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Programming Tidbit
DO Loops

• The lines of code between the DO and the ENDDO are repeated until 
the value of the counter passes the limiting value.
• DO loops are often used to sum variables or to set values of arrays.
• The index of the array should be the counter, or some 

mathematical function of the counter.

• The advantage of a DO loop is a counter that changes from a set value, 
by a set increment, while it does not pass the another set value.
DO counter = starting_value, limiting_value, increment
• Example: DO counter = 1, 10
• The counter cycles through the values 1, 2, 3, …, 10
• Example: DO counter = 1, 11, 3
• The counter cycles through the values 1, 4, 7, 10.
• Example: DO counter = 10, 1, -2
• The counter cycles through the values 10, 8, 6, 4, 2. 
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WHAT NOT TO DO!!!
How Not to Sum

DO j = 1, 12
READ(7,*) monthly_rent

ENDDO
annual_rent = annual_rent + monthly rent
PRINT*, annual rent
• What is wrong with this approach?

• Annual_rent is not initialized, so the computer gets to chose.
• The summation is outside the DO loop

• So let’s do it right….
annual_rent = 0.0
DO j = 1, 12

READ(7,*) monthly_rent
annual_rent = annual_rent + monthly rent

ENDDO
annual_rent = annual_rent + monthly rent
PRINT*, annual rent
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WHAT NOT TO DO!!!
How Not to Store Data in an Array

REAL (dim 366) :: temperature_max
DO j = 1, 366

READ(7,*) temperature_max(index)
ENDDO
• What is wrong?

• The value of index is not defined. The computer gets to choose, 
which is likely to lead to a bad value.

• Even if the computer picks an OK value (between 1 and 366), it 
will never change. The variable index does not depend on j!

REAL (dim 366) :: temperature_max
DO j_day = 1, 366

READ(7,*) temperature_max(j_day)
ENDDO
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MET3220C & MET6480
Computational Statistics

Hypothesis Testing
(Chapter 5 of Wilk’s book)

Background: key concepts

Key Points: 
1) Parametric vs. Nonparametric tests
2) The elements of any hypothesis test

3) Confidence intervals
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Tests to Deal with Uncertainty

• In the real world, there is always some uncertainty, and variables 
seldom have only one value (they have a distribution of values).
• If the uncertainty is small compared to what we are considering,

then the answer is more likely to be obvious.
• However, in many weather and climate related studies, the 

uncertainty can be large enough (relative to the test statistic that we 
are considering), that there can be some doubt in an answer to the 
test.

• Consequently, a very important part of hypothesis testing is being able 
to make a good estimate of the uncertainty.

• Another key consideration is the type of test.

• If we know the exact and singular values for everything we are 
considering, then testing questions about these values would be trivial.
• The answers would be obvious.
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Parametric vs. Nonparametric Tests

• Nonparametric tests do not rely on a presumed distribution.
• Nonparametric tests are designed to avoid the assuming an 

underlying distribution of the data.
• There are two broad categories of nonparametric tests/applications.

• Classical nonparametric tests are not dependent on the 
distribution – any distribution would be OK.

• Resampling techniques attempt to use the available 
observations to construct a distribution.

• Parametric tests assume that the data is well described by a theoretical 
distribution (one that can be parameterized).
• Parametric tests are often designed to test under what conditions 

data fits the theoretical distribution.
• Tests could examine fitting parameters, 
• Tests could examine a fit to the distribution, or
• The likeliness of a value being different from another value.
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Uncertainty in Fitting Parameters

• The set of fitting parameters determined from different samples will 
also have a distribution.

• If this distribution can be characterized, then it can be used in a 
parametric test.

• Fitting parameters are usually determined from a sample of the 
population. Since samples differ, it is reasonable to expect the fitting 
parameters to differ. This situation results in uncertainty in the fitting 
parameters.
• This type of error is called sampling error.
• Observational error also contributes to this uncertainty.
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The Elements of A Hypothesis Test

• 2) Define a null hypothesis.
• The null hypothesis is usually denoted as H0.
• The null hypothesis defines a logical structure which will be used 

to examine the test statistic.
• The null hypothesis is often designed as the compliment to what 

we would like to test for.
• Example: student A is not taller than student B.
• Example: global warming is not occurring.

• In general, hypothesis tests will work through 5 steps.
• 1) Identify a test statistic

• Chose a statistic that is appropriate to the data and the question.
• The test statistics must be computed from the data.

• For parametric tests, the statistic will often be a fitting 
parameter for the assumed distribution.

• Possibilities for non-parametric tests are enormous.
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The Elements of A Hypothesis Test

• 4) Determine the null distribution
• The distribution associated with a true null hypothesis.
• Think of this as a distribution based on uncertainty in H0.

• This distribution could be a parametric distribution, or
• A distribution based on resampling.

• Knowing this distribution helps determine a good test.
• 5) Compare the test statistic to the null distribution.

• 3) Define the alternative hypothesis (HA).
• This hypothesis is the compliment of the null hypothesis.

• Example: the null hypothesis in not true.
• A more complicated hypothesis is possible.
• Hint: think about whether it is easier to clearly state null hypothesis 

or an alternative hypothesis, then define the other hypothesis as the 
compliment of the one that is more easily defined.
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Interpretation of the Comparison
• The interpretation hinges on two factors:

• The test statistic, and
• Uncertainty in the statistic.

• Which is then uncertainty in the null hypothesis.

• If the test statistic is outside of reasonable uncertainty in the null 
hypothesis, then we can reject the null hypothesis.
• If our error statistic is based on absolute error, then we can be 

certain that the null hypothesis is rejected.
• If our error statistic is a measure of spread, then we cannot be

certain that the null hypothesis is wrong.
• If the test statistic not outside reasonable uncertainty in H0, then

• We cannot distinguish the result from the null hypothesis.
• We cannot say if either H0 or HA is correct.
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Outside of Reasonable Uncertainty:
Test Levels and p Values

• How do we define sufficiently improbable in the context of the null 
hypothesis?

• We must define a test probability (or test level) below which the null 
hypothesis is considered sufficiently improbable.

• The null hypothesis is rejected if the probability, as defined by the test 
statistic and the null distribution, is less than or equal to the test 
probability.

• The test level is defined in advance of the comparison.
• It depends on the investigator’s judgment and preferences.
• Consequently it is somewhat arbitrary.
• Common values are 1%, 5%, and 10%, with 5% being most 

common.
• In situations where there are consequences associated with correct and 

incorrect results, the test level can be optimized for the application.
• The p value is the specific test probability (the chance of the null 

hypothesis being rejected based on the null distribution).



The Florida State University
Hypothesis Testing 

12
http://campus.fsu.edu/
bourassa@met.fsu.edu

Error Types

• False Rejection (or false negative):
• Incorrect rejection of the null hypothesis (it is actually true).
• Also known as a Type I error, often denoted as α.

• False Positive:
• Incorrect acceptance of the alternative hypothesis (when the null 

hypothesis is actually correct).
• Also known as a Type II error, often denoted as β.

• There are two types of errors in the context of binary (true or false) 
outcomes.

Graphic from Wilks’ Statistical Methods



The Florida State University
Hypothesis Testing 

13
http://campus.fsu.edu/
bourassa@met.fsu.edu

Error Types

• Ideally both types of errors would be eliminated; however, there are 
many applications where this ideal cannot be achieved.

• The probability of a false rejection can be estimated if the null 
distribution has been estimated (this is your p value).
• Keep in mind that the null distribution is estimated – not known.
• Sometimes the estimation is good, other times it will not be. 
• It is useful to know the sensitivity of the value associated with the 

test probability to errors in the null distribution. 
• One of the reasons to avoid any extremely small test 

probability is the relatively large sensitivity in the tails of 
distributions.

• The probabilities of false rejections and false positives can be
somewhat controlled by the choice of the test probability.
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One Sided vs. Two Sided Tests

• One sided tests have an alternative hypothesis that is true only on one 
side of the null distribution.
• Example: HA = Student A is taller than student B.
• Example: HA = Global warming is occurring.

• Two sided tests have an alternative hypothesis that is true on both sides 
of the null distribution.
• Example: HA = Student A has a different height than student B.
• Example: HA = The global temperature is changing.
• In these examples, a substantial difference in either direction 

would violate the null hypothesis.
• In these cases the chance of a false rejection (α) is split on both 

sides of the null distribution.
• If the null distribution is symmetric, then α is split equally on both 

sides of the null distribution.

• Statistical tests can be either one sided or two sided.
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Confidence Intervals
• A confidence interval indicates the region where the alternative

hypothesis is found to be true for a set chance of a false rejection. 
• Example: the regions in North America were the rate of change of

temperature is positive (and different from no change), with a 5% 
chance of a false rejection.
• Confidence levels of 10% and 1% could also be plotted
• The result would be a contour map indicating differing levels of

confidence in the alternative hypothesis.
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Example

• Assume that we acquire observations for an appropriate location.
• We chose days that are well separated, so that we can treat the data 

as independent.
• We chose from within the summer season to be consistent with the

advertisement, and because that will reduce the change in statistics 
with time.

• We find that for 15 of 25 days the weather is rain free.
• Is 15/25 close enough to 6/7 that we can’t tell the difference?

• Consider the word of an advertiser that in the summer after an El Niño, 
it is rain free for 6 out of 7 days in the Pacific Northwest.
• Most people would not take this seriously, knowing that the Pacific 

Northwest is best known for fog, light rain, depression related to 
insufficient sunlight, and a rather large rain forest.

• However, during an El Niño event the weather is relatively sunny.
• But 6/7 days sounds a bit fanciful. So let’s test if the number is 

within reasonable bounds of observations.
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Example Continued

• This is the probability of finding 15/25 (or fewer) rain free days if the 
advertised statistics are true.
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• Consider our 5 steps:
• 1) Identify a test statistic.
• The difference in the means.
• 2) Define a null hypothesis
• The observed fraction of rain free days is similar (or greater) than 6/7.

• Fraction of rain free days ≥ 0.857 minus statistical uncertainty
• 3) Define the alternative hypothesis.
• The observed fraction of rain free days is substantially less than 6/7.
• 4) Obtain the null distribution
• Rain vs. no rain is binary, so a binary distribution is appropriate.
• 5) Compare the observed statistic to the null distribution.

What is missing from this example?
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