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Estimate of predictability of monthly means  
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A method of separating the contributions from slowly 
varying boundary forcing and internal dynamics (e.g. 
intraseasonal oscillations) that determine the predicta-
bility of the monthly mean tropical climate is pre-
sented. Based on 33 years of daily low level wind 
observations and 24 years of satellite observations of 
outgoing long wave radiation, we show that the Indian 
monsoon climate is only marginally predictable, as the 
contribution of the boundary forcing in this region is 
relatively low and that of the internal dynamics is 
relatively large. It is also shown that excluding the 
Indian monsoon region, the predictable region is lar-
ger and predictability is higher in the tropics during 
northern summer. Even though the boundary forced 
variance is large during northern winter, the predicta-
ble region is smaller as the internal variance is larger 
and covers a larger region during that period (due to 
stronger intraseasonal activity). 

THE predictability of weather (or the instantaneous state 
of the atmosphere) is limited to about two weeks1 due to 
inherent instability and nonlinearity of the system. The 
atmosphere, however, possesses significant low frequency 
variability. If the low frequency variations of the monthly 
and seasonal means were entirely governed by scale inter-
actions of the higher frequency chaotic weather fluctu-
ations, then the time averages will be no more predictable 
than the weather disturbances themselves. However, it 
appears that a large fraction of the low frequency varia-
bility, specially in the tropics, may be forced by slowly 
varying boundary conditions such as the sea surface tem-
perature (SST), and soil moisture variations. Hence, the 
predictability of climate (e.g. space–time averages) is 
determined partly by chaotic internal processes and partly 
by slowly varying boundary forcings such as the SST, sea 
ice and soil moisture. This understanding that anomalous 
boundary conditions (ABCs) may provide potential pre-
dictability has formed the scientific basis for deterministic 
climate predictions2–4. Research during the past decade 
has shown that the climate in large parts of tropics is pri-
marily determined by slowly varying SST forcing5, where 
potential for making dynamical forecast several seasons in 
advance exists. However, during the same period, we 

have also learnt that there are regions within the tropics 
whose climate is not strongly governed by ABCs. The 
Indian summer monsoon is such a system6–8. The intra-
seasonal oscillations (ISOs) such as the eastward propa-
gating Madden–Julian Oscillations (MJOs) and the north-
ward propagating monsoonal ISOs with period in the 
range of 30 to 60 days are quite vigorous in the tropics. 
Both the MJOs as well as the monsoonal ISOs are known 
to be driven by internal feedback between convection and 
dynamics. In addition to the scale interactions between 
weather disturbances, time-averaging of the chaotic ISOs 
can also contribute to the low frequency variability of 
monthly and seasonal means in the tropics. The nonlinear 
scale interaction associated with the weather disturbances 
in the tropics is likely to be weak as they are less vigorous 
compared to their counterpart in the extra-tropics. There-
fore, we envisage that most of the internal contribution to 
the low frequency variations in the tropics comes from 
time-averaged residual of the ISOs. 
 The total low frequency variance of any variable in a 
given region (σ2) could be written as superposition of 
variance due to external forcing (σ2

e )  and variance due to 
internal processes (σ2

i        ), i.e. 
 
  σ2 = σ2

e + σ2
i.. 

 
 A measure of predictability of the monthly and seasonal 
means in a place could be obtained from the ratio of vari-
ances associated with the external to the internal compo-
nent (σ2

e 
  /σ2

i  ). 
 Making unambiguous estimates of the ‘internal’ and 
‘external’ components of variability from observations is 
rather difficult. Madden9,10, Madden and Shea11 and Shea 
and Madden12 attempted to estimate the two variances in 
some extra-tropical regions. They estimated synoptic 
scale internal variability from short time series (such as 
within a season) and extrapolated the power spectrum to 
lower frequencies by assuming a white noise extension. 
This approach is simple but assumes that the low fre-
quency power spectrum would be white and it could be 
extrapolated from power at higher frequencies. Shukla13 
commented at length on Madden’s9 approach and argued 
that the methodology used and assumptions made by 
Madden could have overestimated the natural variability 
or climate noise and underestimated the potential predic-
tability. Madden14 while disagreeing with Shukla that his 
method underestimated the potential predictability, agreed *For correspondence. (e-mail: goswamy@caos.iisc.ernet.in) 
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that there is considerable uncertainty in separating the so- 
called climate noise from the climate signal. Shukla and 
Gutzler15 and Short and Cahalan16 used a more general 
low frequency extension of the intraseasonal variance to 
estimate the level of climate noise. Trenberth17,18 points 
out that these estimates depend crucially on the use of the 
correct value of T, the effective time between independent 
data. He pointed out that these studies may have under-
estimated T by using negatively biased estimates of  
the lagged autocorrelations, by improperly removing the  
annual cycle and inter-annual variability. 
 It is relatively easier to estimate this ratio from a long 
integration of an atmospheric general circulation model 
(AGCM) with observed boundary condition and another 
long integration with fixed boundary condition8 or from 
an ensemble of long integrations of the AGCM with the 
same observed boundary conditions, but differing only in 
the initial conditions19–21. Kumar and Hoerling22 estimated 
the ratio between the external and internal variability for 
the extra-tropics using a large ensemble of long simula-
tions by an AGCM. 
 In all the studies of estimating potential predictability 
from observations mentioned earlier, the total inter-annual 
variability (i.e. the climate signal) is compared to the cli-
mate noise. The so-called climate signal actually contains 
contributions from the external forcing as well as the  
internal climate noise. To the best of our knowledge, no 
attempt has been made to separate the contributions from 
the external and the internal components to the observed 
inter-annual variability. In the present study, we propose a 
method of separation of inter-annual variances of monthly 
means associated with the slowly varying externally 
forced component and from the internally determined 
component. The data used and the methodology for sepa-
rating the two components and assumptions involved are 
described next. The variances associated with the internal 
and external components are then estimated. It is also 
demonstrated that the external component separated by 
our method indeed represents the response of the tropical 
atmosphere to the slowly varying SST forcing. A predic-
tability index defined as the ratio between the external 
and the internal components is presented in the article, 
which shows geographical locations where predictability 
is high (or low). Finally, the results are summarized. We 
also show that the internal variability essentially arises 
from the intraseasonal oscillations. 

Data and methodology 

The main data used in this study are the daily low level 
zonal winds (850 hPa) from NCEP/NCAR reanalysis23  
for 33 years (1965–1997) and daily outgoing long wave 
radiation from the NOAA polar orbiting satellites24,25 for 
24 years (1974 to 1997). 
 Here, we propose a method to separate the ‘externally 
forced’ monthly mean anomalies from raw daily data. Our 

methodology is based on the following premise. The 
anomalies associated with the synoptic and intraseasonal 
oscillations may be defined as the deviations from  
the annual cycle. The annual cycle at any place can be 
defined by the sum of the first few harmonics. In the pre-
sent study, the annual cycle is defined as the sum of the 
first three harmonics of daily data for each year. The  
annual cycle defined in this manner varies from year to 
year. An example of such inter-annual variations of the 
annual cycle of low level zonal winds at a point over  
the Indian Ocean is shown in Figure 1. It is clear that the 
annual cycle has significant year-to-year variations. We 
hypothesize that the inter-annual variations are essentially 
due to the slowly varying boundary forcing. The dominant 
slowly varying boundary forcing in the tropics is that  
associated with the El Nino and Southern Oscillation 
(ENSO)-related SST variations. Since the time scale of 
variations of the boundary forcing is much longer (3–4 
years to decadal) than that of the annual cycle, it essen-
tially modulates the annual cycle. Thus, the inter-annual 
variations introduced by the external (slowly varying) 
forcing can be estimated from the monthly means con-
structed from the deviations of the individual annual cycles 
from the climatological mean annual cycle. The annual 

Figure 1. Illustration of variations of the annual cycle from year to 
year. The annual cycles of zonal winds (ms 1) at 850 hPa at a point 
(80°E, 5°N) are shown for 20 years. 
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cycles of zonal winds at 850 hPa each year from 1965 to 
1997 and those for OLR for all years from 1974 to 1997 
are calculated and from the daily annual cycles, climato-
logical daily annual cycles are calculated. Monthly exter-
nal anomalies are estimated as monthly means of deviations 
of individual annual cycles from the climatological annual 
cycle. 
 To test our claim that the external anomalies as esti-
mated by us are essentially driven by slowly varying SST 
changes associated with the ENSO, we carried out a com-
bined EOF analysis of the monthly mean external anoma-
lies of OLR and winds at 850 hPa. We have chosen the 
period between 1979 and 1997 for this analysis. The 
dominant EOF explaining about 20 per cent of the total 
variance is shown in Figure 2. The spatial patterns of both 
OLR and low level winds indicate the canonical patterns 
associated with ENSO26,27. The PC1 (normalized by its 
own temporal s.d.) is also shown in Figure 2 together with 
normalized Nino3 SST anomalies. The correlation coeffi-
cient between PC1 and Nino3 SST anomalies is 0.84,  
indicating a strong link between the variability repre-
sented by the external component and the ENSO. The 
second EOF and corresponding time coefficients (PC2) 
are not shown. However, PC1 and PC2 are strongly corre-

lated at a lag of about 6 months. This lag-correlation  
together with the spatial patterns of the external compo-
nent represent an eastward propagation of the anomalies, 
again characteristic of the ENSO anomalies. Therefore, 
the external component separated here clearly represents 
the slow response of the atmosphere to the slowly varying 
SST forcing associated with the ENSO. Actual anomalies 
of low level winds and OLR along the equator associated 
with the slow external forcing are shown in Figure 3. The 
magnitudes of the anomalies during the warm and cold 
events are similar to those known to be associated with 
typical warm or cold phases of ENSO26 and the eastward 
propagation is also clearly seen. 
 If daily anomalies in a particular year are defined as the 
departure of daily observations from the annual cycle of 
that year, they represent the internal contribution as the 
external component represented by the inter-annual vari-
ation of the annual cycle is removed in this process. Thus, 
the monthly means of the daily anomalies constructed in 
this manner define the internal component. This definition 
implies that averaged over the whole year, the daily 
anomalies vanish. However, due to the intraseasonal  
oscillations, the monthly means are non-zero. The internal 
and external monthly mean anomalies calculated in this 
manner are statistically independent, as the temporal  
correlation between the two is nearly zero everywhere 
(Figure not shown). 

Figure 2. First combined EOF of mean monthly external anomalies 
for the period January 1979 to December 1997 (228 months). a, Zonal 
winds EOF at 850 hPa; b, OLR EOF; and c, PC1 (solid line) and Nino3 
SST anomalies (dashed line). Both the time series are normalized by 
their own standard deviation. Units of the EOFs are arbitrary. 

 

Figure 3. Time-longitude section of mean monthly external anomalies 
of zonal winds at 850 hPa (m2 s–2) and OLR (Wm–2)2 averaged around 
equator (5°S–5°N). 
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 Let us define total monthly anomaly of any field (say, 
zonal wind) as sum of monthly anomalies associated with 
internal and external components. 
 

  UT(x, y, t) = Ue(x, y, t) + Ui(x, y, t), 
 
where subscripts e and i refer to the external and the  
internal components. Squaring both sides and summing 
over all months we can write the total variance to be given 
by sum of variances associated with the internal and the 
external components, namely 
 

  σT
2   = σe

2   + σi
2  , 

 
as the correlation between the internal and the external 
components is zero. The total inter-annual variance may 
be estimated in two ways. The traditional way of calcula-
ting it is to construct monthly mean data from the raw 
daily data. Then construct a climatological monthly mean 
annual cycle. Deviations of the monthly means from this 
climatological monthly mean annual cycle are the total 
monthly mean anomalies. The total inter-annual variance 
may be calculated from these total anomalies. Alter-
natively, daily anomalies can be constructed with respect 
to the daily climatological mean annual cycle. The monthly 
means obtained from these daily anomalies give us the 
total monthly mean anomalies. 

Estimation of internal and external inter-annual 
variances 

The total variance of monthly means as well as the inter-
nal and external components of the variance of zonal 
winds at 850 hPa are calculated as described earlier based 
on daily data for 33 years (1965–1997). The three vari-
ances are shown in Figure 4. Similarly, the three variances 
for OLR are calculated based on available 24 years of 
daily data (1974–1997). The OLR variances are shown in 
Figure 5. To start with, we note that the sum of the exter-
nal and internal variances almost exactly equals the total 
variances in all geographical locations in the tropics for 
both the fields. Secondly, it is clear from Figure 4 b and 
5 b that the geographical distribution of the external vari-
ances of low level zonal winds as well as OLR has the 
canonical pattern of the individual fields associated with 
the ENSO27–29. The external variance of U850 has a major 
maximum centred around the dateline and a secondary 
maximum in the eastern equatorial Indian Ocean. Both the 
regions are known to be associated with large zonal wind 
anomalies during peak ENSO phases. The major maxi-
mum on the external variance of OLR is also centred 
around the dateline, but has large extension to the eastern 
Pacific. It is also noted that most of the appreciable exter-
nal variance of either OLR or U850 is confined between 
10°N and 10°S, characteristic of the Walker response  
 

Figure 4. Monthly variance of zonal winds (m2 s–2) at 850 hPa based 
on 396 months for the period January 1956 to December 1997. 
a, Total variance; b, external variance; and c, internal variance. 

 

Figure 5. Same as Figure 4, but for OLR for the period January 1974 
to December 1997 (288 months). Units (Wm–2)2. 
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associated with the ENSO. On the other hand, the internal 
variances of U850 have large amplitude (Figure 4 c) in 
the ‘monsoon’ regions of the tropics, namely the Indian 
summer monsoon region, the South China Sea monsoon 
region and the Australian monsoon region. We note that 
the internal variance is generally smaller than the external 
variance in the tropical Pacific. However, it could be 
comparable or even larger than the external variance in 
the monsoonal regions mentioned above. The internal 
variance associated with the OLR (Figure 5 c) also has 
large amplitude in the same monsoonal regions. In con-
trast to the external variance, the internal variance is not 
confined to the equatorial belt but extends even up to 30 
degrees latitude in the Indian and Australian monsoon 
regions. 
 

Predictability of monthly means 

As mentioned in the beginning of the article, the predict-
ability of the climate (monthly means) is given by the  
ratio of ‘signal’ to ‘noise’, the signal being the predictable 
component or the external component and the noise being 
the internal unpredictable component. Let us define a pre-
dictability index as 
 
  Γ = σ2

e  /σ
2
i  . 

 
 Larger the value of this ratio compared to unity, higher 
the predictability. The monthly mean climate may be con-
sidered marginally predictable if Γ is greater, but of the 
order one. If Γ is less than one, the climate would be  
unpredictable as the internal variability exercises a domi-
nating influence on the total monthly variability. Having 
separated the two components, it is now possible to  
estimate the predictability by calculating the ratio  
between the external and internal variances. This ratio for 
zonal winds at 850 hPa based on 396 months is shown in 
Figure 6 a, while that for OLR based on 288 months is 
shown in Figure 6 b. Figure 6 a represents the geographi-
cal distribution of predictability index for large-scale 
flow, while Figure 6 b represents the same for convection 
(or precipitation). For the large-scale flow (Figure 6 a), 
predictability is high wherever the ENSO influence is 
large. This includes equatorial Pacific between 10°S and 
10°N, equatorial Atlantic and equatorial Indian Ocean 
east of 70°E. Parts of Africa indicate high predictability, 
as this region is also known to have strong influence of 
ENSO. It is seen from Figure 6 b that a significant pre-
dictable region (e.g. Γ ≥ 2) for convection (or precipita-
tion) is much smaller than that for circulation. This region 
is mainly confined to the central and eastern equatorial 
Pacific coincident with the core predictable region for 
convection. This is probably to be expected as the inter-
annual variability in convection (or precipitation) is much 
higher. However, if we include the ‘marginally predict-
able’ region (e.g. Γ ≥ 1) in the predictable region for con-

vection, it roughly coincides with the predictable region 
of circulation (e.g. Γ ≥ 2 in the case of U850). 
 Probably the most important information provided by 
Figure 6 is identification of the regions over which the 
monthly climate is likely to be unpredictable. These are 
essentially the monsoon regions of the world, namely the 
Indian summer monsoon region, the Baiyu region, the 
central American monsoon region and the Australian 
monsoon region. In these regions the predictability index 
for circulations is between 1 and 1.5. The smallest ratio is 
found over the Indian monsoon region, where it goes 
down to even less than 1. For convection the predicta-
bility index is between 0.75 and 0.5 over the Indian mon-
soon region. 
 As Figure 6 is based on all months, it brings out an  
averaged picture of predictable (and unpredictable)  
regions. The synoptic activity and the ISOs in the tropics 
is dependent on mean background flow. Since the mean 
flow in the tropics has a strong seasonal cycle, the synop-
tic and ISO activities also have a seasonal cycle. Hence, 
we can expect the internal variability also to have a strong 
seasonal cycle. Therefore, it may be more interesting to 
examine how the predictable (and unpredictable) regions 
depend on the season. For this purpose, we calculated  
the ratio between the external and the internal variances 
taking all the northern hemispheric (NH) summer months 
(June–August) together and all the winter months  
(December–February) together. The NH summer and win-
ter ratios for zonal winds at 850 hPa are shown in Figure 7. 
It may be noted from Figure 7 that during the NH  
summer, not only are the peak values of the predictability 
index Γ higher than those during northern winter, also the 
area covered by Γ > 2 is much larger during NH summer 
compared to that in NH winter. Thus, during NH winter 
the monthly mean predictability not only decreases com-

Figure 6. Predictability index for (a) zonal winds at 850 hPa (396 
months); and (b) OLR (288 months). 
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pared to that in NH summer, the predictable region also 
shrinks. Poor predictability over the Indian monsoon  
region, however, appears to be a robust feature and  
remains unchanged during both seasons. 
 The qualitative difference in the predictability regimes 
during NH summer compared to NH winter is probably 
not very surprising if we take into account the seasonality 
of the external and the internal variances. As the external 
component of the variance arises from a slowly varying 
signal (with time scales longer than a year), we do not 
expect much seasonality in the external variance. This is 
shown in Figure 8 for zonal winds at 850 hPa. Except that 
the maximum variance occurs in the western Pacific dur-

ing NH summer compared to central Pacific during winter, 
the general pattern of external variance is similar in the 
equatorial wave-guide during both the seasons. However, 
the internal variance has a pronounced seasonality (Figure 9). 
Barring the Indian monsoon region and a small portion of 
the American monsoon region, the internal variability is 
very weak throughout the equatorial wave-guide during 
NH summer. This explains the larger magnitude and  
extension of Γ during NH summer (Figure 7). On the 
other hand, the internal variance during NH winter is 
quite strong from Indian Ocean to central Pacific, the 
maxima being over the Australian monsoon region and  
the South Pacific Convergence Zone (SPCZ). The larger 
internal variability during NH winter is consistent with the 
fact that the ISO activity in the tropics is strong during 
boreal winter and spring and weak during boreal summer, 
except over the Indian monsoon region30,31. Even though 
the external variance remains similar in magnitude and 
extent in winter compared to that in summer, the predicta-
bility index becomes smaller and the predictable region 
shrinks to a smaller region in the far eastern Pacific due to 
vigorous internal activity in the Indian Ocean and central 
and western Pacific. 

Discussion and conclusions 

What is responsible for the internal variability of the 
monthly means in the tropics? The synoptic disturbances 
in the tropics are much less energetic than their extra-
tropical counterpart. Therefore, nonlinear interaction 
amongst the tropical synoptic disturbances is unlikely to 
result in significant energy in the low frequency regime 
(e.g. monthly and seasonal means). Moreover due to their 
higher frequency, the monthly mean residuals from them 

Figure 7. Predictability index for zonal winds at 850 hPa (a) for all 
northern hemisphere winter months (December–February); and (b) for 
all northern hemisphere summer months (June–August). 

 

Figure 8. External variance of zonal winds at 850 hPa (m2 s–2) during 
(a) NH winter months (December–February); and (b) during NH sum-
mer months (June–August). 

 

Figure 9. Internal variance of zonal winds at 850 hPa (m2 s–2) during 
(a) NH winter months (December–February); and (b) during NH sum-
mer months (June–August). 
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are expected to be small. Therefore, the internal variabi-
lity that could influence tropical monthly means are the 
monsoonal ISOs during NH summer and the MJO in the 
other parts of the tropics. To test the correctness of this 
conjecture, we calculate internal variance after removing 
the synoptic disturbances from the daily anomalies. For 
this purpose, a Butterworth low-pass filter that keeps all 
periods greater than 10 days and throws out all periods 
shorter than 10 days was applied on the daily anomalies 
of all years, after removing the annual cycle of each indi-
vidual year. Monthly mean anomalies describing the  
internal component, are again calculated by averaging the 
filtered anomalies over calendar months. The internal 
variance calculated from the monthly means of the filtered 
data has no contribution from the synoptic variations and 
is solely contributed by the ISOs. The internal variance 
calculated in this manner for U850 and OLR are shown in 
Figure 10. A comparison of Figure 10 a with Figure 4 c 
and Figure10 b with Figure 5 c reveals that removal of the 
contribution of the synoptic disturbances from the daily 
data had no effect on the internal variance, either in mag-
nitude or in spatial distribution. This analysis establishes 
that the internal variability of the monthly means is  
entirely governed by the tropical ISOs. 
 In this study, we present a method to determine the part 
of monthly mean climate variability governed by internal 
dynamics and that governed by external slowly varying 
forcing from long daily observations. A predictability 
index is defined as the ratio of variance between the  
external and the internal components. Low level daily 
zonal winds (at 850 hPa) from NCEP/NCAR reanalysis 
for 33 years (1965–1997) and daily OLR for 24 years 
(1974–1997) are used. Two important conclusions may be 
drawn from this analysis. 
 
(i) The predictability of the monthly mean climate over 
the monsoon regions of the world appear to be marginal at 
best. The worst among them is the Indian summer mon-
soon region, where predictability index goes down to less 
than one. In many recent studies, the difficulty in simu-
lating and predicting the Indian summer monsoon has 
been attributed to the role of the ISOs6,8,32. Goswami8, had 
shown that the strength of the GCM simulated ENSO res-
ponse decreases as we reach the Indian Ocean and Indian 
monsoon region and the internal variability could compete 
with the externally forced variability in this region. The 
present analysis shows, from observation that the internal 
variability in the Indian summer monsoon region is indeed 
comparable to or even larger than the boundary forced 
variability. Thus, deterministic prediction of the monthly 
mean summer monsoon climate may continue to be a  
difficult problem. 
(ii) The other important result is that barring the Indian 
summer monsoon region, the monthly mean climate dur-
ing the boreal summer is more predictable over a much 
larger region in the tropics than during boreal winter. As 

it is well known that the SST signal associated with the 
ENSO tends to peak during NH winter, it appeared rather 
strange that predictability should be weaker during this 
season. However, we show that the weaker and limited 
predictability during boreal winter is due to stronger inter-
nal variability associated with stronger ISOs during  
winter, while the amplitude of the boundary-forced vari-
ability remains similar to that in boreal summer. Thus, the 
monthly mean tropical climate seems to be more predicta-
ble in NH summer compared to NH winter. 
 
 It may be noted that nonlinear interaction between the 
synoptic events and intraseasonal oscillations may intro-
duce some variations of the annual cycle (albeit small). 
This rather small contribution from internal variability  
to the low frequency variations is contained in our defi-
nition of external variation. Therefore, the external vari-
ance may be slightly overestimated. Thus, our measure of 
predictability may also be slightly overestimated. In  
this study we have confined ourselves to the predictability 
of the monthly mean climate. The predictability of the 
seasonal mean climate will be addressed in a separate 
study. 
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