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ABSTRACT

The mesoscale variability along the southwest coast of Mexico is studied using
sea surface height satellite altimeter observations and the Naval Research Laboratory
Layered Ocean Model. The study is divided into three parts: The formation and fate of
El Nifo/Southern Oscillation (ENSO) related eddies, the existence and genesis for
anticyclonic eddies near Cabo Corrientes, and the life cycle of the Tehuantepec eddies.

Investigation of ENSO related eddies indicates that during strong warm ENSO
events the upper ocean circulation along the southwest coast of Mexico is destabilized.
The effect of ENSO appears as three distinct stages. First, a coastal jet characterized
by strong vertical shear flow develops. Second, the shear flow strengthens, increasing
both its horizontal dimension and the amplitude of its oscillations. Finally, the jet
becomes unstable and breaks into anticyclonic eddies, which separate from the coast
and drift southwestward. The genesis and strengthening of the jet is due to the
simultaneous occurrence of the poleward-flowing currents along the southwest coast
of Mexico and the poleward circulation associated with warm ENSO events.

Examination of the generation of anticyclonic eddies near Cabo Corrientes
indicates that the arrival of downwelling coastally trapped waves at Cabo Corrientes
corresponds to intensification of local currents. The interaction of these intensified
currents with the coastline geometry generates anticyclonic eddies. Comparison of

different numerical simulations suggests that the bottom topography and the local
X1ii



wind are not responsible for the eddy generation. In contrast, the coastline geometry,
most notably the cape at Cabo Corrientes, causes the formation of eddies. The
existence and timing of the modeled eddies are validated with sea surface height
altimeter observations and temperature hydrographic data.

Analysis of the life cycle of the anticyclonic eddies generated in the Gulf of
Tehuantepec suggests that: The interannual variability of the number and strength of
the Tehuantepec eddies is directly related to the El Nifio-La Nifia cycle. These eddies
migrate ~5000 km, weakening (decreasing their maximum sea surface elevation) and
disappearing when exposed to the cyclonic shear between the North Equatorial
Current and the North Equatorial Counter Current. Outside of the equatorial region,
the Tehuantepec eddies are the most energetic signal in the Eastern North Pacific

Ocean.



1. INTRODUCTION

A peculiar characteristic of oceanography is that the locally observed processes
are not always completely explained in terms of local factors. In fact, they are often
elucidated in light of processes that originate far away in time and space, and have the
ability of be transmitted through the ocean. Ocean waves are one of the better
examples of this oceanic remote forcing.

Equatorial oceans are natural wave laboratories where waves in all frequencies
and scales can be generated. Some of these equatorial waves propagate eastward until
they reach the eastern boundary coast, which may be used as a new wave-guide to
continue a freely coastally trapped poleward propagation. In some cases, the
propagation can be of thousands of kilometers [Figure 1; Moore, 1968; Cane and
Sarachik, 1977; Busalacchi and O’Brien, 1981; Clarke, 1992; Ripa, 1997]. In our
particular case of the Northeastern Pacific Ocean, specifically the southwest coast of
Mexico (12° N-23° N), there are several different topographic changes, coast-line
variations, and ocean currents regimens that modify the characteristics of the freely

poleward propagating coastally trapped waves.
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Figure 1. Latitude-time section of sea surface height anomaly (in
centimeters) measured by TOPEX/Poseidon (T/P) along the 200 meters
isobath along the North America West Coast. The latitudes of the T/P
observations are indicated by the open circles. Note how the 1997-1998 El
Nifio event shows up as a coherent signal from the equator to the high
latitudes, and how the signal starts to decay at the latitudes of the Baja
California Peninsula (23° to 32° N).



The first obstacle (progressing northward from the equator and along the
Pacific Coast) is found at the Gulf of Tehuantepec (with center close to
94.5°W-15.5°N). There, the continental shelf changes abruptly from a wide shelif to a
narrow shelf (Figure 2). Thus, when the coastally trapped waves arrive to at Gulf of
Tehuantepec topographic discontinuity, some of them will be transmitted through the
narrow shelf and some will be reflected [Ripa and Carrasco, 1993]. Nevertheless, for
low frequency waves (i.e., periods of few years) the Gulf of Tehuantepec topographic
discontinuity poses no obstacle.

The next coastal area where the tropical waves can be altered is found from the
northwest of the Gulf of Tehuantepec to the southeast of Cabo Corrientes
(105.6°W-20.3°N) (Figure 2). In this case, the poleward-flowing local coastal
currents can couple to the currents generated by the coastally trapped waves and
produce a strong coastal vertical shear flow, which can destabilize and break into
eddies (section 3). Continuing their northward propagation the waves interact with the
topographic variation that starts close to Cabo Corrientes. There is a transition from a
narrow to a wide shelf, the coastline changes its orientation from northwest to
approximately eastward, and the Maria Islands Archipelago works as an extension of
the continental shelf (Figure 2). The arrival of downwelling coastally trapped waves at
Cabo Corrientes corresponds to the intensification of the local currents. The
interaction of these currents with the coastline geometry generates anticyclonic eddies
(section 4). The effect of the next coast-line-topographic obstacle, the Gulf of

California, is not included in this study. Equatorial generated waves are evidence of
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Figure 2. Continental shelf bottom topography (color contours in meters)
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and how the Maria [slands work as an extension of the continental shelf.
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the existence of oceanic remote forcing that contributes to the mesoscale variability
along the southwest Coast of Mexico. In contrast, the Gulf of Tehuantepec strong
intermittent winds are an example of atmospheric remote forcing.

The processes that generate the Gulf of Tehuantepec winds are reasonably well
understood. The North American cold season is characterized by cold fronts traveling
southward, and the route of these fronts is sometimes determined by continental
topography. For example, when the cold fronts arrive at the Gulf of Mexico they find
that the Sierra Madre Mountains are a natural barrier. These mountains do not allow
cold fronts to travel freely over the Mexican mainland. However, this barrier is broken
by a low-altitude, narrow mountain gap, Chivela Pass, which runs north-south from
the Gulf of Mexico’s Bay of Campeche to the Pacific Ocean’s Gulf of Tehuantepec
(Figure 3). The resultant pressure gradient drives strong winds along the mountain
pass. On the south side of the pass these winds can be intense, with maximum gusts
around 60 m/s [Stumpf, 1975]. These winds are locally referred as “Nortes” (meaning
northerly), but they are frequently referred to in scientific literature as
“Tehuantepecers” or “Tehuanos”. They blow offshore across the Gulf of Tehuantepec
coast, favoring strong nearshore oceanic mixing, intense lowering of sea surface
temperatures, and the generation of anticyclonic eddies [Hurd, 1929; Roden, 1961;
Stumpf, 1975; Clarke, 1988; McCreary et al., 1989; Lavin et al., 1992; Fiedler, 1994;
Trasvifia et al., 1995]. Satellite altimetry observations reported in this study indicate
that the anticyclonic eddies generated at the Gulf of Tehuantepec can travel

approximately five thousand kilometers westward (section 5).



30N

1ON|.

EQl.
120W 110W 100W 9ow 80W
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Bourassa et al. [1999].



Ocean eddies can be extremely long lived marine systems that have the ability
to migrate thousands of kilometers transporting water, heat and energy and playing an
important role in the biota concentration and related fisheries. Thus, in addition to the
physical intrigue of the problem by itself, it is interesting to study the generation and
evolution of the southwest coast of Mexico eddies for fisheries and the related
biological processes [Blackburn, 1962; Robles-Jarero and Lara-Lara, 1993; Firber-
Lorda et al., 1994; Lukas and Santiago-Mandujano, 2001].

This work is devoted to the study of the oceanic and atmospheric remote
forcing effects on the southwest coast of Mexico. The results presented in sections
three and four are being reported for the first time. It is hoped that this piece of work
contributes to initiate a new line of research dedicated to study the mesoscale
variability off the southwest coast of Mexico.

This dissertation is organized as follows. Section 2 includes a description of
the model and data utilized. In section 3 a generation hypothesis of a strong coastal jet
and anticyclonic eddies is presented and validated using the results of a numerical
ocean model and satellite altimetry observations. Section 4 includes observational and
numerical evidence about the anticyclonic eddy generation on Cabo Corrientes. In
section 5 the eddies generated in the Gulf of Tehuantepec are studied. A link between
the interannual variability of the number and strength of the Tehuantepec eddies and
El Nifio-La Niifia cycle is presented. Finally, the conclusion section draws together the
results of this entire study. Sections 3, 4, and 3 are intended as stand-alone reports and

thus contain their own introductions and conclusions.



2. THE MODEL AND DATA

2.1 The Numerical Model
The Navy Layered Ocean Model (NLOM) has been extensively documented
by Wallcraft [1991], Hurlburt and Metzger [1998] and references therein. Here we
give a brief description of the hydrodynamic version of the model used in this study.
The equations solved for each of the n-layer in the model are:
v,
ot

+ ma'x(o’—wk—[ )G k-1 [max(O, @y, )+ rnax(O, @, )}‘7 et max(O, ), )‘7 k+1 (D
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Where, k=l1....n if it refers to layers, and £=0.....n if it refers to interfaces between
layers with k=0 at the surface. Details about the parameters and notation in (1) and
(2) are provided in appendix A. Equations (1)-(2) are solved numerically in the Pacific
Ocean model domain that extends from 20°S to 62°N and from 109.125°E to
77.2031°W. The eddy-resolving (1/16° resolution in latitude by 45/512° in longitude),
non-linear model is characterized by a semi-implicit time scheme, Arakawa C grid,

and a free surface. In addition, it includes six isopycnal layers, realistic bottom

8



topography and coastline geometry. The last two features are based on a modified
version of the 1/12° ETOPOS bottom topography [NOAA, 1986]. The ETOPOS5 data
set was interpolated to the model grid and twice smoothed using a 9-point smoother.
The idea of smoothing is to reduce energy generation at smaller scales that are poorly
resolved by the model [Leonardi et al., 1999]. The model geometry is determined by
the 200 meters isobath, the minimum depth in the model, which represents the
nominal shelf break. The amplitude of the topography above the maximum depth of
6500 meter was multiplied by 0.8 to confine it to the lowest layer. Layer thicknesses
and densities where chosen in accordance with the Levitus’ [1982] climatology.
Another important characteristic of the model is isopycnal outcropping that is
incorporated by entrainment from the layer below whenever a layer becomes thinner
than a prescribed minimum thickness. Mass is conserved within the layers so that an
accumulation of entrainment mass in one layer is balanced by an equal amount of
detrained mass elsewhere in the model domain [Shriver and Hurlburt, 1997]. The
model boundary conditions are kinematic and no slip.

The latitudinal extension of the model domain (20°S-62°N) has the purpose of
allowing equatorially generated signals (i.e. coastally trapped Kelvin or related waves)
to influence the northeast Pacific Ocean. The roles of these waves as eddy generation
mechanisms are analyzed in two locations along the Mexican west coast (sections 3
and 4).

Wind stress is the only external forcing in the simulations reported here. Initial
conditions were taken from an ocean state snapshot that corresponded to a 1/8°

resolution previous simulation. Then, the model was spun up to statistical equilibrium
9



using Hellerman and Rosenstein [1983] (H/R) monthly wind stress climatology. Next,
the integration already spun-up was forced by 12-hourly 1000 mbar winds from the
European Center for Medium-Range Weather Forecasts (ECMWF) [ECMWF, 1994]
from 1981 to 1996. Thus, interannual variability is also present in the numerical
experiment. The 1981-1996 ECMWF temporal mean was replaced by the annual mean
from H/R to produce a hybrid wind set (ECMWEF/HR), as reported by Metzger et al.
[1994]. The last authors determined that a more realistic mean state could be obtained
in the ocean model by using the hybrid wind set. Consequently, the annual mean
solution would still be driven primarily by the H/R data, but seasonal and interannual
forcing would come from ECMWF.

Of particular importance in the study included in section 5, the eddy generation
and migration (partially) depends on the accuracy of the wind used to force the model.
The ECMWF/HR winds incorporate the seasonal strong intermittent Gulf of
Tehuantepec winds, which permit the model to reproduce the observed eddies’
generation and migration. The results reported in section 5 validate the use of the
ECMWE/HR wind set to force the model to study the Gulf of Tehuantepec eddies
generation and propagation. In the case of ENSO related and Cabo Corrientes eddies,
their generation mechanics are explained in terms of tropically generated waves rather
than local wind forcing. Consequently, precise ECMWF winds over the equatorial
Pacific would generate the tropical waves that are crucial for the eddy generation
mechanics discussed in sections 3 and 4.

The minimum depth in the model (200 meters) could be a questionable

limitation for the application of the model on a broad continental shelf. However, that
10



is not the case for our area of study. For example, in the Gulf of Tehuantepec area the
winds affect a region that consists mostly of deep waters [Figure 4; Trasviiia, el al.
1995]. Moreover, the shelf is broad off Central America and up to the Gulf of
Tehuantepec, but rather narrow off mainland Mexico [Figure 2; Badan, 1998]. In
addition to this main simulation in section 4 we used several other different
simulations (which are described there) to isolate the crucial elements on the Cabo
Corrientes eddies generation.
2.1.1 Model Large-Scale Circulation

The large-scale circulation off Mexico’s Pacific coast is mainly influenced by
the North Pacific Anticyclonic Gyre and by the equatorial circulation system [Wyrtki,
1966; Badan-Dangon et al. 1989]. NLOM long term climatological seasonal mean
currents (Figure 5) were generated to compare them with the observed wind-driven
seasonal patterns (Figure 6). In general, the model reproduces all the major currents.
From the north the California Current dominates the circulation off the Baja California
Peninsula. It leaves the coast around 22°N, feeds the North Equatorial Current and
usually reaches its maximum southward penetration in April. From the south the North
Equatorial Counter Current feeds the Costa Rica Coastal Current, which flows
poleward off mainland Mexico until around the mouth of the Gulf of California. More
details about this coastal current are provided in sections 3 and 4. The model contains
several different coastal circulation characteristics that are not included in the
observations. Nevertheless, this is an expected result because “no direct measurements
of the Costa Rica Coastal Current exist; the presence of the current is inferred mostly

from the large-scale hydrography” [Badan, 1998]. In any case, this short model-data
11
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Figure 4. Bottom topography (color contours in meters) used by NLOM.
Depths shallower than 200 meters are indicated with white color. The arrows
represent the NASA scatterometer (NSCAT) wind field on December 17,
1996. The length of each arrow is proportional to the wind speed. Note the
offshore winds off the Gulf of Tehuantepec (GT) and the weak upwelling
favorable winds along the coast just west of the Gulf.
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Figure 6. Principal seasonal circulation patterns of wind driven
surface currents in the Eastern Tropical Pacific. After Badan-
Dangon et al., [1989].
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comparison ensures that the model incorporates the large-scale circulation features off
Mexico’s west coast. In fact, the application of NLOM to the north Pacific has been
extensively validated [Hurlburt et al., 1992, 1996; Hogan et al., 1992; Donohue et al.,
1994; Jacobs et al., 1994, 1996; Metzger et al., 1994; Kindle and Phoebus, 1995;

Mitchum, 1995; Metzger and Hurlburt, 1996; Mitchell et al., 1996; Melsom, 1999].

2.2 The Data.

Two independent satellite altimeter sources were utilized. TOPEX/Poseidon
(T/P) sea surface height (SSH) anomaly data span from October 1992 to April 2000
(T/P cycles 2-278 inclusive). The T/P altimeter measures SSH every 6.2 km along
predetermined satellite tracks (Figure 7). The satellite time period to repeat an orbit
(cycle) is 10 days. The distance between two continuous ascending or descending
tracks is approximately 300 km in our area of study. This last characteristic usually is
a major objection to track eddies using direct satellite altimeter observations.
However, the diameter of the Gulf of Tehuantepec eddies (section 5) is bigger than
300 km and their lifetime is order one year. Thus, T/P along track observations can
measure the dimensions and position of the Tehuantepec eddies.

In contrast, the eddies generated by the tropical waves near Acapuico and Cabo
Corrientes (sections 3 and 4, respectively) are characterized by diameters of 100-200
km. Therefore, T/P wide tracks could have problems to detect those eddies. The
European Remote Sensing Satellite Altimeter 2 (ERS-2) is a T/P contemporary. ERS-

2 measures SSH every 6.2 km, has a track-to-track resolution of less than 60 km, and
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it starts a new cycle every 35 days. Then, coombining T/P and ERS-2 data sets the
Colorado Center for Astrodynamics Research generated high-resolution images, which
are designated to retain mesoscale SSH assocuated with fronts and eddies (web site
http://www-ccar.colorado.edu/~realtime/global-historical ssh). The T/P ERS-2
(T/ERS) maps provide evidence about the existence, position and altitude of the
Acapulco and Cabo Corrientes eddies. Even though the eddies characteristics as
reported in the SSH altimetry maps are not absolute (because the map generation
implies an interpolation processes), they can be used as observational evidence to
support the numerical results and the generatioon mechanism hypotheses presented in

sections 3 and 4.
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3. ENSO AND EDDIES ON THE SOUTHWEST COAST OF MEXICO

3.1 Abstract

TOPEX/Poseidon and ERS-2 (T/ERS) sea surface height altimeter
observations and the Naval Research Laboratory Layered Ocean Model (NLOM) are
used to study the circulation along the southwest coast of Mexico. The results_of this
research indicate that strong El Nifio/Southern Oscillation (ENSO) warm phase Kelvin
waves (KW) destabilize the upper ocean circulation. The effect of ENSO appears as
three distinct stages. First, a coastal jet characterized by strong vertical shear flow
develops. Second, the shear flow strengthens, increasing its horizontal dimension and
the amplitude of its oscillations. Finally, the jet becomes unstable and breaks into
anticyclonic eddies, which separate from the coast and drift southwestward. The
genesis and strengthening of the jet is due to the simultaneous occurrence of the
poleward-flowing currents along the southwest coast of Mexico and the poleward

circulation associated with ENSO downwelling KW.

3.2 Introduction.
The Mexican West Coast (12°N-32°N) is subject to the influence of both mid-
latitude and tropical ocean dynamics via the California Current (CC) and the Costa

Rica Coastal Current (CRCC), respectively. The CC dominates the circulation off the
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Baja California Peninsula (23°N-32°N) throughout the year. During its strengthening
period (late winter to early spring), the CC penetrates southward to ~15°N (Figure
8a). The less documented CRCC originates from the branch of the North Equatorial
Counter Current that turns northward near the western coast of the Americas. It shows
up as a surface poleward flow from 5°N to 23°N from middle spring to early winter
(Figure 8b), and plays an important role transporting subtropical subsurface waters to
the northern latitudes [Badan et. al,, 1989]. The CRCC reaches its maximum
intensification and northward penetration in fall [Wyrtki, 1966].

The area located in the confluence of the two currents, from the northwest of
the Gulf of Tehuantepec to Cabo Corrientes, is characterized by a poleward flow
during most of the year. At the same time, the variability of the circulation on this
confluence zone (CZ) is also influenced by interannual, intrasesonal (equatorially
generated) and higher frequency (storm-induced) signals (e.g., coastally trapped KW)
[Chelton and Davies, 1982; Christensen et al., 1983; Enfield and Allen, 1983; Spillane
et al,, 1987; Enfield, 1987; Ramp et al., 1997]. KW associated with ENSO warm
(cold) phase are characterized by a substantial positive (negative) sea surface height
(SSH) anomaly (Figure 1).

T/ERS altimeter observations and results from NLOM show that when
downwelling KW arrive at the CZ, their induced circulation accelerates the already
existent poleward coastal currents in the CZ producing a coastal baroclinic jet, which
turns unstable and generates eddies. Similar mechanics have already been proposed to

explain the presence of eddies in the Gulf of Alaska [Melsom et al., 1999].
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This section examines the nature and evolution of this newly recognized
coastal jet and provides the evidence to support that only downwelling KW contribute
to the generation of the jet. Our approach is via the analysis of 16 years of data
(1981-1996) from the NLOM simulation described in section 2. The numerical results

and the eddy generation hypothesis are validated with T/ERS observations.

3. 3 Results

The sixteen years (1981-1996) of the NLOM experiment allow us to compare
three different scenarios: neutral years (1981, 1983-1985, 1989-1990, 1992-1996),
ENSO warm phase (El Nifio) years (1982, 1986-1987, 1991), and ENSO cold phase
(La Nifia) years (1988). ENSO phases were identified using the Japanese
Meteorological Agency [1991] index (Figure 9). In subsection 3.3.1 the jet evolution
and eddies generation are described. Subsection 3.3.2 includes a temporal sequence
concerning with ENSO and eddies formation in the CZ and the Gulf of Alaska.
3.3.1 Jet and eddies generation

The upper ocean circulation is included in the two uppermost layers. Hence,
results description and discussion (in section 3.4) are focused on the variability of
layers 1 and 2. Examination of the interannual variability of the modeled layer
thickness during La Nifia and neutral years indicate that variations in layer 1 and 2
thickness are relatively small in the CZ. However, during strong El Nifio years
increases in layer 1 thickness exceed 100% and layer 2 thickness changes ~20%. The
typical velocity difference magnitude between layers 1 and 2 during neutral and La

Nifa years is 10 cm/s, with intermittent maxima of ~25 cm/s. In contrast, during
21
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Figure 9. The Japanese Meteorological Agency (JMA) index defines El Nifio
(La Nifia) events based on sea surface temperature anomalies in the region
4°N-4°S and 150°-90°W. An El Niiio (La Nifia) event is observed when the 5-
month running average of SST anomalies is greater (lower) than 0.5°C for at
least 6 consecutive months. Furthermore, the series of 6 consecutive months
must begin before September and must include October, November, and
December. Years in black correspond to neutral events, in blue to La Nifia
events and in red to El Nifio events. Courtesy of J. Whalley, COAPS/FSU.
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strong El Nifio years the typical velocity difference magnitude is around 35 cm/s, with
maxima exceeding 70 cm/s. This vertical shear is maintained for several months,
generating a narrow and elongated jet of ~40 km in the cross-shore direction and more
than 1000 km in the alongshore direction (Figure 10a). Later, the jet oscillates, at this
time wave-like oscillations of ~500 km wavelength are recognized (Figure 10b);
becomes unstable and breaks (Figure 10c); generating anticyclonic eddies (Figures
10d). An intrinsic characteristic of the modeled jets is that they destabilize when the
wavelength of their oscillations is ~500 km (Figure 10b). The new eddies are
characterized by a diameter of 110 km, a layer 1 thickness maximum of ~140 m at
their core, a migration speed of ~10 cm/s, and a layer 1 swirl velocity of 65 cm/s.
After four months they drift more than 1000 km to the southwest and remain
characterized by a layer 1 thickness maximum of 110 m.

In general, the model results indicate that anticyclonic eddy formation in the
CZ is not limited to strong El Nifio years (Figure 11). However, the stronger eddies are
only generated during strong El Nifio years. In addition, the model includes some
cyclonic eddy activity; nevertheless, the number of modeled anticyclonic eddies is
much larger than the number of cyclonic ones. Also, as can be observed in F igure 11,
the simulation results contain a significant amount of mesoscale variability in this
region.

Thé T/P high-resolution characteristic enables it to measure interannual SSH
variability along the Mexican west coast (Figure 12). The 1995-96 strong negative

anomaly and the 1997-98 El Nifio (positive anomaly) events are two of the most
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Figure 12. Latitude-time section of sea surface height anomaly (in
centimeters) measured by TOPEX/Poseidon (T/P) along the 200 meter
isobath along the west coast of Mexico. The latitudes of the T/P
observations are indicated by the open circles.
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distinctive features in Figure 12. To the best of the authors’ knowledge, no eddy
observations have been reported in the CZ. If our hypothesis is correct we would
expect to observe anticyclonic eddies in the CZ in T/ERS measurements during the
1997-98 El Nifio event. Figure 13 confirms this by showing a strong anticyclonic eddy
centered at approximately the same position of the model eddy in Figure 10d. An
exhaustive inspection of the T/ERS maps indicates that the anticyclonic eddy
generation in the CZ is not limited to El Nifio years. However, the strongest
anticyclonic eddies are formed during El Nifio events. There is no evidence of
coastally generated eddies associated with the 1995-1996 strong negative anomaly
event in the CZ. Overall, the satellite observations show the presence of cyclonic and
anticyclonic eddies in the area; though, the cyclonic eddies are not detected at the
coast.
3.3.2 The CZ and the Gulf of Alaska eddies

Analysis of the NLOM long term mean circulation of the upper layer of the
ocean indicates that along the North America west coast, only the Gulf of Alaska
(GOA) and the CZ are characterized by coastally attached northward-flowing
currents' (Figure 14). Then, if the eddy generation mechanism is correct we would
expect eddy activity in the GOA sometime after the CZ eddies are formed. Although
the GOA is completely out of our area of study, timing the lag formation between the
GOA eddies and the CZ eddies is instructive to emphasize into the oceanic

teleconnections and the combination of two currents as an eddy generator mechanism.

' It is important to note that from 5°N to 15°N the CRCC flows northward but it is not completely
attached to the coast.
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Figure 13. Sea surface height anomaly (color contours in centimeters)
in November 1997 as determined from TOPEX/ERS 2 satellite
altimeters. The reference level in this figure is a multiyear average. The
position of the CZ anticyclonic eddy (CZE) is indicated. In addition,
this picture includes cyclonic eddies offshore of the CZ and a Gulf of
Tehuantepec (GT) anticyclonic eddy, which are due to different
generation mechanisms. This map was obtained from the Colorado
Center for Astrodynamics Research publicly accessible web site
(http://www-ccar.colorado.edu/~realtime/global-historical_ssh).
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calculated from an 11-year climatology. Note that only part of the southwest
poleward-flowing currents.

Figure 14. NLOM climatological mean currents (in m/s). The mean was



The monthly eddy kinetic energy (EKE) maps indicate that the downwelling
KW associated with the 1982-83 El Nifio arrived at CZ in August 1982 (Figure 15a).
Eddy formation in the CZ is evident during September and October of 1982.
However, the GOA does not show any eddy activity during those months. By
November, the eddy activity in the CZ continues, some eddies have already separated
from the coast, and it looks like the downwelling KW associated with the 1982-83 El
Nifio signal has arrived to the GOA during November 1982. By December, the eddy
formation in the CZ has peaked and generates the largest and most energetic eddies.
Eddy formation in the GOA starts to be clear at this time. By January 1983 the eddies
at the CZ are not as energetic as in December, the coastal separation processes are
evident, and the eddies at the GOA have developed as a clear energetic signal. By
February the eddies at the CZ have already started their open ocean journey and the
eddies at the GOA have intensified. By March the eddies in the southeast GOA have
separated from the coast. In summary, the EKE maps show eddy formation at the CZ
and the GOA associated with the 1982-83 El Nifio event. The maps suggest an eddy
formation time lag of 2-3 months between those two coastal areas. Overall, without
taking into account the Gulf of California, the sequence of maps indicates that the El

Nifio does not contribute to the eddy generation from 24°N to 45°N.
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3.4 Discussion

The results in the previous section describe the development of a jet along the
southwest Mexican coast during El Niflo events. However, no coastal jet is developed
during La Nifia events. To understand this, it is important to remember that
downwelling (upwelling) KW induce a poleward (equatorward) circulation during
their poleward propagation. Thus, the coastal jet genesis hypothesis can be understood
as the combination of two currents flowing in the same direction. In our case these two
currents are the surface intensifitd CRCC and the currents induced by the
downwelling KW. In addition, the Florida State University (Stricherz, et al., 1992) and
ECMWF/HR wind fields indicate that the local wind in the CZ is a weak upwelling
favorable wind. Therefore, the influence of the local wind in the acceleration of the
CRCC is negligible.

On the other hand, applying the same logic one could expect the formation of a
southward jet during February-March-April of La Nifia years. However, numerical
and/or observational evidence of jet formation during La Nifia years is lacking. An
explanation is as follows. During its intensification the CC penetrates to ~15°N, but is
not attached to the coast in the CZ, because the Baja California Peninsula redirects the
CC seaward. Consequently, when the upwelling KW arrives at the CZ they do not find
a distinct southward flow to be accelerated. In fact, north of 18°N the flow is poleward
(Figure 8a). In addition, the observations reported by Wyrtki [1966] and the model
results show a predominantly coastal poleward flow in the CZ.

The jet turns unstable when the wavelength of its oscillations becomes

approximately 500 km. This number could suggest the existence of baroclinic
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instabilities. The explanation is as follows. The jet dimensions allow us to
approximate the offshore wave number as zero. Baroclinic instabilities criteria require
the alongshore wavelength be approximately 2.6-7-R,, where R, is the first
baroclinic radius of deformation [Kundu, 1990]. In our study area, the model R, is
~37 km. Thus, perturbations of approximately 300 km can grow and destabilize the
CZ jet. Nevertheless, Kundu [1990] shows that the 2.6-z- R, wavelength does not
growth at the fastest rate. The wavelength with the fastest grow rate is 3.9-7- R,
which is ~450 km in our area of study and is similar to the 500 km wavelength
observed in the numerical simulations (Figure 10b).

In addition, following Tilburg [2000] we calculated instability growth rate
diagrams for two different scenarios of the circulation along the southwest coast of
Mexico. First, under only the presence of the CRCC no growth of any wave is
recognized (Figure 16a). However, under the presence of both the CRCC and the
coastal downwelling KW associated with the 1982-83 El Nifio event, the growing of
different waves is evident (Figure 16b). Also, to provide some insight about the origin
of the instabilities a beta Rossby number (which is defined as the ratio of relative to
planetary vorticity advection, R, =v/fr*) was calculated. v is the maximum swirl
velocity of an eddy averaged around the eddy, S is the meridional change of the
Coriolis parameter, and r is the mean radius of the eddy. R, of order 1 (10) suggest
barotropic (baroclinic) instabilities involving the first baroclinic (barotropic) mode
[McWilliams and Flierl, 1979; Hurlburt and Thompson, 1982, 1984; Murphy et al.,

1999]. In the case reported here v =65 cm/s and r = 55km,; therefore, R, = 9.8,
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Figure 16. Baroclinic instability growth rate diagrams for the southwest coast of
Mexico. (a) Only under the only influence of the Costa Rica Coastal Current
(CRCC). (b) Under the influence of the CRCC and the Coastal downwelling Kelvin
waves associated with the 1982-83 El Nifio event. The black vertical line indicates
the location of wavelengths of approximately 350 km.
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which is order 10 and consequently suggests eddy formation as a result of baroclinic
instabilities.

T/ERS observations include cyclonic and anticyclonic eddies in the area of
study. However, strong cyclonic eddies are not very common in the model.
Entrainment from the layer below is the reason why we cannot observe the
strengthening of cyclonic eddies in the model. Entrainment in model layer 1 starts if
its depth becomes less than 50 m. McCreary et al., [1989] and Trasvifia et al., [1995]
emphasized the relevance of the entrainment process in stopping the developing of
cyclonic eddies in the Gulf of Tehuantepec.

Finally, the maximum SSH anomaly of the anticyclonic eddy observed by the
altimeters in November of 1997 is ~20 cm. Assuming a 1.5 layers reduced gravity
model the thermocline depth would be ~100 m. Although this is not the typical
maximum layer 1 thickness of El Nifio eddies in the model (~140 m), the eddies
observed by the altimeters provide evidence supporting the eddy generation

hypothesis.
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3. 5. Summary and Conclusions

The process of formation and subsequent migration of ENSO related eddies
along the southwest coast of Mexico are examined using the hydrodynamic Naval
Research Laboratory Layered Ocean Model. Verification of the modeled eddies is
based on TOPEX/Poseidon and ERS-2 sea surface height altimeter observations.
Analysis suggests that the observed eddies form due to baroclinic instabilities within a
surface-trapped narrow coastal jet. This jet is formed by the positive combination of
the poleward circulation along the southwest coast of Mexico and the poleward

currents induced by ENSO warm phase Kelvin waves.
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4. TROPICAL WAVES INDUCE OCEAN EDDIES AT CABO CORRIENTES,

MEXICO

4.1 Abstract.

The high resolution Naval Research Laboratory Layered Ocean Model is used
to examine the generation of anticyclonic oceanic eddies near Cabo Corrientes,
Mexico. Results indicate that the arrival of downwelling coastally trapped waves at
Cabo Corrientes corresponds to the intensification of the local currents. The
interaction of these intensified currents with the coastline geometry generates
anticyclonic eddies. Comparison of different numerical simulations suggests that the
bottom topography and the local wind are not responsible for the eddy generation. In
fact, the coastline geometry, most notably the cape at Cabo Corrientes, causes the
formation of eddies. The existence and timing of the modeled eddies is validated with

sea surface height altimeter observations and temperature hydrographic data.

4.2 Introduction.

The formation of ocean eddies as a result of the interaction of coastal currents
with capes is a well documented process and has been studied from several different
points of view [Reed, 1980; D’asaro, 1988; Strub et al., 1991; Klinger, 1994; Pichevin
and Nof, 1996; Cenedese and Whitehead, 2000]. The theories presented in these
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studies have been used to explain the origin of the eddies observed near Cape St.
Vincent (on the southwest coast of Portugal), Point Barrow (on the northeastern coast
of Alaska), and the Capes Blanco and Mendocino (on the coasts of Oregon and
California). However, so far as we are aware, no study has reported the existence and
genesis of the anticyclonic ocean eddies observed by the satellite altimetry near Cabo
Corrientes (on the Mexican West Coast) (Figure 17).

Bottom topography near Cabo Corrientes is characterized by an abrupt
transition from a narrow to a wide shelf, while the coastline changes its orientation
from northwest to approximately eastward, and the Maria Islands Archipelago works
as an extension of the continental shelf (Figure 2). The mean surface ocean circulation
at Cabo Corrientes is dominated by a poleward coastally-attached current known as
the Costa Rica Coastal Current (CRCC) [Figure 18; Wyrtki, 1966; Badan et al., 1989;
Zamudio et al., 2001]. The variability of the circulation at Cabo Corrientes is mainly
dominated by equatorially generated (interannual and intraseasonal) and storm
induced (higher frequency) coastally trapped waves®> (CTW) [Chelton and Davies,
1982; Christensen et al., 1983; Enfield and Allen, 1983; Spillane et al., 1987; Enfield,
1987; Merrifield and Winant, 1989; Merrifield, 1992; Ramp et al., 1997].

Results from numerical simulations indicate that the mean poleward-flowing
coastally trapped currents at Cabo Corrientes are characterized by a speed of ~8 cm/s,
and an offshore extension of ~40 kmn (Figure 18). However, the arrival of downwelling

CTW causes to increase the currents’ speed to ~40 cm/s. The increased currents result

? The mathematical representation of these waves includes an exponential function that decays from the
coast. Thus, in a general sense they are commonly known as coastally trapped waves.
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Figure 18. Mean layer 1 thickness (color contours in meters) and mean currents
(vectors) from NLOM. The contour interval is 2 meters and the vectors
represent the currents at the arrowhead. The means were calculated from an 11-
year climatology. The solid black line represents the real coastline. Note that the
orientation of Cabo Corrientes and the Maria Islands forces the CRCC to
separate from the coast. The layer 1 thickness is at maximum near the coast and
decays northward and offshore.
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in the formation of anticyclonic eddies (Figure 19). To determine the physical
mechanisms responsible for the generation of these observed eddies, we analy=ed 16
years (1981-1996) of data from several different simulaﬁoﬁs of the Naval Research
Laboratory Layered Ocean Model (NLOM). The model results are validated wigh Sea

Surface Height (SSH) satellite altimeter observations and hydrographic data.

4.3 Numerical experiments

We have used a suite of numerical simulations to examine the generation of the
Cabo Corrientes’ eddies. The simulations were performed using a hydrodymamic
version of NLOM on a Pacific Ocean domain with a latitudinal extension (20°S-62°N)
that allows equatorially generated signals (i.e. CTW) to influence the circulation «of the
Northeastern Pacific Ocean, most notably the Cabo Corrientes’ circulatiom. All
simulations include non-linearities, free surface, and a no slip boundary condi_tions.
The only external forcing included in the simulations reported here is the ECMW F/HR
hybrid wind stress described in section 2. We evaluate the effects of: (i) Resolaation,
1/4° versus 1/16°. (ii) Bottom topography, realistic bottom topography versu:s flat
bottom. (iii) External forcing, a downwelling CTW versus local wind stress. «CTW
are surface intensified. Thus, the rest of this section is focused to the analysis of the

behavior of the model layer 1.

4.4. Model results
In this subsection the results of the basic simulation are described and imn the

discussion subsection the results differences between the different simulation:s are
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pointed out. The model long-term mean circulation (Figure 18) indicates that when the
CRCC arrives at Cabo Corrientes it rounds the cape to continue its advance. After
crossing the cape the CRCC reattaches to the coast and continues its poleward route
until it encounters the Maria Islands Archipelago, where again the CRCC rounds the
Islands and reattaches to the coast. In addition, the vector velocity shows a reduction
of the CRCC’s speed and a weak anticyclonic circulation right at the North sides of
Cabo Corrientes and the Maria Islands but not evidence of eddy activity.

Snapshots of model results (Figure 19) corresponding to the arrival and
interaction of CTW with Cabo Corrientes do show eddies. At the time of the arrival of
the downwelling CTW (Figure 19a) the upper layer’s thickness is ~120 m, the
coastally-attached poleward current speed is ~ 40 cm/s, and the separation from the
coast is much more pronounced than the mean (Figure 18). By September 17, 1993
(Figure 19b) eddies have formed downstream of Cabo Corrientes and the Maria
Islands. Three days later (Figure 19¢) the complete CTW has already crossed the area
of study and the two anticyclonic eddies have begun to separate from the coast. These
eddies are characterized by a layer 1 thickness of ~90 m at their core, a swirl velocity
of ~50 cm/s, and a diameter of ~90 km. A month later (F igure 18d), the eddies have
completely separated from the coast and have drifted westward and southwestward at
a speed of ~7 cm/s.

The eddies’ formation process documented in Figure 19 is just an example.
Based on 16 years of data, the model indicates that on average the CTW generate four
eddies per year. The eddies included in that average have similar or larger horizontal

and vertical dimensions than those at Figure 19. General characteristics of the eddy
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formation process are: (1) After the eddy formation and before the eddy separation,
large velocities develop to the southeast of Cabo Corrientes and the Maria Islands. (2)
When the eddies have separated from the coast a distance no larger than a radius of
deformation and a new CTW arrives to the area, the eddy is reinforced and/or fused
with a new eddy generated by the latest CTW. Thus, a packet of CTW arriving at
Cabo Corrientes results in one large eddy with a diameter of 150 km or more. (3) The
formation of eddies varies interannually. During 1988 (La Nifia year, Figure 9), only
one eddy was formed. In contrast, 1987 (El Nifio year, Figure 9) was the most prolific
year, during which eight anticyclonic eddies were generated. Some of them were
characterized by a deeper core than the CRCC and the CTW where they originated. (4)
El Nifio seemed to intensify the eddies. The CTW associated with the 1982-83 El Nifio
event generated currents of ~100 cm/s and the anticyclonic eddies with the largest
dimensions. (5) All downwelling CTW arriving at Cabo Corrientes generated eddies.

(6) Upwelling CTW at Cabo Corrientes did not generate eddies.

4.5 Discussion

This subsection is divided in three parts. First, the differences in the
simulations results are discussed. Second, the eddy generation process is discussed and
finally the model results are compared with observations.
4.5.1 Comparison of the different numerical experiments
(i) Resolution. The eddies formed in the 1/4° experiment were less frequent than the
eddies formed in the 1/16° experiment. This was an expected result because in the

1/16° experiment the currents find a sharper comer (and separate more from the coast)
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than in the 1/4° experiment generating a more distinctive anticyclonic circulation at
the north side of Cabo Corrientes. In addition, in the 1/4° experiment the grid size,
~27.5 km, is not adequate to resolve the model first baroclinic radius of deformation
(~32 km). (ii) Bottom Topography. The reduced gravity and the flat bottom
experiments include eddy formation at Cabo Corrientes. Consequently, the bottom
topography can be ruled out as a main factor in the anticyclonic eddy formation. (iii)
Topographic S effect. The flat bottom and the reduced gravity experiments, which
did not involve a topographic # effect, include eddy formation and detachment,
suggesting that the topographic S effect is not a crucial element in the detachment of
the Cabo Corrientes eddies. (iv) Local wind. The results of a flat bottom simulation,
which was forced by a CTW only (ne wind), includes eddy generation and detachment
at Cabo Corrientes. These results and the inspection of the ECMWF and FSU wind
stress curl fields suggest that the local wind stress curl is not a main element in the
eddy generation at Cabo Corrientes.
4.5.2 Eddies’ formation

The model results described in subsection 4.4 include the generation of
anticyclonic eddies associated with the arrival of downwelling CTW to Cabo
Corrientes. Two questions immediately present themselves. Why does the CRCC not
generate eddies at Cabo Corrientes by itself? Why are the eddies generated during the
arrival of downwelling CTW but not upwelling CTW? The process of eddy formation
at capes has already been discussed under the assumption of the presence of a steady

current [Pichevin and Nof, 1996]. The main processes are summarized as follows.
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Consider a steadily flowing coastally-attached current that encounters a cape and
rounds it to continue its advance as a boundary current. If the radius of curvature of
the cape is smaller than the inertial radius (| u |/ f, where IZI is the characteristic
speed of the current in question and f is the Coriolis parameter) the current will
separate from the coast [Bormans and Garret, 1989; Hughes, 1989; Klinger, 1994a,
1994b]. Afier the separation the current reattaches to the coast due to its finite offshore
extension, which is proportional to the radius of deformation [Bormans and Garret,
1989]. The separation and reattachment of the current produces an unbalanced flow-
force around the cape that is balanced with the formation and shedding of
eddies[Pichevin and Nof, 1996]. In our particular case the Cabo Corrientes radius of
curvature is ~5 km; but the mean currents have an inertial radius of only ~2 km and do
not separate. However, the arrival of a downwelling CTW reinforces the mean current
resulting in an inertial radius of ~8 km. Poleward-flowing upwelling CTW induce
equatorward currents that debilitate, rather than strengthen, the CRCC.

In Cabo Corrientes and the Maria Islands scenario the eddy forcing is not a
steady forcing. It is an intermittent forcing that appears with the arrival of
downwelling CTW. Past Cabo Corrientes, the coastline veers to the northeast and the
currents turns to the northwest. The combination of these directional changes produces
an anticyclonic circulation pool at the north side of Cabo Corrientes. During its
presence in the area the CTW strengthen the anticyclonic circulation in the pool,
generating an anticyclonic eddy. The eddy remains attached to the coast, being

reinforced by the CTW and debilitated by the lateral friction produced by the coast,
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until the CTW cross the area. Then, the eddy is detached from the coast and starts its
open ocean westward drifting. Thus; the longevity and the consecutive arrivals of
downwelling CTW maintain the eddy in the coastal area for a long period of time,
which during the eddy is reinforced. Note that in the hypothetical case of an infinite
long CTW we would have the steady current, which would require of the eddy
generation and the eddy shedding to balance the forces around the cape. Thus, the
eddy generation at Cabo Corrientes can be basically explained with the Pichevin and
Nof [1996] eddy cannon theory.

Why are the generation mechanisms of the Cabo Corrientes eddies and the
eddies that shows up close to Acapulco during El Nifio years [section 3; Zamudio et
al., 2001] different if both eddies originate from the arrival of CTW? In the Cabo
Corrientes case the coastline is the crucial element in the eddy formation, whereas for
the generation of the Acapulco eddies, baroclinic instabilities are the key element.
4.5.3 Observed and modeled eddies

The model results show anticyclonic eddy formation each time a CTW arrives
at Cabo Corrientes. If the model results are correct we would expect to observe
anticyclonic eddies at Cabo Corrientes in TOPEX/ERS satellite altimeter
mesurements. Examination of SSH altimeter observations during September 1993
(Figure 17a) reveals the presence of an anticyclonic eddy (positive SSH anomaly) near
Cabo Corrientes. Comparison between satellite observations (Figures 17a and 17b)
and model results (Figures 19¢ and 19d) indicates that the simulated eddies are co-
located, in time and space, with the observed ones, suggesting that this altimeter

observed eddy was generated by the CTW that arrived to Cabo Corrientes on early
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September 1993 (Figure 19a). Several examples of eddy formation near Cabo
Corrientes have been observed using the Colorado Center for Astrodynamics Research
publicly accessible web site (http://www-ccar.colorado.edu/~realtime/global-
historical_ssh).

To provide some insight about the model validation we compared model
results with hydrographic data. Trasvifia et al. [1999] using temperature hydrographic
data reported the presence of an anticyclonic oceanic eddy located at ~500 km to the
west of Cabo Corrientes (Figure 20). The model results (Figure 21) suggest that the
eddy was not created near the location at which it was observed. In fact, they suggest
that the eddy was created in mid March 1992 on the north side of the Maria Islands as
a result of the arriving of a CTW (Figure 21b). Next, the eddy drifted westward
(Figures 21c-21f), passed by the line where the hydrographic data were taken on May
1992 (Figure 21f) and generated a positive anomaly in the temperature field (Figure

20c).

4.6. Summary and Conclusions

The role of Cabo Corrientes coastline geometry and coastal trapped waves on
the generation of anticyclonic oceanic eddies have been studied. A suite of numerical
simulations from the Naval Research Laboratory Layered Ocean Model was utilized to
examine the eddy generation processes. The poleward-flowing local current (which is
known as the Costa Rica Coastal Current) does not generate eddies. The eddies are
generated when downwelling coastal trapped waves (which originate at the equator)

arrive at Cabo Corrientes and intensify the local current. These intensified currents
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Figure 20. Latitude-depth sections of temperature (in °C) along the white line in
Figure 21. (a) Climatology of the temperature for May. (b) Temperature field during
May 1992. (c) Anomaly of the temperature for May 1992. From these transversal
sections is not possible to conclude about a closed circulation. However, the
downward bending of the isoterms in (b) (which reach a maximum depth between
20°N and 21°N) suggests the presence of an anticyclonic eddy in the area during May
1992. After Trasviiia et al. [1999]. 55
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interact with the cape and generate the anticyclonic eddies. The ability of the
numerical model to isolate the dynamic effects allows us to rule out the local wind and
the bottom topography as main factors in the eddy generation processes. Validation of
the model simulated eddies is based on temperature hydrographic data and

TOPEX/Poseidon and ERS-2 sea surface height altimeter observations.
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5. ON THE INTERANNUAL VARIABILITY OF THE TEHUANTEPEC

EDDIES

5.1 Abstract

TOPEX/Poseidon observations and the Naval Research Laboratory Layered
Ocean Model are used to study the evolution of the oceanic eddies that are generated
in the Gulf of Tehuantepec. The results reported in this section suggest that: (i)
Outside of the equatorial region, the anticyclonic Tehuantepec eddies are the most
energetic signal in the Eastern North Pacific Ocean. (ii) The interannual variability of
the number and strength of the Tehuantepec eddies is directly related to El Nifio-La
Nifia cycles. (iii) These eddies migrate ~5000 km, they weaken (decrease their
maximum sea surface elevation) and disappear when they are exposed to the cyclonic

shear between the North Equatorial Current and the North Equatorial Counter Current.

5.2 Introduction
It is well known that the position of the jet stream affects the day-to-day
weather of North American cities. The geographical location of this jet is well

correlated with the phases of the El Nifio-La Nifia cycle’. Normally, during El Nifio

* By “El Nifio (La Nifia) phase” we mean a positive (negative) temperature’s anomaly as shown in
Figure 9.
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(La Nifia) phase the jet stream lies southward (northward) of its normal position (~45°
N) (Figure 22), strengthening (weakening) the cold fronts that arrive at the Gulf of
Mexico [Green et al., 1997; Smith et al., 1998]. Associated with the appearance of the
cold fronts at the Gulf of Mexico is a high in the atmospheric pressure. This high,
combined with the low atmospheric pressure in the Pacific Ocean, creates a pressure
gradient that forces strong intermittent southward winds along the Isthmus of
Tehuantepec during the boreal cold season (Figure 23a). Those winds reach the Pacific
Ocean at the Gulf of Tehuantepec (Figures 4 and 23b) where they can have maximum
gusts of 60 m/s * [Stumpf, 1975]. These winds, which mix the upper layers of the
ocean and reduce the sea surface temperature (Figure 24), have been proposed as the
physical mechanisms that generate anticyclonic oceanic eddies [Clarke, 1988;
McCreary et al., 1989; Lavin et al., 1992]. Thus, the mechanism of generation of these
eddies appears to be explained. However, their complete life cycle has not been
reported yet.

In this section we use TOPEX/Poseidon sea surface height observations and
the Naval Research Laboratory Layered Ocean Model to study the evolution of the
Tehuantepec eddies. Special attention is given to life cycle, weakening and

strengthening mechanisms, interannual variability and energetic characteristics.

* As a comparative example, hurricane Andrew was characterized by winds of 60-71 m/s during its
landfall in Miami area in August 1992.
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Figure 22. Conceptual portrayal of the jet stream's different positions during

cold (blue), neutral (white) and warm (red) ENSO phases. After Green et al.,
[1997].
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Figure 24. Sea surface temperature (in °C) for the Gulf of Tehuantepec for
January 22, 1996. Note the strong zonal sea surface temperature gradient
in the area and the coastal cold tongue of water from 96°W to 98°W
characterized by yellow-green colors. Image processed by Agustin
Fernandez (UNAM, Mexico).
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5.3 Satellite observations

A peculiar charactgristic of the warm-core Tehuantepec eddies is that they
exist in a region where the surrounding water is also warm [Hansen and Maul, 1991].
However, during their formation and for a few days after that the eddies’ thermal
signature is clearly recognized in SST satellite images (Figure 24). This is possible
thanks to the strong SST zonal gradient, which is created by the large SST reduction at
the axes of the Gulf of Tehuantepec (GT) wind path. Nevertheless, the conditions at
Figure 24 last just for a few days and after that the eddies’ thermal signature is
difficult to distinguish in SST images. Furthermore, thermal images are not able to
track eddies for several months (the eddies’ lifetime reported here is order 1 year)
because the air-eddy interaction stimulates heat fluxes that eventually render the
eddies undetectable in thermal images. In addition, the intrinsic cloud cover and
persistent rain of this tropical area [Wents et al., 2000] make the eddy tracking
difficult using passive satellite sensors. Thus, sea surface height (SSH) satellite
altimeter observations are more useful for tracking eddies in that region of the ocean.

NASA Scatterometer (NSCAT) wind observations revealed several new
attributes of the GT winds [Bourassa et al., 1999; Chelton et al., 2000a, 2000b]. Weak
upwelling favorable winds were discovered to the west of the GT during the strong
offshore wind events (Figure 4). The coastal upwelling favorable winds induce the
transport of nutrient rich water to the surface (Figure 24). The anticyclonic eddies
entrain some of this productive water into their domains. Thus, in addition to the

physical intrigue of the problem by itself, it is interesting to study the evolution of the
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Tehuantepec eddies for fisheries and the related biological processes [Blackburn,

1962; Robles-Jarero and Lara-Lara, 1993; Farber-Lorda et al., 1994].

5.4 The life cycle

The T/P satellite altimeter repeats an orbit every 10 days. It measures SSH
every 6.2 km along satellite tracks (Figures 7 and 23). The distance between two
continuous tracks is ~300 km in our area of study. This wide-track characteristic
usually discourages the use of along track altimeter observations to track eddies.
However, the large spatial extent of the Tehuantepec eddies, with horizontal
dimensions of more than 300 km, and the high quality of T/P SSH measurements
permits their use.

As soon as T/P altimeter became fully operational in October 1992 it detected
the existence of the Tehuantepec eddies. The migration of an anticyclonic eddy
generated by a wind event that occurred in the GT during the first week of October
1992 is documented in Figures 23b and 25. An initial southwestward drift and
subsequent westward drift (which is mostly limited to 10°N-15°N) are some of the
migration features in this example. Figure 25 includes T/P SSH measured along the
tracks shown in Figure 23b. The dated along-track measurements represent the
migration of a Tehuantepec anticyclonic eddy. This eddy migrated ~5000 km at an
average speed of 17.5 cm/s during 335 days. It weakened (decreased its maximum sea
surface elevation) and disappeared (Figures 25r-25t) when it crossed 10°N and was

exposed to the cyclonic shear between the North Equatorial Current and the North
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Figure 25. Sea surface height anomaly (in centimeters) measured by T/P along the
different satellite tracks shown in Figure 22b. A southwestward migration of the
anticyclonic eddy is evident in this example. The elevation and horizontal dimensions
of this anticyclonic Tehuantepec eddy range from 21 to 36 cm and from 250 to 500
km, respectively. Note the presence of a cyclonic eddy in panel "a" (which is
characterized by 2 SSH minimum of ~17 cm and a diameter of ~450 km) and how
this eddy disappears in the rest of the panels.
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Equatorial Counter Current (Figure 23b). The eddy strengthened when it was
influenced by the negative GT wind stress curl (Figure 23b)°. Figures 23b and 25
document one example of a Tehuantepec eddy life cycle. The trajectory followed by
this eddy as well as the eddy generated in the Gulf of Papagayo coincide with the
areas of maximum SSH variability of the North Eastern Pacific Ocean (Figure 26). In
addition to the examples shown in Figure 26, we have tracked several other
Tehuantepec and Papagayo eddies, which were observed by the T/P during the period
Oct 1992-April 2000. In general, the trajectory followed by those eddies and Figure 26
suggests that the Tehuantepec and Papagayo eddies are an important source of SSH
variability on the North Eastern Pacific Ocean. Our observations agree with the results
of Giese et al., [1995], who suggest that the eddies generated at the GT and the Gulf of
Papagayo (Figure 26) are the source of a 50-60 day sea level variability out to 135° W,

11°N.

5.5 The strengthening and the weakening of the twin eddies

The NSCAT and the European Center for Medium-Range Weather Forecasts
(ECMWF) wind fields [Bourassa et al., 1999; ECMWF, 1994] indicate the existence
of atmospheric gyres at each side of the GT wind path (Figure 23b). Assuming that the
Tehuantepec eddies are an oceanic response to the action of the strong winds, then we

would expect oceanic gyres to form at each side of the wind path. Figures 25a and 25b

> NSCAT wind observations show that Tehuantepec winds affect an offshore region of at least 500 km
[Figure 4, and Bourassa et al., 1999].
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confirm this by showing an oceanic-twin-eddy, which is in concordance with the
atmospheric-twin-gyre and reinforces the hypothesis that the Tehuantepec eddies are

formed by the strong intermittent offshore GT winds [Clarke, 1988; McCreary et al.,
1989; Lavin et al., 1992]. However, Figures 25a and 25b show the weakening of the
cyclonic eddy. This behavior is partly due to the intermittence of the GT winds. After
the first strong wind event (green shading in Figure 22a) the winds were relatively
calm while the eddies migrated westward as indicated by the theory [Nof, 1981;
Cushman-Roisin, 1986]. When the new GT wind event occurred in mid October 1992
(yellow shading in Figure 23a) the complete oceanic-twin-eddy had already migrated
to the west side of the wind axis, and consequently was subjected to anticyclonic wind
stress. Thus, both eddies received an anticyclonic wind stress spin injection, which
reinforced the anticyclonic eddy and weakened the cyclonic one. This cyclonic eddy
weakening mechanism complements the cool water entrainment mechanism that
inhibits the development of the cyclonic eddies-generated at the GT [McCreary et al.,
1989; Trasvifia et al, 1995]. The strengthening and weakening processes are

summarized on the maps in Figure 27.

5.6 The interannual variability

The number of Tehuantepec eddies formed during a year depends on both the
number and magnitude of the cold fronts arriving at the Gulf of Mexico. Hence,
interannual variability is expected in eddy generation and strength. A multiyear space-
time plot (Figure 28) shows T/P SSH positive anomaly signals radiating westward

from the North America west coast during the northern hemisphere cold season.
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Figure 28. Longitude-time section of sea surface height anomaly (in meters)
measured by T/P for the 10° N-15° N latitude band. The longitude of the
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center of the GT is indicated with a red arrow.
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Analysis of the along track T/P observations and Figure 26 indicates that the
anticyclonic eddies generated at the GT and the Gulf of Papagayo are the main sources
of these positive SSH anomalies. Therefore, the westward propagating signals in
Figure 28 are mainly due to the Tehuantepec and Papagayo anticyclonic eddies. The
first three cold seasons, included in Figure 28, are characterized by strong positive
SSH anomalies that propagate to ~140° W. The 1995-96 and 1996-97 winter seasons
also include coastally generated anticyclonic eddies. Nevertheless, their SSH positive
anomaly is not as strong as in the first three cold seasons.

To provide some insight about the Tehuantepec eddies interannual variability
we constructed a T/P SSH anomaly time series for the period October 1992-April
2000 (Figure 29a). After the Tehuantepec eddies are generated, on the western side of
the GT, they travel southwestward and are measured by T/P along the satellite track
shown in Figure 29b. The anticyclonic Tehuantepec eddies are represented by the
positive anomaly peaks in Figure 29a. Thus, we can recognize that during the first
three cold seasons (1992-93, 1993-94, 1994-95) at least three anticyclonic
Tehuantepec eddies were formed in each of them. The 1995-96 cold season was
characterized by the formation of two anticyclonic Tehuantepec eddies. During the fall
of 1996 no eddies were formed; however, during the 1996-97 winter season three
eddies were formed. During the 1997-98 cold season at least seven anticyclonic
Tehuantepec eddies were formed. Those eddies were characterized by the largest
spatial dimensions. The 1998-99 cold season includes just one anticyclonic
Tehuantepec eddy and the 1999-2000 cold season includes the formation of two

anticyclonic Tehuantepec eddies.
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From Figures 28 and 29 we can recognize an interannual variability in the
number and spatial dimensions of the anticyclonic Tehuantepec eddies. To understand
this, it is important to remember that weak Tehuantepec eddies are caused by weak GT
winds, which are associated with a weak atmospheric pressure gradient between the
Gulf of Mexico and the Pacific Ocean and imply weaker than normal cold fronts
arriving to the Gulf of Mexico. This is suggestive of an anomalously northern location
of the jet stream and a possible La Nifia phase. The JMA El Nifio-La Nifia index
(Figure 9) and the SSH anomaly time series in Figures 28 and 29 indicate that the cold
seasons characterized by the fewest and the smallest anticyclonic Tehuantepec eddies
(1995-96, 1998-99, 1999-2000) occurred during the La Nifia phase, whereas the cold
seasons characterized by the largest (number and spatial dimensions) anticyclonic
Tehuantepec eddies (1992-93, 1993-94, 1994-95, 1997-98) occurred during El Nifio
phase. This result is an interesting example of the existence of ocean-atmosphere
teleconnections. The increase in the number of the Tehuantepec eddies suggests an
increase in the number of the cold fronts arriving to the Gulf of Mexico, which
suggests a change in the atmospheric pattern in mid-latitudes, which influences

directly the tropical coastal waters of the Gulf of Tehuantepec.
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5.7 The eddy train and the eddy kinetic energy

Satellite altimeter observations provide information about the behavior of the
skin of the ocean. However, the Tehuantepec eddies’ average depth is ~120 m [Barton
et al., 1993]. Hence, satellite data need to be complemented with in sifu hydrographic
observations and/or numerical ocean model experiments. A numerical model permits
exploration of time and space scales that are currently not possible observationally
[Murphy et al., 1999], as well as the isolation of the physical mechanisms responsible
for the genesis and evolution of the Tehuantepec eddies. Thus, we supplement the
satellite observations with NLOM experiments described in section 2. Our premise is
that the Tehuantepec eddies are a deterministic oceanic response to the atmospheric
forcing. Then, it is expected that NLOM (which is forced only by ECMWF high
frequency winds in this experiment) simulates the eddies detected by T/P. NLOM
upper layer thickness and vector velocity snapshots are included in Figures 30a and
30b. The most striking features in these snapshots are the generation and migration of
the Tehuantepec eddies. In the particular case of the eddy identified with the letter
“A”, it was generated by the wind event that occurred in the GT in early October 1992
(green shading in Figure 23a) and corresponds to the first eddy observed by T/P
(Figures 23b and 25). Note the layer 1 thickness maximum of ~115 m at the core of
the eddy and the eddy elongated shape while drifting inside of the area influenced by
the wind (Figure 30a). In four months the eddy drifts more than 1000 km. As it drifts

westward its shape becomes circular and its layer 1 thickness increases by ~15 m

(Figure 30b).
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Figure 30. (a)-(b) NLOM snapshots of layer 1 thickness (in meters). T/P
tracks are indicated with a white line and the green circles represent the
location of maximum elevation of the anticyclonic eddy shown in the (b)
and (g) panels of Figure 25. (c) Magnitude of the vectorial velocity
difference of layer 1 minus layer 2 (color contours in m/s). (d) Sea surface
height anomaly (color contours in meters) as determined by T/P.
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If a new wind event develops after the eddies migrate out of the area
influenced by the strong winds (Figure 23b), then a new eddy will be formed. Thus, it
is common to observe the migration of a train of eddies emanating from the GT
(Figures 30b-d). These eddies are characterized by a strong vertical velocity shear
between the two uppermost layers of the ocean, which can easily reach values of 0.5
mv/s (Figure 30c). The similarity of Figure 30c with a weather map that includes
cyclones and anticyclones is not a pure coincidence: ocean eddies are the “storm
systems” of the ocean [Robinson, 1983]. A qualitative comparison between model
results (Figures 30b and 30c) and T/P observations (Figure 30d) indicates that the
NLOM simulation includes most of the eddy characteristics observed by T/P
(migration speed, location and spatial dimensions).

The high eddy kinetic energy (EKE) values of the eddies formed at the western
boundary currents (e.g., Gulf Stream, Kuroshio, Agulhas) have received the attention
of numerous oceanographic studies. Nevertheless, the EKE of the Tehuantepec eddies
is comparable in magnitude to the EKE of the eddies at the western boundary currents
(Figure 31). Certainly, the EKE signature associated with the Tehuantepec eddies

dominates the EKE field along the North America West Coast.
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5.8 Summary and Conclusions

The Gulf of Tehuantepec strong and intermittent winds are responsible for the
generation of long-lived and energetic eddies. This study represents the first time a
Tehuantepec eddy has ever been tracked during its complete life cycle. This is also the
first time the Tehuantepec eddies have been simulated using realistic high frequency
variability winds. Analysis of their life cycle brings us to the following conclusions:

1. Satellite altimeter observations appear to be more useful than satellite
temperature images to track the Tehuantepec eddies.

2. The Tehuantepec eddies are ~300 km of diameter with the ability to migrate
for ~5000 km over ~1 year.

3. The cyclonic shear between the North Equatorial Current and the North
Equatorial Counter Current appears to contribute to the weakening and disappearing of
the anticyclonic Tehuantepec eddies.

4. The Gulf of Tehuantepec anticyclonic wind stress curl appears to contribute
to the weakening of the cyclonic Tehuantpec eddies.

5. The strength and number of Tehuantepec eddies appears to be directly
linked to the El Nifio-La Nifia cycle.

6. The Tehuantpec and Papagayo eddies appear to be an important source of
SSH variability on the North Eastern Pacific.

7. The Tehuantpec eddies are the most energetic signal of the Northeast

Pacific.
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6. SUMMARY AND CONCLUDING REMARKS

Sea surface height altimetry observations and numerical ocean model
simulations indicate that anticyclonic ocean eddies are an important source of
mesoscale variability along the southwest coast of Mexico. Coastally trapped waves
originating at the equator and strong intermittent winds originating from the arriving
of cold fronts at the Gulf of Mexico are dominant physical mechanisms responsible for
the eddies’ formation (Figure 32). Three different eddy generation mechanisms are
identified. First, the Acapulco eddies are due to baroclinic instabilities of a surface
trapped narrow and elongated coastal jet. The appearance of the jet is due to the
positive combination of the poleward flow along the southwest coast of Mexico and
the poleward currents induced by strong warm ENSO events. Second, the eddies at
Cabo Corrientes are due to the arriving of downwelling coastally trapped waves that
intensify the northward-flowing local currents. The interaction of these intensified
currents with the cape geometry generates anticyclonic eddies. A remarkable result of
this section is how the model results concur in time and space with the existing
hydrographic data and with the satellite observations. Third, the Gulf of Tehuantepec
strong and intermittent winds generate anticyclonic eddies. For the first time ever a
Tehuantepec eddy has been tracked during its complete life cycle. It has been possible

due to the ability of the altimeter to observe sea surface height during all weather and
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Figure 32. Conceptual portrayal including the equatorial return flow (the North
Equatorial Counter Current (NECC) and the Costa Rica Coastal Current
(CRCC)) and equatorially generated waves that travel eastward until the
Americas west coast where they turn poleward and propagate as coastal trapped
waves (CTW) passing by the southwest coast of Mexico. The positive
combination of the CRCC and the currents generated by the CTW contributes to
the formation of the Acapulco and Cabo Corrientes eddies (red circles), whereas
the Tehuantepec eddies (yellow circles) are generated by the strong, intermittent,
and offshore blowing Gulf of Tehuantepec (GT) winds, which appear after the
arrival of cold fronts at the Gulf of Mexico.
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all seasons. These eddies are characterized by a diameter of ~300 km, a life cycle of
~1 year, and a westward migration distance of ~5000 km. The eddy kinetic energy
associated with the Tehuantepec eddies dominates the eddy kinetic energy field in the
Eastern North Pacific. The interannual variability of the number and strength of the

Tehuantepec eddies appears to be linked to the El Nifio-La Niiia cycle.
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APPENDIX A

MODEL PARAMETERS AND NOTATION

Symbol Definition

. 1 3 .13

- acos(@) 0¢ e
a radius of the Earth (6371 km);
Ay coefficient of isopycnal eddy viscosity;
C, coefficient of bottom friction;
C, coefficient of interfacial friction;
Cy coefficient of additional interfacial friction associated with entrainment;
D(p,0) ocean depth at rest;
f coriolis parameter;
g acceleration due to gravity;
G,=g 12k;
G,d=g—g(uj I<k;

Po

h, kth layer thickness;
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hg kth layer thickness at which entrainment starts;
h; kth layer thickness at which detrainment starts;

H, kth layer thickness at rest;

n—1

Hn =D(¢’a)_ZHI >

i j’,l@ unit vectors positive eastward, northward, and upward respectively;
t time;

v i kth layer velocity;

Vi BV

6 latitude;

] longitude;

P kth layer density (constant for space and time);
P, reference density (constant);

T, wind stress;

7,=T, k=0;

Z, =Cp, Vk‘gk+1l(‘7k“7/c+1) k=l.n-1;

7. =C,pv|v, k=n;

o, =0 k=0,n;

o, =0, -0, -Q,B, k=1.n-1;
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@, kth interfase reference diapycnal mixing velocity
Q,(9,6) kth interface weighting factor for mass conservation
Parameter Definition Value
C, Coefficient of bottom | 2x1073
friction
C, Drag coefficient 1.5x107°
C, Coefficient of interfacial [ O
friction
g Acceleration due to gravity | 9. 8m /52
ht k-th layer thickness at| 50 m (k=1,2)
which entrainment starts 40 m (k=3-6)
h k-th layer thickness at|{ Set to large and
which detrainment starts unreachable number
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(9999.0 m)

@D, k-th interface reference | 0.04 m/s
vertical mixing velocity
TOPAMP Bathymetry reduction | 0.80
factor
P Sea-level air density 1.2kg / m?
Jo Density of layer k (Sigma- | 23.95kgm>(k =1)
T) 25.92kgm™ (k = 2)
26.83kgm ™ (k = 3)
27.18kgm™ (k = 4)
27.3%%gm™ (k = 5)
27.77kgm™ (k = 6)
Z":H Rest depth at base of layer | 135 m (k= 1)
k
= k 320 m (k =2)
550 m (k=3)
800 m (k=4)
1050 m (k=5)
6500 m (k = 6)
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