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ABSTRACT

Monthly and seasonal predictions of mean atmospheric states have traditionally
been viewed as a boundary forcing problem, with little regard for the role of atmospheric
initial conditions (IC). The potential predictability of these mean states is investigated
using hindcasted monthly mean January (JAN) and seasonal mean
January/February/March (JFM) 200 hPa geopotential heights from the National Centers
for Environmental Prediction/Climate Prediction Center (NCEP/CPC) Dynamical
Seasonal Prediction System along with the corresponding data from the NCEP/National
Center for Atmospheric Research (NCAR) Reanalysis for the period 1980-2000. With
lead times ranging from one month to four months, the impact of the atmospheric ICs on
long-term means is investigated. Analysis of variance tests are employed to separate the
total variability into an unpredictable internal component, due to atmospheric dynamics,
and a potentially predictable external component, due to the boundary forcing. These
components represent the noise and signal, respectively, and areas where the signal
exceeds the noise designate where long-term means could be potentially predicted with
some degree of skill. Anomaly correlations (AC) between ensemble-averaged model
height anomalies and Reanalysis height anomalies also provide a measure of the model
skill.

Comparisons between the results of these tests for the different initialization times

Comparisons between the results of these tests for the different initialization times

reveal that, for this model, the atmospheric initial conditions have little effect on the



monthly and seasonal means for lead times of one month or more. The model proves to
be highly skillful in the tropics, as expected. Signal-to-noise ratios (SNR) and ACs also
show four areas in the extratropics displaying useful skill: a) South Pacific Ocean, b)
Southern Ocean, c) Southeast Asia, and d) the PNA region. The skill found in the
extratropics outside of the PNA region is highly encouraging. Higher SNR for JFM
compared to JAN suggest that seasonal forecasts may be more reliable than monthly
forecasts. Anomaly correlations for El Nifio/Southern Oscillation (ENSO) warm and cold
events are markedly higher than correlations for both the period 1980-2000 and the subset
of ENSO neutral events. The model's ability to accurately capture changes in the
atmosphere in response to changes in the ocean's thermal structure suggests that accurate
forecasting of these changes in the ocean should lead to more accurate forecasts of

atmospheric conditions associated with ENSO warm and cold events.
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1. INTRODUCTION

Predictability of atmospheric means on monthly or seasonal time scales has been
historically viewed as a boundary forcing problem, with little attention paid to the
possible effects of atmospheric initial conditions (IC). Such boundary forcings include
sea surface temperature (SST), sea ice, snow cover, soil moisture, and other land surface
conditions. It is the slow changes in these forcings, and the subsequent response to these
changes, that are exploited in atmospheric general circulation model (AGCM) studies.
Slowly varying anomalies in lower boundary forcing [i.e., sea surface temperature
anomalies (SSTA)] can have a significant effect on the atmospheric response. This is the
basis of potential predictability of monthly or seasonal means. (Brankovic et al. 1994).

Potential predictability (PP) of model simulated monthly or seasonal means can
be determined by an analysis of the interannual variability of monthly or seasonal means
(Chervin 1986). Atmospheric mean states are comprised of a naturally varying
component and a boundary-forced component (Kumar et al. 1996). The naturally varying
component is due to the internal dynamics of the atmosphere and is referred to as the
internal variability (IV). The boundary-forced component is external to the atmosphere
and is referred to as the external variability (EV). Under the assumption that internal
variability is a measure of the unpredictable climate noise and the external variability is a

measure of the potentially predictable signal, separation of the total variability into its
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measure of the potentially predictable signal, separation of the total variability into its

internal and external components allows for the determination of a model's skill in



simulating the atmosphere by means of a signal-to-noise ratio (SNR). The potential for
predictability can then be assessed by the amount to which the signal exceeds the noise
(Shukla and Gutzler 1983).

One of the earliest studies of potential predictability was by Madden (1976). He
estimated the so-called natural variability using time-averaged sea-level pressure
analyses. This is analogous to [V and was referred to as "natural" since it would be
present in an unchanging climate. Madden concluded that potential predictability is low
because the total variability was not sufficiently larger than his estimates of natural
variability. Shukla (1983) later pointed out that Madden's estimates of natural variability
were too high, and as such the potential for predictability was underestimated. He noted
that Madden's estimate of PP should be looked at as a lower bound for PP.

Kumar and Hoerling (1995) used the separation of total variability methodology
on a nine-member ensemble of monthly mean 200 hPa eddy height anomalies for January
from a model forced with monthly mean observed SSTs to evaluate the PP of
atmospheric mean states. They found that large-scale atmospheric patterns associated
with anomalous boundary forcings observed in El Nifio/Southern Oscillation (ENSO)
extreme events were produced at times in the extratropics. However, skill in the model
simulations was not large away from the tropics, primarily due to large background
climate noise. They concluded that the PP in the extratropics is low. Based on the idea
that time-averaging has a similar effect as ensemble-averaging on the internal variance,
they suggested that seasonal predictions should be improved over monthly predictions.

Internal variance was found to decrease with increasing ensemble size, thus time
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Internal variance was found to decrease with increasing ensemble size, thus time

averaging on longer time scales should produce a similar decrease in the internal variance
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(Kumar and Hoerling 1995). This, in turn, would result in a higher SNR and a larger
potential for predictability. They also noted that maxima in the boundary-forced signal
coincided with two centers of the Pacific/North America (PNA) pattern and that this
region would offer the best chance for predictability of wintertime climate patterns in the
extratropics (Kumar and Hoerling 1998). Predictability was found to be larger in boreal
winter because the strongest signal in model studies has consistently been found during
Northern Hemisphere winter for both the tropics and extratropics. The wintertime signal
has also been seen to increase with increasing strength of ENSO events, with a stronger
response in warm events compared to cold events (Kumar and Hoerling 1997). The
stronger response in the warm events may be due to a reduction in the wintertime signal
during cold events (Hoerling et al. 1997).

The PNA pattern (Wallace and Gutzler 1981; Horel and Wallace 1981) is the
most prominent teleconnection in Northern Hemisphere winter. This pattern has also
been linked to tropical SST variability. A train of anomaly centers of opposite signs
emanates from the tropical Pacific Ocean. In its positive phase, negative height
anomalies are found over the North Pacific Ocean and Southeast United States, while
positive anomalies are found over Hawaii and western Canada. The centers of action
over the North Pacific and western Canada are generally the strongest (Horel and Wallace
1981) and it is these two centers that are associated with the maxima in boundary-forced
signal noted above. Seasonal mean height anomalies are more likely to be in the positive
PNA phase during El Niflo, although the PNA pattern has been observed in non-El Nifio

years as well (Yarnal and Diaz 1986).
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years as well (Yarnal and Diaz 1986).



Reproduction of the PNA pattern in past model studies is not unprecedented.
Blackmon et al. (1983) noted a PNA pattern in 200 hPa, 500 hPa, and 700 hPa
geopotential height anomalies produced by an AGCM run in perpetual January mode
with a representative SSTA in the tropical Pacific typical of warm ENSO events. Geisler
et al. (1985) showed that the PNA pattern was a typical extratropical response in 200 hPa
height anomalies for ENSO warm events of varying prescribed strengths. Lau (1985)
also produced a PNA pattern similar to that seen in observations when forcing a model
with observed SST in the tropical Pacific.

Recently, in the Applied Research Center at the Center for Ocean-Atmospheric
Prediction Studies (COAPS), Salapata (2002) used output from the same model used in
the present study to look at the relationship between various surface parameters and both
the Arctic Oscillation (AO) and ENSO. He found that while the model performed well
on the whole for seasonal averages, it had difficulty resolving the more extreme events in
both precipitation and temperature. Capturing the observed effects of ENSO and AO was
also found to be particularly problematic. Most troubling of all was the revelation that
climatology was a better predictor of mean temperature and precipitation rate than the
model over most of the United States. It was concluded that this model was not a useful
forecasting tool for seasonal means of surface temperature and precipitation.

Apart from the well documented influence of SSTs on the interannual variability
of the extratropical climate, other sources of predictability are continually being sought.
One possible candidate is the low-frequency component of the atmospheric ICs, and their

possible influence on the subsequent monthly and seasonal means (Shukla, 1983; Straus
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possible influence on the subsequent monthly and seasonal means (Shukla, 1983; Straus

and Shukla, 2000). Conclusions about the impact of atmospheric ICs on monthly and
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seasonal predictability, however, remain controversial. In this study, hindcasted 200 hPa
geopotential heights from the second generation of the National Center for Environmental
Prediction/Climate Prediction Center (NCEP/CPC) Dynamical Seasonal Forecast System
starting from ICs with different lead times are examined to determine the role of
atmospheric ICs in predicting monthly and seasonal mean atmospheric states. Skill of
model simulations is determined by SNRs and anomaly correlations (AC) between
ensemble-averaged height anomalies and NCEP/National Center for Atmospheric
Research (NCAR) Reanalysis anomalies. If the atmospheric ICs have any positive
influence, it is expected that simulations with a shorter lead time will provide a more
skillful representation of the monthly and seasonal mean states of the upper atmosphere.
In section 2, a brief description of the NCEP Dynamical Seasonal Forecast
System is presented and is followed by a description of the model and NCEP/NCAR
Reanalysis data. Section 3 outlines the methods used to determine model biases, to
separate the total variability into internal and external components, and to determine the
level of skill obtained in the model hindcasts. Results are presented in section 4, with

their discussion following in section 5.



2. DATA

a. Model

The coupled atmosphere-ocean general circulation model (GCM) used in this
study is the second generation of NCEP's Dynamical Seasonal Forecast System.
Implemented in April 2000, the second generation system was designed with a primary
goal of refining predictions in the winter season. A brief description of some of the
coupled model's components and characteristics are presented. A more detailed
description can be in found in Kanamitsu et al. (2002b).

The AGCM dynamics incorporate the spectral method of Kanamitsu (1989). The
atmosphere-only forecast model runs in T62L28 reduced grid resolution, providing an
approximate 200 km resolution in the horizontal with 28 vertical layers. Model physics
were taken from the operational medium range NCEP/Department of Energy (DOE)
Reanalysis-II model with a few notable changes (Kanamitsu et al. 2002a). The
convective parameterization scheme in this model is the Relaxed Arakawa-Schubert
(RAS) scheme (Moorthi and Suarez 1992), as opposed to the Simplified Arakawa-
Schubert (SAS) scheme (Pan and Wu 1995) used in the operational NCEP/DOE model.
The RAS scheme was found to reproduce the PNA response much more accurately than

the SAS scheme, especially for the PNA center over northern Canada. The original
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the SAS scheme, especially for the PNA center over northern Canada. The original

Reanalysis-II model was found to have a considerable warm bias, and significant testing
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was done with various parameterization schemes to reduce this bias. Changes from the
Reanalysis-II model that resulted in a reduction of the warm bias include the use of
Chou's longwave radiation scheme (Chou and Suarez 1994), the original Slingo cloud
scheme (Slingo 1987), and smoothed mean orography.

The land model in the AGCM is based on the Oregon State University land model
(Pan and Mahrt 1987). The two soil-layer model provides soil temperature, soil water
content, and canopy water content to the atmosphere and also includes simple snow
physics. Vegetation and soil types used in the land model are derived from the Simple
Biosphere Model climatology (Dorman and Sellers 1989).

The coupled dynamical seasonal prediction system at NCEP also includes
prediction of SST based on a comprehensive coupled ocean-atmosphere GCM. The
ocean GCM (OGCM) in this system is a modified version of the Geophysical Fluid
Dynamics Laboratory (GFDL) tropical oceans model. The domain covers the Pacific
Ocean basin from 45°S to 55°N and 120°E to 70°W. Resolution in the zonal direction is
1.5°, but meridional resolution is not uniform. In the equatorial region between 10°S and
10°N, the meridional resolution is 1/3°. The meridional resolution increases linearly
from 1/3° to 1°, poleward from 10° to 20°. Outside of 20°, the meridional resolution is
1°. Vertically, there are 28 layers, 18 of which are in the top 400 m of the surface, with
variable bottom topography. Vertical mixing is handled by a Richardson number-
dependent scheme developed by Pacanowski and Philander (1981). A more detailed
description of the OGCM is provided in Ji et al. (1995).

For production of the seasonal forecasts only, the OGCM is "one-way anomaly

e N iR I Wy

For production of the seasonal forecasts only, the OGCM is "one-way anomaly

coupled" to a T42L18 AGCM, which is similar to the higher resolution model described



above but with an approximate horizontal resolution of only 300 km. Total SSTs from
the OGCM are used to force the low resolution AGCM, while anomalies of momentum,
heat, and fresh water fluxes from this lower resolution AGCM are added to climatological
means to force the OGCM. A two-tiered approach is then used to drive the T62L18
atmospheric forecast model with the predicted SSTA obtained from the coupled ocean-
atmosphere model. Over a period of one month, 16 runs are made from differing
atmospheric initial conditions, resulting in a 16-member ensemble of SSTA. The
predicted SSTAs from the first tier are available over the Pacific basin only. In the
second tier of this approach, the ensemble-averaged SSTAs from tier one are blended
with the observed SSTAs derived from the NCEP weekly SST analysis outside of the
Pacific basin described above to comprise global SSTA fields. These anomalies outside
of the tropical Pacific basin are damped to climatology with an e-folding time of 90 days.
The anomalies are used as the lower boundary condition for the higher resolution
atmosphere-only tier-2 forecast model.

The tier-2 seasonal atmospheric prediction system consists of two components.
Each month, a set of hindcast runs initialized with observed atmospheric ICs and forced
with observed SSTs for the period 1979-1999 is first done. An additional set of forecast
runs forced with the predicted SSTAs is then made. The hindcast runs provide model
climatologies from which the predicted anomalies are computed.

Real-time atmospheric analyses available in T62L.28 resolution from the
Reanalysis-II are used for atmospheric initial conditions. These analyses contain both

high and low frequency modes of atmospheric variability, such as the PNA pattern, the
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high and low frequency modes of atmospheric variability, such as the PNA pattern, the

North Atlantic and Arctic Oscillations, and individual synoptic systems. Land initial



conditions are taken from the Reanalysis-II climatology for soil wetness and snow cover.
Climatological vegetation cover and types are used since these observations are not
readily available over the period 1979-1999. Ocean initial conditions are derived from
the GFDL real-time ocean data assimilation system. Weekly analyses of subsurface
ocean temperature, SST, and sea surface height are used as initial conditions in the
OGCM.

One other major component in the NCEP/CPC seasonal forecast system is the
inclusion of hindcasts. Prior to the forecasts being made, 21 years of hindcasts are made
for each of the six full months being forecast in that particular model run. Hindcasts are
produced by the atmosphere-only model described above, which is initialized with past
observed atmospheric conditions from 0000 UTC and 1200 UTC on the first five days of
the initialization month for each of the 21 years. The only external boundary forcing is
observed global monthly mean SSTs. Since SSTs are updated monthly, each simulation
for a particular month, for example, January 1980, is subjected to identical lower
boundary forcing, regardless of whether the starting month is September or December.
Land initial conditions are the same as those described above for the forecast model to
ensure that the hindcast climatology is as consistent with the forecast as possible

(Kanamitsu et al. 2002b).

b. Model Data

The data used in this study are AGCM hindcasted 200 hPa geopotential heights

The data used in this study are AGCM hindcasted 200 hPa geopotential heights

for January, February, and March for the period 1980-2000 (Table 1). The use of



Table 1. Schematic representation of model output for this study. BOLD months
represent the monthly data used and italicized months are the initialization months.
(NOTE: JAN data from the July and August runs are not used, as explained in the text.)

JAN

Jul Aug Sep Oct Nov Dec JAN
Aug  Sep Oct Nov Dec JAN Feb
Sep  Oct Nov Dec JAN Feb Mar
Oct Nov Dec JAN Feb Mar Apr
Nov Dec JAN Feb Mar Apr May
Dec JAN Feb Mar Apr May Jun

JFM

Sep  Oct Nov Dec JAN FEB MAR
Oct Nov Dec JAN FEB MAR Apr
Nov Dec JAN FEB MAR Apr May
Dec JAN FEB MAR Apr May Jun

10



hindcasts initialized and forced with past observed atmospheric and oceanic conditions
provides an estimation of the upper limit of a model's forecast skill, thereby justifying
inferences made from hindcast results about monthly and seasonal forecasts. In
accordance with past studies, the 200 hPa height anomaly fields are considered to be
representative of the midlatitude response to the tropical Pacific SSTs (Geisler et al.
1985). For January (JAN) monthly means, integrations with lead times of July, August,
September, October, November, and December are available. However, modifications in
the model between the August and September initializations require that available data
from the July and August runs be neglected for this study. The daily model fields at 2.5°
x 2.5° latitude/longitude resolution are averaged to produce monthly mean JAN 200 hPa
geopotential height fields. From the four available sets of hindcast runs, a total of 840
JAN simulations are made. For January/February/March (JFM) seasonal means,
integrations with lead times of September, October, November, and December are used.
The 3-month daily output is averaged to produce seasonal mean JFM 200 hPa
geopotential height fields. For the JFM seasonal means, a total of 840 simulations are
also available. For consistency between JAN and JFM means, the AGCM simulations
from December ICs are referred to as the one month lead time, the simulations from
November ICs are referred to as the two month lead time, the simulations from October
ICs are referred to as the three month lead time, and the simulations from September ICs
will be referred to as the four month lead time.

For each of the 21 years in a particular model run, an ensemble mean 200 hPa

height field is calculated by averaging the 10 members in the ensemble. The mean of

S s s v m tmme —h s m e v e v smatea AsAv Neva A veasg SeAA VALUWALAU AN AXAAVALL &MUV AAR Ve

height field is calculated by averaging the 10 members in the ensemble. The mean of

these 21 ensemble averages determines the model climatology (Fig. 1 for JAN, Fig. 2 for
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JFM) for that particular simulation's lead time. Hindcast height anomalies (HA) are

obtained by subtracting the 21-year climatology from each individual ensemble member.

¢. Reanalysis Data

For comparisons to model data, monthly mean JAN and seasonal mean JFM 200
hPa geopotential heights for 1980-2000 are derived from the NCEP/NCAR 50-Year
Reanalysis (Kistler et al. 2001). These data are readily available from the NOAA-
Cooperative Institute for Research in Environmental Sciences (CIRES) Climate
Diagnostics Center. The Reanalysis climatologies for JAN and JFM (Fig. 3) are
computed by averaging the 21 years of JAN and JFM data, respectively. Height
anomalies for the Reanalysis data are calculated in the same manner as described above

for the model data.
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