
The Florida State University
Computational Statistics

Debugging: 1
http://campus.fsu.edu/
bourassa@met.fsu.edu

MET3220C
Computational Statistics

Programming: Debugging
Dr. Mark Bourassa

The Florida State University
Computational Statistics

Debugging: 2
http://campus.fsu.edu/
bourassa@met.fsu.edu

Where are Things Most Likely
To Go Wrong?

• 2nd place: passing data to or from subroutines
• Reread the lecture notes on typical subroutine errors
• Test: in the subroutine, write the input data to the screen

• Is it consistent with the similar data in the program calling the
subroutine?

• Test 2: If data are output from the subroutine, then print the data in
the subroutine and in the main program (after calling the
subroutine).
• Are they consistent?

• 1st place to check: reading data
• Test: As the data is read, write the data to the screen.
• Look at the contents of the data file.
• Make sure the data written to the screen is consistent with the data

file.

The Florida State University
Computational Statistics

Debugging: 3
http://campus.fsu.edu/
bourassa@met.fsu.edu

Floating Point Exceptions

• Test: put some PRINTs in the code to determine where the
problem occurs.
• The program will run until the floating point error is

encountered.
• The print statements can be used to write suspect variables to

the screen

• You have an equation that is trying to calculate something that doesn’t
make sense.
• Examples:

• Dividing by zero,
• Log of zero or less,
• Squareroot of zero or less
• Dividing a very large number by a very small number

The Florida State University
Computational Statistics

Debugging: 4
http://campus.fsu.edu/
bourassa@met.fsu.edu

The code compiles, but the result is bad

• Suspect #2: Used integer math. Dividing an integer by an integer will
result in rounding to the whole number closest to zero.
• Examples: 5 / 2 = 2; 2 / 5 = 0; 1 / (n – 2) = 0 if n ≠ 3
• Solution: Convert integers to real values, e.g. 1.0 / REAL(n – 2).

• Suspect #3: Garbage in – garbage out.
• You messed up earlier in the code, and are using bad values in the

equation.
• Test: print the values of the variables to the screen

• Suspect #1: non-initialization of variables used in sums.
• You have allowed the computer to set the initial value of the

variable – it could be anything.
• Test: look for initialization in code.

• If need be, use grep to find all occurrence of the variable

The Florida State University
Computational Statistics

Debugging: 5
http://campus.fsu.edu/
bourassa@met.fsu.edu

The code compiles, but the result is bad

• And can be written as
Delta = index * sum_x_sqd - sum_x**2

• Incorrect brackets:
• Very common currently in this class
• Example 1:

• Delta = (index) * ((sum_x_sqd) – ((sum_x)**2))
• There is NO NEED for most of these brackets. Math rules

apply, with the exception of implicit multiplication.
• The above equation can be simplified to

Delta = index * (sum_x_sqd - sum_x**2)
• Which is inconsistent with

The Florida State University
Computational Statistics

Debugging: 6
http://campus.fsu.edu/
bourassa@met.fsu.edu

FORMATTING ERRORS

• Example: trying to squeeze 4556 into an I3
• Example: trying to squeeze 100.7 in F6.3
• Advice: check the size with an unformatted print or write.

• You are using a formatted write, and the output is a bunch of starts
• Example: *******
• This means that the data cannot fit in the specified format because

the value attempting to be printed is too large.

• Example: 0.00004 formatted as F5.4 results in .0000
• Example: 0.4 formatted as I3 results in 0
• Advice: check the size with an unformatted print or write.

• You are printing 0.0 for a small but non-zero number
• Example 0.00005 appears as 0.000
• This means that you are not specifying enough decimal places to

the right of the decimal.

The Florida State University
Computational Statistics

Debugging: 7
http://campus.fsu.edu/
bourassa@met.fsu.edu

Is There a Bug in This Code?
DO i = 13, 1272 ! Begin reading actual data

READ(7,'(I4,1X,I2,T9,F6.2,T19,F6.2,T29,F6.2)')year, month, min,
max, rai
IF (ierror /= 0) EXIT ! Exit loop at end of file or read error
! missing data check

IF (min /= -99.99 .AND. max /= -99.99 .AND. rai /= -99.99) THEN
index = index + 1 ! Ugly time array

time(index) = REAL((year - 1900) * 12 + month)
tmin(time(index)) = min ! Associate min/max/rain with index
tmax(time(index)) = max

rain(time(index)) = rai
ENDIF

ENDDO
Blah blah blah

CALL bestfit(tmin, time, index, slope, sig_slope, y_int, sig_yint)

• Or is the problem in the subroutine?

The Florida State University
Computational Statistics

Debugging: 8
http://campus.fsu.edu/
bourassa@met.fsu.edu

Is There a Bug in This Code?
SUBROUTINE bestfit(y, x, index, slope, sig_slope,

y_int, sig_yint)
IMPLICIT NONE
INTEGER :: i, x(index), index
REAL :: y(index), y_int, slope
REAL :: sig_yint, sig_slope
REAL :: sum_x, sum_y, sum_x_sqd, sum_xy
REAL :: DELTA, sig_y, sum_ymxb
sum_x = 0
sum_y = 0
sum_x_sqd = 0
sum_xy = 0
DO i = 1, index !
sum_x = sum_x + x(i) ! Sum date points
sum_y = sum_y + y(x(i)) ! Sum temp/rain data
sum_x_sqd = sum_x_sqd + x(i)**2 ! Sum sqr of dates
sum_xy = sum_xy + x(i) * y(x(i)) ! Sum product

ENDDO

The Florida State University
Computational Statistics

Debugging: 9
http://campus.fsu.edu/
bourassa@met.fsu.edu

The Answers

• However they are inconsistent in the arguments
• The array lengths in the subroutine will be shorter than the array

lengths in the main program.
• Index is the number of points MINUS the missing values.

• Solutions:
• 1) Fill the data arrays (tmin, tmax, and rain) with only good data

(no change yet), but like the time array don’t create gaps for
missing data.
• Pass in only the values from with good data.
• For example, tmin(1:index)

• 2) Make the time array similar to the data arrays, and have the
subroutine filter out bad data
• The down side is that your subroutine has to recognize bad

data, which might have different indicators in different data
sets.

• Both the codes are OK by themselves.

The Florida State University
Computational Statistics

Debugging: 10
http://campus.fsu.edu/
bourassa@met.fsu.edu

Segmentation Faults

• Example 1: tmin(index) = 10.
• When index is outside the array bounds

• Example 2: passing to much data to an array or subroutine.
• Call my_cool_function(3.14159)
• When my_cool_function expects an integer

• Segmentation faults occur when trying to write past the end of an array
or something similar.

The Florida State University
Computational Statistics

Debugging: 11
http://campus.fsu.edu/
bourassa@met.fsu.edu

Messing Up with Array Indices
• Consider declaration of variables. This process sets up a block of

memory to be used to hold the information associated with these
variables.

• Example:
INTEGER :: n_bins, qscat_flag, n_good_data, index_spd,
max_num_spd, status
REAL, DIMENSION(700) :: pdf_obs, pdf_gaussian, pdf_log_normal
REAL, DIMENSION(700) :: cdf_obs, cdf_gaussian, cdf_log_normal
REAL, ALLOCATABLE, DIMENSION(:) :: qscat_spd_array
REAL :: bin_width, qscat_spd, sum_qscat_spd, sum_qscat_spd_sqd,
small, standev_qscat_spd, standev_log_spd, max_spd, min_spd
REAL :: log_spd, sum_log_spd, sum_log_spd_sqd, PI, bin_center,
mean_qscat_spd, mean_log_spd

• Space for allocatable arrays is usually later in memory.

The Florida State University
Computational Statistics

Debugging: 12
http://campus.fsu.edu/
bourassa@met.fsu.edu

Messing Up with Array Indices

• What would the following do?
• pdf_obs(n_good_data) = qscat_spd

• The value of n_good_data should be between 1 and about 800,000.
• The index for pdf_obs should range from 1 to 700
• Moral: be more careful with array indices. Using the wrong index,

outside the bounds of the array, is kind of like taking a shot gun to the
program's memory.

• How do you test for this problem?
• Compile with a –C (upper case ‘C’)
• This checks each time an array index is used to verify that it is

within bounds.
• It slows down the code, so if the code is going to be reused, it is

practical to recompile without the this compiler flag.
• f90 –flags gives a list of compiler options.

• If we write to an array location that is outside the array bounds, then
we are modifying other variables! YIKES!

The Florida State University
Computational Statistics

Debugging: 13
http://campus.fsu.edu/
bourassa@met.fsu.edu

Array Wizardry in FORTRAN90

• Syntax 1:
• WHERE (logical test) array operation

• Syntax 2:
• WHERE (logical test)

array operation(s)
ENDWHERE

• Syntax 3:
• WHERE (logical test)

array operation(s)
ELSEWHERE

array operations(s)
ENDWHERE

• The WHERE command is a combination of a DO loop and an IF.
• It performs array operations, but only on (or using) elements for

array elements that meet the condition.
• Note: the logical test should be applied to an array!

	MET3220C �Computational Statistics
	Where are Things Most Likely �To Go Wrong?
	Floating Point Exceptions
	The code compiles, but the result is bad
	The code compiles, but the result is bad
	FORMATTING ERRORS
	Is There a Bug in This Code?
	Is There a Bug in This Code?
	The Answers
	Segmentation Faults
	Messing Up with Array Indices
	Messing Up with Array Indices
	Array Wizardry in FORTRAN90

