MET3220C \& MET6480 Computational Statistics

Parametric Probability Distributions

Discrete Distributions

Key Point: ALWAYS LOOK AT THE DATA!!!!
DOES THE DATA REALY FIT THE DISTRIBUTION

Parametric vs. Empirical Distributions

- Empirical distributions are based on a match to the sample data.
- They are not based on underlying physical knowledge
- Parametric distributions are mathematical models (idealizations). In some cases the idealizations can be expected to be of very high quality.
- One key question in later lectures will be 'how well does the distribution describe the data?’

Advantages of Parametric Distributions

- Compactness: The probability distribution of a parametric distribution can be explained with a formula.
- Empirical distributions could require a very complicated histogram or pdf to describe the data.
- Smoothing and interpolation: Smoothing is largely unnecessary, or can be determined through integration of a formula. Interpolation is unnecessary.
- For Empirical distributions, smoothing can be very complicated or very misleading. Interpolation can be a nightmare in data spare parts of the distribution.
- Extrapolation: If the parametric distribution is believed to be sufficiently accurate for conditions outside values in the sample data, then extrapolation is simply a matter of working with the equation describing the parametric distribution.

Discrete vs. Continuous Distributions

- Parametric distributions can be classified as either discrete or continuous.
- Continuous distributions apply to data that can have any value (including fractions) between specific limits.
- Example: Gaussian distribution has limit of $\pm \infty$.
- Discrete distributions contain only specific values.
- Example: a binomial distribution has integer values from 0 to N , where N is the number of samples.
- E.g., five heads out of nine coin flips.

Binomial Distribution

- A binomial distribution describes the probability of occurrence of the number of times a outcome occurs, given a number of samples and the probability of that outcome for a single trial.
- For N trials, there will be $\mathrm{N}+1$ possible outcomes, range from zero occurrences to N occurrences.
- Two key considerations for applicability of a binomial distribution are:
- 1) the probability of occurrence does not change from event to event, and
- 2) The outcome of each trial is independent from the other outcomes.
- Close approximations to these conditions are often acceptable.

Binomial Distribution Example

- Used to describe the outcome of a certain number of elementary events, for which the elementary event has only two possible outcomes.
- Example: the daily maximum temperature $>60^{\circ} \mathrm{F}$
- These outcomes must be mutually exclusive.
- The events must be independent.
- The probability of the outcome of a single event must not change.
- Given N trials (N is the number of elementary events), there are $\mathrm{N}+1$ possible outcomes.
- E.g., $0,1,2, \ldots, \mathrm{~N}-1$, or N days when $\mathrm{T}_{\max }>60^{\circ} \mathrm{F}$.
- Note that for this example, the samples would have to be separated by quite a few days to truly be independent.

Binomial Distribution Formula

- Consider the probability of X of the N events occurring.
- For example, X heads out of N coin flips.
- The probability of X events occurring $(\operatorname{Pr}\{\mathrm{X}=\mathrm{x}\})$ is written as

$$
\operatorname{Pr}\{X=x\}=\binom{\mathrm{N}}{\mathrm{x}} p^{x}(1-p)^{N-x}, \text { for } x=1,2,3, \ldots, \mathrm{~N}
$$

- Where p is the probability of occurrence, and $(1-p)$ is the probability of non-occurrence.

$$
\binom{\mathrm{N}}{\mathrm{x}}=\frac{N!}{x!(N-x)!}
$$

Where $\mathrm{N}!=1 \times 2 \times 3 \times \ldots \times \mathrm{N}$

Graphic from www.zoology.ubc.ca/ ~bio300b/binomialnotes.html
Parametric Probability Distributions

More Examples

Graphic from http://adept.maplesoft.com/categories/education/statistics/html/images/Binomial_Distribution/Binomial_Distribution29.gif

- Consider the following categories for each of the above plots:
- $\mathrm{p}<0.5, \mathrm{p}=0.5, \mathrm{p}>0.5$
- Identify the category for each plot.

Example Binomial Distribution

- Note that the minimum in the peak occurs at $\mathrm{p}=0.5$.
- The spread of the distributions is largest for $p=0.5$.

Graphic from http://meted.ucar.edu/nwp/pcu1/ensemble/media/graphics/binomial.gif

The Florida State University

Binomial Distribution: Example

- The elementary event is the probability of a lake freezing in winter.
- The probability in any year is 0.045
- Consider ten years of events.
- What is the probability of the lake freezing on at least one of those years?
- $\operatorname{Pr}\{\mathrm{X} \geq 1\}=\operatorname{Pr}\{\mathrm{X}=1\}+\operatorname{Pr}\{\mathrm{X}=2\}+\operatorname{Pr}\{\mathrm{X}=3\}+\ldots+\operatorname{Pr}\{\mathrm{X}=10\}$
- Or in an easier form: $\operatorname{Pr}\{\mathrm{X} \geq 1\}=1-\operatorname{Pr}\{\mathrm{X}=0\}$
- $\operatorname{Pr}\{X \geq 1\}=1-\operatorname{Pr}\{X=0\}=1-[10!/(0!10!)](0.045)^{0}(0.955)^{10}$

$$
=0.37
$$

Geometric Distribution

- The geometric distribution is used to determine the probability of a successful outcome (in the last trial) in a fixed number of trials.
- Otherwise the assumptions required to apply to the geometric distribution are identical to those required for a binomial distribution.
- The probability of a (one) successful trial in X events is
- $\operatorname{Pr}\{X=x\}=p(1-p)^{x-1}$
- One application of this distribution is the length of waits or 'spells.' For example, wet spells or cold spells

Example Geometric Distribution $\mathrm{p}=0.1$

- Think about why there is a peak
- Either probability of any success is small (left of peak), or
- probability of a successes is greater than probability of no successes.

The Florida State University

Negative Binomial Distribution

- The negative binomial distribution describes the probability of a number of failures (X), prior to the $k^{\text {th }}$ success.
- In other words, after $\mathrm{X}+\mathrm{k}$ events, there were X failures in the first $\mathrm{X}+\mathrm{k}-1$ events. The last event must be the $\mathrm{k}^{\text {th }}$ success.
- $\operatorname{Pr}\{\mathrm{X}=\mathrm{x}\}=\Gamma(\mathrm{k}+\mathrm{x}) /(\mathrm{x}!\Gamma(\mathrm{k})) \mathrm{p}^{\mathrm{k}}(1-\mathrm{p})^{\mathrm{x}}$

$$
=(\mathrm{k}+\mathrm{x}-1)!/(\mathrm{x}!(\mathrm{k}-1)!) \mathrm{p}^{\mathrm{k}}(1-\mathrm{p})^{\mathrm{x}}
$$

- For typical applications k is an integer, in which case $\Gamma(k)=(k-1)$!

- Negative Binomial probability function with parameters $\mathrm{k}=6, \mathrm{x}=24$, $p=0.5$

Example Negative Binomial Distribution

- The peak shifts to the right as the required number of successes increases. Why?
- Because more failures are likely to occur with the larger number of trials.

Graphic from http://www.mathworks.com/access/helpdesk/help/toolbox/stats/nbincompare.gif
http://campus.fsu.edu/

Parametric Probability
bourassa@met.fsu.edu
Distributions

Poisson Distribution

- The Poisson distribution describes the likelihood of a certain number of events (x) occurring in a limited space and/or time.
- As with the previous distributions, the events must be independent.
- It is the limiting case of the binomial distribution, when $\mathrm{p} \rightarrow 0$ and $\mathrm{N} \rightarrow \infty$
- Examples:
- The number of hurricanes making landfall on the U.S. east coast in a year.
- The annual number of tornadoes in Leon county
- The Poisson distribution is described by only one parameter: μ.
- $\operatorname{Pr}\{\mathrm{X}=\mathrm{x}\}=\mu^{\mathrm{x}} \mathrm{e}^{-\mu} / \mathrm{x}$!, for $\mathrm{x}=1,2,3, \ldots$.
- This parameter (μ) is rather convenient because it is equal to both the standard deviation and the mean.

Example Poisson Distribution

- Poisson distributions are on the left, and the related cumulative probability distributions are on the right.
- Note that if you have a CDF, and a uniform random number generator, you can use the CDF to convert to the number associated with a randomly generated cumulative probability.
http://campus.fsu.edu/ bourassa@met.fsu.edu

Graphic from http://en.wikipedia.org/wiki/Poisson_distribution

The Florida State University

Other Characteristics of the Discrete Parametric Parameterizations

- Expectation value
- Expectation value is a fancy way of saying the mean or average.
- Square brackets are usually used to indicate an expectation value.
- For example [x] (or E[x])is the mean value of x.
- There are some simple rule that can be applied to products:
- $\mathrm{E}[\mathrm{c}]=\mathrm{c}$, where c is a constant
- $E[c \mathrm{~g}(\mathrm{x})]=\mathrm{c} E[\mathrm{~g}(\mathrm{x})]$, where $\mathrm{g}(\mathrm{x})$ is a function of x .
- $\mathrm{E}\left[\Sigma \mathrm{g}_{\mathrm{j}}(\mathrm{x})\right]=\Sigma\left(\mathrm{E}\left[\mathrm{g}_{\mathrm{j}}(\mathrm{x})\right]\right)$

Distribution	$\mu=\mathrm{E}(\mathrm{X})$	$\sigma^{2}=\operatorname{Var}[\mathrm{X}]$
Binomial	N p	$\mathrm{Np}(1-\mathrm{p})$
Geometric	$1 / \mathrm{p}$	$(1-\mathrm{p}) / \mathrm{p}^{2}$
Negative Binomial	$\mathrm{k}(1-\mathrm{p}) / \mathrm{p}$	$\mathrm{K}(1-\mathrm{p}) / \mathrm{p}^{2}$
Poisson	μ	μ

