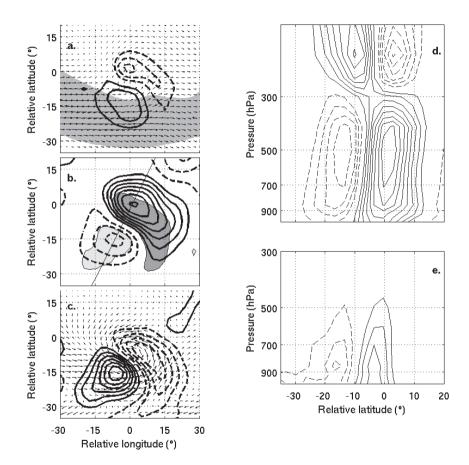
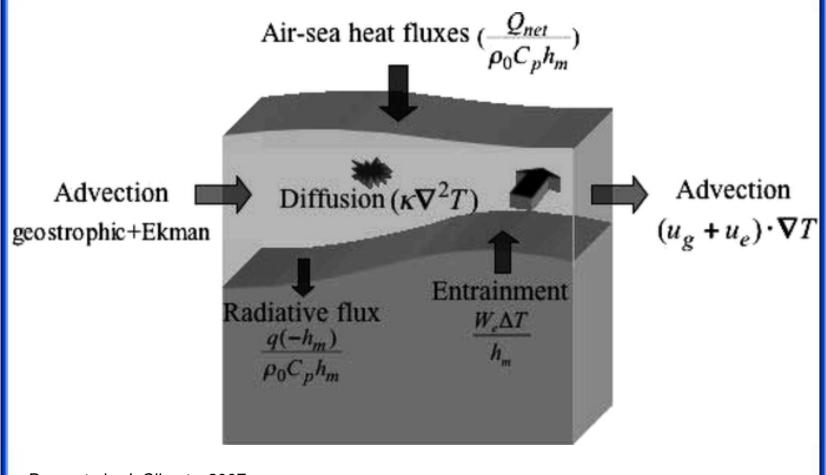
US CLIVAR High Latitude Surface Flux Working Group

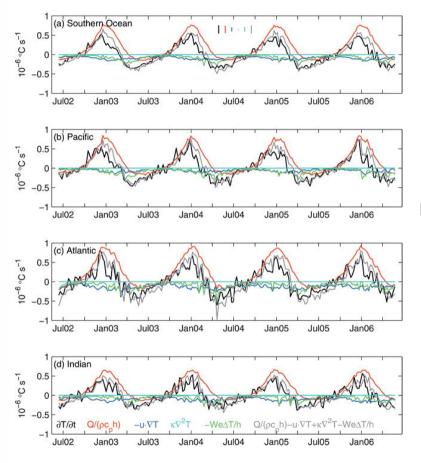
Telecon 2: Surface Flux User Requirements


- What are the applications for flux products?
- How accurate do flux estimates need to be? What resolution is needed?
- Do applications provide a means to validate fluxes?

Gudrun Magnusdottir: Rossby Wave Breaking

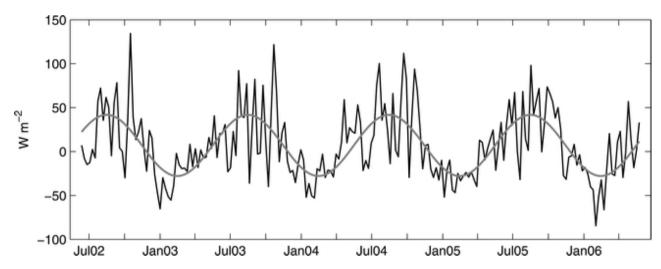

J. Climate, submitted

Gudrun Magnusdottir: Rossby Wave Breaking



J. Climate, submitted

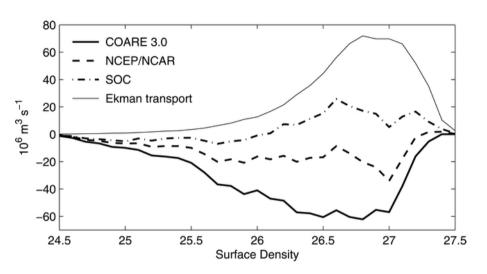
Sarah Gille: Defining the Upper Ocean Heat Budget



Sarah Gille: Southern Ocean Mean Budgets

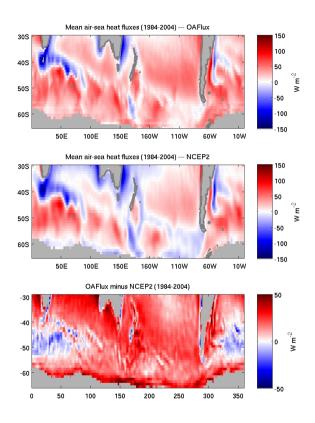
- 40-60°S
- Heat flux is NCEP variables with COARE 3.0 algorithm
- Other heat fluxes tested—this is best option
- Globally, gray and black lines match within 2σ uncertainties

Sarah Gille: Domain-averaged imbalance

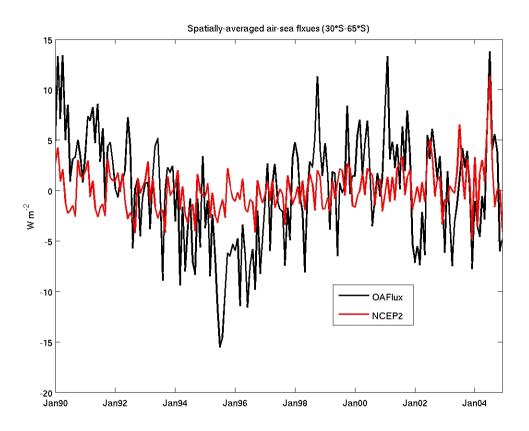

- With fitted annual cycle
- \bullet Implies improvements in domain-averaged heat flux of O(50 W m $^{-2}$) needed especially for winter.

Sarah Gille: RMS Imbalances

	ΔT from Argo	
$rms(\delta) \pm 2$ standard error	$10^{-7} {}^{\circ}\mathrm{C} \; \mathrm{s}^{-1}$	$\mathrm{W}~\mathrm{m}^{-2}$
Base case	3.26 ± 0.12	127.8 ± 4.9
h_m from Argo (T)	3.37 ± 0.13	129.3 ± 4.9
De Boyer Montegut et al. (2004) $h_m(T)$	3.58 ± 0.14	118.5 ± 4.5
h_m of WOA94 (ρ)	66.92 ± 2.55	216.5 ± 8.3
	$6.78 \pm 0.23*$	207.2 ± 7.1 *
h_m of $WOA94$ (T)	377.28 ± 14.39	293.7 ± 11.2
	$7.12 \pm 0.24*$	$208.5 \pm 7.2*$
h_m from $WOA01 (\rho)$	3.86 ± 0.15	220.3 ± 8.4
h_m from WOA01 (T)	5.24 ± 0.20	186.8 ± 7.1
GRACE mean SSH	3.37 ± 0.12	131.1 ± 4.8
Rio05 mean SSH	3.36 ± 0.12	130.4 ± 4.8
$\kappa = 2000 \text{ m}^2 \text{ s}^{-1}$	3.27 ± 0.12	128.6 ± 4.9
NCEP-NCAR fluxes	3.76 ± 0.14	139.6 ± 5.2
Flux climatolog	gies defined as multiyear	r (10+) averages i
SOC climatology	3.67 ± 0.13	142.0 ± 5.1
NCEP-NCAR climatology	3.35 ± 0.13	133.0 ± 5.0
NCEP II climatology	3.54 ± 0.14	133.6 ± 5.1
ECMWF climatology	3.47 ± 0.13	134.8 ± 5.1
COARE3.0 climatology	3.22 ± 0.12	126.8 ± 4.8

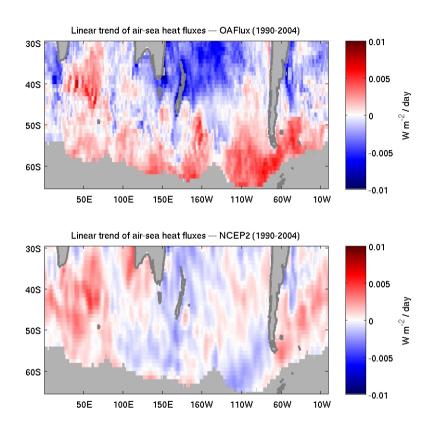

Dong et al., J. Climate, 2007; Base Case: NCEP COARE3, mixed-layer depth from Argo density

Sarah Gille: Water-mass transformation for Southern Ocean

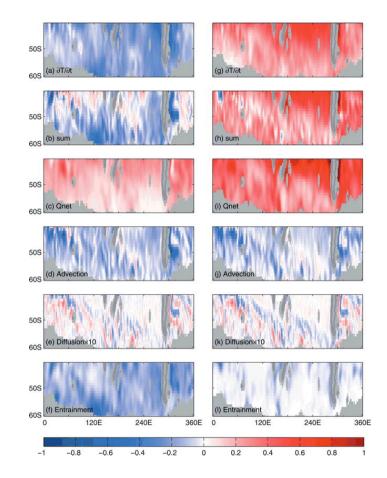


- Simple concept suggests that upper ocean advection (Ekman transport) should balance heat flux.
- Closest match with NCEP variables and COARE 3.0 algorithm, but not perfect

Sarah Gille: NCEP vs NOAA OAFlux (1990-2004)



Sarah Gille: Interannual Variability


courtesy of Shenfu Dong

Sarah Gille: NCEP vs NOAA OAFlux: Trends

courtesy of Shenfu Dong

Sarah Gille: Regional Balance (March and Nov)

Dong et al., J. Climate, 2007

- Units: 10⁻⁶ °C s⁻¹
- Small-scale structure in T and advection not reflected in Q_{net}

Summary

- Problems largest in winter
- Accuracy requirements: at present there are questions about sign. Is O(10 W m⁻²) a reasonable goal?
- Resolution: SST and advection features on scale of Rossby radius (i.e. 60 km or less); so ideally 0.25 to 0.5° resolution
- Temporal resolution: For heat budget, monthly is OK at moment; if spatial resolution improved, then weekly (or better) would be useful to match eddy feature propagation.
- Diurnal cycle smaller than tropics but detectable: upper ocean temperature amplitude O(0.02 to 0.04°C).