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Today’s Topics
General Introduction to Radiative Energy Budget

• Key characteristics
• Key considerations in a radiation budget
• Types of radiation
• Annual cycle
• Examples of the global budget
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Considerations in the Radiative Budget

• Radiative flux through the top of the atmosphere
• Variability in solar radiation reaching the earth
• Impact of atmospheric constituents

• Radiative flux at the planet’s surface
• Passage through the atmosphere, and emission by the atmosphere
• Direct vs. Diffusive Radiation
• Reflectivity and Albedo

• Net energy budget.

• Components of ‘Net’ radiative transfer
• Long wave (terrestrial) vs. Short wave (solar)
• Upwelling vs. downwelling
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Components of Net Radiative Transfer

• Terrestrial Radiation
• Emitted from objects at typical earth-like temperatures
• Relatively non-energetic (long wavelength) photons
• Spectrum includes infra-red and longer wavelengths

• E = h ν E = Energy per photon; 
• c = λ ν h = constant;   ν = frequency
• E = h c / λ c = speed of light;   λ = wavelength

• Solar Radiation
• Emitted from very hot bodies (e.g., the sun, red or white hot 

objects)
• Relatively energetic (short wavelength) photons
• Spectrum includes visible light and shorter wavelengths
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The Spectrum

Note: 1eV (electron volt) = 1.6 * 10-19 J
Acquired from 

http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html
(I recommend this site for more information)

http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html
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Upwelling and Downwelling

• Electromagnetic energy can pass through the above surface from either 
side.
• From an Earth-centric point of view:

• Solar radiation is typically moving down (downwelling)
• Terrestrial radiation has substantial components moving up and 

down
• Net radiative flux includes: upwelling short-wave (assumed to be 

small), downwelling short-wave, upwelling long-wave, and 
downwelling long-wave.

• We are usually interested in the flux density of radiative energy 
through a surface that is parallel to the mean surface.
• A flux density (often referred to as flux in meteorology and 

oceanography) is the rate of energy that passes through an area or 
surface.

• The units of fluxes are usually Jm-2s-1 or W m-2 .
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Conversion of Solar Radiation to Heat

• Assume that 1cm2 surface area is exposed 
to the sun’s energy.

• Assume that the sun’s radiations 
(intercepted by the cube) are moving 
parallel.
• The flux of energy is about 1365 Wm-2

• Assume that no energy escapes.
• Using our knowledge of thermodynamics, 

we can estimate the rate at which the 
thermal energy of the cube increases.
• 1.96°C increase per minute!

Graphic from Meteorology by Danielson, Levin and Abrams

• Consider a cube of water (1cm3), floating 
is space at the same distance from the sun 
as the earth.
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Insolation (Incoming Solar Radiation)

• It is the amount of energy, per unit area (perpendicular to surface) per 
unit time.
• At solar noon, the value of insolation is approximately 1365 Wm-2.

• This term is also know as the solar constant.
• There are a small range of published values near this value: there is 

some uncertainty in the average.
• Energy [J] per unit time [s] is also know as Power [W].
• The rate at which something (e.g., energy) passes through or into 

something is called a flux (units of the quantity being input per unit 
time, e.g., Js-1).

• The flux per unit area is correctly called a flux density. A good 
example is the insolation.
• Caution: most meteorology and oceanography texts use the term 

flux when referring to a flux density.

• Insolation is the incoming solar radiation at the top of the atmosphere.



The Florida State University
General Meteorology

Energy Budget 8bourassa@met.fsu.edu

What Influences Surface Temperature?

• In the long-term (multiple years) these must be approximately 
balanced for a nearly steady state system. Why?
• The amount that is input is a function of the fraction that is 

reflected (reflectivity) back into space.
• The amount that is emitted (output) into space is a strong function 

of the temperature of the ‘exposed’ emitters (the surface, clouds, 
and constituents of the atmosphere).

• The atmosphere’s temperature (at all levels) is also modified by how 
much energy can be kept within a layer.
• This consideration is particularly complicated in areas with rapidly 

changing cloud cover!

• There are many things that influence the surface atmospheric 
temperature.
• Two obvious considerations are the input of energy into the earth 

system, and the output of energy from this system.
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Solar Incidence Angle 
(round earth perspective)

• Recall that solar radiation 
reaching the top of earth’s 
atmosphere can be thought 
of as moving in parallel.

• The surface of the earth, and 
the top of the atmosphere 
are curved. 

• Solar radiation, passing 
though a unit area 
perpendicular to it’s 
direction of travel, is 
projected onto the earth’s 
surface.

• The angle at which the 
sunlight strikes the earth 
depends on latitude and 
season. 

Graphic from Meteorology by Danielson, Levin and Abrams
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Solar irradiance on a horizontal surface outside the Earth’s atmosphere 
[Wm-2] from Smithsonian Meteorology Tables (1966). The values are 24 
hour means – why do I say this?

• Function of Latitude and 
season
• Distance from the 

sun (season)
• Tilt of the surface 

(season and latitude)
• Value of solar radiative 

flux density, at the mean 
orbit of the Earth is 
~1365 Wm-2

Incoming Solar Radiation 
at the Top of the Atmosphere

Graphic from A First Course in Atmospheric Radiation by G. W. Petty
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Flux Density of Solar Radiation
at the Top of the Atmosphere

A = Area perpendicular to direction the 
radiation is moving.

B = Area on a surface intersecting the 
radiation.

θ = Difference between the angle normal to 
the surface and the direction the radiation 
is moving
B = A / cos(θ) 

• If R is the radiative flux through A, then 
the flux on the surface (F) is
F = R

• For Flux densities (F’ and R’ )
F’ = F / B = (R / A)  cos(θ)  = R’ cos(θ) 

θ

cos(θ) = 1

cos(θ) < 1

cos(θ) = 0 θ θ Angle of the normal to the surface

Angle of incoming radiationθ

B

B

B

A

A

A
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Seasonal Change
• The energy flux (F) from the sun can be estimated by multiplying the flux 

density (S, aka the solar constant) at a mean radius (R) by the surface area 
of a sphere at that radius. Note that this value of S applies only to the 
mean distance from the earth to the Sun. The insolation varies as a 
function of distance (R) from the Sun.

F = S 4 π R2

• F is constant – it does not depend on R.
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Solar Activity and the Solar ‘Constant’

• Sunspots are huge magnetic 
storms on the sun that show 
up as (cool) dark spots

• Sunspots change the solar 
energy output
• Bright areas around 

spots make up for lost 
energy

• Change is around 0.1% 
(1 Wm-2)

• Sunspot cycle is 11 years 
long

• Long periods with few 
observed sunspots match 
long cold periods.

Graphic from Meteorology by Danielson, Levin and Abrams

Graphic from http://astro.uni-tuebingen.de/groups/time/slide17.gif
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Seasonal Changes in Solar Radiation

• There are two considerations for seasonal change:
• Distance from the sun (orbits are elliptical rather than circular), and 
• Tilt of the earth’s orbit with respect to the direction of incoming 

solar energy.
Graphic from Meteorology by Danielson, Levin and AbramsGraphic from Meteorology by Danielson, Levin and Abrams
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Examples of Seasonal Changes 
in Temperature

Graphic from Meteorology by Danielson, Levin and Abrams
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Directions of Sunrise and Sunset
• Does the sun always rise in the East and set in 

the West?
• No! Extreme contrary examples occur near 

the poles, where the sun does not set in 
Summer or rise in Winter.

• In mid-latitude Winters, the sun always 
appear to be somewhat to the South.

• Even at the equator, the sun moves around the 
East-West axis as a function of season.

Graphic from Meteorology by Danielson, Levin and Abrams
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The Earth’s Energy Balance, Part I
Solar Energy Fluxes

• Radiation (electromagnetic or 
otherwise) pass through 
something is either
• Transmitted

• directly or indirectly
• Reflected

• Perhaps many times.
• Afterwards returning 

to space
• Absorbed

• Later reemitted

Tropopause

Graphic from Meteorology by Danielson, Levin and Abrams
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Satellite Estimates of 
Reflected Solar Radiation

• Reflected Solar Radiation, May 25, 2000, from the CERES instrument on the 
TERRA Satellite (scale from 0 to 300 Wm-2).

• http://svs.gsfc.nasa.gov/vis/a000000/a002300/a002328/

Why does 
this pattern 
occur?
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Solar Radiation Reaching The Earth
• Quantify the interactions 

between radiation and the 
earth/atmosphere system in 
terms of the percentage of 
incoming solar radiation.

• You can also think of the 
incoming solar radiation as 
having a quantity of 100 
units, where each unit in 
approximately 13.65 Wm-2.

• 30% of solar radiation is 
reflected back into space.

• 20% is absorbed by the 
atmosphere.

• 50% is absorbed by the 
earth.

Graphic from Meteorology by Danielson, Levin and Abrams
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Maritime & Continental Temperatures
• Large bodies of water 

moderates the local and 
nearby air temperatures.
• Except when the body 

of water becomes ice 
covered!

• The water has 
enormous thermal 
inertia. It can absorb 
or release great 
amounts of heat.

• Water cooled to heat the 
air is usually more dense 
than surrounding water.

• Wind and night time 
cooling mix the water.

Graphic from Meteorology by Danielson, Levin and Abrams
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Terrestrial Radiation

• The radiative flux of a black body is proportional to the fourth power of 
the temperature of that body (in degrees Kelvin).
• I = σ T4, where σ is the Stephan-Boltzmann constant 

• σ = 5.67 x 10−8 Wm-2K-4.
• Clouds can reasonably be approximated as gray bodies, with 90 to

95% the irradiance of a black body. This percentage is called the 
emissivity (ε).

Terrestrial radiation can be approximated as being emitted
• If a radiometer (set for the IR band) was pointed up from the surface, it 

would measure the temperature of emitters (mostly water):
• Cloud bottoms
• Cloud sides
• ‘clear’ sky
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Long Wave Radiation Emission
• The long wave emission 

from the surface can be 
estimated from the 
temperature and the 
emissivity of the 
material. 

• There will be great 
regional variability.

Graphic from Meteorology by Danielson, Levin and Abrams
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Updated Energy Budget
• On average 99 of the 105 

units emitted from the 
surface are absorbed in the 
atmosphere; 6 of the 105 
units escape to space.

• This will vary regionally 
and on the local weather.

• Cloud cover is the key 
factor. Recall that water is 
a great absorber of IR 
radiation.

Graphic from Meteorology by Danielson, Levin and Abrams
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Satellite-based Longwave Radiation 
Emission Into Space

• Satellites can 
measure the outgoing 
longwave radiation 
(OLR). 

• Given enough 
satellites in 
reasonable orbits, an 
average can be 
determined.

• This example is for 
January, averaged 
over several years.

• Units are Wm-2

What does this picture appear to tell you?

Graphic from Meteorology by Danielson, Levin and Abrams
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Earth’s Radiation Budget
• The vast majority of long 

wave radiation emitted by the 
surface is absorbed in the 
atmosphere (including 
clouds).

• It is re-radiated in all 
directions.

• More returns to the surface 
than is emitted to space.

• The atmosphere (including 
clouds) plays a key role in 
warming the surface.

• Budgets:
• TOA: 0 Net
• Atmosphere: −410 Wm-2

• Surface: +410 Wm-2

−149

Graphic from Meteorology by Danielson, Levin and Abrams
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Inefficiency of Conduction 
Over Distances

• How does the energy leave the surface? Inside solid matter, conduction is 
sometimes an efficient mechanism for transferring energy.

• Conduction is a very poor process in most surface materials and in the 
atmosphere.

Graphic from Meteorology by Danielson, Levin and Abrams
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Heat Transfer by Convection
• Conduction is 

effective only near 
the surface (A). 

• Heated air expands, 
and becomes less 
dense (B).

• The warm, less 
dense air rises (C), 
allowing cooler air 
to replace it.

• This process 
(convection) results 
in motion, where 
relatively warm air 
rises, and relatively 
cool air sinks.Graphic from Meteorology by Danielson, Levin and Abrams
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Energy Budget with Sensible Heat Flux
• Radiative transfer is NOT the only 

mechanism for transferring energy.
• Convection contributes to another 

process, know as the sensible heat 
flux.
• For light winds (w10 < 3 ms-1), 

convection can be very important.
• For stronger winds, turbulent 

mixing processes are far more 
important.

• Factors that contribute to large 
sensible heat fluxes are
• Large temperature differences 

between the surface and the 
nearby air, and

• Large wind speeds.
• SHF ⇔ 82Wm-2 of the imbalance.

Graphic from Meteorology by Danielson, Levin and Abrams
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Latent Heat Flux
• The latent heat flux is similar to the sensible heat flux, except that it 

applies to moisture rather than heat.
• The energy transfer come from the change of phase, from ice or water 

to water vapor.
• The water vapor is then transported in the same manner as warm 

parcels of air in the sensible heat flux.

• Note that like the radiative fluxes, both sensible and latent heat fluxes are 
vertical (upward or downward) fluxes of energy.

• Accounts for the remaining 328Wm-2 imbalance between the surface and 
the atmosphere.

• The latent heat flux is similar to the sensible heat flux, except that it 
applies to moisture rather than heat.
• The energy transfer come from the change of phase, from ice or water 

to water vapor.
• The water vapor is then transported in the same manner as warm 

parcels of air in the sensible heat flux.
• Factors that contribute to large latent heat fluxes are

• Large humidity differences between the surface and the nearby air, 
and

• Large wind speeds.
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Energy Fluxes vs. Midlatitude Locations
• Examples of how 

surface fluxes change 
with difference types 
of surfaces.

• 100 units of solar 
radiation is assumed.

Graphic from Meteorology by Danielson, Levin and Abrams
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Concept Map: 
Mean Global Energy Budget

• TOA
• Down

• 100 Solar
• Up

• 30 Solar
• 70 LW

• Atmosphere
• Absorbed

• 20 Solar
• 99 LW
• 6 Sensible
• 24 Latent

• Emitted
• 149 LW

• Surface
• Absorbed

• 50 Solar
• 85 LW

• Emitted
• 105 LW
• 6 Sensible
• 24 Latent 

The net flux through every layer is zero. This is true only as 
a long term, global average (assuming no global change).

Graphic from Meteorology by Danielson, Levin and Abrams
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