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ABSTRACT

Synthetic monthly sea surface temperature (SST) anomaly data are constructed
using frequency domain analyses of significant principle components derived
from the Reynolds reconstructed SST data in the equatorial Pacific Ocean.
The model provides insight into the dominant physical processes contained in
each component, and retains the relevant statistical properties of the original
data, such as the mean, variance, and autocorrelation. Thus, numerous sets of
synthetic SST anomaly data can be produced for the equatorial Pacific, which
are statistically indistinguishable from the original SST anomaly data.

The spatial and temporal SST signatures of the biennial, intradecadal, and
decadal pseudoperiodicities are reproduced, including their frequency and du-
ration of occurrence. Specifically, the El Nifio - Southern Oscillation (ENSO)
warm and cold event signatures recur in the synthetic data at peak return pe-
riods of 2.4, 3.5, 5.0, and 6.4 years. Moreover, the anticipated return period of
an extreme ENSO event with a maximum SST anomaly magnitude of 1.7°C' is

approximately every 5 warm events, and every 7 cold events.



1. Introduction

Theoretical methods from which synthetic time series can be constructed pro-
vide a means to overcome the limitations of our inevitably short climate records.
The algorithm devised in this study is a synthetic sea surface temperature
anomaly generator, which successfully reproduces the equatorial Pacific SST
anomaly patterns associated with the El Nifio-Southern Oscillation and other
identifiable SST anomaly signatures.

ENSO is defined quantitatively by its SST signature, using indices such as
the JMA (discussed in section 4), but is more broadly defined as a coupled
ocean-atmosphere phenomena in which anomalous warming (cooling) of sea
surface temperatures in the eastern equatorial Pacific are preceded by anomalous
westerly trade wind patterns (strengthened easterly) in the central equatorial
Pacific, and the associated excitation of oceanic internal wave dynamics.

Extreme variability in the equatorial Pacific has important implications for
the tropics as well as higher latitudes. Quantities such as air temperature, SST,
and specific humidity in the western equatorial Pacific (WEP) are comparably
large with respect to other latitudes due to intense, year-round solar radiation.
The persistent trade winds across the equatorial Pacific basin, in conjunction
with the warm SSTs ( > 25°C), result in very high surface latent heat fluxes
and evaporation in the WEP. Anomalous SST signatures would thus imply
a displacement of large heat and moisture transfers, corresponding convective
perturbations, and associated atmospheric wave formation (Salby 1996). Such

perturbations in the tropics have been shown to be associated with anoma-

perturbations, and associated atmospheric wave formation (Salby 1996). Such
perturbations in the tropics have been shown to be associated with anoma-

lous patterns in pressure, temperature, and moisture in extratropical latitudes



(Yarnal 1985).

We develop a method which successfully reproduces the SST signatures as-
sociated with warm and cold events to study ENSO extremes. Algorithms for
generating synthetic data are developed using frequency-domain analyses to ex-
tract information regarding the contribution of different frequency oscillations
to the associated variability of the time series. Thompson and O’Brien (1973)
developed a technique to produce realizations of wind stress data, given a known
sample spectrum of wind speed. An analytic approximation of the kinetic energy
spectrum was derived from the Fourier coefficients of wind speed. Random, an-
tisymmetric phases, (6(f) = 6(—f)), are applied to the analytic spectrum. The
wind stress realization is obtained via the inverse Fourier transform. Recently,
Theiler et al. (1992) used a frequency-domain method, although no analysis of
the spectrum is done, to generate synthetic data from the original amplitude
spectrum by simply randomizing phases under the aforementioned constraint.
Theiler’s method, called the method of surrogate data, was applied by Elsner
and Tsonis (1993) to investigate the existence of nonlinearity in monthly sea
level differences between Tahiti and Darwin. The data sets generated using these
methods remain statistically indistinguishable from the observed realizations,
thereby producing realistic time series from which valid statistical inferences
can be made.

Thompson and O’Brien utilize a functional fit to the amplitude spectrum,
thereby assuming that such an analytical approximation accurately captures

the variance contribution with frequency needed to produce consistent realiza-

thereby assuming that such an analytical approximation accurately capuures
the variance contribution with frequency needed to produce consistent realiza-

tions. The method developed in this study will take the work of Thompson



and O'Brien a step further. We assert that the analytic approximation to the
amplitude function should be a deterministic variance distribution within the
frequency bands attributable to physical processes, such as ENSO. The remain-
ing portions of the amplitude function are modeled with the theoretical spectra
for red and white noise processes, scaled to applicable amplitudes determined
directly from the original spectrum. Thus, we allow the rest of the spectrum
to represent random interactions between actual physical processes, correlated
noise, or random noise. The method used to determine an appropriate func-
tional fit, therefore, requires further spectral analysis than existing methods,
and is described in section 3.

By validating ENSO indices of a sample of synthetic data against the
Reynolds data, it is found that the frequencies of ENSO occurrences are re-
tained, as are the approximate number of ENSO warm and cold events in a
40 year period. Furthermore, the synthetic data has.approximately the same
average ENSO event duration as the Reynolds data.

In the following pages, section 2 describes the Reynolds SST data set and
the Empirical Orthogonal Function (EOF) technique that makes a frequency
domain analysis of the Reynolds data possible. A description of the methods
used to determine an appropriate theoretical model for the amplitude spectra is
discussed in section 3. In section 4, ENSO indices are used to validate a sample
set of synthetic data against the Reynolds data. Further, ENSO event extremes
are quantified in terms of expected return periods for warm and cold events of

a given SST magnitude. All findings are then summarized in section 5.

are quantified in terms of expected return periods for warm and cold events ot

a given SST magnitude. All findings are then summarized in section 5.



2. Data

The data used for this project are the Reynolds EOF reconstructed sea surface
temperatures. The complete data set is global, has a 2° spatial resolution, and
extends in time from 1950 to 1992. We utilize only the equatorial Pacific region
(30S to 30N and 120E to 90W) over the years 1953 to 1992. The Reynolds
monthly SST climatology on a 2° grid are used for the computation of SST
anomalies in the aforementioned region (Smith et al. 1996).

Reynolds’ reconstruction technique uses weekly SST fields from January
1982 to December 1993 (Reynolds and Marsico 1993). These data have been
analyzed on a 1° grid using the method of Optimum Interpolation (OI). The
OI technique incorporates both in situ and satellite data. The satellite data
improves the overall spatial coverage of the SST data, while the in-situ data
allows for the correction of satellite SST retrieval bias due to atmospheric aerosol
content (Reynolds and Smith 1994). Reynolds’ reconstruction methodology is
described in Smith et al. (1996), and is summarized in the following sentences.
The in-situ data which are found to be without éystematic bias and represent
sufficient spatial coverage, as determined by Smith et al. (1996), extend from
1950 to the present. However, inadequacies such as inconsistent spatial and
temporal in-situ data coverage have resulted in gridded analyses which contain
bullseyes in data rich regions and gaps in other regions. The improved spatial
coverage provided by the OI data is utilized to fill spatial gaps and produce a
smooth SST field for observations prior to 1982. The spatial components of an

EOF analysis on the OI data are used as basis functions. These functions are fit

smooth SST field for observations prior to 1982. The spatial components of an
EOF analysis on the Ol data are used as basis functions. These functions are fit

to existing data, such as the comprehensive ocean atmosphere data set (Slutz



et al. 1985) from 1950 to 1982. The result is a reconstructed SST data set for

the period 1950 to 1992 on the a 2° grid.

2.1 EOF analysis method

EOF analysis method is used by Reynolds for data reconstruction, as well as
in this study to allow for the application of classical time series analysis. It is
especially useful for data covering large spatial domains. The data are rewrit-
ten as orthogonal spatial and temporal components, thus extracting necessary
information regarding the variability.

Consider some data y which vary both spatially as well as temporally. The

EOF representation would be
M
y(s:t) =]Z_:1Tj(t)5j(5) (1)
where ¢ is time, s represents horizontal coordinate points, S; are spatial fluc-
tuations in the data (spatial patterns), T; are temporal fluctuations (principle
components), and M is the number of orthogonal patterns (equal to the dimen-
sion s or ¢, whichever is smaller). The method requires the construction of the

covariance matrix of the original data, C, and the solution of the eigenvalue

problem
Cx = Mx (2)

where A is a matrix of M eigenvalues, and x is the matrix containing all z;.
The M elements of x are known as the eigenvectors. The temporal or spatial

component which is selected as the eigenvector is normalized such that

The M elements of x are known as the eigenvectors. The temporal or spatial

component which is selected as the eigenvector is normalized such that

> (BB = 6, (3)

k



where § is the Kronecker delta (defined as unity where the indices are equal
and it vanishes otherwise), k is a space or time index and F is either a spatial
or temporal component. Using this relation, it can be shown that the sum
of the squared elements of the non-normalized component are the variances of
each EOF. The individual components of the EOF analysis are then ordered
by descending percent variance contribution. The physical mechanisms which
constitute the largest amount of variability in a region are associated with the
largest eigenvalues.

The EOF analysis for this study is applied to the Reynolds SST anomalies in
the selected equatorial Pacific domain. The spatial and temporal indices are 480
and 2,093 respectively. The spatial domain contains 2,250 grid points; however,
157 of them correspond to land, and are thus omitted from the data matrix. We
find that the first principle component (PC1) constitutes approximately 46 % of
the total variance in the SSTs for this region. The second principle component

(PC2) constitutes approximately 10 % of the total variance.

2.2 The Spectra of PCs 1 and 2

The raw amplitude spectra of each PC are of primary interest for the identifi-
cation of the pseudoperiodicities and associated physical processes which con-
tribute to the variability. For example, the largest spectral peaks of PC1 are
mainly attributable to ENSO. There are pronounced peaks at frequencies near
0.01670 and 0.02355 cpm, which correspond well with the timing of SST anoma-
lies in the eastern equatorial Pacific (EEP) according to the delayed action os-

cillatar thearv of ENSO (Philander 1990. Allan et al. 1996). The theory holds

lies in the eastern equatorial Pacific (EEP) according to the delayed action os-
cillator theory of ENSO (Philander 1990, Allan et al. 1996). The theory holds

that a 12-15 month delay between Rossby wave-induced SST anomaly maxima
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Figure 1: Plot of the amplitude spectrum of principle component 1; Aobs(f) =

(ai(f)? + b;(f)?) where a;, b; are the Fourier transform coefficients. Frequency is in
units of cycles per month (cpm). Note the amplitude peaks which represent intradecadal
f~0.023 CPM, ~0.017 CPM, ~0.013 CPM (~ 3.6 years, = 4.9 years, = 6.4 years)
pseudoperiodicities can be linked to the occurrence frequencies of ENSO.

and minima exists in the EEP. The SST maximum occurs during an ENSO
warm event. The central/eastern equatorial Pacific westerly wind anomaly is
associated with deepening of the thermocline due to the excitation of both down-
welling Kelvin waves at the equator and off-equatorial Rossby waves that further
enhance downwelling (or weaken upwelling). The SST minimum is indicative
of an ENSO cold event. The upwelling Rossby waves reflect off the western
boundary of the equatorial Pacific and propagate eastward as upwelling Kelvin
waves, reversing the sign of the SST anomaly in the EEP. (Allan et al. 1996).
Rossby waves which favor upwelling are thus excited, enhancing the EEP up-

welling and corresponding cooling of the SSTs. The negative feedback caused

Rossby waves which favor upwelling are thus excited, enhancing the EEP up-
welling and corresponding cooling of the SSTs. The negative feedback caused

by wave dynamics initially serves to break down the warm event, but later leads
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Figure 2: Plot of the amplitude Spectrum of principle component 2. Note the amplitude
peaks which represent decadal f ~ 0.008 cpm (& 10 years), intradecadal f = 0.023 cpm
(= 3.6 years), and biennial f a2 0.04 cpm (= 2 years) pseudoperiodicities.

to enhanced cooling of SSTs in the EEP, upwelling, and a reversal of the west-
erly wind anomaly. Based on the speed of wave propagation and the timing of
excitation, the process typically results in SST maxima and minima occurring
12-15 months apart (Allan et al. 1996).

The dominant physical mechanisms represented by spectral peaks in PC2
are ENSO, as well as the decadal and quasibiennial oscillations(Figure 2). The
physics of the quasibiennial oscillation (QBO) are not well known; however, the
QBO is detected in the SST fluctuations of the equatorial Pacific region, as well
as in the troposphere and stratosphere (Salby 1996). The peak in the raw ampli-
tude spectrum of PC2 corresponding to approximately 10 years (f = 0.008 cpm)

supports a fluctuation in SST patterns in the equatorial Pacific on decadal time

tude spectrum of PC2 corresponding to approximately 10 years (f = 0.008 cpm)
supports a fluctuation in SST patterns in the equatorial Pacific on decadal time

scales (Figure 1). There is evidence that the amount of solar radiation entering



the earth’s atmosphere (and associated surface heating) varies, possibly due to
sunspot activity, on an approximately decadal time scale (Barnett 1990). Thus,
the decadal SST variability could be a result of the sunspot cycle. Enfield and
Luis Cid S. (1991) argues that variations in ENSO characteristics on decadal
time scales are inversely related to high and low sunspot activity; when sunspot
activity is low, ENSO occurrence is found to be more frequent. It is also possible
that the variability is related to internal ocean dynamics. Although the phys-
ical mechanisms are not known, the decadal variability of SSTs in the tropics
remains pronounced (Oceanic Interdecadal Climate Variability 1992).

The three aforementioned quasiperiodicities are considered to prevail over
any other SST anomaly fluctuations, such as the intraseasonal, seasonal, or
other oscillations in the first two principle components. The amplitude peaks
associated with interannual (ENSO), biennial, and decadal oscillations are com-
parably large relative to other spectral peaks, and thus account for the most
variance. Thus, the term select physical processes throughout this paper refers

to the interannual, quasibiennial, and decadal oscillations collectively.



3. Methodology

The goal in constructing synthetic time series from existing, observed SST data
is to determine the important characteristics contained in the observed set and
develop a theoretical model function from which those data could have been
produced. We approach the model development by first determining the num-
ber of Principle Components needing to be modeled based on what meaningful
information is contained in the probability structure of the amplitude spectra.
We determine mathematical functions that describe both the amplitude and
phase spectra in the frequency domain for those EOFs which contain signal
information; that is, they contain information of SST fluctuations for dominant
physical processes in this region. These are called significant EOFs or corre-
spondingly, significant principle components (PCs), and are determined, in part,
by using methods of EOF truncation.

One common method of EOF truncation assumes that the components which
remain distinguishable from noise will possess a steep slope relative to adjacent
eigenvalues when plotted on a Scree Graph (Figure 3). The eigenvalues which
produce a nearly horizontal line on this graph are most likely components of
uncorrelated noise, and they do not represent relevant signals in the data (Wilks
1995). The Scree Graph for Pacific equatorial SSTs implies a truncation point
at the second principle component.

Another method of truncation determines which modes describe the selected
physical processes discussed in section 2, by analyzing the Fourier amplitude

functions of each PC. The SST fluctuations associated with these physical pro-

physical processes discussed in section 2, by analyzing the Fourier amplitude
functions of each PC. The SST fluctuations associated with these physical pro-

cesses are identified as peak values in the amplitude function at the correspond-
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Figure 3: Plot of the eigenvalues (representing variance contribution (°C?)) as a function
of eigenvalue rank. The slope of the line between the eigenvalues is related to the amount of
signal information in those EOFS. The eigenvalue itself is known as the observed variance of
the component.

ing frequencies. Recall from section 2 that the ENSQO exists in the amplitude
function of PC1, while the ENSO, biennial and decadal variabilities are found
in PC2 (Figure 6). No other large amplitude peaks are identified as recogniz-
able and dominant physical processes in the amplitude functions of PCs 3 and
higher. Therefore, the first and second components are categorized as signifi-
cant PCs because their spectra contain peaks attributable to physical processes.
This result is consistent with the Scree truncation.

A Kolmogrov-Smirnov (K-S) goodness of fit test is applied to the spectra
of PCs 3 through 11 to determine whether or not the remaining PCs can be

considered random noise. The range 3 through 11 is selected because the slope

of PCs 3 through 11 to determine whether or not the remaining FUs can be
considered random noise. The range 3 through 11 is selected because the slope

between the eigenvalues on the Scree diagram does not appear to be horizontal,

11



and thus may not simply represent uncorrelated noise. The K-S test compares
the magnitude of the maximum difference between the integrated spectrum of
the data and that of pure random noise (Priestly 1981). A confidence limit is
selected apriori. The null hypothesis states that the sample cumulative distri-
bution function (cdf) of the data will not be distinguishable from the theoretical
cdf of a random process. PCs 3-11 are distinguishable from white noise at the 95
% confidence level. Thus, PCs 3-11 are not simply uncorrelated noise. The spec-
tra contain much larger amplitude peaks at lower frequencies than the peaks
at higher frequencies. We deduce that some amount of temporal correlation
exists in PCs 3-11; however, the amplitude peaks at low frequency cannot be
attributed to any obvious and well described properties. Thus, we have selected
the term red noise to describe that portion of the temporal fluctuation that is
assumed to be neither deterministic nor random. Red noise is selected because
it is a common term describing correlated noise; characterized by a spectrurﬁ
containing larger variance at lower frequencies. For example, the spectra of au-
toregressive processes with coeflicients greater than zero are known as red noise
processes (Wilks 1995).

We expect the spatial and temporal variations in the data associated with
EOFs of low percent variances to be purely random. Therefore, PCs 12 through
480 represent white noise. These PCs constitute only 15 % of the total variance
in the system. Individually their observed variances are less than or equal to
2.0°C* | with an average observed variance of only 0.04°C? . Additionally, on

the Scree diagram the lines become most nearly horizontal at PCs 12 and higher.

2.0°C? | with an average observed variance of only 0.04°C* . Additionally, on
the Scree diagram the lines become most nearly horizontal at PCs 12 and higher.

For these reasons, we assume that random numbers, rescaled by equipartitioned

12



original variance can represent the random fluctuations in both space and time
for PCs 12 through 480.

A distinction has been made, for the purpose of EOF truncation, between the
portions of the amplitude functions which represent select physical processes,
correlated noise, and stochastic noise. Thus, we will develop mathematical func-
tions to denote the three separate amplitude models: a deterministic amplitude
model, a red noise model, and a white noise model to correspond respectively to

these three distinctions.

3.1 White noise amplitude model

We develop a theoretical model for the portion of the spectra which represents
uncorrelated noise. Since random noise is by definition uncorrelated from one
time step to the next, it is manifested in the amplitude spectrum as high fre-
quency information. Thus, the white noise amplitude model is taken to be the
mean value of the original amplitude function for the frequency band from f,
to the Nyquist frequency, Em—:nm The value f, is that frequency between low
frequency red noise or deterministic (physical) signal and higher frequencies in
the amplitude function. The determination of the frequency dividing correlated
and uncorrelated information is chosen subjectively from the spectrum of each
PC. We select f. to be large enough so that we do not model relevant physical
information as uncorrelated noise. Let M represent the sample mean of the am-
plitude values from the original spectrum in this defined white noise frequency
range. Then, the white noise model is defined over all frequencies such that

. . AL el < n

range. Then, the white noise model is defined over all frequencies such that

W(f) = Aﬁ ‘ff i|:>00 (4)

13



where ¢ is the frequency index. From this model, the time domain white noise
variance can be computed. The remaining variance is attributed to either red

noise processes or deterministic processes.

3.2 Red noise amplitude model

The modeled red noise represents the non-deterministic portion of the PC which
still contains some temporal correlation. An autoregressive model was selected
as the basis for the red noise amplitude model. The general order autoregressive
model is described as a regression of the variable X over time,

K

X =3 (k)Xo (5)

k=1
where K denotes a chosen maximum lag, from k=1,2,3,.. K, and ¢(k) are the
autoregressive coeflicients.

An estimate to the autocorrelation function is needed to determine the nec-
essary coefficients, ¢. We are interested in the approﬁimate correlation of only
the red noise over time. The sample autocorrelation functions of the PCs cannot
be used, as they contain information from the deterministic processes as well

as red noise. Thus, we select an indicative red noise autocorrelation function

which drops off exponentially such that

p= ezp(—é) (6)
¥

where k=0,1,2,3,...K represents the lag, and 7 represents a reference lag. Such an
estimate of the autocorrelation function represents a temporal correlation for the

first few lags and apvroaches zero correlation at higher lags. The autoregression

estimate of the autocorrelation function represents a temporal correlation for the
first few lags and approaches zero correlation at higher lags. The autoregression

coefficients are determined from the autocorrelation function by solving the

14



Yule-Walker equations for all lags (Wilks 1995). The matrix equation
R® =r (7)

consists of the autocorrelation matrix

o0 p1) e plk—1)
p(1)  0(2) o p(k—2)
rRo| P& pB oplk=3) | (8)
plk=1) pk=2) =  p(0)
the column vector of the autoregressive coefficients
¢(1)
¢(2)
=1 . |, (9)
#(K)
and the autocorrelation column vector
p(1)
p(2)
r= . (10)
Mk)

The result is that the coeflicients, ¢, are determined for all lags (k = 1,2,3,...K),
and they are used to fit an autoregressive model, initially in the time domain.
The Fourier Transform of the autoregressive model represents a preliminary red
noise amplitude model in the frequency domain.

The red noise model must be scaled to match the time domain variance of
the red noise processes being modeled. Thus, we need to quantify the time
Anmain varianes af the red naice nracece far each P(Y Ta da this. we develoned
the red noise processes being modeled. Thus, we need to quantify the time
domain variance of the red noise process for each PC. To do this, we developed

a method called the overlap technique. The modeled red noise can be scaled
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to the peak value of the original amplitude function in the low frequency range
0.0 to 0.007 cpm.

The time domain variance of this model represents an upper bound guess
for red noise, a}{mu, as it is the amplitude that the red noise would have
if there were no other deterministic or random information in the frequency
band. Using the white noise variance for the PC of interest, we can compute a

model deterministic function with the remaining variance. The variance of

0.012 T T — A S— T T T T T T T

0.010

0.008

Amplitude
o
°
o
2

0.004

0.002

e o e by by oy b by

0.000

Frequency

Figure 4: The shaded region is an example overlap region for the maximum possible
red noise variance and the corresponding deterministic amplitude model. The time domain
variance of the overlap region is Ac%.

the overlap region of these two functions denotes the largest possible red noise
Aaviatinn A ~2 (Wianre 41 Wa datermine the lawer hound red noise variance
the overlap region of these two functions denotes the largest possible red noise
deviation, A o% (Figure 4). We determine the lower bound red noise variance

to be
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2 ) _ 2
URmin - URmaz A OR (11)

The red noise variance is taken to be the average of its upper and lower bounds.
Thus, the deterministic variance is the remaining portion of the total time do-

main variance for the significant PCs
2 _ 2 2 2
Odet = 9total ~ OR — Oy (12)

where o2 denotes the white noise variance and 02,, denotes the total time

domain variance for the PC being modeled.

3.3 Deterministic amplitude model

The amplitude peaks which occur at or near frequencies of the select physical
processes, will be modeled with rescaled probability density functions (PDFs)in
the frequency domain (Bendat and Piersol 1986). PDFs are selected because
the area under the PDF curve provides meaningful probability information for
each frequency. Thus, each of the select physical processes are considered to
be aperiodic and are best represented as deterministic distributions about their
peak occurrence frequency. A good example is the well-known range of 2 to 7
years for the return interval of an ENSO event. An amplitude peak for ENSO
would reflect the distribution of occurrence probability for each frequency in
this range, rather than at a single frequency. We argue that such an amplitude
distribution over the frequency range for physical processes is deterministic.

The three PDFs which will be used have been determined to closely fit

distribution over the frequency range for physical processes is deterministic.
The three PDFs which will be used have been determined to closely fit

the shape of the distribution about the frequency of the amplitude peak. The
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Gaussian PDF is used, as are the Rayleigh and the Maxwell PDFs. The latter
two distributions are specific cases of the more general Wiebull PDF (Figure 5).

PDFs have the important characteristic that

0.040 — T ——T—— T
0.030 a
— Maxwell E
3 —-— Rayleigh _:
5 0.020 ]
]
0.010 —
]
0.000 i 1 - J
150 200

Figure 5: Example Rayleigh and Maxwell PDFs. The Maxwell distribution has a sharper
peak and drops off more quickly than the Rayleigh. '

S Flz)Az =1 (13)

where F'(z) represents the distribution and Az is the sampling interval. Equa-
tion (13) reiterates that the area under the PDF is a probability. Moreover, the
shape of the distribution of probability over a given frequency range marks the

important difference between these PDFs.

3.4 Specific model development

To construct the model for each individual PC, we will utilize the aforementioned
3.4 Specific model development

To construct the model for each individual PC, we will utilize the aforementioned

amplitude models as needed to represent the probability distribution over the
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frequencies of select physical processes. Further, we compute the total time
domain sample variance directly from the original time series of each PC. The
corresponding modeled time series must retain this variance.

For the significant principle components, the modeled amplitude function
is comprised of a root mean square sum of all three amplitude models. Much
of the significant variability occurs in the frequency range 0.0 to 0.1 month™!,
corresponding to time scales longer than 10 months. We assume that all three
portions of the amplitude model overlap in this range, contributing to the larger
variance at low frequencies. Physically, this assumption could imply an inter-
action between deterministic processes, linearly correlated noise, and purely
random noise.

For PC1, the ENSO signal has peaks near frequencies of 0.02355, 0.01670,
and 0.0130 ( 3.5, 5, and 6.4 years respectively) which have amplitude dis-
tributions best modeled with rescaled Gaussian probability density functions
(PDFs)

(f_fo)2) (14)

1
G(f) = (W)exp—( 20,2
where f, is the Gaussian peak frequency. Moreover, the ENSO signal also has
a peak at the 0.0353 frequency ( 2.4 years); however, the rate at which the
amplitude peak drops off with increasing frequency is most closely reproduced

with a rescaled Maxwell PDF

m(s) = oy Cresn-(Ly) (15

c? 22
where f are the frequencies and c is a constant given by:
. m = (— — —\—= Lu
() (63)\/K7r)exp \52/ \Lv)

where f are the frequencies and ¢ is a constant given by:

_ Jou
c= 3 (16)
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with f,,, representing the Maxwell peak frequency. The amplitude at this peak
is rescaled to match the amplitude of the original peak.

For PC2, the decadal peak was modeled with a rescaled Maxwell PDF,
because the amplitude peak is relatively sharp and drops off with increasing
frequency at a rate close to that of the Maxwell distribution. The remaining
ENSO signal peaks at 3.6 years and was modeled with a rescaled Rayleigh

PDF, due to its slow rate of drop-off and wide peak.

/ b

R = (H)esp—(2) (1)

C—= foR2 (18)

The two year peak was modeled with a rescaled Gaussian PDF, as the dis-
tribution in this range is approximately symmetric about the peak. The final
amplitude function for the PC being modeled is obtained by computing the root
mean square addition of the individual rescaled PDFs.

The models for the amplitude functions of PCs 3 through 11 are comprised
of two parts. First, the white noise in each component is modeled using the
aforementioned f, to fy,, methodology. Since no deterministic amplitudes con-
tribute to these components, the low frequency peaks are modeled using the red
noise model methodology; however, the determination of the red noise variance

is simply

0122 = O—tzotal - 0-121) (19)

tharahv aliminatine the need far the averlan techniane to model these compo-
2

Or = Total — O (19)

thereby eliminating the need for the overlap technique to model these compo-

nents.
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After modeling PCs 3 through 11 with an amplitude function, we model the
corresponding phase functions for each. The phase functions of the original PCs

are given by the Fourier coefficients a; and b;, such that:

0 = ATAN(—) for a; >0 (20)

—b;
0 = ATAN(—) —m for a; <0, b;>0 (21)
9:ATAN(—0JI‘)Z.)+7T for a; <0, b; >0 (22)

These phases are contained in the interval —m, w, and are antisymmetric about
the zero frequency; 6(f) = —8(—f). No obvious correlation between adjacent
phases was found in these spectra. Thus, the final model phases are justifiably
random numbers in this interval. The model phase function is e/%(Y). Thus, in
the frequency domain we multiply our model amplitude by our modeled phases
for each PC. The inverse Fourier transform for each yields a synthetic time
series. These are the modeled temporal components.

Finally, a model is needed to represent the random spatial and temporal
SST fluctuations of PCs 12 through 480. A single model PC can represent the
necessary random fluctuations in both space and time and can be rescaled to
match the observed variance of all 468 remaining components. The observed
variance is obtained from the sum of the squared spatial patterns of all remain-
ing EOFS. Thus, we construct a single model spatial pattern that consists of
Gaussian random noise with equipartitioned observed standard deviation over
each point in our spatial domain. By simply generating Gaussian random num-

bers and rescaling by the observed standard deviation for all grid points in the

each point in our spatial domain. By simply generating Gaussian random num-
bers and rescaling by the observed standard deviation for all grid points in the

domain, for all 480 months, a final modeled EOF is produced.
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We are now able to produce a complete data set of synthetic SST anomalies
for the equatorial Pacific by projecting the modeled temporal components on the
associated spatial patterns. By taking the product of the spatial and temporal
parts of the first 11 modeled PCs, we project the modeled temporal variation
onto the original spatial patterns. The true standard deviation is now modeled
in the first 11 respective EOFs. By adding the final modeled EOF to EOFs
1-11, we have constructed a complete synthetic data set for the same spatial

domain and temporal extent as the Reynold’s Reconstructed SST anomalies.
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4. Results

The modeled significant PCs are compared to the corresponding PCs from the
Reynolds data to validate the success of the individual component models.
Then, a sample of complete synthetic data sets are compared to the complete
Reynolds data set. The ENSO SST signature for the JMA domain will be used
as a standard of comparison. The frequencies of ENSO events are reproduced.
Moreover, the average number of respective warm and cold events are retained
in the synthetic data for a forty year period. Statistical inference is made re-
garding the expected return period of an extreme ENSO event. The extreme
ENSO warm event reaching an SST anomaly magnitude of 2°C' occurs more

frequently than an equivalent magnitude cold event.

4.1 Comparison of Model PCs with original PCs

By determining an analytical approximation to the amplitude spectra of PCs
1 and 2, we have constructed a theoretical amplitude function from which the
observed data can be derived, and from which statistically consistent synthetic
data are derived. We have developed, via spectral analysis, a useful variance
decomposition for the original amplitude spectrum into two or three distinct
amplitude functions for each PC being modeled. As a result, we have gained a
much better understanding of the possible physical mechanisms which compose
the amplitude structure and what amount of the variability is likely attributable
to noise; either correlated or uncorrelated.

The model amplitude functions for PCs 1 and 2 are analytical approxi-

to noise; either correlaved or uncorrelaved. TPV e enmnnt n wand Rt ba the
The model amplitude functions for PCs 1 and 2 are analytical approxi-

mations to the original amplitude functions which represent a good fit to the
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Figure 6: Amplitude Spectrum for the first principle component with Modeled Amplitude
Spectrum Overlay. The solid line is the amplitude spectrum for the original PC1. The dotted
line is the modeled amplitude spectrum.

relevant spectral peaks and to the overall distribution of red and white noise
amplitudes over frequency (Figures 6, 7). The model for PC1 represents a good
fit to the amplitude distribution corresponding to the ENSO pseudoperiodici-
ties; which constitute the largest percent variance for all ENSO events in the
Reynold’s data. Moreover, the largest amount of variance in the spectrum is
modeled with deterministic ENSO peaks, while much less variance is attributed
to the red and white noise processes. The model for the spectrum of PC2
captures the amplitude distributions of the decadal and biennial pseudoperi-
odicities, as well as the remaining ENSO pseudoperiodicity. The ENSO peak
in PC2 constitutes much less variance than the ENSO peaks of PC1. The red
noise peaks, in both PC1 and PC2, give accurate variance contribution at fre-
quencies smaller than 0.007 cpm, which could conceivably represent the leakage

of longer-scale signals into the spectra of the 40 year set.

queITCIES SHaler vian’ v.uui Lyu‘x,‘vv‘x:u&r nua&a:vodv{}xvm_{:’k_qxfnﬁhnf;r‘ time .QPTI._QR
of longer-scale signals into the spectra of the 40 year set.

The statistics of the original data are retained for each synthetic time series
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Figure 7: Amplitude spectrum for the second principle component with modeled amplitude

spectrum overlay. The solid line is the amplitude spectrum for the original PC1. The dotted
line is the modeled amplitude spectrum.
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generated from this method. The modeled PCs retain the normalization crite-
ria given by equation (3) in section 2, and the final reprojected EOFS retain
the original variances. The red, white, and deterministic amplitude models are
defined to be zero at f = 0; the frequency domain equivalent of a zero tempo-
ral mean. Thus, any small, non-zero mean resulting from the computation of
anomalies from climatology data is removed for the model development process
and added in at the end. The autocorrelation function is an important statistic
of the realization, as it represents the dependence of the value of the data at
one instant with the value separated by an interval, (or lag), 7. Periodicities
occurring in the time series are manifested as sinusoidal fluctuations with in-
creasing lag in the autocorrelation function. Both modeled components closely
reproduce the temporal correlation of the Reynold’s data out to approximately

100 lags (Figures 8 and 9). The autocorrelation function (ACF) for PC1 con-

reproalce i€ Touupouiial voindwiidne vrlvick Auptecssn hakwnan A0 AN manth (3_A
100 lags (Figures 8 and 9). The autocorrelation function (ACF) for PC1 con-

tains the ENSO pseudoperiodicities which fluctuate between 40 - 60 month (3-6
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Figure 8: Autocorrelation function for the first principle component with modeled auto-
correlation function overlay.

year) lags, and are also correlated near 80 lags (7 years) (Figure 8). Likewise,
the autocorrelation function for PC2 shows pseudoperiodicity, with peak corre-
lations associated with the decadal, ENSO, and biennial oscillations at lags 20
to 30 months (1.6-2.5 years), 50 months (4 years) and 65 months (5.4 years)

(Figure 9).
4.2 Complete Data Set Comparison

A consistent point of comparison is necessary to determine the success of the
model in producing synthetic data which is a valid reproduction of the original
data. Ten independent synthetic SST time series are produced, and the criteria
for the Japan Meteorological Agency (JMA) index is applied.

The JMA index is computed as a five month running mean of spatially av-
eraged SST anomalies for the region 4° S to 4° N and 150° W to 90° W. From

this index, an ENSO warm event is identified by having an SST anomaly value

eraged S350 anomalles I0r the Ieglon 4 o LU 4 N auu Lou "vv vwo ou' e { mnn
this index, an ENSO warm event is identified by having an SST anomaly value

greater than or equal to 5° C for a minimum of 6 consecutive months (Japan
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Figure 9:  Autocorrelation function for the second principle component with modeled
autocorrelation function overlay.

Meteorological Agency 1991). Since the synthetic data do not necessarily cor-
respond to particular months or years, we do not include the JMA criteria that
October, November, December be three of the 6 months in the event. Further,
following Sittel (1994) a symmetric definition will be utilized for the identifica-
tion of ENSO cold events.

The Reynold’s JMA time series contains 11 warm events and 8 cold events.
The average number of ENSO events from the JMA time series for the ten runs
of synthetic data are 10 and 7, for warm and cold events respectively. 95 % of
the mean number of events from the synthetic data will fall within the range
9.4 and 11.0 for a warm event and between 6.3 and 7.5 for a cold event. Thus,
the Reynolds values for the mean number of events fall within the range of two
standard deviations from the mean number of synthetic events. Moreover, the
average duration of ENSO events for Reynold’s data is 10 months for cold events

and 13 months for warm events. In the synthetic data, the average duration of

average duration of ENSO events for Reynold’s data is 10 months for cold events
and 13 months for warm events. In the synthetic data, the average duration of

an ENSO event is 12 months for a cold event and 15 months for a warm event.
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Thus, the JMA time series for the synthetic data closely reproduces the ENSO

frequency and duration of the original data.
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Figure 10: (a). Hovmuller diagram of Reynolds SSTs (in degrees Celsius) along the equator.
(b). Hovmuller diagram of synthetic SSTs (in degrees Celsius) along the equator.

The ENSO events are characterized by an east or west displacement of
isotherms which disrupt the usual regions of intense tropical convection. In
a warm event, the 28°C' isotherm can be displaced to the central and eastern
ecniatarial Pacific. and in an extreme.case snch as the 1982-R3 El Nino. the
a warm event, the 28°C' isotherm can be displaced to the central and eastern

equatorial Pacific, and in an extreme case such as the 1982-83 El Nino, the
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isotherm can be displaced as far as 90W (Figure 11). Tropical convection has
been associated with sea surface temperatures equal to or in excess of 28°C' (En-
field 1989). During a cold event, there is a displacement of the 28°C isotherm

toward the western equatorial Pacific.

4.3 Characteristics of Future, Unobserved ENSO events

When the magnitude, duration and/or frequency of an event is of interest, an ex-
treme value analysis is applicable. We utilize the maximum SST magnitude per
event to constitute our sample of extreme values. A representative distribution
of extreme data is selected.

The extreme value analysis is done on the JMA indices for all 10 sets of
synthetic data. The method is applied to a set of extreme values selected to
be the maximum SST anomaly magnitude per event over all ten sets. Separate
samples of extreme values are determined for warm events and cold events. By
plotting the magnitude of the extreme values in ascénding order on a log-log
plot, information regarding the return period of an event with a given magnitude
can be determined (Gumbel 1958). For a warm event, an SST magnitude of 2°C
can be expected to occur approximately every 8 warm events (Figure 11a). For a
cold event, an SST magnitude of 1.8°C' can be expected to occur approximately
every 8 cold events (Figure 11b).

According to Enfield and Luis Cid S. (1991), the most probable return period
for the ENSO warm event is 3-4 years, while that of the Strong (S) and Very
Strong (VS) category events (Quinn and Neal 1987), is 9-12 years. We find

that events with SST anomalv magnitudes of 1.4°C' occur in the range of 9-

Strong (VS) category events (Quinn and Neal 1987), is 9-12 years. We find
that events with SST anomaly magnitudes of 1.4°C' occur in the range of 9-

12 years, if we assume an ENSO return period of 3-4 years(Figure 11a). Lau
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Figure 11: (a). Plot of the return period of a given SST aﬁomaly magnitude per warm
event. (b). Plot of the return period of a given SST anomaly magnitude per cold event.

(1985) utilizes statistical methods to determine the average return period of
Super-ENSOs to be every 30 to 40 years. A warm event with a maximum
SST anomaly magnitude of 2.0°C is expected to occur every 7 to 10 events;
corresponding to a range of 30-40 years for an ENSO return period of 4 years.
For a cold event, the value of 1.7°C will occur at approximately 30-40 years,

for an ENSO return period of 4 years.
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5. Conclusions

The principle components of the Reynolds reconstructed SST data set are used
to determine the dominant physical processes in SST anomaly fluctuations via
spectral analysis. An EOF analysis of the Reynolds data determines and ranks
the spatial and temporal modes. The dominant physical processes are identified
by their spectral peaks and the percent variance contribution. PC1 describes
46 % of the total variance, and contains the ENSO pseudoperiodicities occur-
ring on time scales between 2.4 and 6.5 years. PC2 contains the ENSO (3.6
years), biennial, and decadal pseudoperiodicities as large amplitude peaks. PCs
3 through 11 contain correlated red noise and band-limited white noise. Ther-
erfore, the amplitude functions can be divided into three distinct parts, based
on the results of the spectral analysis and the determination of the significant
EOFS. The deterministic, red noise, and white noise amplitude models are the
separate analytical functions developed to approximate the parts of the spec-
tra for the principle components via the methodology described in section 3.
Random phases are applied to the spectral amplitude models, permitting the
generation of numerous statistically indistinguishable SST anomaly data sets.
The time series generating method is useful for producing a large sample
of SST anomaly data for statistical testing. Furthermore, by retaining the
statistics of the observed data (specifically the ACF), it is possible to make valid
statistical inferences about processes like the ENSO. In section 4, we found that
the return period of an extreme ENSO warm event having a maximum SST

anomaly magnitude of 2°C occurs approximately every 8 warm events.

the return period of an extreme ENSO warm event having a maximum SST
anomaly magnitude of 2°C occurs approximately every 8 warm events.

Further use for these synthetic data could be as forcing input in coupled
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ocean-atmospheric or atmospheric numerical models. The envelope of atmo-
spheric response to various SST anomaly forcing associated with the ENSO
and other pseudoperiodicities can be understood by combining the work of this

study and the current modeling studies of coupled air-sea interaction.
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Appendix A. Final model amplitude functions for PCs3
through 11

The final amplitude models for components 3 through 11 are root mean square
sums of the red noise and white noise amplitude models which best represent
the variance drop-off in the frequency domain.
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Figure 20: Plot of the amplitude function of principle component 11, with model amplitude

function overlay.
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Figure 20: Plot of the amplitude function of principle component 1i, with model amplitude

function overlay.
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Appendix B. Red Noise Model Parameters for PCsl
through 11

Given equation (6) in section 3.2, a separate value for the cut-off lag T', is
needed for each PC, to determine the sample ACF corresponding to the red
noise portion of the amplitude spectrum. The value selected depends on the
magnitude of the amplitude peak(s) at frequencies less than 0.007 cpm, as well
as the rate of drop-off of the low frequency amplitudes. Moreover, a value
X, is needed to serve as a first guess to the AR time series model. The time
domain variance changes as the value X, changes, and thus it is essentially a
scale parameter for the red noise model. Both X, and I" have been selected for
PCs 1-11 as shape and scale parameters for the respective red noise amplitude

models (Table 1).

Table 1: The final values for the selected lag, gamma, and for the initial value of the
Autoregression, Xo.

Component | gamma Xo
PC1 20 0.170
PC2 54 0.124
PC3 9 0.401
PC4 54 0.150
PC5 5 0.617
PC6 9 0.452
PC7 9 0.392
PC8 7 0.461
PC9 8 0.433
PC10 8 0.447
PC11 8 0.431
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Appendix C. List of Acronyms

For a necessary reference to the text of this thesis, a list of acronyms is included

(Table 2).

Table 2: The acronyms and their associated meanings are listed.

Acronym Meaning
ACF Autocorrelation Function
CEP Central Equatorial Pacific
EEP Eastern Equatorial Pacific
ENSO El Nino - Southern Oscillation
EOF Empirical Orthogonal Function
JMA Japan Meteorological Agency
Ol Optimum Interpolation
PC Principle Component
PDF Probability Density Function
QBO Quasi-Biennial Oscillation
SST Sea Surface Temperature
WEP Western Equatorial Pacific
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