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ABSTRACT

The errors introduced by the use of various numerical
schemes for solving mathematical models have generally been
only vaguely determined previously by numerical modelers.

A method for a more quantitative analysis of the inaccuracies
is outlined. The error associated with some simple schemes
is analyzed for several linear hyperbolic systems represen-
tative of typical problems in meteorology and oceanography.
Results of previous studies of phase velocity inaccuracies
are confirmed and form a basis for an extension of the anal-
ysis to group velocities. Significant angular and magnitude
errors are found in the group velocity. Directional errors
of 180° are found for some waves. Since the group velocity
is the propagation speed of the energy, such errors may

have severe consequences in a numerical model. When anal-
ysis was made of complex systems of equations, results found
for simple systems reappeared. Thus, studies of simple
systems may provide useful indications of behavior in more
complex problems where the analysis may have to be limited.
Only the long waves, i.e., those resolved by many grid

points, are represented with any reasonable accuracy.
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1. INTRODUCTION

In order to study some real physical system, a sci-
entist will often represent that system in a mathematical
sense., This may be a collection of numbers which he labels
observations or an equation or system of equations which he
employs as a model. In proceeding from the real system to
the mathematical model, assumptions and approximations were
made which introduced a certain amount of error. In many
- geophysical problems, analytical tools are incapable of
solving the equations in the model. Therefore, numerical
techniques may have to be invoked which will introduce
additional distortion into the representation. If the
numerical techniques are carried out on a computer, there
is the round off error inherent to the truncated arithmetic.
The first and last aspects of the total error are generally
well recognized and documented. However, the error created.
by approximating continuous differential equations with dis-
crete algebraic ones is generally not known in detail by
the numerical modeler. This lack of knowledge concerhing
the error introduced by finite differencing provided the

impetus for this work.
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impetus for this work.
This report will examine the error in finite differ-
encing, which we call truncation error, in specific detail

1
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for several linear systems derived from the '"'shallow water"
primitive equations; It will be demonstrated that the true
nature of the truncation error is not revealed in nebulous
statements concerning the order of a Taylor series expansion;
that descriptions such as ”O(Atz)” are grossly deficient and
that more precise analysis is imperative.

The method of analysis used here has its roots in the
classical stability analyses of Courant et al. (1928) and
its extension by von Neumann (e.g., Charney et al., 1950).
From the continuous equations the form of the analytic solu-
tion is determined. From this analytic form an appropriate
discrete form of the solution is derived. These are substi-
tuted into the continuous and finite differenced equations,
respectively, and the physically correspondent solutions are
compared. For wave type solutions (which form the bulk of
the solutions derived here) this result; in a constraint upon
the phase frequencies. Any phase or amplitude disparities
between the continous and discrete sets of equations can be
deduced by comparing the respective frequencies.

Most previous studies of the error have been more or
less empirical in nature (e.g., Orzag, 1971), however, a few
quantitative analyses have been made. Those of Kurihara
(1965) and Kwizak'(1970) are of particular interest here.
Kurihara was concerned with testing several implicit and

iterative formulations on rather simplified equations. He

Kurihara was concerned with testing several implicit and
iterative formulations on rather simplified equations. He

also considered the computational modes which appear in
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three time level schemes. Kwizak applied Kurihara's method
to a semi-implicit formulation and used an approach similar
to the one used here, to analyze some common space and time
differencing formulations. Elvius and Sundstrom (1973)
wrote the f-plane shallow water primitive equations in matrix
form, determined the eigenvectors and eigenfrequencies, and
compared them with the continuous solutions. This method
is more complete in that boundary condifions could be ex-
plicitly included but, as we shall see, in more complex
systems there is some ambiguity introduced when the eigen-
values can only be found numerically. Their main concern
was the proper choice of boundary conditions for various
efficient semi-implicit staggered grid formulations. The
work of Baer and Simmons (1970) for nonlinear,essentially
spectral, equations involved testing several schemes for
stability and also conservation of integral constraints.
They found that there may be large amplitude errors which
cancel out in the computation of the integral properties.
Thus truncation error could not be necessarily determined
from a scheme's conservative properties. Young (1968)
tested many schemes on the spectral equations and also con-
cluded that truncation error bore little relation to the
order of the scheme chosen. However, he chose not to pursue
the details of the truncation error.

It was decided that the emphasis here would not be
the details of the truncation error.

It was decided that the emphasis here would not be

upon testing many schemes (e.g., Grammeltvedt, 1969).
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Neither would various boundary or staggered grid formula-
tions be emphasized - there are simply too many. The problem
would become too specialized. Instead, some simple commonly
used schemes are applied to several hyperbolic systems and
analyzed away from the boundaries. More specific applica-
tions are left to the reader. The purpose here is to out-
line a way to determine quantitatively the error and to
present what appear to be some general properties of it.

Some of the results presented here can be found
in previous work (Kwizak, 1970). They are included for
completeness. What represents new work is.the study of
more complex systems and comparisons of group velocities.
The group velocity is perhaps a more important quantity
than the phase velocity, in that energy is propagated at
the group velocity.

It will be shown that explicit time differencing
tends to speed up oscillations whereas implicit formulations
slow them down. Space differencing makes non-dispersive
waves dispersive. It also uniformly slows down the phase
velocities, with the error increasing for shorter wave-
lengths. The group velocity for some wavelengths can be in
the opposite direction of the correct group velocity. How-
ever, long waves,'i.e. those resolved by many (> 10) grid

points, are generally handled reasonably well. Properties
avrident in cimmlae cywrctoeme vyoarnmaoaay wthan tha erhamoae awa

points, are generally handled reasonably well. Properties
evident in simple systems reappear when the schemes are

applied to complex systems of equations with similar types
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of solutions. This may be a useful approximation to a
scheme's behavior in more complicated systems, since the
method is found to have limitations when applied to those
more complicated systems.

It is the author's belief that more precise know-
ledge of the error will lead to improvements upon it and
that more elegant schemes can be formulated which are based
on explicit knowledge of the error. At the least, a more
judicious choice of a scheme can be made (e.g. Kreiss and
Oliger, 1972). It may even be possible to employ the error

itself in improving the scheme.



2. METHOD

The continuous differential equations are approxi-
mated by discrete algebraic (finite differenced) ones. The
solution to the continuous equations is given by a function.
The solution to the discrete equations is also given by a
function. It is these two functions, both‘analytically
derived, which are compared. Requiring an analytical solu-
tion to the differential equations means that we are dealing
with equations which are never solved numerically! However,
one chooses a solvable model which is similar to the more
realistic model of interest, and the analysis of the former
is applied, with some care, to the latter. In this report
all the equations have been linearized 'so as to study the
error in the scheme without the added complication of non-
linear effects. One might reasonably expect that one formu-
lation judged superior to another via linear analysis would
perform better than the other in a similar problem containing
some degree of nonlinearity.

Many of the solutions derived here are propagating
waves. The continuous solutions for a one dimensional

problem have the form
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problem have the form

Sp = (1)
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where k is wavenumber in the x direction and w is the phase
frequency. The appropriate general solution for the differ-
enced system is easily found

S. ei(ijX—wnAt)
J

(2)
where j is an index in the x direction, Ax is the spatial
grid interval, n is a time step index and At is the time
step. The form (2) is appropriate because it will have the
same functional form when substituted into-the discrete
equations as (1) has when substituted into the differential

set. To see this more clearly, consider the first deriva-

tive of each solution:

%(SA) = iks, (3)
j+#1 7 S5-1) < i 3L XAX S5 (4)
where subscripts in (4) refer to a grid point. Just as
there is no x dependence in the coefficient multiplying SA
on the right hand side of (3), there is no x dependence in
the coefficient multiplying Sj in (4). That is, (3) and (4)
have the same functional form.
One cannot always form the discrete analog this

easily. For example, one of the problems treated later has

a solution of the form

<2
SA = e
+hoan -
SA = e*
then
3 x?
X (SA) = 2xe (5)
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Note that finite differencing a solution

. 2
5. = (idx) (6)
J
leads to
A (S... - S. .) = - sinh (2jAx2) o0x’g
Zhx “Zj+1 j-1 AX ° J j
This does not have the same functional form as (5). To

be strictly correct one must resort to an eigenvector
analysis in such a case. In the particular problem con-
sidered later, it was allowable to use the form (6) despite
being inexact, because (6) was close to the correct solution.
Substitution of (1) and (2) into their respective
systems yields dispersion relations from which the phase
frequencies of the two systems are derived as a function
of relevant parameters. The phase error is thereby deduced
as a function of those parameters.
For solutions whose temporal dependence is
exp (iwnAt), the function for w will involve either the
arcsine or arctangent of some quantity. This presents an
infinite number of frequencies, each shifted by some incre-
ment of w. Only those values of the inverse transcendentals
between -7/2 and w/2 will be considered. This is justified
since as the time and space increments approach zero, the
finite differenced solution for w will-approach the tfue

solution, not one shifted by some increment of 1.

finite differenced solution for w will-approach the true
solution, not one shifted by some increment of m.
The group velocities are obtained by differentiating

the phase frequencies with respect to wavenumber. This
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will be used as an indication of how the energy contained in
different wavenumbers is propagating. An excellent review
of the physics of the group velocity is provided by Whitham
(1974).

It should be noted that the imaginary part of the
phase frequency will imply growth (or decay). If the ana-
lytical frequency is real and the finite differenced fre-
quency complex, then there will be amplitude errors as well,
in the numerical scheme chosen.

In this study various combinations of the '"shallow
water" primitive equations will be used. Some simple
systems with only one distinct solution will be considered
first. Many of these results will reappear when systems

with multiple roots and non-constant coefficients are

examined.



3. SIMPLE SYSTEMS

There are two basic approaches to time differencing,

either explicit or implicit formulations.

We will treat

both. In the more complex systems they will be mixed.

As an example of an ordinary differential equation

in time, consider inertial oscillations.
w = u+ iv

then our model 1is

where

An explicit formulation of (7) 1is

n+1 n-1

\ = w - 2if At W

where superscripts refer to the time level.

into (9) of a solution of the form

w = D elwnAt

yields

yields

= .1 i
wg = if arcsin (£at)

10

If we define

(7)

(8)

(9)

Substitution

(10)
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For an implicit formulation
iAt

2

n+1l
w

n

one obtains a phase frequency

Wy T AT

(w

JL arctan

n wn+1)

+

|

fAt]

2 (1)

The ratios of the physical solutions in (10) and (11),

normalized by (8), are plotted in Fig. 1 as a function of the

nondimensional parameter fAt.

The explicit formulation is

tending to overestimate the oscillation whereas the implicit

treatment is underestimating it.
is unstable for fAt > 1. As the
schemes diverge from the correct

It is interesting to note
lem one could achieve quite high

large time increments, through a

plicit and implicit integrations.

The explicit formulation
time step increases the two
value.
that in such a linear prob-
accuracy, while retaining
judicious mixture of ex-

That is, one could nullify

the overestimation of an explicit formulation by following

with an implicit scheme.

For a nonlinear model, such as the

spectral equations, this technique may be useful, though two

problems remain. The time steps

to be relatively small so as not

nonlinear effects during any given time step.

would probably still need
to miss too much of the

Also a useful

implicit scheme which avoids iteration would be preferred.

Before proceeding to problems with mixed time and

space derivatives,

consider space differentiation singly.

Before proceeding to problems with mixed time and

space derivatives, consider space differentiation singly.

For a wave type solution,
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TIME D
50 | IFTFERE'NCIN‘G

| 6} Unstable i

Explicit

Implicit

10! | fat— 10

Fig. 1. Frequencies for the explicit and implicit
schemes normalized by the correct frequency as a function
of the nondimensional parameter fAt. The explicit scheme
overestimates the oscillation, whereas the implicit scheme
underestimates 1it.
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9 Jlikx) o sy oikx
X ‘

and for a centered-in-space finite difference approximation,

?%z (elkG+1)ax | ik(G-Daxy | i siEXkAx oLKIAX (o)

In a sense there is a '"computational wavenumber'", sin kAx/Ax,
corresponding to the true wavenumber, k. This implies that
the representation is fairly good for long waves (i.e., those
resolved by many grid points) but quite poor for shorter
waves, particularly those less than 4Ax. (Note: a 4Ax wave-

length corresponds to kAx = w/2). A fourth order scheme is

1 [g(eik(j+1)Ax ) eik(j-l)Ax)]

X |3 ;L.(eik(j+2)ﬂx _eik(j-Z)Ax)]

12

_ - |8 sin kAx - sin 2kAx ikjAx '
= 1 [ X e (13)

The relations (12) and (13), normalized by the correct value
k are both plotted in Fig. 2. The five point scheme is clear-
ly superior to the centered-in-space formulation for all
wavenumbers.

Consider the simple advection equation

by + Uy *+ Vo, = 0 (14)

where U and V are constant basic state velocities in the x

and y directions, respectively. For a solution of the form

6 = ei(kX+2y-wAt) (15)

6 = ei(kx+2y-wAt) (15)

one obtains the constraint

wy = Uk + Vi (16)
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SPACE DIFFERENCING

9_
2nd
.53 B order
4 th
.7 _ order
6 »
or
4
Ar
2
A
OV | | 1 1 1 L 1 1 1
o 775 7T2 kax =

oo o 5 4 — \

Fig. 2. Comparison of the two finite difference
approximations to a first derivative in space, norma-
lized by the correct value, as a function of wavenumber.
A is the corresponding wavelength in terms of grid inter-
vals (i.e., where kAx = 7/2 wavelength is 4Ax).

Lized Uy LIlc LullcLil vdalucgc, dd d Lullveitlull vl WdveliunucotL .
A is the corresponding wavelength in terms of grid inter-
vals (i.e., where kAx = 7/2 wavelength is 4Ax).
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An explicit formulation of (14) 1is

n+l _ . n-1 _ At n _ N _ At [ n _.n
o = ¢ Uax [95+1 ¢j—1] V &y [¢m+1 on-1
which, when the solution
¢n-v= el(kJAx-QmAy-wEnAt) (17)

is inserted, reveals

W

B = ﬁ arcsin [U At sin kAx + V At sin leAY] (18)

Ax Ay

Substitution of (17) into an implicit formulation

n+l _ n _ At [ . n n+l _ ' n _ o n+l
¢ v 152[¢j+1 Fbyer T by ¢j—l]
At n n+l n n+l
~V Iay [¢m+1 o+l T 9me1 ” ¢m-1]
yields
2 At . At .
wp = f¢ arctan [U 7Ax SiD kAx + V 7Z?-51n QAy] (19)

Appendix 1 outlines these derivations in detail.

The explicit phase frequency (18) is compared to the
continuous one, (16), Fig. 3, for various values of A. Here
A is the nondimensional ratio

At
U ix

A =
A =1 is the Courant-Friedrichs-Lewy (CFL) condition for
linear stability. There are two aspects of the curves worth

noting. The characteristic shape is similar to that in Fig.

linear stability. There are two aspects of the curves worth
noting. The characteristic shape is similar to that in Fig.
2. The waves have been made dispersive (the phase velocity

depends on the wavenumber) by the finite differencing process,
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with the representation poorer for shorter waves. At the
CFL condition the phase frequency is exact for waves longer
than 4Ax. This is due to the characteristics of the contin-
uous system intersecting the grid points as indicated by
the A = 1 curve in Fig. 4. The true value at the point A"
is that at the point A'. If one writes the centered-in-

space difference as
A" = B - A (B' - A"Y)

then for A = 1, B' is the value at B and the difference
reduces to A" = A' which is the true solution. The fact
that waves smaller than 4Ax appear to be treated poorly
is due in part to our use of only the first harmonic of
the arcsine (values between - /2 and w/2). Since at
A =1 we are computing
arcsine (sin kAx),

we are therefore not retrieving kAx for kAx > w/2. This
slight ambiguity concerning the arcsine in deriving the
phase frequencies was apparently not recognized by previous
investigators. However, in actual computer tests, the
choice of arcsine values between - w/2 and w/2 appears to
be proper. Note that there is no such ambiguity in the com-
putation of the group velocities.

>'For A =1, the implicit formulation (see Fig. 3) is

very close to the explicit scheme in terms of accuracy (but

LU L Fay - J., CIl< .LIHHJ._L\_,_LL LuvliliuliLaciuvliL LDGU .L'._Ls- J) 14O
very close to the explicit scheme in terms of accuracy (but
just slightly worse). For A > 1, the explicit scheme is

unstable, whereas the implicit scheme maintains stability
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Al

UNSTABLE

0 [ 2
log,, (A)—
|
5
0 | 2
log,, (A)—

Fig. 3. Accuracy of the (a) explicit and (b) implicit

Fig. 3. Accuracy of the (a) explicit and (b) implicit

phase frequencies for the
the CFL parameter A. The
For A < 1 the two schemes
implicit scheme maintains

advection equation as a function of
limit for linear stability is A = 1.
are nearly the same; for A > 1 the
stability by slowing down the waves.
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TIME—=

|&—aX—|

SPACE =

Fig. 4. Three characteristic curves originating
from the point A, superimposed on a grid point lattice.
The A < 1 curve is stable, the A > 1 curve is linearly
unstable for an explicit formulation. For the explicit
1oomulatign.teed; HfcrhApastariaticetia polfcPTEEETER]
The A < 1 curve is stable, the A > 1 curve is linearly
unstable for an explicit formulation. For the explicit
formulation used, the characteristic A = 1 is predicted
exactly.
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by slowing down the phase speeds. The rate of slowing down

is not uniform. Figure 5 compares the velocities of the
waves at various values of A to a quantity which will be

termed the "CFL velocity"

C - TAX
FL 2At kAx

If the velocity of any wavenumber exceeds this quantity,
then the CFL condition is violated by that wave. We see
that at A = 1 all the phase speeds are well below the CFL

velocity, and that this velocity is only asymptotically

approached for large A.
The group velocities for the one-dimensional case

& = 0 are given by

CgA = ax = U (20)

for the analytical, for the éxplicit

dw
E cos kAx
C = = U (21)
gk dk (1 - (U AL sin k)52
and for the implicit,
dw
CgI _ Tﬂ% - U cos kAx (22)

At . 2
1+ (U ix sin kAx)

The relatiohs (21) and (22), normalized by (20) are plotted

in Fig. 6 for various values of A.” The dispersive property

[CRp, P N T b — CEemt s (— 3 g e -7 N B . L o~~~

in Fig. 6 for various values of A.” The dispersive property

introduced by the finite differencing has important effects

upon the transport of energy. The group velocity for the
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Fig. 5. Comparison of the phase velocity for the
implicit formulation to the largest possible phase velocity
for stability as a function of wavenumber for various values
of A. The implicit scheme slows the waves down more than
would be requlred to malntaln stablllty, the 11m1t is only

A ym———— - T I - [ D el S e v~ -y

for stablllty as a functlon of wavenumber for various values
of A. The implicit scheme slows the waves down more than
would be required to maintain stability, the limit is only
asymptotically approached.
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Fig. 6. Group velocities for the one-dimensional

advection equation.

are normalized
1s always more
than 4Ax. For

wavralanat+thc
are normallzea

is always more
than 4Ax. For
wavelengths 1is

Velocities of the two numerical schemes
by the analytical value. The explicit scheme
accurate than the implicit for waves longer

waves shorter than 4Ax, the energy in those

nranaacatad_hv . hnth crhampc in the nnnncrrr
by the analytical value. The explicit scheme

accurate than the implicit for waves longer
waves shorter than 4Ax, the energy in those
propagated by both schemes in the opposite

direction to the correct group velocity.
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long waves (>> 4Ax) is approximated reasonably well. The
dramatic effect is that energy in waves shorter than 4Ax
is propagated in the opposite direction to the correct
velocity. Waves 4Ax long have zero group velocity. The
implicit scheme, for large (typical) values of A does a
poor job even for the long waves. It is also apparent
that the explicit formulation, for low wavenumbers, is
always more accurate than the implicit scheme. Finally,
Fig. 7 compares the explicit version of the second order
scheme to the fourth order scheme. Where the group velocity
for the latter is given by
i cos kAx - % cos 2kAx

3
4 At . At
(1 - (*3— U H sin kAx - U m

U
sin 2kAx)2)1/2

The fourth order scheme actually does worse than the second
order for the shortest waves. However, the long waves are
handled quite well, though their phase speed is overestimated.

Gravity waves can be modelled by the following set of
equations

u, o= - ¢x Ve = - ¢y ¢y * <1>(uX +v. ) =0

where & is a mean state geopotential. A dispersion relation
can be obtained using solutions for u, v and ¢ of the form
(15)

w, = t (o (K% +2%)t/? (23)

An explicit formulation
U)A = I (¢ (K T x )) - Ry

An explicit formulation
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Fig. 7.
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Comparison of the group velocities between

a so-~called "fourth order'" scheme and the '"second order",
centered-in-space scheme as a function of wavenumber.
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Fig. 7.

Comparison of the group velocities between

a so-called "fourth order'" scheme and the "second order',
centered-in-space scheme as a function of wavenumber.

Long waves are treated quite well by the higher order scheme,
however its treatment of the shortest waves is inferior to
the second order scheme.
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n+l n-1 At

v - v _ n n )

by (bme1 = Opo1

_ n-1 _ At n _.n At n . n
¢ = ¢ ® [KE'(uj+1 W)t ry (Ve Vm-l)]

after substitution of solutions of the form (17) implies

that

2 2

. 2 .2 1/2
w, = -* arcsin {t [@ at? (51n kax , sin” 24y ] }
E At

Ax Ay

(24)

An implicit formulation

A I ¢ S I Tt

I - R v e

oM e - [ ol e - - D
i %%? (Va1 * Vg:i “ Vo1 - ng%)]

yields in a similar fashion

2 2

Atz sin2 kAx sin2 LAYy 1/€}
Ax Ay

wp = Aitarc’can{ir \\fb 7 + '

(25)
'Becaﬁse;of the symmetry of the relations (23)-(25) we need
consider only the one-dimensional case & = 0. The solu-
tions behave quite similarly to the case of the one-dimen-
sional advection equation; both are shown in Fig. 8.

The components of the vector group velocities are

symmetric so we will consider only one of them. Here,

The components of the vector group velocities are
symmetric so we will consider only one of them. Here,
however, 2 will be treated as a parameter and allowed to

vary instead of setting it to zero. The true group
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velocity 1s

- t /2
7 S R SV (26)

The explicit version is

C _ 1t ®1/2 sin kAax cos kAx (27)
"8k px (1 - at? ayl/2 pl/e
where
. 2 . 2
A = Sin kAx | sin” Ay
sz Ayz

and the implicit version is

®1/2

. + sin kszcos kAx (28)
px [1 + o AL A] N

Contour plots of these relations appear in Figs. 9 and 10.
Figure 9 compares the explicit formulation (27) to the
analytical, (26), for a A = @ AtZ/Ax2 ratio near the maximum
allowable for stability (Ax = Ay for simplicity here). A
~graph of the implicit formulation for the same value of A
is very similar to Fig. 9, and is not reproduced, instead
a plot is presented for a value of A considerably in excess
of that used in Fig. 9.

The solutions to the governing equations are plane
waves and relations (26)-(28) are merely the component of
the group velocity in the x direction. There will be errors

in the direction of the vector group velocity as well as 1in

the group velocity in the x direction. There will be errors
in the direction of the vector group velocity as well as in
the magnitude. In some cases these errors can be quite

large, particularly for waves which are traveling nearly
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Fig. 9. x component of the vector group velocity of
the gravity waves for the explicit scheme, at A = 0.5. The
contours are normalized by the correct group velocity.

the gravity waves for the explicit scheme, at A = 0.5. The
contours are normalized by the correct group velocity.
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scheme for A = 10.

Fig. 10. Same as Fig. 9
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perpendicular to the direction of the dérivative. Figure
11 is a contour plot of the angular error in the group
velocity for the gravity waves and for the two-dimensional
advection solution. The lines are of constant angle meas-
ured positive counterclockwise from the correct angle
(note that a 180° error is equivalent to a -180° error).
This error is the same for all values of At and Ax, and
for the implicit and explicit schemes. The contours do not
intersect the axis for the advection plot since the problem
becomes one-dimensional and thus the angular error is

either 0 or 180°.
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4. COMPLEX SYSTEMS

In the previous section we considered three simple
systems, each with one distinct mode. More typical prob-
lems with more than one mode and non-constant coefficients
will now be considered. The explicit and implicit formula-
tions will be combined into a semi-implicit approach for
some of the analysis.

The full shallow water primitive équations on an

f-plane are

u, * qu + Vuy = va - ¢X
Ve * v, + Vvy = - fOu - ¢y (29)
¢t + U¢X + V¢y + @(ux + Vyl = 0

where fojs a constant Coriolis parameter. Assuming solu-
tions for u, v and ¢ of the form (15) one can show that

there are three phase frequencies given by

wy = Uk + V2

w, = Uk +VL* (foz v o(k? + 22)y1/2 (30)

These are merely the advection solution and two inertia-
»gravity waves doppler shifted by the mean state velocity.

A simple semi-implicit scheme for (29) is

gravity waves doppler shifted by the mean state velocity.

A simple semi-implicit scheme for (29) is

31
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Now, substitute solutions of the form (17) into (31).
After considerable algebraic manipulation, the two roots

corresponding to the inertia-gravity waves (30) are

_ 1 : + nl/2 1
Wgp At arcsin {[_ R + A]/P) (32)
where
At . At .
A = U Ax Sin kax + V iy sin Ay
2 sin2 kAx sin2 LA
P = & At >t 2V+1
Ax Ay
R = [Atz foz-l-Az]/P+P2+A2

The advection root of this finite differenced set is merely
Eq. (18). However, the eigenvector for this set will be

different from that for the explicit version of (14). Equa-

L. [ A LIVWNT YV oLy CiIlV A EVaLY v v G Lo Cila o TV o L1 I SRr I A v

different from that for the explicit version of (14). Equa-
tion (32) is compared with (30) in Fig. 12. The nature of

the variation appears suspiciously similar to a pure
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INERTIA-GRAVITY WAVES PHASE VELOCITY

T

lay

kax —
— Ay 2

Fig. 12. Contours of the phase frequency of the
inertia-gravity waves in the semi-implicit scheme normalized
by the analytical frequency for A = 0.5. This figure 1is
consistent with the results from the gravity wave system
treated in Section 3.
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consistent with the results from the gravity wave system
treated in Section 3.
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implicit treatment qf‘gravity waves; indeed, that is essen-
tially what takes place. The advection or ”quasifgeostro-
phic" modes were compared in Section‘S. In this linear
problem, the mixture of the time schemes for different
modes affects those modes essentially individually.
The group velocity components are again symmetfic;

the x component is given by

2 2 2.1-1/2
= +
CgA U t ¢k [fo + o(k® + 2 )]

for the analytical, and for the semi-implicit:

.1 i 1/2 12, -1/2 dB
Cos1 = 3¢ O {0t RYZ 4 172} 13
where

dB S(*rY2 4 Ay ap -1{ 1 -1/2 dR . dA

= - + P + >R +
dk PZ dk 2 dk = dk
%% = UAt cos kAx
db - _ 2% éii cos kAx sin kAx
dk Ax
drR 2 . 2 2, d dA dp dA
= [t fO—l—A]a{--ZAPEfE+2PaF+2Aa—E

One sees in Fig. 13, that near the stability limit, deter-
mined mainly by the advection speed, the inertia-gravity

waves are transporting their energy far below the correct
speed. This is consistent with the results of one-dimen-

sional gravity waves presented in Fig. 7 for an implicit

El d A S AdLd e M o vaRU Ao AL TYY L vul vilv L vowAL v oL AL A LAl L

sional gravity waves presented in Fig. 7 for an implicit

treatment at high values of A.



35

INERTIA GRAVITY WAVES  GROUP VELOCITY
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Fig. 13. x component of the vector group velocity of
the semi-implicit case normalized by the correct value for
A~ 10. Note similarity to the pure gravity wave case pre-
sented in Fig. 10. '

_——_ - — - - —— - B B v e
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sented in Fig. 10.
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Results similar to those from the f-plane primitive
equations are obtained for a semi-implicit two-layer set.
The internal gravity waves are handled like slow moving
~gravity waves, the external gravity waves are handled as
in the previous case. The treatment of the different
components of the modes, either explicitly or implicitly,
again separates out. This is in part a consequence of the
CFL condition being exceeded (that is A large) only for the
external gravity waves, so that the explicit and implicit
treatments of the other modes are nearly equivalent. It is
therefore reasonable to infer that the mixture of time
schemes when the modes are widely separated, affects those
modes essentially individually. Since semi-implicit schemes
are used when one has waves which move much faster than
others, the behavior of either set of waves can be closely
approximated by an implicit or explicit treatment of the
whole model. This is not too surprising for a linear model
and is fortunate, since the analytical derivation of the
semi-implicit phase frequencies can be intractable when
either an explicit or implicit scheme is solvable.

The quasi-geostrophic mode is generally of more
interest than inertia-gravity waves for the atmosphere
since it contains the major part of the energy in the large-
scale mid-latitude flows. However, inertia-gravity waves

are of major interest in oceanography, both for tidal prob-

scale mid-latitude flows. However, inertia-gravity waves
are of major interest in oceanography, both for tidal prob-

lems and on a smaller scale for internal waves. The very
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small inertia-gravity waves are generally of less interest.
The inertia-gravity waves are the apparent mechanism for
bringing the flow and pressure fields into geostrophic bal-
ance for both the atmosphere and ocean (e.g., Blumen, 1972).
Thus, errors in their estimation may affect the adjustment
time scales of numerical models.

Next we will introduce a variable Coriolis parameter,
f, by considering the nondivergent barotropic vorticity
equation. This model was commonly used for large-scale
atmospheric prediction, until more sophisticated, primitive
equation models were developed. However, it remains an im-
portant tool for representing many important dynamic pro-
cesses. Gates has studied the errors caused by numerical
integration of a one-dimensional form of this equation. The
results to be presented here for phase speeds are consistent
with his analytical studies (Gates, 1959) and comparisons of
actual integrations with known harmonic' solutions (Gates and
Riegel, 1962).

If we define a streamfunction y:

= ai = -— _a_lk
v ox ? u dy

then our vorticity equation, for two dimensions, can be

written

2
vy vt o= o (33)

where VZ is the horizontal Laplacian operator, and g = df/dy.
at ¥ P oex ¢ v

where VZ is the horizontal Laplacian operator, and g = df/dy.
Assume that the solution for ¢ has the form (15), then (33)

yields a dispersion relation
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- Bk
w, = —y (34)
A W2 4 g2

If we finite difference (33) in the following explicit

manner, using a five point, 'second order" Laplacian operator

1 [ n+1 n+1 n+1) 1 n+1 n+1 n+1
— Vi, f Vi - 2y + [w Yoy 7 2y J =
sz j+1 j-1 ) Ay2 m+1 m-1

1 ( n-1 n-1 n-1 1 n-1 n-1 n-1
— Vi, tYs] - 2y + —~7-[¢ Yo7 T 2y ] -
AX2 j+1 j-1 ) Ay m+1 m-1

AtB n n
T TAx (¢j+1 - wjmlJ

the corresponding phase frequency is obtained

_ 1 . {- BAt sin kAx}
Wg At aresin IAx A
where . 2 (kAx 2 (oA ]
sin [—7—J sin [~7X
A = +
Ax Ay

An implicit scheme, where all the terms are at the n and n+l
time levels dictates a phase frequency satisfying

w. = -2 arctan BAt sin kAx)

I At ) 8 Ax A |

In a typical problem where Rossby waves are being
studied, there will be other modes which may require a much

lower ratio of At/Ax for stability than that for pure Rossby
waves. Therefore a value of At/Ax = 107t s mt

Since B is so small (around 107 07l 571 for the earth) and

was chosen.

the arctangent of a small number approximates the arcsine of

that number, then the two treatments are essentially identi-

the arctangent of a small number approximates the arcsine of
that number, then the two treatments are essentially identi-

cal. The phase velocity of the finite differenced equations
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is compared with the'cqntinuqus solution (34) in Fig. 14.
When the motion is generally directed more in the x direc-
tion, the numerical schemes underestimate the phase speed.
When the motion is mostly in the y direction the velocity.
is overestimated for small k.

The components of the group velocity here are not
symnetric; consider the x component first. The analytical

and numerical components are, respectively

c ) k% - p°
TgAx (kz + 22)2
sin kAx sin kéi cos E%E
C . B _ cos kAx
gNx 4 sz AZ A

The x component is generally overestimated by the
numerical scheme, particularly for large values of k and 2.
Note that the energy in waves which propagate at a 45° angle
will have a nonzero x component in the mumerical scheme. In
contrast, the y component is handled reasonably well. The

y component functions of the group velocity are

C _ 2Bk
gAy (kZ + 22)2
and
8 sin kAx sin &%X cos &%X
C ~
“gNy 4 Ax Ay AZ

for the analytical and numerical models. Again there will
ho cians Firant avvynAnvcoc AN +ho AivartdAan Ae wrall Falad +ha marcrna _

for the analytical and numerical models. Again there will
be significant errors in the direction as well as the magni-

tude of the group velocity in the numerical model. These
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Fig. 14. Phase velocity for the numerical treatment
of the nondivergent barotropic vorticity equation normalized
by the correct velocity of the Rossby waves.
r1g. 1l4. rhase veloclity tor the numerical treatment
of the nondivergent barotropic vorticity equation normalized
by the correct velocity of the Rossby waves.
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are illustrated in Figs. 15 and 16, respectively,
The final case examined will be the primitive equa-
tions on an equatorial B-plane. Our govérning equations

are a special case of Laplace's tidal equations (LTE):

u, + qu = Byv - ¢X
Ve ot va = - Byu - ¢y (35)
by * Ud>X + 9 (uX + vy) = 0

This and similar versions of LTE have been extensively
studied analytically. Miles (1974) presents an excellent
review of the classical tidal problem. The solutions of
(35) are contained in Matsuno (1966); they are two waves
which behave like gravity waves and a third which is 1like
a Rossby wave. Lindzen (1970) referred to the latter solu-
tion as a Rossby-Haurwitz wave. He allowed for vertical
propagation in his treatment and also derived an approximate
solution for a mid-latitude B-plane.

To solve (35) substitute a solution of the form

F(y) ei(kx—wt)

for u, v and ¢, where the y dependence, denoted by some
function F, is left unspecified. The set of equations is
then manipulated into an ordinary differential equation
(ODE) in y for v. -(The details of this derivation are

presented in Appendix 2.)
(ODE) in y for v. (The details of this derivation are

presented in Appendix 2.)

2 2 2.2
d”v A 2 k
pe Bk EBELEY) - o (36)
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ROSSBY WAVES
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Flg 15. Contour plot of the directional error in
the vector group velocity for the numerical formulations
of the vorticity equation. The x components of the correct

and ﬂnm?'vwr‘ﬂ]-srr-v-r\n-n wralnritaino 7avrn alana +ha Aachad

Contour plot “of the"directional error in
the vector group velocity for the numerical formulations
of the vorticity equation. The x components of the correct
and numerical group velocities are zero along the dashed
and dot-dashed lines, respectively.
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Fig. 16. Plot of the magnitude of the group velocity
for the numerical schemes normalized by the correct value.
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where
A = v - Uk
The boundary conditions for (36) are v = 0 és y > 1 o,
Assume that the y dependent part of the solution for v has

the form

Noj
| T
~

viy) = G(y) e (37)
This will leave the following ODE for G:

2 2.2
G - 28 y g o+ AT 2 Bk Byl o o
/o ® A U]
where primes denote differentiation with respect to y. If

we assume a polynomial solution for G:

_ v
n+2 n (n+2) (n+ 1)

In order for v to satisfy the boundary conditions, G must be

truncated at some value of n. Thus there are an infinite

number of modes in the y direction — one for each value of n.

They satisfy the dispersion relation

3

A + aA +Db = 0 (38)
where
a = - (K% + (2n + 1) 8 /&)
a = - (k%0 + (2n + 1) 8 /3)
b = -k o8




45
The roots of (38) are found via the closed form solution to
a cubic. Matsuno discusses several of the lowest modes.
Only the n = 0 mode will be considered in the following
evaluation.

An explicit formulation of (35) is

- 85 (9 - 93]
vty iy %% [v?+1 - v?_l] - 2pmAyAt u
- 'ﬁ—; [¢3+1 - ‘1’]?1-1] (39)
Sl -l Ly g_;[¢?+l i ¢3.1_1] N [u3}+1 - ul
-0 ﬁ_; [VE+1 - VIInl—l]

The analytic phase frequencies have no y dependence
and we anticipate that the frequencies of the numerical
scheme do not either. As was pointed out in Section 2, in
this problem it is not strictly correct to replace y by mAy
in the form of the solution because the functional form of
the derivatives will be inconsistent. This may cause the
frequency derived for the finite differenced set of equa-
tions to depend on y. This difficulty in obtaining a

consistent solution form illustrates a limitation of this
Aarnanlarca e ma+thaAA UAxrarrAw TrA rra 171 11iem~n +hoAa L£Avm

consistent solution form illustrates a limitation of this

analysis method. However, we will use the form
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_am2ay 2
exp %L + i (kjbrx - wnAt)} (40).

which corresponds to the first, n = 0, mode of the analytical
solution. We will consider this approximation reasonable, if
we obtain phase frequencies that vary only by a minute amount
with y. This would indicate that (40) is very close to the
correct solution. If the y dependence turned out to be
strong, then an eigenvector analysis (see Appendix 2) would
be required.

After substitution of the form (40), and considerable

algebraic manipulation, one obtains the cubic equation

D3 +ab+b = 0
where
D s C o At s
D = sin wAt U Aix Sin kAx
& = - BAYZ
2V%
At? 2 2,.2.2, 2
a = - | — sin® kAx + BTAt"m”Ay
AX
4c At2
+ (1 - e cosh (4cm)) ¢ —
2Ay
_ At . C
b = PBAtAy ¢ ix Sin kAx e~ cosh (2cm)

because B is so small, for a terrestrial problem the depend-

ence of D on y (and therefore of wE) is weak. The difference

in w between m = 0 and m = 10 for Ay = 105 m is in the 4th or
Tmacimmoe ~ 2 mam T LS om0 2L PR TR R SRR - rANnN .o
in w between m = 0 and m = 10 for Ay = 105 m is in the 4th or

larger significant digit, thus our use of (40) appears

reasonable.
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The phase frequencies for the eastward moving gravity
wave (E), westward moving gravity wave (W) and Rossby-Haur-
witz wave (R) are presented in Figs. 17 and 18. The details
of the curves for 0 < kax < w/ZO are shown in the insert.
The rather peculiar behavior of the Rossby-like waves may be
due to the use of the approximate solution (40). The ana-
lytical roots are complex for values of ~ 0.01 < kAx < 0.05

Yn? 572 g =10 7l 57l ang ax = 10°

(for @ = 10 m) where-
as the numerical frequencies are real; no comparison was
made in that range. The Rossby-Haurwitz waves move at about
a tenth the speed of the gravity waves, so the linear sta-
bility 1imit, A = 1, is determined by the gravity waves.
For small A, the explicit and implicit versions are again
nearly identical. Therefore, Fig. 17, where A ~ 0.5, 1is
representative of either scheme. The curves have the same
basic shape as in previous, simpler, problems. Figure 18
compares the implicit and analytical phase velocities for
A~ 5. The gravity waves are slowed down appreciably, but
the much slower Rossby-Haurwitz wave is not appreciably
changed by the tenfold increase in A.

Since these results are analogous to those from
simpler systems it seems reasonable to conclude that they
are general properties of the finite difference scheme.

That is, one would expect the truncation error of this

scheme to have these general properties for similar types

That is, one would expect the truncation error of this
scheme to have these general properties for similar types

of wave motions.
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Fig. 17. Phase velocity for the explicit formulation
(A = 0.5) of the equatorial B-plane system normalized by the
correct speeds. (E) is the eastward propagating gravity
wave, (W) the westward propagating gravity wave and (R) the
Rossby-Haurwitz wave. The insert shows the details of the
error at small values of k. The analytical solution is complex
for ~ 1x10°7 < k < 5x10~7 m~1 for B = 10711 p-1 s-1 and ¢ =

04 2 -2  here A = 102 m, .
oss%y—ﬁaurW1%Epwa§e. The insert shows the details of the

error at small values of k. The analytical_ solution 1is complex
for ~ 1x10°7 < k < 5x10-7 m~1 for g = 10711 m~1 s-1 and ¢ =
104 m2 s-2, here Ax = 10° m.
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Fig. 18. Same as Fig. 17 but for the implicit scheme
at A = 5. Note that the tenfold increase in A had little
effect on the hossby Haurwitz waves. These results are con-
51stent with prev1ous results for simpler Systems

(ORI R v - [ " Sy —aa— e e = wea R

+ &
at A = 5. Note that the tenfold increase in A had little
effect on the Rossby-Haurwitz waves. These results are con-
sistent with previous results for simpler systems.
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It would be possible, thqugh'tediqus, to compute the

~group velocity for this problem. However, since an approxi-
mate solution was used, it may not be appropriate to do so.
That is, the misrepresentation caused by using (40) may be

magnified by taking the derivative of the numerical frequen-

cy solutions.




5. CONCLUSIONS

This study was undertaken to attempt to quantitatively
determine the error introduced by finite differencing. Since
the field is so broad, testing many schemes, and various
boundary and staggered grid formulations was not feasible.
Therefore the study was also designed to outline a straight-
forward method of determining the error which can be applied
in practice. The determination is imperative since state-
ments concerning the order of a Taylor series ére clearly
inadequate to represent the truncation error.

This study confirms several previous results. Namely,
that explicit formulations tend to overestimate oscillations
whereas implicit formulations underestimate them. Space dif-
ferencing produces dispersive waves even if the true waves
are not dispersive. The phase velocity errors increase as
the wavenumber increases, or equivalently, as the number of

‘grid points resolving the wave decreases. Implicit schemes
retain stability by slowing down the waves, which is the
price extracted for the economy of large time steps?' Genér—
ally, only the longest waves are handled reasonably well.

Several new aspects of the truncation error have been
rairaalaA nartirnlarly +thyaiiah Framnavyicnn Af +ha ovnrim aralaAc

Several new aspects of the truncation error have been
revealed, particularly through comparison of the group velo-

cities. The dispersive nature introduced by the finite
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differencing causes significant angular, as well as magni-
tude, errors in the group velocity. Since the group velocity
is an indication of the propagation of the energy, this could
cause grave dynamical effects in a numerical model, particu-
larly if the short waves carry a significant fraction of the
energy. It is also apparent that some of the characteristics
of the error evident in simple systems reappear when the same
scheme is used in more complex models with similar solutions.

This work examined several linear systems. The inten-
tion being, to study the error in the scheme without the
additional complications of nonlinear effects. This method
could be extended to other types of problems. Further work
is currently being considered on formulating boundary and
initial conditions based on the interrelationships of vari-

ables in the discrete system.



APPENDIX 1

Outline of the method applied to a simple equation

bp * Uby * Vo, = 0 (A1.1)
insert
o = A ei(kx+2y-wt)
into (Al.1l) and
- iw + 1ikU + 12V = 0
w = Uk + Vg

An explicit formulation of (Al.1l) is

ntl _ ,n-1 At n _ ,n _ At n _.n
o =0 Uy [¢j+1 ¢j-1] V &y [¢m+1 ¢m-1]
(A1.2)

use a solution

ei(ijx+2mAy-mnAt)

¢ = A (A1.3)

which, when inserted into (Al.2), reduces to

o-iwdt | jiwdt %§ Jikax _e—lkAxJ v éE_[eisz_ e-ley]

using Euler's relations:

) _ At . At .
sin wAt = U Aix Sin kax + V iy sin 24y

thus, for the explicit scheme (A1.2)

thus, for the explicit scheme (A1.2)

= 1 . At . At .
wg T zf arcsin [U Ax Sin kax + V iy sin Ay]
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An implicit scheme for (Al.1) is

n+l _ . n _ At [,n ntl _ .n _ n+l
R 3 It I I ey

At n n+l n n+l
~V 15y [¢m+1 Yl T o1 C ¢m-1]

in a similar fashion, substitution of (Al.3) yields

. wAt At [, wAt . At (. wAt . .
s1in —2— = U m[z COSs T S1in kAX] +VW [2 COS T Ss1in QIA]]
and

- LAt At .
wp = xf arctan [U 7hx Sin kax + V 28y sin lAy]




APPENDIX 2

Analytic solutions for the beta-plane primitive
equations are derived. The more vigorous eigenvector

analysis is sketched.

Analytic Beta-Plane Solutions

Given: u, + qu = fv - O
Ve # UvX = - fu - ¢y
¢y * U¢X + @ (uX + vy) = 0

substitute solutions for u, v and of the form

Bly) el (kx-ut)

where the y variation is left unspecified. Then

- iAu = Byv - iké¢ (A2.1)
. = - -39
iAv Byu 3y (A2.2)
3 . oV _
- iA¢ + idku + ¢ 3y - 0 (A2.3)
where
A = w - Uk

Take 3/3y (A2.3), substitute that into (A2.2), and multiply

by iA;
U 92,
iA (- iAv + Byu) + ikd 5?-+ 0 5 = 0 (A2.4)
Uy g, ¢
yu BZV
iA (- iAv + Byu) + iko 3y © » — = 0 (A2.4)
y 3},2
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Eliminate ¢ between (A2.1) and (A2.3): multiply (A2.1) by
A and (A2.3) by k, add;

2 2

- 1A%u - ByAv + idok"u + ¢k %%— = 0 (A2.5)

Eliminate ¢ between (A2.1) and (A2.2) to get;

., du . d
iA 5?-+ igyku + Akv + By §¥-+ Bv = 0 (A2.6)

Eliminate 3v/3y term between (A2.5) and (A2.6):

2.2

- iA%gyu - 8%y % Av - ik As X

2 -
3y Adk"v - B¢kv = o (A2.7)

Use (A2.7) as a relation for

. . Ju
iAByu - 1iko 3y

Substitute that into (A2.4), and obtain

2 2 2.2
3 A 2 k
e S ﬁjg—) v o= 0 (A2.8)
ay
let
18 2
2
vly) = G(y) e *7?
substitute this into (A2.8):
2 2.2
w o 2By AT 2 Bk BTy ] -
G Tz G' + [ 3 k T 3 G 0 (A2.9)
Assume G is polynomial:
G = ) C yn
n=0

Insert this into (A2.9) to obtain the recursion formula:

7 A T AN

2 (A2.10)




For large n,

Corz 28
Cn nvo
thus
% n

Thus for finite v at large y, G must be truncated.

For each

value of n there will be a dispersion relation, obtained

from the recursion formula (A2.10):

A k™o _ kv/o
2n + 1 = 2 - -
" Vig B A
or
3 2 =
A - A (k0 + (2n+1) BV/®) - ke = 0
Note that if (A2.12) is written
A - aa+b = 0
a3 b2
then 57t < 0 and the roots are real, so
w: = Uk + A.
1 1
(except for a small range of k: 1.3x10°7 m™?
where the roots are complex, for ¢ = 104 m2 s
n 1 s—l.)
Numerical Beta Plane Solutions
An explicit formulation is
ntl _ n-1 _ At [ n _ n '
u = u U 1% [uj+1 uj—l] + 2BMAYAt v
n+l _ n-1 At [ n _ n '
u = u - U X {uj+1 uj—l] + 2BmMAYAt v

At n n
AX [¢j+1 - d’;‘-1]

"2 and B = 10

(A2.11)

(A2.12)

-7 -1
N k ijsxlo m

-11

n

n
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AL Vn-«l R U'égf .- n
: Ax | n-1

.n
ST ] - 2BmAyAt u

)

At (.n n
Iy [¢m+1 - ¢m-1]

n+l n-1 At

where y = mAy.
Though the y varying part of the solution is not

strictly correct, we will use a solution of the form

<
]

2
- B (mAy) . e
exp { ——2/?5, + 1 (kjAx wnAt) }

u = Av and ¢ = Bv
where the arbitrary coefficients, A and B will be eliminated.
The correct solution form can be numerically found through
an eigenvector analysis, this will be sketched later.

Insert the solution forms into the explicit formulation to

obtain:
. . . At .
- 2iA sin wAt = - 2iA U ix Sin kAx + 2BmAyAt
- At 25 B sin kax (A2.13)
Ax )
. . _ . At .
-2i sin wAt = - 21 U ax sin kAx - 2BmAyAt A
At

2
iy [Bm+1 exp (C(m+1)7)

At _ 2
" iy [Bm+1 exp (C(m+1)“)

- B, exp.[C(m-l)z]Je_sz (A2.14)
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~ 2i B sin wAt = - 2i U %; B sin kAx - 2i é'%i.A sin kAxX
At [ 25 2\) _-cm?
-0 Ry |exp (C(m+1)°) ~ exp (C(m-1)°)| e
(A2.15)
where
2
c = -~ _BAy
2 V3o
If we define:
_ At . :
E = Ax Sin kAx
D = sin wAt - UE
F' = BAyAt, F = F'm
— c .
G = 2e” sinh (2 cm)
then (A2.13) and (A2.15) can be written
- 21 AD = 2F - 2iBE
CBD = - 24 _ g bt
- 20 BD = - 2i @ EA - 0 35 G

Solving for A and B, one obtains

. At
_ 1 [PD - EO® 7Z§‘G
A= Z 2
D™ - QE
. At
Lo [@EP - oD g G]
- 2 2
D™ - JE

Insert these relations into (A2.14), and after some manipu-

lation derive the cubic equation in D:

e 2
3 - 2 - 2 - - 4C roch A ~mN At ]
Tation a8Five fhe chbic equation {3 o " "
3 2 .2 4C - pt?
D + [«'@E - F" - (1 -~ e cosh (4 cm)) ¢ 5| D
2Ny

- F' ®E %5 eC cosh (2 cm) = 0 (A2.16)
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which is of the form

If the quantity

%; + %; < 0

then the roots are given by

2 (- a/3)Y?% cos (4/3)

rl =
r, = 2 (- a/3112 cos (873 + 2m/3)  (A2.17)
r, = 2 (- a/3)Y% cos (4/3 + 4n/3)
where
¢ = arc cos (- b/(z(- 33/27J1/2)j l

The relations (A2.17) are used to determine the phase

frequencies, through the relation

- 1 : ,
w; = fg arc sin {UE + ri§ (A2.18)

Matrix Formulation

As an alternative, and more rigorous, method, the
frequencies can be found from the eigenvector. One proceeds
in an analogous fashion as for the continuous system of
equations by first keeping the-y variation arbitrary. Thus

the explicit formulation is written:

-~ 21 Dum = 2FVm - 21E¢m

~ 21 Dum = ZFVm - 21E¢m

- 2iDp. = -2i Eu_ - o5 v v
m m Ay m+1 m-1
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for the x momentum and continuity equations.

Eliminate for u and ¢m:

At
ZREV, - D g (vpoc V)
on = 7 2
2i (D - ®E%)
‘ At
. ) 2FDV oE iy (Vm+l - V1)

m 2i (D% - eEY

Insert these into the y momentum equation

. - At _
21 DVm = 2 Fum + iy (¢m+l ¢m_l)

to obtain:

. 2 2y . . o At -
-4v D (D° - #E%) 2F |2FDv - OB o (v vm_l)]
At . At
T hy 2FeE (Vg - Vpog) - 9D Ay Vpeg * Vpog - 2vm)]

which is a pentdiagonal system of the form:

AVm+2 ¥ va ¥ AVm—Z = 0
where

At?
A = @D —

Ay

2 2 2 At
B = - 4D (D" - 9E® - F%) + 24D —
Ay

away from the boundaries in y.
From this matrix the eigenvalues are determined and

the frequencies derived.
TA ~1arifr Anea micht Aafina A matwiv N vwhi~h ~An

the frequencies derived.
To clarify, one might define a matrix, N, which con-

tains no D's as
M+ P(D) = N
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where P is a function Qf D, for example a cubic. N will
contain known quantitieS'(w; contained only in D; is the
sole unknown). Then P(D) = eigenvalues of N, and the
frequencies can be found. Note that if the eigenvalues
must be found numerically, it is not necessarily clear
which frequency of the numerical system corresponds to a

frequency of the continuous system.
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