
8. Miscellaneous

8.1 Grids

As shown by Homework 3, it can be to our advantage to use staggered grids
in space.

Anakawa and Laub (1977) composed among others (Winmghogg, (1968);
Schuestrad (1978)) five different arrangements of the dependent valuables for
dispersion and geostrophic adjustment properties as a square grid.

We now, for purpose of the comparison, redefine the δ and ( ).
(δxα) = αi+ 1

2 ,f
− αi− 1

2 ,f

(~αx)i,f =
1
2
αi+1
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Same for the y direction.
For the shallow-water equations, we can rewrite the basic linear equations

as:
Grid A:
∂µ

∂t
− fv +

g

d
( ~δxh)x = 0

∂v

∂t
+ fµ+ (

g

d
)( ~δyh)y = 0

∂h

∂t
+ (

H

d
)[( ~δxµ)x + ( ~δyv)y] = 0

Grid B:
∂µ

∂t
− fv + (

g

d
)( ~δxh)y = 0

∂v

∂t
+ fµ+ (

g

d
)( ~δyh)x = 0

∂h

∂t
+ (

H

d
)[( ~δxµ)y + ( ~δyv)x] = 0

Grid C:
∂µ

∂t
− f~vxy + (

g

d
)(δxh) = 0

∂v

∂t
+ f~µxy + (

g

d
)(δyh) = 0

∂h

∂t
+ (

H

d
)[(δxµ) + (δyv)] = 0

Grid D:
∂µ

∂t
− f~vxy + (

g

d
)( ~δxh)xy = 0

∂v

∂t
+ f~µxy + (

g

d
)( ~δyh)xy = 0

∂h

∂t
+ (

H

d
[( ~δxµ)xy + ( ~δyv)xy] = 0

Grid E
∂µ

∂t
− fv + (

g

d∗
)(δxh) = 0

∂v

∂t
+ fµ+ (

g

d∗
)(δyh) = 0

∂h

∂t
+ (

H

d∗
)[(δxµ) + (δyv)] = 0

In the latter (Grid E), a grid destrae* of
√

2d = d∗ gives the same number
of grid points as the other schemes given a two-dimensional domain.
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In order to illustrate the properties of these five schemes, we consider the
one dimensional linear equations:

∂µ

∂t
− fv + g(

∂h

∂x
) = 0

∂v

∂t
+ fµ = 0

∂h

∂t
+H(

∂µ

∂x
) = 0

Eliminating v, h yields to:

(1)
∂2µ

∂t2
+ f2µ− gH(

∂2µ

∂x2
) = 0

If we assume the solution to be proportional to ei(kx−ωt), then the angular
frequency ω is given by:

(
ω

f
)2 = 1 + gH(

k

f
)2 = 1 + k2Rd2

(Inertia-Gravity waves) Extend Rossby Radians of Deformation*
√
gH

f
We can now examine the effect of the space discretization at the frequency.

In one dimensions, the grids become:
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Grid E is equivalent to A, but with a smaller grid size. For the different
schemes the following frequencies are obtained (Anakawa an Laub, 1977)

Grid A:

(
ω

f
)2 = 1 + (

Rd

d
)2 sin2(kd)

Grid B:

(
ω

f
)2 = 1 + 4(

Rd

d
)2 sin2(

kd

2
)

Grid C:

(
ω

f
)2 = cos2(

kd

2
) + 4(

Rd

d
)2 sin2(

kd

2
)

Grid D:

(
ω

f
)2 = cos2(

kd

2
) + (

Rd

d
)2 sin2(kd)

For all cases,
ω

f
depends on a kd and

Rd

d
. The wavelength of the shorter

resolvable wave is 2d (corresponding wave when kmax =
π

d
) We therefore exer-

cise* the range* o < kd < π.

Grid A: Maximum for kd =
π

2
with a sevc* group velocity

∂ω

∂k

Grid B: For near zero Rd, modiscially* increasing.

Grid C: Monotonically increasing for
Rd

d
>

1
2

and ———— decreasing for
Rd

d
<

1
2

. For
Rd

d
=

1
2
, ω2f2 and the group velocity is zero for all k.

Grid D: ω reaches a maxium for fracRdd2 cos(kd) =
1
4
.

kd = π is a stationary wave.

For this one dimensional case, grid B is the most satisfying. However for
Rd

d
larger than

1
2

, grid C is as good as grid B.
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Rd

d
= 2
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As shown in the homework, staggered grids require half the time step that
is required for unstaggered grids. However, the eckia* computer time is worth
with B and C since they give better structure for the shorter waves. Inipertait*
after a geostrophic adjustment.

In the two dimensional case, there is a difficulty with B as shown by Anakawa
and Laub (1977).

The grids can also be staggered in time as proposed by Eliassen (1956) for
a baroclinic * PE model. Has escalled* adjustment properties:
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Even time steps

Odd time steps
An analysis of this scheme can be found by (Anakawa and Mesiyer (1976))

8.2 Boundary Conditions
They are important since they often define the problem. A first order ordi-

nary differential equation such as
df

dx
= 0 specifies the solution as a constant.

The boundary condition determines the value of this constant. A first order

partial differential equation such as
∂f(x, y, )

∂x
= 0 specifies very little of the

solution. Any function g(y) satisfies the equation and the boundary condition
must specify g(y).

The specification of computational boundary conditions, besides coeffecting
numerical stability , greatly affects the accuracy of the of the finite difference
solution.

Boundary conditions at the walls.
In addition to the no-normal flux through the wall (normal velocity is zero),

viscous* boundary conditions are defined for the integration. The two mesh
contours* are free-slip (the normal derivative of the velocity ‖ to the wall is
equal to zero. ↔ velocity equal to zero at the boundary
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or no-slip (both µ and r are equal to zero on the boundary, ζw 6= 0

Implementation of this boundary condition various depending on the mesh
used.

Let’s consider the vorticity equation and Possion equation. We then need a
boundary condition for the vorticity equation and one for the Poisson equation.

For free slip, in a regular mesh, ζ = 0 and ψ = 0 are the needed BCS.
For no-slip, the streamfunction ψ can be expanded in a Taylor series (verti-

cal* wall)

(3) ψi+1,f = ψi,f +
∂ψ

∂x
|i,f ∆x+

1
2
∂2ψ

∂x2
|i,f ∆x2 + ...

The velocity v = 0 by the no-slip condition and
∂ψ

∂x i,f
= 0 and

∂2ψ

∂x2
|i,f=

∂u

∂x
|i,f

ζ =
∂u

∂x
− ∂µ

∂y
→ ∂µ

∂y
= 0 because of µ = 0 and construct* along the wall.

then ζw =
∂u

∂x i,j

From (3), we derive the expression for the vorticity at the wall.
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ζw =
2(ψi+1,j − ψi,f )

∆x2

One has to be careful about the possible oversimplification of boundary

conditions. For a no-slip surface wall, µ = v = 0 and
∂ψ

∂x
=
∂ψ

∂y
= 0. Either

of the conditions are sufficient, but we cannot use both to solve the Poisson
equation. On the other hand, ψw = 0 is used for the Poisson equation and the
∂ψ

∂x
=
∂ψ

∂y
= 0 for the vorticity equations.

In staggered grid systems, the expression for the vorticity might be different.
Let’s consider the case of the C-grid for a primitive equation model.

The µ are defined on the wall, but note the v -velocities or the vorticity.
We therefore need to specify values of v ”in” the boundary to recover the

the boundary condition.

Free-Slip
The V inside the wall has the same values as the one outside → ζw = 0.
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No-Slip

The V under* the wall are opposite such that v = 0 at the wall, ζ =
2v
∆x

=
Vout − Vin

∆x

b) Upper-boundary (Rigid lid approximation)
In the case of a primative equation model, the time-step must satisfy ∆t <

∆x
cmax

where cmax is the maximum phase speed that can occur in the system.

These equations permit external and internal gravity waves, inertial osallations
and Rossby waves. The external gravity waves have the speed cv

√
gH which

gives c = 200m/s for H = 400m→ very small ∆t capered * to the typical time
scale of oceanic metrics.

We can exclude the gravity waves by placving a lid at the surface or setting
W = 0 at the upper boundary. A longer time step can be taken since the
internal waves have a c ≤ 10m/s

Basic Equations:

(4)
d~v

dt
= − 1

p0

~∇p− f~kx~v + ~F

(5)
dp

dz
= −pg

(6)
dw

dz
+∇ · ~v = 0

Flat bottom + ridged lid give w(0) = w(−H) = 0. Integration of the
continuity equation (6) gives

∇· < ~v >= 0 (7)

Where <( )>= H−1

∫ 0

−H
( )dz

The vertically averaged −H component* is non divergent and a streamfunc-
tion can be introduced such that:
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< ~v >= ~k × ~∇ψ (8)
We now take the vertical average of the equation of notation (4)
∂

∂t
∇2ψ = −~k · ~∇x < ~v · ∇~v + w

∂~v

∂z
+ F > − < v > ·∇f (10)

This equation can be used to predict the mean vertical current** ψ and
< v >

The departure from the mean is defined as
v =< v > +v′ (11)
Substituting in (4) and subtracting (9), we obtain an equation for v′

∂~v′

∂t
= −(~v · ∇~v +w

∂~v

∂z
)+ < ~v · ∇~v +w

∂~v

∂z
> −f~kx~v′ − 1

P0

~∇p′ + F− < F >

where p′ = p− < p >

The hydrostatic equation (5) becomes
∂p′

∂z
= −gp which integrated from −Htoz gives

(13) p′ − p′(−H)− g
∫ z

−H
pdz

< p′ >= 0→ (13) can be rewritten as

(14) p′ = −g
∫ z

−H
pdz + g <

∫ z

−H
pdz >

* First step, calculation of ψ using (10). This requires a Poisson solver. ψ
can b used to calculate < ~v > from (8).

We then solve (12) for v′ and the thermodynamic equation is advareed *

(15)
dθ

dt
= Aθ∇2θ + kθ

d2θ

dz2
+ rc(θ)

and p = po[1− αθ], new density field.
p′ is then computed* for use in (12).
Integration of the continuity equation gives the vertical velocity.
Another approach for large scale modeling other than the rigid lid is the

use of *split-explicit* time differencing scheme which treat the baraotropic*
and baroclinic* component of the flow with two different time step (small for
baratropic (9), fast for baroclinic (12)).

This method treats the traveling Rossby waves more properly and in the case
of irregular topography, avoids the use of a fast Poisson solver (problematic and
a non-rectangular domain).

Bolton topography
Numerical techniques dealing with the modeling of topography in oceanic

and atmospheric models depend on the assumed vertical coordinate. They
*bring* many difficulties regarding the model stability or the stability of the
result.
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In a z-coordiniate, the most natural choice, each level is immersion is in-
dependent of the bolton topography as well as of the horizontal location. The
physical variables of the system are set equal to zero at the grid-points located
inside the boltan topography. The boltan topography is then represented by a
succession of steps. Such a coordinate may be adapted for steep reliefs, but not
for gentle slopes.

An alternative, extremely popular in the atmospheric models, is the α -
coordinates (or normalized pressure coordinate) after Phillips (1937) with α =
p

ps
where ps is the pressure at the bottom and is a function of x, y, t

with
dA

dt
= 0 at the surface.

It conveniently avoids uncomfortable problems with the lowest boundary
conditions, nevertheless, this coordinate also sets many problems, especially the
non-cancellation of truncation errors(Smagoriusky, et al. 1967). ( See Maltier
and Willams for a review of the α - coordinate system). Applications to ocean
models is fairly recent and preliminary conclusions are that α - coordinates does
pretty well with gentle slope (not steep) and vise-versa for z-coordinates.

The other coordinate which seems to handle all topographic situations well
is the isopycnic system. Major problem is the intersection of the layers with the
topography. This can be handled with a scheme which conserves the posc* of
the layer thickness such as FCT or Smeltcheuic* Preliminary results from here
(UM) are extremely primary*. (Bleck and Smith, 1990)
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Steep topography in ocean models is under investigation (ART, ONR).
d) Irregular Boundaries
Irregular Boundaries are everywhere in the ocean and do not facilitate the

task of integrating the equations.
For example, in the case of a primitive equation model, introduction of a

(x, y)ν to p–* does not feuite* anymore to solve directly the Poisson equation
and an iterative method such as the SOR (Successive Over - Relaxation tech-
niques) must be used or the split-*explicit* approach described in the previous
section. The latter allows also for irregular lateral boundary conditions.

There is one method for either PE-flat bottom or QG which still allows for
the use of a direct solver : The Capacitive Matrix Method (Carmuis and Mysak,
1988 OPO adopted from Hockney, 1970)

The capacitive matrix method is a technique for *extracting* the usefulness
of direct solvers to now rectangular domains.The major computational borders*
of the method is that it requires to call twice the Poisson solver. It is in general
more efficient then using an iterative method.

We obtain a field which satisfies:

(16) ∇2ψ = ζ
ψ, ζ functions of x, y in a domain ω with the condition ψ = ψb on the

boundary of ω = dω

We can embed this domain into a rectangular area ω1. The difference is ω′

with dω1 and dω′ their respective boundaries.
We first obtain though a direct solver the field ψ1 in the ω1 domain by solving
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∇2ψ1 = ζ1
when: ζ1 = ζ in ω, ζ1 = arbitrary in ω′ and can be taken to be equal to

zero.
Formally, the solution can be written as a function of the Green’s* functions

associated with the operator ∇2 such that

ψ1 =
∫∫

ω1

G(x, y, x′, y′)ζ1(x′, y′)dx′dy′ +
∫
dω1

ψ1
∂G

∂n
dp′

The Green’s function G satifies with δ = Dirac* function.

∇2G = δ(x− x′)δ(y − y′) on ω1 G = 0 on dω1

The essence of the capacitive matrix method is now to modify is now to
modify ψ1 such that ψ1−ψb and dω′. We then modify ζ1 and dω′ such that the
solution satisfies the boundary condition.

We denoted θ(~s), a function valid on an δω′ only ~s vector on the boundary
of δω′). We consider the function µ(x, y) such that

(20) ∇2µ = ζ1 + θ in ω1 with µ = ψb on dω1

If now θ(~s) is chosen such that µ satifies µ = ψb and δω′ then ψ(x, y) = µ
in ω and the solution is found.

To determine θ(~s), we use (18) and (19) to get the solution of (20).

(21) µ(x, y) = φ1 +
∫
δω′

θ(~s)G(x, y,~s)d~s′

µ = ψbonδω
′ → (21) reduces to

(22) ψb = ψ1(~s) +
∫
δω′

θ(~s′)G(x, y, ~s′d~s′

which is an integral equation that determines θ(~s).

Application to finite-difference:

There are δω′ passes through a set of grid points refered to as the irregular
boundary points.

1) The numerical algorithm first requires that we apply a direct solver to
obtain ψ1 in the rectangle* given the forcing* ζ1

2) Next the modifying function θ is obtained from the values of ψ1 along δω′

by using (22)(discredited version).
3) The direct solver is employed a second time to solve (20) and to obtain

ψ.
(22) is rewritten as ψb = ψ1 + ∆s2Gθ where ∆s = grid interval, θ1, ψb, ψ1

are column vectors of length m, (m = number of irregular boundary points)
The finite difference Green function, G, is a matrix M × m
θ = ∆s−2C(ψb − ψ1)
where C = G−1 = capacitance* matrix
C has to be determined only once.

14



G is determined from (14) by defining a delta function of strength ∆s−2 and
is placed at one irregular boundary. Must satisfy for all the points.

Example:
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