors in the observations do not
result in large variations in the parameter. Normally distributed random numbers
were added to the observation in an identical twin experiment. The errors corre-
sponded to an uncertainty in the sea level measurement of 40.05 meter. The final
result of the assimilation gave a solution which was very close to the “real” spatial
variation.

The variational data assimilation algorithm can be computationally ex-
pensive to use. It is necessary to be able to find the optimal solution in as few

iterations as possible. The results from the different experiments have shown that
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the algorithm is computationally effective. Convergence was achieved in ten itera-
tions or less for all the cases considered. One of the crucial parts of the algorithm
1s the choice of the minimization method. Several different conjugate gradient al-
gorithms exist. Navon and Legler (1987) tested some of the available subroutines
and their conclusion was that the subroutine CONMIN of Shanno and Phua (1980)
(which was used here) was the one that gave the best convergence rates. There is
a constant development in the area of optimization, and one way of improving the
convergence rate could be to implement another subroutine. Navon (personal com-
munication) has tested a new subroutine based on an algorithm of Liu and Nocedal
(1988) which gave even better convergence rates than CONMIN. A saving of up to
25% in the number of iterations were found. For problems which require a large
number of iteration this is an important improvement. The two assimilations of real
sea level observations studied here, required only five or six iterations to converge,
and a saving of one or maybe two iterations would not mean much in terms of saved
computer time.

Another crucial part of the method is the way the step length is calculated.
It is of extreme importance to have a routine which gives the optimal step length.
The method used here (Derber (1985)), worked satisfactorily for the experiments
considered but may not be adequate for nonlinear models. The initial guess had
some influence on the convergence rate. It turned out that the initial guess should
not be too small.

The estimated parameter has been assumed to be a function of longitude
only. Letting the phase speed be an arbitrary function of both latitude and longitude
would not be a feasible problem to solve given the limited number of observations
available from sea level stations. Satellite observation may give enough information

to make it possible to determine the spatial structure of a phase speed which is a
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function of both latitude and longitude. At least it should be possible to determine
the large scale structure of the phase speed. Short scale variations will probably
have to be removed from the solution. As mentioned earlier experience has shown
that it is sometimes necessary to reduce the dimension of the parameter in order
to obtain stable results which do not bounce back and forth between high and
low values during the iterative process. Restricting the attention to the large scale

variation is one way of reducing the dimension of the parameter.
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Appendix A: Derivation of the continous adjoint equations

From section 6 the Lagrangian is given by: (Note that in spherical coor-

dinates do = a?cosfdfdgdt.)

L(U,V, b, Auy Ay Ay, @) =

2 ¢
/,\u [%g—fV _© Or 0 aviy

acosf 8¢ p do

1% 2oh 19 2
+//\v —+fU+ 50——7—AVV]da

oh 1 (oU 9
+ / M |55t 2e0sd (a¢ ae(Vc"SG)M
X

+ / I;—"(h — 2"2do + / %@2 —*)do
x 3

(A-1)

where Ay, Ay, A, are the Lagrangian multipliers for the U,V and h equation, respec-
tively. K} and K, are specified (constant) validity coefficients, ¢? is a function of
longitude only.

Letting the first order variation of L with respect to Ay, A, and Ap, vanish,

give the following equations:

aU v 2 8r 19

— — — AV = -
ot + acos@d¢ p AV (4-2)
v 2ok 1P 9

— =0 -
a5t fU+ — 25 AVeV (A-3)
oh 1 ou 0o
8t ' acosh (8¢ ag(Vcose)) (4-4)

These three equations are identical to the original model equations (5—1) — (5 — 3).
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In order to find the equations for the Lagrangian multipliers, the adjoint
equations, one has to let the first variation of L with respect to U,V and k vanish.

It is necessary to perform the following integrations by parts.

d U, a |[d Ay
FTij / Gugp)de =557 [ / gitul)do — [ 5Udo ]
D> b
Oy
—/Wdtf
b))

where the initial condition for the adjoint variable Ay = 0 at ¢ = T is used. T

(A-5)

represents the time at the end of the integration period. At ¢ =0, U is assumed to

be zero. Similar integrations of the other two terms involving time differentiation

give
g ov a
p Y
a Ooh I
o / (Anmp)do = - athda (A=T)
) b)

where the initial conditions A, = A\, = 0 at ¢t = T are used and V and k are assumed

to be zero at t = 0.

From the continuity equation one has

g 0 1 (2 O\,
8U/acosﬂ( h8¢)da U [/m (%(AhU) 98 U)d }
)

1 0X
/ acosf 3¢ T

z

(A-8)

where the boundary condition U=0 at the eastern and western end of the basin has

been used. Similarly one finds
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7]
v / acosG( h@H(VCOSH))dU -

z
3 / / / az5(AnVcost)dbdgdt — / / / aVcosH-——dequt = (4-9)

1&\,,
aW

3
where it has been used that V = 0 at a solid northern and southern boundary.
The question of the condition at the open boundaries wiil be delayed until the
finite difference equations are derived, but for the time being the extra terms are
reglected.

The pressure terms give the following two integrations

L
%)d0'=

Oy
—(c2/\u h)dfdpdt — / / / 2 ah—=t d0d¢dt (4—10)

c2 Ny Ay O
—/// hAu——dequSdt:I /acosaa_édﬂ— m%da
t z z

where the boundary condition )\, = 0 at the eastern and the western end of the

§3|Qa Q>|Q>

/ acosa
z
[t

basin has been used, and
Bh/—( v@ﬂ Ydo = 8h(///c a— (/\vhc030)d9d¢dt
~ / / / / / / ahXysinddodedt) = (A—11)
t t ¢ 8

c¢ 0
/acosﬂaﬂ()‘vcosa)d
pY
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where it is assumed that A, = 0 at a solid northern and southern boundary. A dis-
cussion of the term at the open boundary will be delayed untail the finite difference
equations are derived. For the time being the extra terms are neglected.

The Laplacian friction term can be written as:

3

aU (AV2U)do =

5 5 (A—12)
8U/ c0320[ 2+cos€ (cos€ 0) Udo

where the simplified V2-operator given in (5 —4) has been used. The first term in
(A - 12) gives:

d 1, U

%///coﬁ 8¢2d0d¢dt
t

a2

[}
U [/ 0/ cost 6¢( “ EY )d0d¢dt

43
4
1 8\, OU
- / / o0 95 a¢d0d¢dt] (4-13)
i
d 1 8 0\
B 55[/ / cosB dg D¢ g ) d0dddt
t g0
1

2,\u 1 3%
- / / / cos0 O¢? d0d¢dt] =4 / a2cos2f 92 do
t g8 b

where it is assumed that A, = 0 at the eastern and the western end of the basin

(where the no-slip boundary condition is used for the velocity component).
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Last term in (A — 12):

7]
Agﬁ[///z\u005082d0d¢dt ///)\usznO d0d¢dt]
0 Ay
W[///aa(/\ucoseag —)dfd¢dt - // cosO d0d¢dt
t ¢

4
6
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Q
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\.

8
/s
- %[ / / Uszn0d6d¢dt— / / / /\uUcosadequt]

1 32,\u )W
A/ajrosz—A/m 90 cosOsznGda
by b))

where it has been used that A, = 0 at a solid northern and southern boundary. It

~\“

Uszn6d0d¢dt / / / A Ucosﬂdadd)dt]

is also assumed that U = 0 at a solid northern and southern boundary. Again the
discussion of what happens at the open boundary will be delayed until the finite
difference equations are derived. For the time being the extra terms are neglected.

A similar integration of the friction term for V gives

1 8%),

A ———d A-15
/ a?cos26 g2 7 ( )
)

. [ 182, 1 3

n/a—zwda-— A/ PR T ——cosfsinbdo (A-—16)

z
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where it is assumed that A, = 0 at the eastern and the western end of the basin.
Letting the first-order variation of L with respect to U , V and h vanish,

gives the adjoint equations:

Oy 1o 2y
Ay 13,\,, 9y _
o T AV s (4~18)

A, [0 L Ay ac2 9
Ot  acosf | 3¢ =3 8¢

+ Kp(h—h)=0 (A—19)

(/\L cosf)

By rescaling Ay and Ay in the following way:

A"U = Au . C2
(A—20)
A=y - c?
equations (A — 17) — (A —19) can be written as (dropping the primes):
M c2 Ay, 2y _
ANy c2 aA,, 9
Ny, 1 [dA, O no_
I el [ 3¢ (z\vcosﬂ)] +Kp(h—R)=0 (A—23)

The adjoint equations (A — 21) — (A — 23) now have the same form as the original
model equations (A — 2) — (A — 4).
From the term resulting from differentiation with respect to the parameter

2 gives:

u Av ah 2
// [c2ac030 aqﬂ 2q 30} dbdt + TLGKC(C )=0 (A—24)

where the primes have been dropped. T represents the period over which the data

are assimilated, while Ly is a length scale in the north-south direction.



Appendix B: Derivation of the finite difference adjoint equations

The finite difference equations for the variational formalism will be derived.

The following finite differencing operators can be defined:

Qpi] — @
Dpyop = ﬂh—p (B-1)
ap — Qp_1
1 Qpi] — Qy_ 1

whereforp:z':»h=A¢,p=j=>h=A0andp=n=>h=At. A, Af are
the spatial gridspacing in the ¢ and 4 direction and At is the timestep. Two useful

relationships between Dp; and Dy are
Dpirap_1 = Dp_ay (B—4)

Dp—api1 = Dpray (B-5)

The following formulaes for summation by parts are going to be used when the

first order variation of the Lagrangian with respect to Az,i, i t’;"i’j and ’\g,i,j is
evaluated.
Dp+(e)p = apDptp + Yp+1Dpi0p (B -6)
Dp—(e7)p = apDp—1p + 1p-1Dp~cxp (B-1)

A summation by parts will result in boundary terms and the range of
the summation may have to be modified. The following notation is convenient,

Richtmyer and Morton (1967)
s

| = QstiVstj — Cr—iTr—j (B—8)
r
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The formulaes for summation by parts may take different forms, but they can be

derived by summing the identities (B — 6) — (B —7) to get

s s+1 s+1
Z ajDjivj=— Z YiDj—ej + agyo (B-9)
= j=r+l r
s—1 s
d_aiDjvj=— 3" viDjra;+agr (B —10)
j= j=r—1 r—1

The finite difference equation for the Lagrangian in (5—6) can be written
as

I-1J-1 N

2
LEUL;: Vi R s M o Moo hig G) = Z Z Z’\uu[ noU,
i=1 j=1 n=1
(Vn +V; z+1] + V 1,5+1 + V+1 J+1)
2 9.
cs A 1
-Diyhf; — =L — “5( (D2+Dz—)

acost; T, p

+(Dj4 D )UT; —

I J N

PONWME

=2 j=2n=1

B-11
+= ( HE 1+U_7 1+U '+Uz?,lj) ( )
Ici D n Tio,j A D.,D:

a i=hi p a? (c0329 cos20; D '_)

sin;
+(Dj+Dj_)Vi?j p— (DJO )] a2c030jA¢A0At

I J-1 N

+ 35 3 P [

=2 j=1n=1

1 n
+a—C-OS—0;<D1_Ui’j + +( 6080 ))]

K.

Ah(h ) + ——( 2 _ ¢Z )2]a cost ; AGAOAL
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where a leap frog time differencing scheme is used. To start up the integration a
forward timestep is used. This will be represented in the above equation by changing
the operator Dyg to Dyny. This forward timestep is also used every 99t? timestep in
order to eliminate the computational mode. The spatial derivatives are estimated
by centered differences using an Arakawa C-grid, Arakawa (1966). Superscript n
denotes the timelevel, while subscripts (¢, j) represent the gridpoint. AL i ’\Z,i, j
and A} ij are the Lagrangian multipliers for U:‘J,V;"J and R 'j» respectively. K} and
K. are specified (constant) validity coefficients. The parameter c? is taken to be a
function of longitude only. For a description of the other parameters and variables,
see section 6.

Letting the first-order variation of (B — 11) with respect to A A i

and A} hij vanish, give the following equations

f
DyoUsy — (Vi + Vit + Vi + Vi 1)

2 2.
2 no_ i Al 1
acost; i+hi; p  a? (cos29 costg; i+ Di-)UE,
stnb;
D . ID.UP. | = -
+(Dj+ Dj-)UT; cosHjDJOU’T’IJ) =0 (B-12)

Dno +( im1,j-1 F UL + U + UR)

9 g
cs i A 1
+;’Dj_h’?- L —( ——(Di1. Di_ )V

2] p 2 cos20
sind;
+HDj4 DV = S (DjoVy ) =0 (B-13)
1
Dok + —— — (DZ_U-’?J- + Dj_,_(ViZ-co.SGj)) =0 (B — 14)
J

These three equations are identical to the original model equations (5—1)— (5—3).
The equations for the Lagrangian multipliers, or the adjoint equations,

are found by letting the first-order variation of (B — 11) with respect to Uz"], V"
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and h?, f vanish. In order to find the appropriate equations one must do several
summations by parts using the formulaes in (B~9)—(B—10). The terms resulting
from differentiation with respect to Ul!,lj will be considered first. The first term of

(B — 11) gives using the forward timestep Dy,

I-1J-1N-1
2223 U" - (An i ;Do UP;)aPcosf; A M0AL =
=1 j=1 n=1
I-1J-1 N
> 3 [ (Ot - Mgty
=1 j=1n=2 (B_15)
—UP; Dy AL J)] a®cos0; AGAIAL =
I-1J-1 N
> Z Z( Dp_ A2 J)a2cosﬂjA¢A0At
i=1 j=1n=2
where it has been assumed that the initial condition for Ui"- is U; -1- = 0 and also

that the Lagrangian multiplier /\u ij is equal to zero at the end of the integration,
/\uN i; =0 The latter is the “initial” condition for the backward integration of the
adjoint equations. /\u ij=0 because there are no data after the last computational

time level and the Lagrangian multipliers are forced by the data misfits.

For the leapfrog timestep one gets

I-1J-1N-1

> Z i (,\u 7 DnoUR;)a%cos0; AAOAL =

=1 j=1 n—2

I-1J-1N-1

Y [ AR,

i=1 j=1 n=2 (B —16)
U" DnO)‘u p J)] a2cos¢9jA¢A0At =

I-1J-1N-1

222 ( nOAZ,i,j)) ®cos; AGAGAL

=1 j=1 n=2

where (B — 3) has been used and the initial conditions U1 =0 and /\f‘V2 j=0.
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Similarly, differentiation of L with respect to V;’f] and h?j gives for the

forward timestep

™M)~
M~

N
Z( Dp_ A2, J)a cosf; AAIAL

i=2 j=2n=2
I J-1 N

Z( —Dn- A} J>a cos0; AGAIAL

i=2 j=1 n=2

-~
Il

iy

and for the leapfrog timestep

I J N-1
IS ("Dn v,])a cosf; ApAOAL

=2 j=2 n=2
I J-1N-1

Z Z Z (—DnO/\Z’i’j) a2cos9jA¢A9At

i=2 j=1 n=2

As for /\uN”, it is assumed that /\UN,] =0 and /\th- . =0.

Differentiation of the Coriolis term with respect to U " ; gives

I J N 9
ZZZaU.nJ ”:1,14( L1i-1 Ul

I-1J-1 N

+ U, ])a cosf; APAIAL = Z Z Z =(Ay d+1,j+1

=1 j=1 n=1
+ A0 g1+ Ap i1+ A )atcost; AGABAL

(B-17)
(B —18)
(B —19)
(B — 20)
(B —21)

Differentiation of the first term of the friction term with respect to U ?‘j

gives

I-1J-1

>

=2
I
=3

j=2n=1
J-1

=3 j=2 n=1

—(D,_ )(Dz— u,i ])) a2cosojA¢A0At =

ZZ E aU?,; ( cosg ’\uIJD’—UIJ u21D2—U2])

N
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I-1J-1 N

Z Z Z aUn (6050 (UIJDl-“’\u 17~ U2]D ’\n2])) (B _22)
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+URD;_Diy A2 ])AgbAoAt =
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33 3 vy (DeeDic e ) Penstjngon
=2 j=2n
where it has been used that A j=0and Ui’"j = 0 at the eastern and western end

of the basin.

The second term gives

I-1J-1 N

Z Z Z ( ) uz,](D i+D;_)U! )a2co.50jA¢A0At =

=2 j=2n=1
I-1J N
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=2 j=3n=1
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ZZZ ((,\g,,.,Jcoso JD;_ ULy = X3 ; ocosbyD;_UTy) (B — 23)

=2 j=2n=1

~(U55Dj—(Ay,7)c0s87) — UPyD; (AR ; 5)cosba)
+UfiDj+ D~ (Mg  cos "j)) AAIAL =

I-1J-1 N
DI ST I
=2 j=2 n=1
2szn9 n 2
- 2050, D, 70z, i A |a“cost; AGAIAL
where it has been used that /\Z ij= = 0 and Uinj = 0 at a solid northern and southern

boundary. Expanding the boundary terms in (B —23) and using the open boundary
conditions for U? e it can be shown that at the open boundaries a condition identical

to the open boundary condition used for U ;> Camerlengo and O’Brien (1980), must
be used for A” .

ud,j
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The last term gives

I-1J-1 N AsmH \
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The last two terms for the friction can then be written as
I-1J-1 N
¥ }: DX = 55 an - VaZeosts iASAOAL (B —25)
=2 j=2 ne uyd,j 6030 JOu i 5

Differentiation of L with respect to /\;’i j &ives similar expressions as (B — 22) and

(B — 25) for the friction terms involving A

v 1,]

From the second term in the continuity equation one has

I J-1 N P
YN 0T, (ac030 7+ iDi_UP)a%cos0;A$ABAL =
1=2 j=1 n=1
I-1J-1 N P
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Z Z Z (_MDH”’\Z,LJ') a2c050jA¢A0At
i=1 j=1n=1 J

where it has been used that Uz-"j = 0 at the solid boundaries at the eastern and

western end of the basin.
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Differentiation of the Coriolis term with respect to V" gives

I-1J-1 N

f
3y Z Z ( Aui g (Vi + Vi
=1 j=1n=1
LY B-21
+Vihiam + Vi J+1))a costiAGAGAL = Z Z Z (_—( g —

1=2 j=2n=1

+A%; i—-15 T AR, dj—1T G i1 ]_1))a cosf; APAOAL

From the third term in the continuity equation one has

J-1

I N
222 a?/ (acosa Mi, i Di+(Vijeosh; ))a cosf; AGAGAL =
i=2 j=1n=1

I J N
Z Z Z [ (()\h iJ JCOSHJ ’\z,i,2Vi7,1200502)
i=2 j=2 n=1 (B — 28)
— V,-:‘jcoseij_/\Z’i’j))] APAOAL =

I J N

Z Z Z (——D _A; zJ)a cosf; AdAIAL

1=2 j=2n=1
where it has been used that V;’; = 0 at a solid northern or southern boundary.

Differentiation of L with respect to A7 ; gives from the third term in (B—9)

I-1J-1 N c2
Z Z Z ( ,]m z+hz J)a cosl; A¢AOAt
=1 j=1 n=1
I J-1 N
>33 g (1540, - ot

i=2 j=1n=1 (B —29)
—R%;D; (g J))] APAIAL =

I J-1 N
Z E Z( acos; i"(c’z’\Z,i,j )> a2cosHjA¢A9At

i=2 j=1n=1

where it again has been used that A" .

wij is equal to zero at the solid boundaries at

the eastern and western end of the basin.
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From the eight term

I
> Z Z ( i ; +D;_h? )a2c030jA¢A0At =
=2 j=2n= 1
I J-1 N
Z Z E [c a— oW ( v gcosdyht y — Av.igcosfahls)
i=2 j=1n=1 (B — 30)

~hi;Djy (/\Z”cosa ))] APAIAL =

I J-1 N
Z Z Z( acosB j+(/\3’,-,jc030j)) a2c050jA¢A9At

=2 j=1 n=1
where it has been assumed that )\g ij = = 0 at a solid northern and southern bound-
ary.
If A7 ; ij and )«" ; are rescaled by
2
’\n,w = ’\Zld G
(B-31)
)‘n =\, 2
’U,i,] v 1;] l

the equations for the Lagrangian multipliers or the adjoint equations can be written

in the following way

- DnO)‘u ij T (A L4+l T ’\v g1t "‘u a1yt ’\v z,])

c? A/ 1
_aco;0j DH—/\Zai:J' - ?(m( 2+D1_)’\uz]

sinb;

H(Dj+ D)5 = — 9’ Djory; ]) =0 (B —32)
~Dpody ;5 — (’\u gt A1 T A1 F A e i1i-1)

2
¢ A 1
_Zsz—’\z,i,j - a_z(_"( 1+D2—-)Av i,j

cos20
sinb;
+(DJ+D ))‘v,z,] J( ]0 vz )=0 (B——33)
1
'—Dno’\z,i,j acos; (Dz-—()‘ 1j)+Dj+(/\Z’i,jcosl9j))

+Kp(hY; — hY;) =0 (B - 34)
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where the primes have been dropped.

At last from the differentiation of L with respect to cf one finds

J-1 N AR
u,i,j n v,i,J n
hi . D._hZ. 1 AGAE
Jz:I ,ZX_: [czacoso i+h g+ cZa 7 ”J} (B —35)

+TLyK(? — F) =0
where again the primes have been dropped. T represents the period over which the

data are assimilated, while Ly is a length scale in the north-south direction.



