4. Stability properties of various time differencing schemes.

0 0
— 4.1 - Applied to the advection* equation. (8—1; = —c@—u)
T

The FTCS is a one-step, explicit, two-time level method.

One-Step: One calculator step is required to advance to a new
time level.

Explicit: all the values on the right-side are known.

Two-time levels: Only two lines are involved in the calculation.

4. The Leap Frog scheme
The leap frog is centered in time which is unstable for the diffu-
sive equation and adv doff equation but when applied to the adv.
equation alone is stable.
U;LH = U}%’l - A(U}lﬂ - U}11>
Ur = N ATk
APt = AP — AR(2i)sin(kAx))

which can be rewritten in matrix form

using the trivial A} = A;. G is now the amplification factor. In
this particular case of several time level, we are more cooditious™ to
fall back on a simple two-line level. (See homework 2).

Another way of presenting it is:
APt = CF — AR (2iAsin(kAx))
Cit = Ay

The stability criteria for Von Neuman is | p; |< 14 o(At) for
all i where p; or the eigourale® of the matrix G. Another sufficient
condition slightly schtline* is | G |) < 14+0(At). Again, see Richtyer
for a complete derivation.

Solving for the eiqueales™

A
Hrg = §(aj: Vva?+4)

or

fre = —iAsin(kAz) £ \/1 — A2sin?(kAx)




-If \?sin?(kAx) > 1, the square root term is then imaginary and,
o = +i(—Asin(kAz)) £ /N sin? (kAz) — 1
| taa |?= 207 sin’(sin?(kAz) = 14227 sin?(kAz)[1

 Msin?(kAz)
* 4+ — obviously > 1, max(uy,) > 1

If \?sin? kAx < 1 (True for A < 1), then the module of | j; | is
given by

| i 2= M sin?(kAz) + (1 — M2sin(kAz)] = 1

This obviously satisfies the requirement for stability provided

again that A\ <1 (% <1)

Any numerical method for the *wascid equation which excludes
an | G | (or Sg)(G),|| G ||)< 1 exhibits an artificial damping. For
any convergent method, the numerical damping error must of course,
vanish as Ax, At — 0. In this particular case of the leap-frog, the
damping is equal to zero for uC' = ct*** and \ < 1.

The leap-frog for A = 1 perpetuates the exact solution for all
time given exact first time level solution. The vascid** equation
n O s equivalent to say that
—— = —c—— is equivalent to sa; a
ot oz >4 Y

if ( = At, then for c=1

(4)U zn = Uin—l

over 2At, the exact solution is

(5) N?H = N?—}l

Applications of the leap frog method given

(6) U =Urt = UL + U

Given the correct starting values from (4)

"= U" andUp = UM

then (6) is exactly equal to (5).

Two sets of values are required to start. If with an error, then
the error will persist in the calculation.

The corresponding eigevales** to py, are
27 is not perpendicular to £3 but they are independent, and any

T
vector can be expressed as a factor of —

o)
= (o) + fr3)

[

]



The G, x7 are associated with the steady part of the solution
(Physical mode).

G, T3 part of the solution that changes sign every Form™*** (

Computational

mode)

1** kkosk

If we restrict a maniel** to the case where G’ is equal for

consecutive line steps
o A1) A
Then G + 2iAsin(kAz) —1 =0
and
Gy = = —idsin(kAzx) + \/1 — A2sin?(kAx)

Gy = py = —idsin(kAzx) — \/1 — A2sin?(kAx)
(As At — 0, 3 — 1 and py — —1)

Its origin lies in the fact that the solution of the FD are indepen-
dent between odd and even numbers These two solutions will evolve
differently unless (a) the first time step generating Ax(1) is excluded
such that | 5 |<<| a | and (b)any component of the solution || to @3
that might arise due to sound-off errors is periodically reduced™***,

a)

Ap(o)[1 —ip] = a[—ip+ /1 —p*| + f|—ip — /1 — D]

Ak(O):Oé‘i‘B

A(0)(1 —ip) = Ap(o)[—ip + /1 — p?| + B[-2/1 — p?]
IR SliVA b A RYONT. S N S

ﬁl—Ak()_Q 1_p2 —Ak< )[2 2\/@]

b)
Ap(0) = al—ip + /1 = p?| + B[—ip — /1 — p?]
A(0) = a+

B L+ipx—/1—p* A T1+ap
62—Ak(0> 5 1_p2 —Ak(o)[z Qﬂ]

The two eigemvectors of the leap-grog scheme are

32

azy + frop = Asin(krAx)



We are looking for the method which produces the smaller com-
putational mode (smallest [3) from starting

A
a) Ujl = U]Q - §<Uj0+1 - Uj(‘)fl)
b) U} = U**
or in function of the )fest function
b) Ax(1) = Ax(0)

In order to have a stable scheme*, A < 1 then 1 —p? >0
and we can write

2
(5 _ (A =v1=p* +p°

| B1 2 (1-— l—p22

Then a leapfrog integration of the advection equation 8—/; =

0
—ma—'u should be started with a single forward step,
x
. A
ie. Uj = U = (U = UiLy)

(Smallest computational mode)

b) Upstream differencing (Donor all)
(7) U}”l =Uf — A
Uiy — UM ifEA <O
Uy =U; it A>0
The amplification factor G is then equal to 1 — A
e AT —1if A <0
1—e ™37 if A >0
This scheme is stable if | A |< 1. Easy to implement, but not
recommended because introduces™ artificial dissipation. (computa-
tional verceility™*)
(7) can be rewritten as

n n A n n
Uf|+>\1 |: Up - §(Uf+1 —Uf_,) < FTCS (unstable)

+T(U?+1 + Uy — 2U}) « second order approximation to a

definite equation.
cAx

a=— represents the value for the eddy viscosity!



c¢) Diffusion scheme** (Also called Friedrich’s scheme)
Already presented before
A

mn 1 n n n n
U™ = ) Uin + Uf) = 5(UFn = Uiy
The amplification factor is G = cos(kAx) — iAsin(Ax)
Stable if | A |< 1
this scheme does introduce diffusion* to stabilize the FTCS scheme.

diffusion )

x
with o = AL «—Analytical viscosity

d) The Lax-Wendroff scheme

We saw that the various* ruco schemes did introduce artificial
viscosity. The reasoning behind the Lax- Wendroff scheme is the
following: can we stabilize he FTCD shown by adding the minimal
amount of artificial damping? We can write the FD equation as:

n )\ n n n n n

1 A
V=0 v=— vk = u
The amplification factor for such a scheme is
AnJrl
(8) |G = jn =1 —iAsin(kAz) + 2v(cos(kAz) — 1)
k

Stability is assured if | G |< 14 o(At) for all k
(9) | G I*= 1+(2X* —4v)[1 —cos(kAz)]+ (40> — N?)[1 — cos(kAx)]?
=1+ 2\ —4v)p + (42 \)p*.

For v = TR G is a linear function of p = 1 — cos(kAx) scheme

strartle, upstream diff scheme.
We look for a better scheme, namely

[ A

V<TOI)\2>4V2

A2 — 2

(9) is maximum for | ppar = SV




and | G |? is then equal to at this point:

2 _ 2 2
T 0
A2 — 42
A2 —2u)?
(10) then| max | G |*’< 1+ %,0 < p < 2| (maximum not
— 4u
necessarily located in [0,2]**)
)\2
This implies A\* — 2v)*> =0 or | v = 5
Further reduction is NOT possible.
)\2
< _—
)

Max | G |* = | 14+ (\* — 2v)?

A2—4v?2 >1forpmazr<?2



