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ABSTRACT

Outflow radiation conditions have frequently been used at open

boundaries in oceanography and meteorology. A new implementation of

Orlanski's formulation for problems requiring a radiation open boun-

dary has been developed. Three different cases in which Rossby and

Kelvin waves are present are studied. In all these tests the pro-
posed open boundary condition shows no refiection at the outflow of

the Kelvin wave. However, some reflection at the outflow of the

Rossby wave is observed.
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1. INTRODUCTION

This paper seeks to give some insight into the role open boundary
conditions play in the numerical simulation of geophysical fluid mo-
tion. The question we seek to answer is: In what way can we accur-
ately simulate the outflow of Rossby and Kelvin waves from a domain
with open boundaries?

Fine-mesh grids are used to achieve an adequate resolution in
meteorological problems. The domain to be modelled has to satisfy the
constraints imposed by the computer speed and capacity. For this rea-
son, fluids with open boundaries have to be considered in order to
achieve the physically desired resolution.

An open boundary condition is a computational boundary that al-
lows phenomena generated in the interior domain to pass through the
artificial boundary without distortion and without affecting the in-
terior solution. The study of this problem‘is of fundamental impor-
tance in fluid dynamics. This is especially true in the areas of
oceanography (ocean circulation, eddies, etc.) and meteorology (con-
vection, weather prediction, air pollution modelling, etc.). Its
importance has been recognized since the beginnings of the computer
eéra. The first realistic study was made by Charney, Fjortoft, and

von Newmann, 1950, when they studied the limited-area integration of
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von Newmann, 1950, when they studied the limited-area integration of

the barotropic vorticity equation. They computed the vorticity at
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outflow boundaries bv a linear extrapolation formula and specified the
vorticity at inflow boundaries. Unfortunately, the extrapolation for-
mula they used to compute the vorticity caused the scheme to become
unstable (Platzman, 1954).

Nitta (1962) and Matsuno (1966) specified the outflow boundary
conditions by extrapolating the interior solution to the boundary.
However, improper extrapolations tended to cause numerical instabil-
ities in the solutions. Hill (1968) integrated a two-level baroclinic
model over a series of nested grids in such a way that the final grid
size was as small as desired. Wang and Halpern (1970) obtained con-
ditions for a limited area barotropic primitive equation model from a
coarse-mesh hemisperic model. This study revealed the generation of
small-scale spatial oscillations in the interior solution. These os-
cillations may not be attributed to numerical instabilities (Shapiro
& O'Brien, 1969), but rather to the overspecification of the boundary
conditions. In order to suppress these oscillations, an artificial
diffusion coefficient is introduced. The tréuble is that the larger
this coefficient, the smoother the interior solution, with a conse-
quent distortion of the physical modes. In other words, the viscosity
removes the small scale flow which the fine mesh is designed to handle
and the solution may be more unrealistic than a coarse-grid model in a
closed domain without open boundaries.

As the computational models become more sophisticated, the prob-
lem of specifying the correct boundary becomes more critical. For

this reason, this problem is attracting considerable interest in the

lem of specifying the correct boundary becomes more critical. For
this reason, this problem is attracting considerable interest in the

scientific community.
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Several theoretical works (e.g., Davis, 1973; Oliger and
Sundstrom, 1976), have addressed the problem of specifying the boun-
dary conditions under which the hydrostatic primitive equations are
mathematically well-posed. However, this approach is not sufficient.
Besides being numerically stable, these well-posed boundary condi-
tions must ensure non-reflectivity. A more practical and realistic
formulation is the work of Orlanski (1976). He used Sommerfeld radi-
ation conditions for problems requiring a prescribed open boundary.
The equations he used were, of course, hyperbolic in nature. He in-
tegrated two models to demonstrate the applicability of his set of
open boundary conditions: the collapsing bubble and the spatially
growing Kelvin-Helmholtz instability.

Our principal interest is rotating stratified fluid models of
the atmosphere and ocean. In particular, we are interested in solu-
tions which contain Rossby waves as an important mechanism. Our in-
tention is to investigate a set of open boundary conditions in which
these waves are present. There are many modél problems which one can
choose, but in numerical experimentation, one would like to address a
pertinent problem which at the same time has only few degrees of
freedom. By separating the equations of motion into vertical modes,
we can reduce the number of degrees of freedom in the vertical to one.
For a set of open boundary conditions to work for a non-linear prob-
lem, it is essential that they must also satisfy the linear problem.
Thus, we restrict our initial examination to the linear case.

Additional wave modes can be excited because of the fact that the

Thus, we restrict our initial examination to the linear case.
Additional wave modes can be excited because of the fact that the
Coriolis acceleration is zero at the equator. For this reason, the

equatorial case was chosen. If we consider the set of primitive
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equations on an equatorial B-plane, it is straightforward to design a
problem in which the Rossby, gravity, and Kelvin waves are present.
Following Moore (1968) it is possible to excite these waves with a
variety of forcing functions. We run .a series of experiments exciting
+hese waves and studying their propagation in a basin in which one of
the boundaries is not a rigid wall.

This investigation studies the evolution of Rossby and Kelvin
waves through a set of open boundaries and also addresses the free and
forced wave problem in three experiments. A new simple implementation

of Orlanski's scheme is rather useful.



2. THE MODEL

Let us consider the linear shallow-water wave eguations on an
equatorial f-plane. For a model consisting of two layers of density,
Py and depth, Hi’ (1 =1, 2 for upper and lower layers, respectively)
there are two vertical modes. The barotropic wave modes are charac-
terized by a very large propagational speed compared with that of the
baroclinic wave modes. Assuming that the lower layer is infinitely
deep (H2 >> Hl), will allow us to consider it of constant density and
at rest for all x, y and t. With this constraint, we automatically
filter out the barotropic mode of motion.

If we do not consider turbulent mixing between the ocean layers,
d.e

s Py being a constant, we can define the reduced gravity, g', as:

Po - P1 g (2.1)

With these assumptions, the forced linear shallow-water wave

equations for the first baroclinic mode can be written as follows:

u 1 oh 2 X

— = - gle— + AV u + H
T YV T By utT/e
oV _ _ _1dh 2 Vo
e Byu - g e + AV°v + 17 /pH (2.2)
oh au ov

— = -H(— + —

ot (Bx oy

oh ou ov

— = =H(— —_—

9t (Bx ¥ dy
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The parameters for these case studies are: A = 102 m2 S—l’ ol =

-11 -1 -1
m .

910 2 m s 2, H=200mand B = 2.10 s

s
It is convenient to non-dimensionalize the equations. Let C be

the scaling velocity for u and v. Let LX and Ly be the horizontal and

meridional length scales, respectively. Let T be the characteristic

time scale, and H, the characteristic height scale. We then introduce

the nondimensional variables, denoted by primes, as follows:

(u, v) = c(u', v")
X = L x!
X
y = Ly y! (2.3)
h = Hu'
t =T t!

The appropriate scaling is: LX = C/BW (where W is the width of
the basin), internal radius of deformation (x-scale); L = (C/B)l/z,
y
equatorial radius of deformation (y-scale); C = Yg' H, phase speed of
the first baroclinic mode; and T = (BLy)_l, characteristic time scale.
The nondimensional coordinates, X and y, and the corresponding

velocity components, u and v, are positive eastward and northward.

The nondimensional form of the equations (2.2) yield:

| u dh 12 9°u L 3u ®
‘ 3 DYV T o t A'(a §§7-+ 5;5) + (17 /p)
3 oh 2 2
a__\tl_ = -yu - 5— + A‘(ag —B_V +u) + G(Ty/p) (2.4)
y 0x2 3y
oh _ du IV
9t -0 3% +ay)

Primes have been dropped from the nondimensional gquantities.
dT T oxX 9y

Primes have been dropped from the nondimensional quantities.
The nondimensional parameters, o, &, and A', have been naturally in-

troduced into the dimensionless mathematical problem.
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With the particular scaling used in our experiments, it can be

deduced that:

.= W .

a /Ly (2.5)
s = g n//H (2.6)
A= b g/ (2.7)

where the constants a and b, are defined as:

1/4 8—1/2

a=(g") (2.8)

1/2 -3/u4

o
1]

AB (g") (2.9)

When the equivalent depth, H, increases (decreases), the co-
efficients A' and ¢ will tend to decrease (increase). The contribu-
tion of A' is almost negligible, due to the small lateral eddy vis-
cosity chosen in our problem. Moreover, the value of o will depend on
the number of internal equatorial Rossby radii of deformation con-
tained in the width of the basin.

Comparing the three nondimensional parameters, it is obvious that
§ is the leading term by two or three orders of magnitude. The role
of 6, the most important nondimensicnal parameter, is to excite the
free and forced waves. Because of the linearity of the problem under
consideration, the waves cannot grow in amplitude, and the size of the
forcing is rather arbitrary. Furthermore, the boundary conditions
wWill not depend on the size of §.

From these results it can be concluded that the three nondimen-

sional parameters play no important role in the physics of the problem.

L0 ThRese resultTsS 1T can be concliuaeda tThnat Thie taree noudiuell-=
sional parameters play no important role in the physics of the problem.
For this reason, this is an ideal problem for testing different sets of

open boundary conditions.
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The model geometry is a rectangular flat-bottomed ocean. Its
southern boundary extends 25 internal radii of deformation along the
equator (L = 25LX), while its meridional boundary extends 5 equatorial
padii of deformation in the north-south direction (W = SLy). Although
+he width of the basin does not play any fundamental role in this
study, the particular length scale chosen in the x direction will give
us a good resolution of the trapped coastal Kelvin wave travelling
along the eastern boundary. On the other hand, the choice of the
length scale in the y direction ensures a good resolution of the
trapped equatorial Kelvin (coastal Kelvin) wave travelling along the
southern (northern) boundary. In the different experiments to be con-
ducted, the boundaries will be solid walls of zero slip or open boun-
daries. In the next chapter, we will discuss the different sets of
open boundary conditions in further detail.

A staggered grid in space is used to avoid the noise produced by
the high wave numbers. The grid is also staggered in time to reduce
the amount of computer work involved when soiving these equations.
This staggered grid in space and time can be considered as the super-
position of two elementary subgrids (Fig. 1). The truncation error
and the computational modes are the same as in the non-staggered
grid. Let the continuous variables be replaced by the discrete vari-

ables j, k, and n. These new variables are defined by the relations:

X = JAx
y = kay (2.10)
t = nAt
y = kby (2.10)

t = nAt



(n+1)at

e
(n-1)at u/ //

] Fig. 1. Description of the height, zonal and meridional velo-
city for both lattices.
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where Ax, Ay and At are the finite-difference intervals with respect
to space (i.e., x and y) and time.

A leapfrog scheme in time and a centered space difference are ap-
plied for all x and y derivatives in the system. The leap-frog scheme
has the property of introducing no computational'damping of the physi-
cal solutions of the system.

The representation of the velocity and height fields in the time-

space domain will then be:

hh, = h'((5 - 1/2)28%, (k - 1/2)24y, nAt)

jk
1
u?k = u'((§ - 3/2)26x, (k - 1)24y, nAt)
1
v?k = v'((5 - 1)2Ax%, (k - 3/2)2Ay, nAt)
I (2.11)
hjk = h((j - 1)26x, (k - 1)24y, nht)
u?k = u((5 - 1)2a%, (k - 3/2)2Ay, nAt)
v?k = v((35 - 3/2)2Ax%, (k - 1)2Ay, nAt)

where the primed quantities correspond to variables defined at odd
time levels.

The staggered grid in space and time is constructed in such a way
that the variables u', v, and h, are defined at the equator (southern
boundary), which will be symmetric during the whole experiment. How-
ever, because the viscous terms have to be computed, an extra row of
velocity variables has to be defined outside the physical boundary.
The value of the velocity outside the domain is determined by applying

the no-slip condition at the boundary.

The value of the velocity outside the domain is determined by applying

the no-slip condition at the boundary.



11

The time step of At = 1/28, used in this study, will satisfy the
c.F.L. stability criterion. The values of Ax = LX/4 and Ay = Ly/lS
will give us a good resolution of the boundary layers associated with
both the coastal and equatorial Kelvin waves, respectively.

In numerical modelling of geophysical systems, the application of
a realistic forcing function to the governing equations is of critical
importance. The model is started from rest by applying an easterly

wind stress of the form 10 = 0, (t%/0) = T(t) G(x), where

T(t) = Tanh(nAt) - Tanh((n - m)At) - 1 (2.12)

H

G(x) = -B/[ 1 + exp(y(x - xo))] (2.13)

In our case, Y = 2, ¥, = L/3, B = 0.1, and m is equal to u4/At
(15/A0t) for the first (the other) experiment(s).

Fig. 2a represents the function G(x) for the first two experi-
ments. This figure shows that a uniform easterly wind stress is ap-
plied to the western third L/3 of the basin. For the third experi-
ment, the function G(x) is set equal to a constant (-0.1N m_z) during
the whole period of integration of all grid points.

Fig. 2b represents the function T(t) for the second and third ex-
periments. TFor the first case, the uniform easterly wind is main-
tained until time 4.0, at which time the equatorial Kelvin wave, fully
developed, is in the middle of the basin, travelling towards the east-
ern boundary (Figs. 5a, 5b, and 5c). Zero wind stress forcing is
maintained from time 4.0 to the end of the model integration, at time

12.0. TFor the other two experiments, while the function G(x) differs

maintained from time 4.0 to the end ot the model integration, at tame
12.0. TFor the other two experiments, while the function G(x) differs
(as we have discussed above), the easterly wind is maintained to the

end of the model integration. With the initial conditionms,
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.. = 0, for all grid points, this results in v]j'k =
_ du\°  _ ;X \
= At (Bt)jk = At(1"/pH).




3. OPEN BOUNDARY CONDITIONS

The shallovi-water wave equations are hyperbolic in nature. The

most accurate way to prescribe the outflow at a certain boundary for
the hyperbolic system is to use at the boundary a Sommerfeld radiation

condition:

el 3 _
a_t'f'FH-—O (3-.].)

where ¥ is any variable, and F, the phase speed. There are many me-
thods for implementing (3.1). The experiments here are conducted using
two sets of open boundary conditions from Kreiss (1966) and Orlanski
(1976). In addition, a modified version of Orlanski's boundary condi-

tion is implemented.

Bowdary Condition I: Kreiss' method
This method assumes that the phase speed, F, is equal to Ax/At
(Ay/Aat) if we have a latitudinal (meridional) outflow boundary. Then

the extrapolated variable, an+l, is:

n+l _ n n-1
wB = 2¢B_l - wB-Q (3.2)

where the index, B, denotes a point at the boundary, B-1, the first

interior point, etc.

interior point, etc.

15
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Bo wdary Condition II: Orlanski's method

This method differs from the previous one in the sense that the
phase speed is numerically evaluated for the interior points close to
the open boundary. By using a leapfrog representation of equation

(3.1)for each variable, the evaluated phase speed, Fw, yields:

wn _ lpn—2
1_ B-1  "B-1 Ax
Fy = L — 1 % (3.3)

n
Vgt Ve~ AV,

n+l

Equation(3.1)is used again to evaluate the extrapoled value of Vg

. 1 . . - . -
as a function of F~. The final formulation for the phase speed then

is:
- Ax ; 1
Fw = X if Fw > AX/At
F o= -y /¢ if 0 < FX < Ax/4t (3.4)
Y t Tx Y
. 1
F =0 £ F <0
v . V=

Bo wdary Condition III: Variation of Orlanski's method
A new formulation, involving a variation of Orlanski's condition,

is tested. In this formulation, the local phase speed, F,, is evalu-

e
ated as suggested by Orlanski but with the following difference: when
the local phase speed is outward (inward), an outflow (inflow) boun-
dary condition is prescribed. The outflow (inflow) boundary condition
is set equal to Ax/At (zero) for meridional open boundary, and Ay/At

(zero) for a zonal open boundary.

This variation of Orlanski's boundary condition is somewhat ar-
R dranmmnrr st hAmarn en AfF +ha Tanl AF 5 Avartinsal +hearet+ical onidance.

This variation of Orlanski's boundary condition is somewhat ar-
bitrary, but because of the lack of a practical theoretical guidance,

a pragmatic approach is adopted.
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Three experiments are conducted by using the open boundary condi-
tions outlined above. As a consequence, different solutions are ob-
tained for each set of open boundary conditions. The ideal solution
is one in which the interior flow is essentially identical to the so-
lution in a larger enclosed basin, i.e., a minimum distortion of the
interior flow.
In the first experiment, the northern boundary is open, and the
staggered grid is implemented in such a way that the variable, ¥, has
n+l

the values of v, u', h at the northern boundary. The value of wi B
H

following Kreiss' method, then is:

n+l _ n

n
Yip - Vio1, o1t Vis1, B-1 T Vi, B2 (3.5)

where 1 denotes an arbitrary grid point in the x direction. The numer-

ical evaluation of the phase speed following Orlanski's method yields

to:
n n-2
Eip ™ Eim 24
Fos S ) B (3.6)
v EY L+ EY . -DT _-D¥2 0 AF
i,B i,B i,B i,B
where

) /2 (3.7)

[as]
!

1,8 W51, 501 F V541, B2

) /2 (3.8)

o
|

i35 - Wiy, peg tVia, 2o

The extrapolated value of w?+é then is:
2

n-1 n At
wn+l ) [1 - Fw(At/Ay)] wi’B + QFw Ei,B(Z§° 5.0)
i,B 1+ F. (At/Av) ’
n-1 n At
n+l [1 - Fw(At/Ay)] wi’B + 2F¢ Ei,B(Z§J 5.0)

Vi,B T+ F, (Bt/by)
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In the new implementation of Orlanski's method, the value of w?+é

]
is:
n .
Ei B at the outflow points.

n-1 (3.10)
wi B at the inflow points.
2

Figs. 3a and b show the representation of the variable, ¢y, in the
x-y plane for these methods.

In the last two experiments, the integration of the model is
started in a closed domain. After a certain time, an open boundary is
implemented in the middle of the basin, and the time integration is
continued in the eastern half of the basin. As the physics of these
two experiments differs, the time in which we decide to place our set
of new boundary conditions is also different. The open boundary is
implemented in such a way that the variable, Y, has the value of u,
v', and h at that boundary.

Following the same procedure outlined before, the extrapolated

1

variable, wg+w
2

(where W denotes an arbitrary grid point in the y di-

rection), has a value of:

ntl _ n L D n-1 -
Yaow T Vo1l T ¥B-1, w-1l T VBooLw (3.11)
in the Kreiss method;
. n-1 n
¢n+l G Fw(At/AX))wB,w + 2 PB,W(At/AX) (5.12)
B,W 1+ Fw(At/Ax) ’
in the Orlanski method;
/" PY .. at the outflow points
in the Orlanski method;
n .
PB,W at the outflow points
plo (3.13)

- _
B¥ wg % at the inflow points

bl
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> <

» X
i-1 i i+1
(a)
Y
A
5 4
B-1 Ld v
B-2
B-3 y - .4
—> X
i—-1 i i+1
(b)

Fig. 3. Representation of an arbitrary variable ¥ in the (x,y)
Plane for: a) Kreiss' method, b) Orlanski's method and the new im-
Plementation applied to a northern boundary condition.
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in the new implementation of Orlanski's method, where

PB,W B (wB—l, W-1 * 1!)B_._']_, W+l) /2. (3.1n)
R = (seg, we1 ¥ Vaes, wel) 2, (3.15)
The value of Fw is:

n n-2

p - P
F = - B,W B,W . 20% (3.16)
¥ ph . phm2 _ o on-2 At

s P T Few T Feuw

Figs. 4a and b show the representation of the variable, ¥, in the

y, t plane for these methods.
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n+1

n-1

B B-1 B-2
(a)

> =
<

14 A 4

B B-1 B-2 B-3

(b)

Fig. 4. Representation of an arbitrary variable V¥ in the (y.,t)
plane for: a) Kreiss' method, b) Orlanski's method and the new im-
Plementation applied to a western boundary condition.

ram——



4, RESULTS

In the first experiment at time t = 0, we impose an easterly wind

in the western third of the basin, up to time 4.0 (Egs. 2.12 and 2.13).
The east-west stress is zero in the remaining two-thirds of the basin,
while the north-south stress is zero everywhere. This impulsive wind
stress excites an internal equatorial Kelvin wave, which travels east-
ward along the equator. After reaching the eastern boundary, this wave
travels poleward along that boundary.

This first experiment is designed in such a way that the outflow
of an isolated nondispersive wave can be studied in full detail. In
this case, the nondispersive wave is the eastern coastal Kelvin wave.

A first run in a closed basin of solid walls of zero slip preceeded the
experiments with the northern open boundary.:

The closed basin solution (Figs. 5a, 5b and 5c¢) shows the egua-
torial Kelvin wave in the middle of the basin along the equator. The
velocity, u, associated with this wave has a maximum amplitude at the
equator, and decays as exp (—(l/2(y)2) away from the equator (Fig. 5a).
On the other hand, the north-south velocity, v, is identically =zero,
as expected (Fig. 5b) (O'Brien, et. al., 1978).

Upon reaching the eastern boundary, part of the equatorial Kelvin

Wwave travels poleward as a coastal Kelvin wave, and another part of it

~ - P o - . . o0 . . .. -

wave travels poleward as a coastal Kelvin wave, and another part of it

is reflected as a Rossby wave train. It is interesting to point out
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Fig. 5. a) Zonal velocity, b) Meridional velocity, and c)

(a)

Fig. 5. a) Zonal velocity, b) Meridional velocity, and c)
Height fields at time 4.0, for the closed domain, for the first ex-
periment. The plotting frequency is 1000 units of dimensionless
velocity.
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that, while the meridional Kelvin wave is travelling along the eastern
boundary, the velocity, u, is identically zero (Fig. 6a). Furthermore,
the velocity, v, has a maximum near that boundary and decays as
exp (-xy/a) away from that boundary (Fig. 6b). Fig. 6a also shows the
propagation of the internal Rossby wave, centered at x = 20, towards
the western boundary along the equator.

The downwelled region observed in FTigs. 6a and 6c in the western
portion of the basin corresponds to an internal Kelvin wave front ex-
cited by the sudden cessation of the wind stress.

The flow along the eastern boundary may be represented approxi-

mately by the y-momentum balance:

= % -yu - =— (5.1)

Because u is almost negligible along the boundary, it is accurate to

state that:

3h ' (4.2)

along the eastern boundary.

Fig. 7 shows the upwelled region of the internal Kelvin wave
front erriving at the northern boundary at time 10.0. While the
coastal Kelvin wave front is moving northward, it is also transferring
energy to a Rossby wave, which moves to the west (Figs. 6c and 7) at
a speed of a/3 for the gravest latitudinal mode (Hurlburt, et. al.,

1976). At time 12.0, this internal Kelvin wave front is already con-
L2 nd n 2 mcmmmmes lmram A mnaes T arrana ~a+ dha mammthasan hAavimAanar (P Q)

1976). At time 12.0, this internal Kelvin wave front is already con-
fined to a narrow boundary layer at the northern boundary (Fig. 8).

Another interesting feature to observe at the eastern boundary at
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Fig. 7. Height field, at time 10.0, for the closed domain, for
the first experiment.
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this same time, is the poleward evolution of the downwelled region
associated with the other internal Kelvin wave front.

In the open basin experiment, we are interested in studying the
outflow of the first eastern coastal Kelvin wave front as it moves
away from the equator. The three different sets of northern open
boundary conditions described in the previous chapter are tested. In
order to compare these cases with the closed basin solution, the meri-
dional extension of the basin is shortened to uLy. The first northern
open boundary condition to be tested is Kreiss'. The application of
this set of open boundary conditions yields an unstable solution for
this problem. It is surmised that the boundary condition is ill-
posed.

Following this experiment, the open boundary conditions II and
III are tested. At time 8.0, the leading edge of the coastal Kelvin
wave front reaches the northern open boundary (Figs. 9a and 9b). A
very close similarity to the closed basin solution is observed (Fig.
6c). At time 10.0, the evolution of this wa&e front through the open
boundary (Figs. 10a and 10b) shows a perfect agreement with the closed
basin solution (Fig. 7). At time 12.0, also in perfect agreement with
the clecsed basin solution (Fig. 8), the coastal Kelvin wave front has
already passed through the northern open boundary (Figs. lla and 11b).

The other coastal Kelvin wave front, produced by the sudden
cessation of the wind stress at time 4.0, is arriving at the northern
boundary at time 12.0, in perfect agreement with the closed basin so-

lution. We can conclude that in this experiment no contamination of

boundary at time 12.0, in perfect agreement with the closed basin so-
lution. We can conclude that in this experiment no contamination of
the interior solution nor computational reflection of non-dispersive

waves is observed at the artificial boundary with the application of
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Fig. 9. Height field with boundary conditions a) II, and b)
ITI, at the northern boundary, at time 8.0, for the first experiment.
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the open boundary conditions II and III. Thus, the outflow of a non-
dispersive wave has been successfully implemented. Both Orlanski's
method and the modified technique are useful, but Kreiss' method
fails.

In the second experiment, the easterly wind imposed in the west-
ern third of the basin is applied continuously. Upon reaching the
northern boundary, the meridional Kelvin wave travels along that boun-
dary toward the west. Conservation of energy dictates that an increase
in the amplitude of the coastal Kelvin wave must take place. This is
related to the change of the trapping scale, which along the northern
boundary is of the order of 1/5.

The aim of this second experiment is to simulate the outflow of
the Rossby and the meridional Kelvin waves for the free wave problem.
The closed basin solution shows the leading edge of the internal
coastal Kelvin wave front, at x = 17, moving westward along the north-
ern boundary (Fig. 12). The downwelled region observed in the western
half of the basin is caused by downwelling aiong the northern boundary
due to the easterl} wind and coastal Kelvin waves which propagate
counterclockwise. At time 14.0, the leading edge of the coastal Kelvin
wave (Fig. 13) is located at x = 17. We can observe the Rossby wave,
fully developed, in the eastern half of the basin. As of time 15.0,
the wind is suddenly shut off, and the downwelled region starts to
move eastward as an equatorial Kelvin wave. At time 16.0, we can ver-
ify this effect (Fig. 15). Meanwhile, the leading edge of the north-

ern coastal Kelvin wave is reaching the western boundary (Fig. 15).

ify this effect (Fig. 15). Meanwhile, the leading edge of the north-
ern coastal Kelvin wave is reaching the western boundary (Fig. 15).
In the open basin case, our integration is carried out in a closed

basin of solid walls of zero slip up to time 11.5. At this time, we
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Same as Fig. 12, but at time 14.0.

Fig. 13.
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(a)

Fig. 14. Height field with boundary conditions a) II, and b)
III, at time 14.0, for the second experiment.
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Fig. 15.

Ly

;u%

SO

b

o

Same as Fig. 12, but at time 16.0.

25



us
place an open boundary in the center of the basin at x = L/2. Boun-
dary conditions II and III are our new "western' boundary conditions.
Kreiss' method did not work in the simple case and is not discussed
here. From t = 11.5, the time-integration is carried on the rectangle
0 <y £W3; L/2 <x <L and compared to the larger enclosed domain.

As the effects of the remote forcing are no longer present in our
foreshortened basin, one can expect a slightly different solution in
these two cases as compared to those of the closed basin solution. At
time 14.0, the two sets of open boundary conditions show a good agree-
ment with the closed basin solution (Figs. li4a and b). The outflow of
the coastal Kelvin wave seems to progress naturally with the implemen-
ted variation, III, of Orlanski's procedure (Fig. 16b). However, the
new implemented variation, III of Orlanski's procedure shows an in-
creasing reflection at the outflow of the Rossby wave. At this same
time, the implementation of Orlanski's original boundary condition, II,
shows an unacceptable reflection at the outflow of the coastal Kelvin
wave region (Fig. 16a). With the new implementation of Orlanski's
boundary condition, we have successfully simulated the outflow of the
Kelvin wave for the free wave problem. The new method is better but
does not have the long-time stability that a perfect boundary condition
should have.

After simulating the outflow of the Kelvin wave for the free wave
problem, a more general experiment is devised. In this case, we at-
tempt to simulate the outflow of the Kelvin wave for the forced wave

problem. Only the new implementation, III, of Orlanski's boundary con-

tempt to simulate the outflow of the Kelvin wave for the forced wave
problem. Only the new implementation, III, of Orlanski's boundary con-
dition is used. For this purpose, we impose a steady (constant) stress

for all the grid points during the whole period of integration. This
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b7

w0 | [ L

+ |

m

N

o)

T T T T — T
g g 10 {5 20 25
(b)

(b)




ug

wind stress simulates the zonal wind stress in an equatorial region.
The sﬁdden imposition of the easterly wind over all the grid points
generates a different kind of physics as compared with the two pre-
vious experiments. The closed basin solution shows that along the
northern boundary a downwelled region, associated with a coastal
Kelvin wave front, is generated (Fig. 17). This wave front travels to
the west.

The imposed stress plays a somewhat different role in the phys-
ics of the problem at the eastern boundary along the equator. Ini-
tially, a Rossby wave is excited and travels toward the west along the
equator. Also, a meridional Kelvin wave front is excited. The trap-
ping scale of this coastal Kelvin wave front changes by the factor
1/y as it propagates northward. In other words, as the coastal Kelvin
wave moves poleward, it tends to conserve energy. This has a double
effect. On one hand, a Rossby wave is constantly generated; on the
other hand, a decrease in the trapping scale takes place. The in-
crease of the amplitude of the coastal Kelvin wave front, as it moves
northward, is related to the latter effect. The maximum amplitude is
located along that eastern boundary.

On the western side of the basin, along the equator, an intermal
Kelvin wave is excited, as in the previous experiments. The dynamics
of this experiment differs somewhat from the previous ones. In this
case, the flow along the equator is represented by the u-momentum

equation:

equation:

ou . oh X
Pl R el §(t"/p) (4.3)
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Fig. 17. Height field for the closed domain, at time 6.0, for
the third experiment.
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In the region between the Rossby and Kelvin wave fronts, we have:

%h g (L.n)
ox
and, consequently:
ou . X
5t 8(t/p) (4.5)

i.e., an easterly acceleration of the equatorial jet (Yoshida, 1959).

Now, in regions where one of the two wave fronts has passed we have:

ou .
7 O (4.6)
and consequently:
oh _ X
o = §(1t7/p) (4.7)

At time 5.0, the equatorial Kelvin wave front has reached the
eastern boundary. Its reflection generates a Rossby wave, which
travels westward, and a coastal Kelvin wave front, which moves pole-
ward. At time 6.0, the positions of both the coastal and meridional
Kelvin wave fronts are clearly depicted (Fig. 17). The shape of the
pressure gradient near the equator gives us a fairly good idea of the
existence of these Rossby waves.

According to calculations, at time 6.0, the leading edge of the
first Rossby wave travelling along the equator is located at x = L/2.

Bearing this in mind, we place the new implementation of Orlanski's

boundary conditions, at this point, at time 6.5. This particular time

Bearing this in mind, we place the new implementation of Orlanski's
boundary conditions, at this point, at time 6.5. This particular time
is chosen because we want to determine whether the inclusion of this

computational boundary condition will in some way distort the outflow



51
of the Rossby wave already under process.

Although the rectangle in which the time integration is carried
on is the saﬁe as in the second experiment, a constant easterly wind
blows towards the '"new' western open boundary during the whole period
of integration. The feature we are interested in simulating in this
experiment is the outflow of the northern coastal Kelvin wave.

At time 7.0, the outflow of the}coastal Kelvin wave front in the
open basin solution (Fig. 18b) shows a perfect agreement with that of
the closed basin solution (Fig. 18a). Comparison of time 11.0 (Fig.
19b) and time 7.0 (Fig. 18b) shows that the outflow of the first
northern coastal Kelvin wave front is completed in perfect agreement
with the closed basin solution. At time 15.0, the open basin solution
(Fig. 20b) shows that the outflow of the second northern coastal
Kelvin wave 1s progressing normally, while the interior solution is
contaminated by partial reflection of the Rossby wave at the artifi-

cial boundary.
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Fig. 18. Height field for a) closed domain, b) boundary condi-
tion III, at time 7.0, for the third experiment.
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Fig. 18. Same as Fig. 18, but at time 11.0.
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Fig. 20.
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5. CONCLUSIONS

The aim of this investigation was to simulate the outflow of
dispersive and nondispersive waves. In our study, these waves were
the Rossby and Kelvin waves, respectively. TFor the purpose of this
investigation, the experiments were conducted with different sets of
open boundary conditions. Because the linear shallow water wave
equations are hyperbolic in nature, a Sommerfeld radiation condition
was implemented as a prescribed open boundary.

Three severe tests were conducted to cover the whole spectrum of
both the free and forced wave problem. In the first two experiments,
the free wave problem was studied, while in the third experiment the
forced wave problem was studied. 1In the first experiment, the outflow
of the eastern coastal Kelvin wave, which moves away from the equator,
was successfully simulated. In the second and third experiments, the
new variation, III, of Orlanski's procedure showed almost no reflec-
tion at the outflow of the northern coastal Kelvin wave. However,
some reflection at the outflow of the Rossby wave was observed in both
experiments with this open boundary condition. On the other hand, in
the second experiment, the implementation of Orlanski's original
boundary condition showed an unacceptable reflection at the outflow of

the northern coastzl Kelvin wave and noise in the Rossby wave region.

boundary condition showed an unacceptable reflection at the outflow of

the northern coastzl Kelvin wave and noise in the Rossby wave region.
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