3. Basic Finite Difference Concepts

We concentrate at the finite-difference approach. Other methods
will be stretched later. Now, first the framework in which we proceed
to solve the equations of Chapter 2.

First a set of critical values ¢, (, i, v everywhere at time t=0. The
computational cycle then starts with the use of a finite-difference

d
equation for ( to approximate di We then computer ¢ at a new

time level. Then we solve the Poisson equation for ¢ which then
gives us u, vy and so on as depicted by this figure below.
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3.1 Basic Finite - difference forms.

a. Taylor series expansions

- Rectangular Mesh
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- Taylor series expansion is an interval about = = a.

(1) f(x) = f(a)+f/(a)(x—a)+ f//(a)(m — a)2 N f(n)(a)(x _ a)(n)
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Then the uncentered first derivative form of gf can then be
iy

expressed as a function of
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We can expand backwards which then gives
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The centered difference approximation —f is obtained by sub-

J
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Analog expressions can be derived for y and t
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We can also derive an expression for Fye)
x
azif _ Jivrj + fic1j — 2fi
0x? i Ax?
Second Order Accurate

+ O(Az?)

Polynomial fitting

Another method of obtaining finite-difference expressions is to
fit an analytical function with free parameters to mesh-pour*® values
and then to analytically differentiate the function.

Commonly, polynomials are used.

Parabolic fit: Data* at* i,7+ 1,7 — 1 for f
For convenience, x = 0 is at the location ¢
f(z) = a+ bz + ca?

fio1 = a — bAx + cAx?
fi=a

fir1 = a + bAzx + cAxz?
o Jiri+ fici = 2f;

2A 12
b— fir1 — fixa
2Ax
of| o*f B
(11) — 32| = b and 52| = 2¢

which are obviously equivalent to the second order FD obtained
in the previous section.

If we just use y = ax+b, then we obtained a first order *accuracy
(forward and backward of the previous section). Higher polynomials
give higher order. Beware of too high.



In general, a cubic spline* (polynomial) is often used since they
indicate the presence of an uflexion™ prout™*.

c¢)Integral Method
In the integral method, we satisfy the governing equation in an
integral *use, rather than a differential use*. We write the model

equation in conservation™ form
o __owe) 9%

(12) ot Oz a@xQ

A A
Integration from ¢ to t + At and x — — to  + 7:70
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Theorem: Mean Value Theorem
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Convergence is observed for Az — 0.

Using z at the lower integration limit (Euler’s Integration) then
(14) can be rewritten as
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The first derivatives can be evaluated as
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Integration from t — At to t + At will give *catered in time

Advantage of this method is often appreciated in non-rectangular
coordinate systems and because of the conservative property.

3.2 Trumcabion™ errors, consistency, stability, and convergence
Suppose p(x,t) is the exact solution to the initial value problem

o
(17) i alpha(z,t)

and U(nAt, jAz) is = U}" is the solution to the FD approximation
of (17). This approach must be underlineconsistent, underlinestable,
and must underlineconverge to be useful in physical problems.

Consistency: A FD approximation is consistent with a differential
equation is the FD equation converges to the convect™® differential
equation as the space and time grid spacing® — 0.

Stability: If U}" is the numerical solution and p; the exact solution
at t = nAt and x = jAx, then the FD approximation is stable of

Z} = U} — pj remains founded as n trends to infinity for fixed At.

Convergence: If the difference between the theoretical solutions
of FD and differential equations at a fixed point (x,t) trends to zero
as t — 0 and Ax — 0 and n,j — oo then the finite difference
approximation converges to the continuous equation.

Trumbration® error: The local difference between the FD ap-
proximation and the Taylor series representation of the continuous
problem as a fixed point is the *tr—- error.

Theorem: (Lax and Richtmyer)

Given a properly parcel linear initial value problem and a finite
difference approximation to it that solidifies™ the consistency condi-
tion, stability ( as Az and At — o) is the necessary and sufficient
condition for convergence.

Example:

Let’s consider the one-dimensional advection® equation with con-
stant speed c




o O

o +c o = = 0.
€
The Taylor series for second order derivatives are
o " A Pu |
n+1 n—
= 2At — (==
T = g (Gt) + 3(0153) +

" " o, Az® Ppu "
Hep — Hp 1 = QAx(ax) +T(%)

Combining we obtain

***insert formula here***

This FD approximation is consistent if the truscabian* error ne-
his** is 0(At? + Ax?) goes to zero as At, Az — 0.

From (19)
At?
En —M —M
| < 196 1+ | e 2

311 3

where M; and M, are the bounds for | a—t | and | ,u | re-

spectively. Note that these bounds hold for the true solutlon ie

they are independent of the numerical treatment® of the equation.
Therefore E} — 0 as Az, At — 0.

If we consider only finite-difference forward in Vines*, then

At Az?
| EF |< 7M3+ | c| —M4 whose M3 and M) are the bounds™

2, 31
for | | and | | respectively.

We are Nnow mterested in the accumulated error of FD solution.
If we consider the latter (FD found in *line)

A
(20) U”+1 Uy — (U}‘H—U;}_l)

n n >\ n n n
(21) pptt = pf — §(Mf+1 — Wi_y) + ALY

cAt
h _
with A = A

The accumulated error is €, — ;) + Ate]
By substitution of (21) to (20),

TL n A n n n
By deﬁmng E" = maxy | €} | and € = maxy, | §§ | then
E" < (14 | A ) E™ + Ate




Successive use of this recursion® formula does NOT lead to a
finite bound for E

E" < (14 [ A D[+ | A NE™ ! + Ate] + Ate

< ..

<S4+ AD+ A [ A+ 4 (14 (AD)™]Ate
if £°=0

o1 A" =1

< Ate
A |>\|\ |t A t
eAx c zAx
1 "—1 ith At = —
_|c|[(+nAa:) ]]c\(WI n
EAx(e|c\t_)
el Az

which does to oo as Az — 0 and n — 0o

Failure to find an upper limit for the error does not imply that
this error will grow indefinitely. This can be done only by a practical
test.

For this case, it turns out that an upper limit can be found if we
1
replace U} of (20) by §(U}l_1 + Ut 1)
Then, instead of (22), we have

n 1 X, 1 A, "
€f+1 = (5 + §€f—1 + (5 - §)€f+1 —+ Atgf
or

1 A 1 A
EF'+1<(| =+ = —— = DE"+ At
P TN I

Aslong as | A |[< 1 (CFL critoud®)

ET < E™+ Ate

< nAte = te

The accumulated error at a fixed time is then proportional to the
trucation error varepsilon.

From Taylor series expansions

i Az? u |t 02

gwq+@m=@+4<%§>+%ﬁg

The overall trucation® error can be bounded by

M1 |C|M2 2|C|M3
TI<At— 4+ A Axrs—FF=
| €% |< 5 + Ax ) + Az G

n

0o 0°
W:here M, M5, and M; are upper bounds for a—tga—ag, a—ag’ re-
spectively.



Thus* the soleve is ** first A # 0 and F, the accumulated error
varesters® as the mesh width goes to zero.

lim U} = p(r,t)
Ax — 0
At — 0

A<0

This FD scheme* is then convergent

3.3 Norms and numerical stability analysis

a. Vector and matrix norms and stability definition

Stability is associated with the property of a numerical solution
which remain finite at all points in the (z,t) domain. (Unstable <
blow ups of the solution.)

A vector norm is defined as a measure of a vector in real-number
space. The norm must satisfy
| Z||>0,Z||=0,-Z=0
|| zZ ||=| ||| Z || for any scalar x
2+ g |[<[|Z|[+ | §] for any Z,§
A frequently used form is the Lp norm.

n
ol
12 (= =5 )7
f=1
when & = (zj) is an n-dimensional vector. Most used™ are:

(a) Euchidian norm, p = 2
L. (b) "mascinus” norm, p = o0 || ¢ ||c= mazy | zj |
(©) Ly) norm, p=1 || z [[)= 5y | zj |
If we define U" by U" = (U}), then a numerical scheme is stable
if there exists a number M such that || U™ ||< M || U° || (M can be
a function of time t since solutions grow in time)

By analogy with the definition of vector norms*, we define the
matrix norm as a measure in real-number space. The following

conditions must be satisfied:
| A>0,][A]|[=0,<A=(0)



|| @A ||=| a ||| A || for any scalar «
| A+ B|<|[Al+ ]| Bl
| A= BI|<|[ All[| B| for any A, B.
The most cower* norms are as before the Ly, Ly, and L., norms.

|| Alli= Maxs%; | aij | (Sum of all colors™®)
|| Allo= Maz;X¢ | aij | (Sum of all norms*)

|| A ||2= 1\/a(AtA) where A is the absolute tangent eigurate® of
the matrix AtA.

b) The Lax-Richtmyer Theorem

Theorem: Numerical® stability and consistency of a finite differ-
ence scheme imply convergence.

This theorem is important because it enables us to prove con-
vergence of a numerical solution without explicit knowledge of the
exact solution. The FD equation can be rewritten as

[j’n—i—l — L[jn + R’n

where L is a linear operator (expressed in a matrix form) and R"
is the in-homogenous part of the equation such as foraing*

Another definition of the stability, slightly more restrictive, let
f = r for most purposes, *especially in the following®. A finite FD
scheme of the type of (26) is stable for any time ¢ and any S > 0,
there exists rwo* values p, n such that

|| (L)" ||< M for all Az < 6, At < yAz and n provided that
nAt < t.

_ Since [| U™ [[<[F (L) [IIFU°+ I ()" B AF - (@)™
Rnfl H

and since we can reasonably assume the total ferciy * ¥ || R* ||
to be finite, this definition does imply *the are given before.

Proof of the LR Theorem

[jnJrl _ L[j'n _i_ﬁn

gttt = L™ 4+ R™ 4 Ate"

The accumulated error vector e"*! is then

&t = Lvece™ + Ate™
= L(Le™ ' 4+ Ate" 1) + Ate"
= (L))" + (L))" 1& + .. (A% At

—{le < Ae(ll (@)™ T+ ) " 1)
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since the scheme* is constant™, for every ¢ > 0, there exists two
numbers d,7 such that || & ||< ¢ for all Az < §, At < nAz

Since the scheme is furthermore stable, we have || (L)* ||< M for
all k, kAt < t,then

(27) || €" |I< nAteM = teM

Since ¢ is arbitrarily small, the theorem is proven.

The 2R theorem also holds in the opposite direction...convergence
and consistency — stability.

C) Stability Analysis

The previous theorem allows us to concentrate on the stability of
the numerical scheme *otter® then it’s convergence, one you admit
consistency. **

In section 3.2, we were not able to prove convergence of the
scheme ***

n )\ n n
Uj:“ - Uf - §(Uf+1 - Uf—l)

11



1) Using matrix norms
The linear operator applicable in this case is

4~ A/z A/e,
L hY

-~

N . et
o
v N \ . §ﬁ\$
. n@x

AL =

% Aoa

Since || L™ ||<|| L ||* stability is assured if || L |[|[< 1. Actually,
| L ||< 14 0(At) is sufficient since
0
lim || L [|"< lim(1 + @)n = )
n—00 n
which is compatible with the previous definition. this criteria is
named after Von Neumann.

We find that || Ly ||=|| Le [|= 1+ | A].

CcAT
Since A = AL the assumption | A |= 0(At) would imply Az =
x
constant. This is incompatible** with the limit process Az, At —

Hence matter™* Lior L., can be used. The L, norm sequares* knowl-
edge of the eiguvaules™® of LTL.

The linear operator for the diffinive® scheme (24) is
o (4-%) ¢ -

- %Y%) \_ N
NN

RN
' ~
— NRCEY
'{'--_ ".;.) (%_ -fh',g;_)\D )
1
U} is replaced by i(U?_l + Ut
We find that

| L |=] L [loo= 1y | A< 1, | Ay | A|> DHootoerx
Hence, in this case, stability is assured as long as | A [< 1 (Same
as convergence)

12



Let’s now consider the following parabolic differential equation.
oF O*F

el il
ot ox?
u+1 n n n n
L R S B i
At Az?
o KAt
F]:url = AN+ (1 =20 FF + AFf,, with A = AL
If the boundary values F,' = F7 = 0, then
1
Wi
/:F _2 N
| | [ }\ O
Ty = '\\\
r ' \
ok S =
- ™~

(2) F, = LF,_1 = L"F,, where L is an amplification matrix.

The eigeuvelues p of L are the roots of

| L — pl | =0, where I is determined™ of order J-1.

= J-1 eiguenles™*. Associated with each eigenwales is an eigu-
vector v which satisfies Lv; = pv;,c=1,2, — — — — ——

Eigautras* < base = F, = %,C;V;

Stable if | p; |< 1 for all 4.

Can be allowed for some growth novely

| i |< 1+ o(At)

(spectral radius)

Remember that our* scheme was not perfectly cascoteint® and
| A | is bound away from 0. Both | A |[< 1 and | A |[> A, > 0% must
be simplified for convergence.

Using Fourier® Methods ( or Van Newan® analysis)

13



The previous method is attractive, but often difficult to put into
practice in more complicated situations. A less geuerd*, but simpler

method is based on a Fourier® decomposition of solution Uy
J

Ur = Z AnLeikzj
k=—J
The exact solution is
(29) Z Bk(t)e™

k=—n

We can determine the amplibidies™ By(t) term by each By(t) has

then to satisfy

0B .
(30) 8tk = —ikeB,,

or
(31) By = are * where a; = B (0) represents the initial condi-
tions.
Let’s now insert (28) in (22)

Un+1 An ikxj ;\[EAz(ezkx]h o eikxjh****)]
(32) = ZAL(1 — iAsin(kAx)
— EAk_n+1eikwj
or APt = A7(1 —iAsin(kAX)
n+1
The ratio is called the amplification® factor G.

k

(33) G =1 —iXsin(kAx) ; APt = GA}

If solutions are to remain bound, then we have | G |< 1 (Van
Newman*)

| G |°= (1 —iAsin(kAx))(1 4+ i\sin(kAx)

=1+ A sin®(kAx)

which shows that (22) is usable for all At

Exercise: Solve for deff** equation

- for both together.

Von Neunan* condition (more restricted)

An—l—l GAn

= G”AO The scheme is stable y.

| i |[< 1+ O(AR) for all 4

where p; are the eigewalier™* of the amplification matrix G since
we have

14



(S <l ¢ |I<|| G |I"
(Richmyer*, See for details)
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