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Abstract

A simple oceanic model with thermodynamics is used to determine
the surface thermal forcing field by the variational adjoint technique. Two
data-sets are chosen, the climatological monthly-mean sea surface
temperature (SST) and winds. We have been able for the first time to
calculate the seasonal surface heat flux patterns which are consistent with
the ocean's dynamics and thermodynamics and which agree with the
observations.

The use of a priori information is investigated in the formulation of
the cost function to obtain meaningful model parameters. Experimental
evidence has verified that adding a priori information of the estimated
parameters can increase the probability for the solution to be unique. The a
priori information also plays the role of bogus data. It serves not only to
increase the number of observations but to improve the conditioning of the
Hessian matrix. Hence the practical benefit of adding the a priori
information is to accelerate the convergence of the descent algorithm.

We learned from many test runs that surface heat flux pattern can
not be fully derived without the optimal adjustment of the model initial SST
state. The importance of a correct initial SST condition in our study is to

ensure a periodic seasonal cycle and therefore reduces the level of the data

misfit.



The result illustrates that the model, albeit simple, is capable of
assimilating the sea surface temperature (SST) observations in deriving the
surface heat flux. The comparison with the existing heat flux atlases of
Oberhuber (1988) and Fu et al. (1990) has shown that our adjoint procedure
has successfully captured the main seasonal signals of the surface heat flux
distribution over the tropical Pacific ocean, though some differences exist.

The result from this research is very promising. The methodology
used here can be easily extended to simultaneously derive the surface wind
forcing and the surface heat flux. Thus, it can provide the information

useful for the studies of climate prediction and air-sea interaction.

xiii



1. Introduction

1.1 Motivation

The process of combining data with model dynamics, known as
data assimilation, has proven to be a powerful tool for extracting the
maximum amount of information from the observations. Data
assimilation is now used extensively in meteorology (see Thepaut and
Courtier, 1991; Navon et al., 1992) and, recently, in oceanography. As
reviewed by Ghil and Malanotte-Rizzoli (1991) and Anderson (1991), the
fundamental difference between data assimilation in oceanography and
in meteorology is the motivation. Oceanographic assimilation is not
driven by the need to forecast as is the case for meteorological
assimilation. It is motivated by the need to improve our understanding of
ocean dynamics/thermodynamics and by the need to use the much-
expanded yet still insufficient available datasets in an optimal fashion.
Therefore, the emphases of oceanographic assimilation are on model
parameter estimation, formal testihg of the model against the data, and
exploration and intercomparison of assimilation techniques.

Three elements comprise a data assimilation approach. These are
an oceanic model, assimilation technique and observations. The oceanic
model describes the physical mechanisms of ocean behavior. The
assimilation technique provides the means for extracting and filtering the

information from data. These two processes combined give the computed
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atmospheric/oceanographic fields which are consistent with both model
physics and observations.

The development and implementation of the data assimilation
techniques in meteorology have dramatically improved the ability of
theoretical models to diagnose and predict the atmospheric behavior.
However, oceanic models are less realistic and sophisticated than their
meteorological counterparts with respect to the parameterizations of
internal physics and forcing functions. This is largely due to the
inadequacy of observations in providing effective tests for verifying model
formulations.

Even with new technology, oceanic datasets are still insufficient to
provide complete, uniform and accurate information in space and time. A
major challenge confronting oceanographers is to develop data
assimilation techniques to obtain a better estimate of the ocean fields
while improving the less well-known aspects of the model, especially the
surface forcing fields. The process which derives the model parameters
from the available observations is known as parameter estimation.

The ocean is forced thermally through direct insolation, through
evaporation and precipitation, through sensible heat transfer from the
overlying atmosphere, and through the surface wind stress. Because of
limited direct measurements, the variability of the surface forcing (the
surface heat fluxes in particular) has been a vexed question in the study of
climate changes and air-sea interactions. For a long time, researchers
have been using the aerodynamic bulk formulae to study climatological

surface heat fluxes over the tropical oceans. It is commonly accepted that
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such heat flux parameterization contains a large degree of uncertainty in
the values of the empirical constants and some less known physical
parameters such as the cloud covers and near-surface humidity (Blanc,
1987; Blumenthal et al., 1989; Harrison, 1991; Seager et al., 1988). It is not
surprising to see that existing atlases (e.g. Esbensen and Kushnir, 1981;
Weare et al.,. 1981; Oberhuber, 1988; Fu et al., 1990) have shown
substantial differences in the overall patterns and magnitudes of the
climatological heat fluxes over the tropical Pacific ocean. The climate
prediction of upper ocean properties with these prescribed heat fluxes
have been unsuccessful.

Hence deriving the heat flux fields by assimilation techniques will
not only lead to better understanding of heat flux variability but aid in
climate prediction studies. The motivation of this research is to estimate
the annual distribution of net downward surface heat flux distribution
over the tropical Pacific ocean using the data assimilation technique

called the adjoint method. This research is an application of parameter

estimation.

1.2 OceanicData Assimilation Techniques

There have been two general approaches for oceanic data
assimilation, that is, the continuous data assimilation and the variational
method. Continuous data assimilation inserts observations directly into
the model while the model is being integrated forward over some time

interval. The variational method finds a solution of model inputs by



4

minimizing some measure of the distance (or lack of fit) between

observations and model counterparts.

(a) Continuous Data Assimilation

Continuous data assimilation has been largely technology
motivated. That is, it was developed for assimilating the asynoptic data
from satellite-borne systems such as sea surface height from altimetry.
The technique that has been applied to continuous data assimilation with
real data is dynamic relaxation (or nudging, Newtonian relaxation).
Dynamical relaxation has been studied theoretically by meteorologists
Anthes (1975), Hoke and Anthes (1976) and Davies and Turner (1977). It
was introduced into oceanography by Verron and Holland (1988) and by
Holland and Malanotte-Rizzoli (1989). This technique has been used
widely in assimilating the altimetry data and found to be very successful
both in quasi-geostrophic experiments (Holland and Malanotte-
Rizz0li,1989; Haines, 1991) and primitive equation tests (Malanotte-Rizzoli
et al., 1989; 1990). Recently a technique allowing optimal nudging based on
variational adjoint parameter estimation was developed by Zou, Navon

and Le Dimet (1992).

(b) Variational Approach

The Kalman-Bucy filter, the inverse model and the adjoint equation
method are the commonly used techniques of variational approach. The
formulation of the KB filter (Jazwinski, 1970; Ghil et al., 1981; Dee et al.,
1985; and Parrish and Cohn, 1985) is an elegant and comprehensive
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mathematical description of the data assimilation problem. This method
is based upon the ideas of sequential estimation theory which explicitly
includes the prediction of the background error statistics. Therefore, the
KB filter is capable of providing the error estimates such as the error bars
or the error covariance matrix of the obtained solution. However, this
technique suffers from two serious drawbacks. The first and foremost is
the computational expense of updating the error covariance matrices. The
computational requirements rapidly increase with model complexity and
are seldom affordable. The second is the difficulty in identifying the
systematic model errors from the observational errors. Because of these
limitations, most applications of this technique in oceanography have
been done for relatively simple dynamical models (Miller, 1986; Bennett
and Budgell, 1987 and 1989; Gaspar and Wunsch, 1989; Miller and Cane,
1989; Miller and Ghil, 1990).

The inverse model and the adjoint equation method are all derived
from optimal control theory of partial differential equations. The inverse
model is often formulated as a set of linear equations relating data and
unknown parameters. The equations are written in matrix form and
solved by methods such as singular value decomposition or linear
programming. This technique needs to store a matrix with the size of
(number of unknowns Xx number of equations) in performing the
computation. As a result, it has been limited to low spatial resolution or to
simple local dynamics (Wunsch, 1978; Olbers and Wenzel, 1988; Schréter
and Wunsch, 1986; Wunsch, 1987, 1988 and 1989; Tziperman and Hecht,
1988; and Tziperman and Malanotte-Rizzoli, 1991).
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The studies by Lewis and Derber (1985), Le Dimet and Talagrand
(1986), Talagrand and Courtier (1987), Courtier and Talagrand (1987),
Derber (1987), Thacker (1987), and Thacker and Long (1988) have made
significant contributions to the adjoixit approach and developed it as one of
the important strategies in variational data assimilation. More recently
the method has been applied to 3-D operational models by Thepaut and
Courtier (1991) and Navon et al. (1992). The adjoint method has been used
successfully in both meteorology and oceanography. For a review of its
applications in meteorology, one may refer to Lorenc (1986), Navon (1986),

Le Dimet and Navon (1988) and Ghil and Malanotte-Rizzoli (1990).

1.3 Application of Adjoint Method in Oceanography

The adjoint method incorporates the physics of the problem in the
definition of the cost function (representing the misfits between model and
observations) and constrains the dynamics. A Lagrange multiplier term
is used to enforce the dynamical constraints. It is the solution of the
adjoint equation of the linearized model equations called the tangent
linear model. The first and most significant advantage of this technique is
the introduction of the adjoint equation which allows the gradient of the
cost functional with respect to the control variable vector to be efficiently
and accurately evaluated. As a result, the computation of the minimum of
the cost function is greatly simplified. This technique has proven to be
very versatile. It can assimilate all types of data as long as data can be

represented in terms of model variables or functions. It can also be used to



7

adjust any imodel parameters (initial condition, boundary condition,
forcing, mixing coefficients, etc.) once there is sufficient data available.
Thacker and Long (1988) have made the first attempt to apply the
adjoint method in oceanographic data assimilation by fitting the model
dynamics to observations. The research work to date can be grouped into
four categories, namely, initialization, parameter estimation, steady state

circulation investigation, and Gulf Stream study.

(a) Application to the tropical oceans - Initialization

The motivation for initialization in oceanography is primarily
driven by the crucial need of climate studies. As oceanic observations
increase dramatically in quality and quantity in the near future, and
oceanic and atmospheric models become more sophisticated, using the
coupled ocean-atmosphere system for climate forecasting is an ever
important subject. Initialization is a process that can provide diagnostic
constraints used to generate approximate but model-consistent data that
are not available from the observation network. The resulting balanced
initial conditions will damp out the spurious high-frequency oscillations
in the integration of the forecast model. This process is of vital importance
for the success of the forecasting of weather as well as climate. The
oceanic model must first be able to be initialized in order to find the
balanced initial state of the coupled models for the climate forecast. The
feasibility studies by many researchers, e.g. Thacker and Long (1988),
Thacker (1988), Derber and Rosati (1989), Bennett (1990), Long and
Thacker (19892, 1989b), and Sheinbaum and Anderson (1990a, 1990b), have
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shown the potential of oceanic model initialization using the adjoint
technique. Similar work was done in meteorology by Courtier and

Talagrand (1990), Zou et al. (1992a) and Zou et al. (1992b).

(b) Application to parameter estimation - Understanding ocean physics

The application of the adjoint method by O'Brien's group at FSU
addresses the issue of parameter estimation. Although oceanic models
have become quite sophisticated in recent years, they still cannot
accurately represent the state of the ocean. This is largely due to many
uncertainties of the model inputs, such as eddy-mixing coefficients,
surface wind forcing, surface heat and fresh water fluxes, etc. Normally
there is no direct information on many of these input parameters in
oceanic measurements. The purpose of parameter estimation is to deduce
the unknown model inputs from the existing data (wind, temperature,
salinity, currents, or whatever available datasets) with the aid of the
numerical model and, at the same time, to obtain an optimal estimate of
the observed field. This process can provide information useful for
improving the model itself. Besides the work done by O'Brien's group,
e.g., Panchang and O'Brien (1989), Smedstad and O'Brien (1990), and Yu
and O'Brien (1991), we have also seen other studies of the parameter
estimation, e.g., Schréter (1989), Das et al. (1991), Das and Lardner (1992),
and Lardner (1992).

(c) Application to the North Atlantic Ocean - Establishing a steady state

oceanic circulation
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Ocean dynamics are characterized by a wide range of temporal
scales. The high frequencies, associated with the gravity waves, set the
upper limit for the size of the time step for most numerical models; the
low frequencies, associated with the slow process in the establishment of
the oceanic equilibrium circulation, determine the number of time steps
needed to spin up the model. The need of using the optimization method to
compute the steady state arises because of the high computational
expense of the conventional method in doing so. Efforts are being taken by
the groups at AOML (Atmospheric and Oceanic Marine Laboratory,
Miami) and MIT to determine whether a state of the North Atlantic ocean
can be estimated which is consistent both with the observations and with
the North Atlantic models (either a simple barotropic vorticity-equation
model or a fully three-dimensional baroclinic, primitive-equation model)
in a dynamical steady state (Tziperman and Thacker, 1989; Tziperman et

al., 1992; Marotzke, 1992; Bergamasco et al., 1992).

(d) Application to the Gulf Stream - Characteristics study

The Harvard Oceanography Group has applied the adjoint
technique to the Harvard quasi-geostrophic open-ocean model (Robinson
and Walstad, 1987) to study the characteristics of the Gulf Stream. For
example, Moore (1991) studied the ability of the adjoint method in
correcting large errors in the speed and position of the Gulf Stream jet by
assimilating GEOSAT sea surface height observations. The adjoint
approach has also been used to investigate the fastest growing unstable

modes of a Gulf Stream-like jet (Farrell and Moore, 1992).
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Each category is not isolated. Thacker and Long (1988) and
Tziperman and Thacker (1989) present examples where the sea surface
forcing and coefficients of friction are also treated as unknowns and are
determined by the adjoint procedure besides computing the optimal model
state. Yu and O'Brien (1992) pointed out that the combination of
initialization and parameter estimation can result in a better model-data
fitting. One thing we should remember is that a problem is well-posed
only when the initial conditions, the boundary conditions, and the model

parameters can all be resolved.

1.4 Objectives

In this study an attempt is made to explore the potential of
determining the surface heat flux distribution by the adjoint method. We
choose the datasets of the climatological sea surface temperature (SST)
(Shea et al., 1990) and the climatological wind (Stricherz et al., 1992)
because of their fairly good temporal and spatial coverage in the domain of
interest. The seasonal variation of the surface heat flux over the tropical
Pacific ocean is investigated by assimilating the observations into a
relatively simple reduced-gravity model with thermodynamics (Cane,
1979).

The objective throughout this research is not to provide a pattern to
be rigorously adjusted for the use of climate and air-sea interaction

studies. Rather we devote this research as an application of the adjoint
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method in parameter estimation, with the aim of formulating a suitable
procedure for determining time-dependent field parameters. The
application of the adjoint technique in oceanography is in its primitive
stage and so is oceanic modeling in the tropics. The extensive use of the
adjoint technique is not only to perfect the technique itself but to improve
the model. Our research serves this purpose.

The study is organized as follows. In section 2, we present the
optimal control theory, its application in parameter estimation, and the
adjoint method in solving the parameter estimation problem. The
commonly used minimization algorithms, i.e., the steepest descent,
quasi-Newton and conjugate gradient methods, are also compared in this
section. In section 3, the oceanic model is described and the adjoint
equation is derived. The variational adjoint procedure is then formulated.
The important issues in data assimilation, such as the variable scaling
and cost function formulation, are discussed comprehensively in this
section. Section 4 presents the dynamics/thermodynamics of the seasonal
variability in the tropical Pacific ocean, in which the variations of SST,
wind, currents and upwelling are discussed. The seasonal surface heat
flux distribution obtained using the adjoint method are given in section 5.
Our results are compared with the existing atlases. The differences are
examined both through the air-sea interaction viewpoint and the
thermodynamic viewpoint. A summary and conclusions are included in
section 6. The derivation of the continuous adjoint equation is given in
Appendix A. The optimal heat flux pattern is compared with the residual

calculation in Appendix B.



2. Parameter Estimation: Theory and Application

In this section, we introduce the theoretical foundation of
parameter estimation, namely, optimal control theory of partial
differential equations. We then demonstrate how this theory can be

employed to solve parameter estimation problems in meteorology and

oceanography.

2.1 Optimal Control Theory

The theory of optimal control addresses the dependence of the
output parameters in a model described by a set of coupled partial
differential equations on any or all of the input parameters, or more
specifically, how the outputs can be controlled by the inputs.

A general class of parameter estimation problems involves finding
the values of a control parameter vector (input) z that minimize a cost
function (output) J(x,u) which is a scalar function of u and state vector x(u).
The state vector x of the system to be controlled is given by the solution of
equations E(x,u) = 0.

For a given parameter estimation problem, the choice of which
parameters to be designated as the control vector is not unique. However,

the choice must be such that 1 determines x through the model of the

system E(x,u) = 0.

12
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The objectives of the optimal control theory are to obtain necessary
and sufficient conditions for J(x,u) to be a unique minimum, and to study
the structure and properties of the equations which express these
conditions (where the model E(x,u) = 0 naturally intervenes). The ultimate
goal is to construct algorithms amenable to numerical computations for
the approximation of a control u which minimizes J(x,u) (such a control is
termed an "optimal control").

Optimal control theory has been generalized for systems governed
by partial differential equations (Lions, 1971; Bryson and Ho, 1975). This
suggests a method to solve the data assimilation problem in meteorology
and oceanography. The application of optimal control theory with the
variational method for data assimilation has developed the adjoint

technique for solving a large variety of problems.

2.2 Optimal Control Applied to Parameter Estimation
2.2.1 Mathematical Formulation of Parameter Estimation

Parameter estimation is one aspect of data assimilation. It
assimilates the observations into an atmospheric or oceanic model in
order to obtain an estimate for a designated model control parameter and
at the same time to give an optimal state of the atmosphere or the ocean.
This process is able to provide an exact consistency between the analysis
and dynamics using various kinds of available datasets.

When applying optimal control theory to parameter estimation, the

cost function, that measures the lack-of-fit between the observation and
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the model counterpart, is the output. Inputs can be any or all of the
parameters, for example, initial conditions, boundary conditions and any
physical or numerical parameters that enter the model formulation. The
input parameters are called the ‘control variables. Once they are
determined, they define a model trajectory in space and time. The purpose
of parameter estimation is not only to know the sensitivity of the cost
function to the control variables (sensitivity test), but to know how to adjust
each of the control variables in order to make the cost function as small as
possible (in a weighted least-squares sense).

There are two basic rules required for parameter estimation. The
fields produced by an assimilation must obey some constraints. These are
provided by the dynamical model and/or statistical relationships known to
be satisfied by the real atmospheric or oceanographic fields. In additien,
the fields produced by the assimilation must be as close as possible to the
observations within the accuracy of the observations themselves, at the
required spatial and temporal scales. These two requirements define the
optimal control procedure in solving the parameter estimation. In its
most condensed way, the procedure.searches for a solution for the control
parameter which makes the corresponding state of the atmosphere/ocean
closest to the given observational field in a given norm.

Therefore, the mathematical formulation for finding the optimal
solution can be described as follows:

minimize the cost function J(x,u)

subject to the equality constraint E(x,u)=0 2.1
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2.2.2 Weak, Strong Constraint Formalisms and the Augmented

Lagrangian

Sasaki (1970) in his historical paper has introduced two
formalisms, namely the weak and strong constraint methods, to enforce
the constraint (2.1) in order to numerically solve the problem. The weak
constraint formalism is related to the penalty method (e.g. Daley, 1991; Le
Dimet and Navon, 1988), in which the constraints are imposed with a

prespecified weight p:

J(xu) = J(xu) + || E(xu) |2 (2.2)
where ||[E(x,u)|| is a suitable norm of E(x,u). In this approach, the cost
function is minimized while penalizing the constraint violations. If one
wants to satisfy the constraint very precisely, one should specify | to be
very large. Otherwise, the constraint is only approximately satisfied if p is
chosen to be small. In other words, the value of i controls how accurate
the model E is as a representator of the observed state of atmosphere/
ocean.

Taking the first variation of (2.2) to be zero with respect to the

variables u and x yields the Euler-Lagrange equation:

oJ,
% G*u®)=0 (2.32)
aJ,
3 G u*)=0 (2.3b)

where u* and x* are the optimal values of x and x.
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The strong constraint formalism requires the optimal solution to
satisfy the constraint E(x,u) = 0 exactly. A Lagrange function L(x,u,A) is

defined to impose this condition. This is written as

L(Axu)=J(xu)+ { A, E(x,u)} 2.4)
where {, } is an inner product of two vectors and A is a vector of as yet
unknown Lagrange multipliers with the same number of components as
E has equations. The Euler-Lagrange optimality conditions, which

require the first variation of L(A,x,u) with respect to A, x, and u to vanish,

are given by

g.i. (A*, x*, 1) = 0 (2.5a)
% (A*, x*,u*)=0 (2.5b)
g—ﬁ‘ (A*, x*,u*)=0 (2.5¢)

The optimal estimates x*, u*, and A* are obtained by solving (2.5a) through
(2.5¢).
A combination of weak and strong constraint formalisms is the

augmented Lagrangian (Navon and De Villiers, 1983). It has the form:

L,y(x,u) = J(xu) + 1 || E(xu) |2+ {A, E(x,u) } (2.6)
In Sasaki's terminology, E(x,u) is considered both as a weak constraint
and as a strong one. A major advantage of this method is its ability to
prevent the numerical instability associated with the ill-conditioning of
the weak constraint problem (2.2) (Bertsekas, 1982; Fletcher, 1987; Bryson

and Ho, 1975). Numerical instability is induced when a variable is
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approaching the optimum. In this case, the procedure involves the
product of a large value of the penalty parameter pu by a small vector E(x,u)
and is subject to considerable round-off errors. This is expressed
mathematically by the condition number of the Hessian matrix
approaching infinity (the role of the condition number of the Hessian
matrix is discussed in section 3.2).

Another advantage of the augmented Lagrangian (2.6) is that it
tends to converge faster than the strong constraint formalism (2.4) (Gill et
al., 1981; Navon and De Villiers, 1983; Fletcher, 1987). It has been
mathematically proved (Gill, 1981) that the weak constraint (penalty term)
has the convexification property and can thus improve the global
convergence properties of the strong constraint formalism. This is
illustrated in section 3.3 when formulating a cost function for our

parameter estimation problem.

2.3 Adjoint Method

The constrained minimization problem (2.1) can in principle be
solved through its Euler-Lagrange equations either (2.3) or (2.5). But
except in particular cases, no standard method exists for directly solving
the system (2.3) and (2.5). For most cases, an iterative procedure has to be
implemented in order to compute the optimal solution of the system
numerically.

The number of control variables in meteorological/oceanographic

applications is usually very large, typically upwards of 107. Efficient






