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Abstract. Effects of spatial regularity and locality assumptions in the extended Kalman 
filter are examined for oceanic data assimilation problems. Biorthogonal wavelet bases are 
used to implement spatial regularity through multiscale approximations, while a Markov 
random field (MRF) is used to impose locality through spatial regression. Both methods 
are shown to approximate the optimal Kalman filter estimates closely, although the 
stability of the estimates can be dependent on the choice of basis functions in the wavelet 
case. The observed filter performance is nearly constant over a wide range of values for 
the scalar weights (uncertainty variances) given to the model and data examined here. The 
MRF-based method, with its inhomogeneous and anisotropic covariance parameterization, 
has been shown to be particularly effective and stable in assimilation of simulated 
TOPEX/POSEIDON altimetry data into a reduced-gravity, shallow-water equation model. 

1. Introduction 

From a mathematical perspective, data assimilation in phys- 
ical oceanography implies solution of an overdetermined sys- 
tem of equations for the prognostic variables of a circulation 
model. In numerical models, data are typically used selectively 
to provide the necessary values, including the initial and 
boundary conditions and forcing fields, to establish the forward 
(time) recursion for the prognostic variables. In data assimila- 
tion the time trajectories of the model variables are further 
constrained by extraneous data, usually inferred from ship, 
buoy, float, and satellite measurements but also possibly ob- 
tained from measured or simulated specifications of open- 
boundary conditions and air-sea interfaces. A classic approach 
to evaluate the overconstrained variables objectively is to apply 
an optimality condition, such as a least squares criterion 
[Sasaki, 1970; Thacker and Long, 1988; Bennett, 1992; Wunsch, 
1996], which is employed by most of the sophisticated data 
assimilation methods under consideration today [Ghi! and 
Malanotte-Rizzoli, 1991; Talagrand, 1997]. Although solution 
techniques for a least squares formulation are relatively 
straightforward in theory, they present serious practical prob- 
lems with computational speed and storage owing to the large 
number of variables required to represent a prognostic state in 
typical ocean circulation models. Approximate solution tech- 
niques are thus necessary for objective data assimilation at 
present. In this paper, such approximation techniques are ex- 
amined in conjunction with the Kalman filter, a sequential 
algorithm based on the probability theory, that allows formu- 
lntic, n 9nct intprprptnticm c•f thp lpn•t qClllnr•q qc•l•ticmq in term• 
of the mean and covariance of a normal (Gaussian) distribu- 
tion [Anderson and Moore, 1979]. Assimilation of satellite- 
based sea-surface height data into primitive equation models is 
then considered. 

When applied to data assimilation, a Kalman filter performs 
time-sequential statistical interpolation that incrementally cor- 
rects for the discrepancy between the observations (data) and 
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model predictions [Ghil et al., 1981]. The statistical interpola- 
tion is based on the prediction/analysis error covariances, 
which are estimated using a forward recursion consistent with 
the model dynamics. An approximation technique for Kalman 
filter in ocean data assimilation must address computational 
efficiency of this forward recursion for the error covariance 
matrix, whose dimension is the square of the number of the 
model prognostic variables. Using both physically and algebra- 
ically motivated assumptions, various techniques to parame- 
terize the covariance matrix have been explored and practiced 
to drastically reduce the matrix dimensions. Two qualitative yet 
prevailing features of a geophysical covariance function are 
regularity (smoothness) and locality (decay or "e-folding") in 
space. The assumption of regularity concerns maintenance of 
consistency between the spatial scales of the dominant dynamic 
modes in the prognostic variables and the correlation scalcs of 
the corresponding error process [Bennett and Budgell, 1987; 
Cane et al., 1996], and it tends to allow a coarsely sampled 
representation of the covariance matrix. The assumption of 
locality indicates that the correlation between a pair of vari- 
ables decays steeply (e.g., exponentially) with respect to the 
distance between them [Daley, 1991], and it facilitates param- 
eterization using a small number of regression coefficients. 

The structure of the error covariance matrix is partially 
dependent on the observation network (the sampling patterns 
associated with the extraneous data) and hence is highly vari- 
able from case to case, even with the same dynamic model. In 
practice, the regularity assumptions are useful in situations 
where the data density and analysis objective are appropriate 
for long-distance correlation structures. For data sets sampled 
sparsely over space (e.g., six tide gauges for the tropical Pacific 
[Miller and Cane, 1989]), only large-scale features can be sam- 
pled, for which case a highly "regular" (generally containing 
strong correlation over long distance) error covariance matrix 
would be desirable for smooth interpolation uncontaminated 
with spurious or artificial small-scale features. A climatological 
analysis also focuses on large-scale events to which smooth and 
nonlocal covariance structures are relevant. On the other 

hand, for denser data sets, such as satellite-based measure- 

ments whose sampling pattern can usually resolve at much 
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Plate 1. The two initial states of the identical-twin experiment. Every three velocity vectors, in each of the 
horizontal and vertical directions, are shown. 

finer scales, the locality assumptions would reduce over- While locality can be further imposed in this framework by 
smoothing and enhance accuracy in reproduction of features choosing smooth and localized mode functions for the error 
such as mesoscale rings. Some degree of regularity in addition subspace, the stability of the resulting data assimilation system 
to locality is still important in this case to prevent generation of appears to be dependent on the choice for the mode functions. 
destabilizing inertia-gravity waves, as in the case with initial- Alternatively, a numerical realization of locality in covariance 
ization of data for meteorological models [Daley, 1991]. can be achieved more directly by spatial regression, a multidi- 

Regularity in covariance can be realized numerically by sub- mensional generalization of standard autoregression (e.g., for 
space projection, which restricts the dynamic behavior of the time series analysis), which can be formulated naturally using 
prediction/analysis error fields to a small number of dominant a Markov random field (MRF). The MRF formalism [Kinder- 
modes represented by smooth functions. Several approaches to mann and Snell, 1980] uses a strictly local (in space) prescrip- 
Kalman filter approximation including those by Ghil et al. tion of mathematical expressions to characterize statistical de- 
[1981], Cohn and Parrish [1991], Fukumori and Malanotte- pendence over a wide range of spatial scales, finding 
Rizzoli [1995], and Cane et al. [1996] can be examined in this applications in a variety of fields such as statistical mechanics 
unifying mathematical framework, as detailed in this paper. [Kindermann and Snell, 1980], population biology [Besag, 
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Plate 2. (top) Prediction fields after 30 days (2160 time steps) of assimilating the layer thickness h field from 
the (bottom) truth. 

1974], and image processing [Geman and Geman, 1984] for dynamically update the inhomogeneous MRF description of 
statistical description of complex spatial patterns. In our ap~ the covariance matrix in a manner consistent with a given 
proach to Kalman filter approximation the MRF essentially ocean circulation model is presented. Performance of the re- 
replaces the covariance matrix with a diagnostic (spatial) op- sulting approximate Kalman filter is then assessed through a 
eratot, or a finite difference operator with a numerical com- variety of simulated data assimilation experiments. 
plexity similar to that of a geostrophic balance equation, op- 
erating on the prediction/analysis error process. The role of the 
diagnostic operator then is to encode the correlation structure 
in the error process, and the order of this finite difference 2. Data Assimilation With Kalman Filter 
operator determines the correlation scales of the covariance We first formulate the data assimilation task as a weighted 
approximation. least squares problem and designate the Kalman filter as a 

The emphasis in this paper is on realization of locality as a means to solve this minimization problem. The readers famil- 
strategy for assimilation of relatively dense and widely sampled iar with the Kalman filter may skip to section 3, after glancing 
satellite-based oceanic measurements. A numerical scheme to at the mathematical notations in this section. 
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Let the equations for a numerical ocean circulation model 
be represented by the algebraic recursion 

Xk __ fk(Xk_l) q_ •odel (1) 

where the state vector x/•, containing all the dynamically inde- 
pendent prognostic variables, represents the synoptic ocean in 
the model at time kAt, k = 0, 1, 2, ..., for a given model 
time step At. The function f/• is a generic representation of 
computation of a single time step in a primitive equation 

model is the aggregate of physical uncertainty model, while e/• 
model 

and numeric errors in the model. Typically, •/• can only be 
characterized statistically. Let the vector y/• be a representation 
of the observable variables at time kAt such that 

Yk = H•xk + e• d•t•* (2) 

with an additive noise/error term data The operator H a sam- 8k ß 

ples the synoptic map x•, by linear combinations and thus tends 
to be a diagonally structured and sparsely banded matrix. The 
observed values ("data") of Yk are used to constrain the prog- 
nostic variables in x/• to adjust the dynamic trajectory toward 
the observation. The general case where y/• is a nonlinear 
function of xa. can also be formulated in this framework 
through local linearization [Cohn and Parrish, 1991] but is not 
addressed in this paper, as practical effectiveness of such lin- 
earization is yet to be documented. 

The Kalman filter is intimately associated with the time- 
dependent least squares problem (for a given time index k) 

M• 

(3) 

where v • • vrWv denotes the square norm of a column 
vector v weighted by a square matrix W. The initial condition 
• for the model (1) and the full set of obse•ations •, j = 1, 
2, -.., k, are provided externally and denoted with the super- 
script d, indicating "data." The weighting matrices L o, Mi, and 
N/ (for j - 1, 2, ..., k) are the parameters of this particular 
least squares formulation. The two terms weighted by M• and 
N•, defining the relative confidence in the model (1) and data 
(2), tend to dominate the initial condition term weighted by L 0 
as more obse•ations become available with increasing k. We 
denote the minimizing solution for (3) as x•, •, .-., • (su- 
perscript a for "analysis") and remind readers that the opti- 
mality condition (3) is dependent on the time index k. The 
Kalman filter then is a time-recursive algorithm to compute 
only the latest member • of the optimal solution for (3) for 
eachk = 1, 2,..-. 

The time recursion for the Kalman filter (initialized as 
x; : •)is 

x• = f•(x•_,) (4) 

where the superscript f denotes "forecast." The last additive 
term in (5) computes the correction necessa• to reduce the 
difference between the forecast and measured values of y•. 
The matrix K•, known as the "filter gain," controls how this 
correction is incorporated into the prognostic variables. Note 
that if K• is null (zero), the recursion (4)-(5) is equivalent to 
the circulation model in (1). 

The essence of the Kalman filter is in statistically optimal 

computation of the filter gain K•, which is obtained through a 
separate recursion of the error covariance matrix, defined as 
P• = (e•e•), where ek is the estimation error, i.e., 4 = xf• - x• 
and e• =- x• - x•, and angle brackets denote ensemble 
average. To obtain an optimal recursion for P•: consistent with 
the least squares (3), each inverse of the weight matrices, P0 = 
L• -I Q: =- m• -• and Ri --- N•: • is treated as the covariance 
matrix of an independent random vector representing the re- 
spective errors in initialization (x 0 - •), modeling (e•odel), 
and observation (e•t•). Such a statistical framework facilitates 
determination of the weighting parameters and interpretation 
of the filter prediction/analysis. 

The optimal time recursion for the error covariance P• (ini- 
tialized as • = P0 = L• -•) can be given as 

P• = , FkP•_•F• + Q• (6) 

f T f T K• = PkHk(HkP•Hk + Rk) --1 (7) 

P•: (I - K•Hk)P•(I - K•H•) r + K•R•K[ (8) 

where the matrix F/• -- 0f/•/0x(•_•) is a tangent linear ap- 
proximation of the model dynamics about the most recent 
estimate •__ •. The filter analysis • thus corresponds exactly 
to the minimizing solution to the least squares (3) only when 
the model dynamics f/• (x/•) is linear in x/• for all k. The tangent 
linear approximation of model dynamics (known as the ex- 
tended Kalman filter) invokes theoretical issues involving "clo- 
sure" of statistical moments [Cohn, 1993; Miller et al., 1994; 
Evensen, 1994]; however, in practice, the approximation ap- 
pears to be suitable for a typical ocean circulation model that 
tends to have a small time step At relative to evolution time- 
scales of circulation features [Menemenlis and Wunsch, 1997]. 

The optimal filter gain K/• given in (7) would make the 
data-update equation (5) for a given k equivalent to the opti- 
mal interpolation [Daley, 1991] and Gauss-Markov estimator 
[Wunsch, 1996] applied to a variety of operational geophysical 
data analysis. The Kalman filter can thus be naturally inter- 
preted as a time sequence of spatial interpolators, in which the 
optimality criteria evolve in a manner consistent with the 
model dynamics and data distribution (observation network). 

Practicality of the extended Kalman filter in oceanic data 
assimilation depends on two procedures' choice of the filter 
parameters and reduction of the variable dimensions. The fil- 
ter parameters to be specified are the matrices P0, Q/•, and 
(equivalently, L 0, M•, and N/•), k = 1, 2, .... Determination 
of realistic spatial correlation structures in Q/• for the model 
dynamics error is still an open issue, although a high degree of 
regularity in Q/• has been determined crucial [Bennett and 
Budge#, 1987; Dee, 1991' Cane et al., 1996], especially for as- 
similation problems with sparsely sampled data. The need for 
a reduction in the dimensions of the filter variables is due 

primarily to demands for computational resources to store and 
time update the large prediction and analysis error covariance 
matrices, P• and •. If N denotes the dimension of the prog- 
nostic variable set x/•, the corresponding error covariance ma- 
trix P• then contains N 2 variables (elements), a tremendous 
storage requirement for a typical value of N -- 104-10 s. As 
the computational demands are already at a premium for the 
N-dimensional recursion of the model dynamics (4) [Bleck et 

N-dimensional covariance recursion (6)-(8) al., 1995], the 
must be greatly simplified numerically, in practice. A dimen- 
sionally reduced representation for the covariance matrix is 
intended to serve such a computational purpose, but it can 
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also influence the matrix structures (and hence correlation 
structures) of the filter parameters to be determined. The 
remainder of this paper thus focuses on approaches to re- 
duce the covariance matrix Pk in dimension by parameter- 
ization. 

3. Reduction of Covariance Dimension 

Approximation of a covariance matrix through parameter- 
ization of its correlation structure is a common practice in 
geophysical data interpolation [e.g.,Mariano and Brown, 1992]. 
For the inhomogeneous and anisotropic covariance matrix Pk 
in a Kalman filter, the regularity (smoothness) and locality 
(decay) assumptions are realized mathematically using "sub- 
space projection" and "spatial regression" schemes, respec- 
tively. The mathematical issue here is to develop a parameter- 
ized arithmetic recursion consistent with the optimal 
covariance dynamic equations (6)-(8). 

3.1. Subspace Projection for Spatial Regularity 

A systematic approach to impose regularity in the error 
covariance, essentially taken by Fukumori and Malanotte- 
Rizzoli [1995] and Cane et al. [1996] among others, is to con- 
strain evolution of the error fields ea within a subspace defined 
by a set of smooth, linearly independent, normalized basis 
("mode") vectors b•, as 

ek • • •klbl- U•k (9) 
l 

where •k is the column vector of the modal coefficients •k• and 
B is the N x n matrix whose columns are the basis vectors k, 
i - 1, 2, .-., n. The idea is to constrain evolution of e• using 
a small number n < N (where N is the dimension of the state 
x•) of carefully selected modes b,, so that the resulting reduc- 
tion in degrees of dynamic freedom maintains spatial regularity 
in P• and accuracy in the estimate x• while decreasing com- 
putational costs. 

The error vector e• is transformed into the modal subspace 
as • - Te•, by the pseudoinverse T of the mode matrix B, 
given as T • (BrB) - •B r. Substitution into (9) then reveals the 
essence of the approximation as e• • BTe•, in which the 
matrix operator BT performs a spatial low-pass filtering for a 
low-resolution approximation of the error fields [Fukumori and 
Malanotte-Rizzoli, 1995]. The time recursion of the covariance 
matrk Pa in the modal subspace can be derived from (6)-(8) 
by straightfo•ard linear transformations (note that TB : I, 
the identity matrix) as 

: F•P•_,F• + Q• (10) 

K• -•-r - -•- R•) • 

P•= (• - •aOa)P•(•- •aOa)r + KaRaKa 

where the transformed matrices are given as Pa - TPaT •, 
Q• = TQaT •, Pa = TFaB, and Oa = HaB. In principle, the 
gain matrix can be computed as Ka = B•, with which the 
data update (5) can then be performed. In practice, the data 
update can be accomplished more efficiently without such an 
explicit evaluation of the gain matrix Ka, i.e., by first comput- 
ing the n-dimensional vector - and then multi- 
plying the resulting vector by B (inverse transform). For the 
typical case of n << N, reduction in computational costs is 

immediately apparent as the transformed covariance matrix Pa 
is dimensionally reduced to n x n. 

3.1.1. Subspaces of dynamic modes. The key issue in the 
subspace projection approach is determination of the approx- 
imation subspace B. Choosing a small subspace (small n) could 
make the approximated covariance recursion (10)-(12) highly 
efficient; however, the danger of introducing spurious spatial 
structures (estimation biases) is higher with a smaller number 
of basis functions. 

When the dynamic model is linear and time invariant; that is, 
f•(x•) = Fxk for all k, the range space of the dynamics is 
spanned by the column vectors of the matrix U given by the 
singular value decomposition (SVD) F = USV r, where U and 
¾ are unitary matrices (matrices whose columns are normal- 
ized and mutually orthonormal) and S is a diagonal matrix of 
singular values. Using linearized shallow-water equation mod- 
els, Ghil et al. [1981] and Cohn and Parrish [1991] have parti- 
tioned the dynamic modes as U - [U•ow, Uf•,t] into the nu- 
merically desirable "slow modes" U•ow and nondesirable "fast 
modes" Uf•st, respectively, representing the Rossby waves and 
inertial gravity waves, leading to a Kalman filter approximation 
with the subspace B - Us•ow. 

For nonlinear dynamics, direct modal decomposition is not 
as straightforward. Alternatively, Cane et al. [1996] and Pham 
et al. [1998] have used the empirical orthogonal functions 
(EOFs) for the variability in the state x• as the mode vectors 
for the error process ek (which is difficult to measure or sim- 
ulate directly). Typically, the total variance of the model vari- 
ability is contributed by a small number n of the EOFs, and 
using such EOFs as the error modes b, often results in an 
efficient covariance recursion due to this small n. These sta- 

tistically dominant dynamic modes of the model variability 
tend to have inherent large-scale regularity. Constraining the 
error dynamics using these smooth mode functions has an 
advantage of greatly reducing the chance of exciting numeri- 
cally undesirable small-scale modes such as inertia-gravity 
waves. An outstanding issue in the EOF subspace approach is 
computation and selection of the appropriate EOF modes. 
Both the choice of the empirical statistics (e.g., design of sim- 
ulation experiments) and partitioning of the corresponding 
EOFs into "desirable" and "undesirable" modes can affect the 

filter analysis to a large extent. A lack of sensitivity to smaller- 
scale (e.g., mesoscale) features in data can also be expected for 
typical EOF modes owing to their large-scale and ensemble 
(statistical) natures. 

3.1.2. Subspaces based on wavenumber and scale. To 
prevent oversmoothing or large-scale biases that might be in- 
troduced by statistical modes like EOFs, nonempirical mode 
functions have also been considered. For example, the dynamic 
modes of linearized shallow-water equations over a periodic 
domain are the Fourier basis functions with which an approx- 
imation subspace B can be defined in terms of wavenumber 
spectra [Ghil et al., 1981]. Also, Fukumori and Malanotte- 
Rizzoli [1995] have used a cubic spline function (a locally sup- 
ported cubic polynomial) for spatial smoothing and coarse- 
scale approximation of Kalman filter. In these approaches, 
rudimentary geometric notions such as wavenumber and scale, 
respectively, are used to characterize the approximation sub- 
spaces. 

Specifying the error mode functions in terms of a character- 
istic scale is especially appealing, as some notion of "locality" 
may be imposed using the scale parameter (in addition to 



7996 CHIN ET AL.' SPATIAL REGRESSION AND WAVELET FOR KALMAN FILTER 

regularity already assumed in the mode functions). Smooth 
and locally supported functions like spline bases seem to pos- 
sess qualities that satisfy both the regularity and locality as- 
sumptions. In particular, the spline functions associated with 
the wavelet-based "multiresolution analysis" [Daubechies, 
1992] offer a systematic approach to construct an approxima- 
tion subspace B defined by a characteristic scale length. These 
basis functions are self-similar functions that change their 
scales diadically (by a factor of 2) between two adjacent levels 
in scale space (Figure 1). Each level of coarse-scale approxi- 
mation thus reduces the dimension of the original subspace by 
half, so that using • levels of approximation would result in 
n = N2-e. A numerically convenient set of multiresolution 
basis functions is the compactly supported, biorthogonal wave- 
let ("scaling") functions [Daubechies, 1992]. With these func- 
tions, both B and T become sparse and banded matrices, of- 
fering computational advantages (Appendix A). We use such a 
subspace B in the numerical experiments (section 4). 

3.2. Spatial Regressions for Spatial Locality 

Alternatively, compact representations of a large covariance 
matrix can also be obtained using regression formulas. For 
example, an autoregression of order n (AR-n) applied to the 
elements e• (j = 1, 2, ..., N) of the error vector ek can be 
written as 

e,: • a,e;_, + •,, (13) 

where •'i, J = 1,..., N, are mutually uncorrelated noise 
(zero-mean stochastic) processes with variance/3f. As •,• are 
uncorrelated, the statistical dependence among the variables e• 
are encoded solely by the regression coefficients a,. The N 2 
covariances in P• can then be represented by only the N + n 
parameters, a, and/3•. The standard autoregression formulas 
are applicable only to stochastic processes over a one- 
dimensional (l-D) domain such as a time series. For multidi- 
mensionality, noncausality, and inhomogeneity expected in the 
spatial process e/,, we consider the generalized regression for- 
mula 

("½J : Z O/,',•J-I q- 1.•j (14) 
lGZ 

where c• u is now inhomogeneous and hence dependent on j, 
while a multidimensional and noncausal (i.e., no directional 
preference) index set Z is used for i to define the extent of 
statistical (conditional) dependence. Examples of Z in two 
dimensions are the stencils for the numerical Laplacian and 
biharmonic operators (crosses in Figures 2a and 2b). The num- 
ber of parameters necessary to represent the N 2 covariances is 
approximately nN, where n is the size of the index set Z. 

Both the AR-n model (13) and its spatial generalization (14) 
use a local (the site j and its neighbors on the respective grid) 
parameterization to represent the covariance structure for the 
entire domain. This notion of being "local" is consistent with 
the probabilistically more rigorous definition of locality in term 
of the (nth order) Markov condition [e.g., Wilks, 1995] and 
Markov random field [Kindermann and Snell, 1980; Chin et al., 
1995] for the AR-n model (13) and its spatial generalization 
(14), respectively. We mention that the MRF paradigm is a 
multidimensional generalization of the better known 1-D 
Markov condition and refer the interested readers to cited 

references for more details. The particular MRF model of 
interest to us and implied by (14) is a Gaussian-distributed and 
spatially heterogeneous version. The size and topology of the 
index set Z (Figures 2a and 2b) determine the complexity or 
order of the MRF model. The accuracy of MRF parameter- 
ization of the covariance Pk increases with the order of model, 
while computational efficiency of the corresponding Kalman 
filter decreases with the order. Our numerical experiments 
(section 4) show that a drastically low order MRF is sufficient 
for sequential assimilation of satellite altimetry data. 

To relate the spatial regression coefficients with the Kalman 
filter covariance matrix, (14) is rewritten in term of a matrix 
operator F• as 

Fkek = B (15) 

such that 8 denotes a zero-mean process whose covariance is 
the identity matrix I (a spatially uncorrelated covariance matrix 
with unit variance). Only the elements (denoted as -y) along 
and near the main diagonal of the matrix F• are nonzero and 
given as -y• = 1//3 i and -yi,•_/ = -ai•//3 •, i G Z for each row 
j. Sparseness of the matrix Fk depends on the size of the index 
set Z (Figures 2c and 2d). It is insightful to interpret F• as a 
numerical differential operator in space. A deterministic ver- 
sion of (15) would be F•ek = 0, a balancing equation such as 
the geostrophic balance (see (31)) that conforms the residual 
e• for optimal interpolation [Daley, 1991]. The stochastic ex- 
pression (15) can be considered as a weakly imposed version of 
such a balancing constraint. Equating the covariance matrices 
for the vectors on both sides of (15) would yield F•P•F[ - I. 

-- F• Fk, often The square of the regression operator L• r 
referred to as the information matrix, is then just the inverse of 
the covariance matrix, L• = P• (when P• is nonsingular). 
Without the requirement to be sparse (i.e., using the highest 
possible order for MRF), the regression operator Fa• or the 
information matrix La can thus encode the error covariance Pk 
exactly. Indeed, in several algorithmic variants of the Kalman 
filter, the time recursion (6)-(8) for P• are replaced by a 
recursion of F k [Chin e! al., 1995] or of L• (Appendix B), 
known as the square root information filter and information 
filter, respectively. 

In conjunction with the MRF-based approximation, the in- 
formation filter is found to execute faster than its square root 
counterpart on serial computers in practice. We thus focus on 
time recursion of L• instead of Fk to implement the spatial 
regression approximation. A spatially local matrix F• indicative 
of a low-order MRF parameterization imposes a sparse, block- 
banded, and symmetric structure on the corresponding infor- 
mation matrix Lk. In our implementation of Kalman (infor- 
mation) filter, L• is thus truncated accordingly at each time 
step. Figure 2 exemplifies the symmetric and "banded" trun- 
cation patterns used. Note that direct truncation of L• results 
in different MRF from one obtained by truncation of F• using 
the same pattern. This is not a problem because a sparse F• is 
always associated with a sparse Lk. (L• is also preferred over 
Fk in standard MRF terminology, e.g., "neighborhood," which 
indicates the locations of the nonzero bands in L•.) We em- 
phasize that, unlike direct truncation of long-distance covari- 
ances by a banded approximation of P• [Parrish and Cohn, 
1985], the sparsely banded approximation of L• would pre- 
serve and smoothly taper the long-distance covariances 
[Habibi, 1972], as evident in Figure 3. 

The time recursion for the truncated L•, initialized as L• = 
Lo, is 
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Figure 2. The Markov random field stencils ("neighborhoods"), marked with crosses, for the (a) first- and 
(b) second-order configurations about the center dots (circled). The corresponding locations of nonzero 
elements in the information matrix, assuming a 10 x 10 two-dimensional domain leading to a 100 x 100 matrix 
dimension, for (c) the first-order case resulting in a block tridiagonal structure and (d) the second-order case 
resulting in a block pentadiagonal structure. 

Ok: A•-'F•'M; (16) 
r a L•: (I- FkOk)TMk(I- FkOk) + (]7) 

T 

L": L• + HkNkHk (18) 

where A k is the diagonally truncated version of the matrix 
T a 

FkMkF k + Lk_ •. This recursion preserves the sparsely 
banded structure and positive-definite property in L k (Appen- 
dix B). In particular, by using a diagonally truncated version of 

T a O k of (17), the structure Ok in the last additive term Ok Lk_ 1 
of L k is constrained to be just as sparsely banded as the max- 
imum structural extent of the symmetric matrix F k r 3 r 
+ H kNkH k for all k. To ensure such sparseness, we assume 
that the system and parameter matrices Fk, Hk, Lo, Mk, and 
N k are sparsely banded, an assumption usually satisfied in 
practice. For example, F k is always local as it is a numerical 
version of a differential operator. Also, a spatially regular 
covariance matrix Qk(-- M•- •) of modeling error, satisfying 
physical constraints such as geostrophy [Jiang and Ghil, 1993], 
can be specified using a locally structured weighting matrix M k 
(see section B1). The optimal filter gain can be derived from 
this recursion as K k (Lk)-i r _ a Hk Nk, in principle. As in the 
case with the subspace filter (10)-(12), however, an explicit 
computation of the gain matrix is not computationally efficient. 
Instead, by exploiting the imposed sparseness of the informa- 
tion matrix, the data-update step (5) is accomplished by com- 

T 

puting HkN k (• - Hkxf•) before inverting it with the sparse 
matrix operator L•. In our numerical experiments (section 4), 

only about 20 of the standard Gauss-Seidel iterations are re- 
quired for an effective inversion. 

Note that the filter parameters in the recursion (16)-(18) are 
the weighting matrices Lo, Mk, and Nk of the least squares 
formulation (3), instead of the standard covariance parameters 
(Po, Qk, and R k, which would have to be inverted). In the MRF 
framework the filter parameters are thus more naturally inter- 
preted as the balancing constraints (regression operators sim- 
ilar to one in (15)) applied to the model and data residual 
fields. More technical details of the MRF-based Kalman filter 

approximation can be found in Appendix B and references 
therein. 

4. Numerical Experiments 
Synthetic data assimilation problems have been formulated 

to observe the behavior of the approximate Kalman filter 
schemes in a controlled setting. Our approach is to first exam- 
ine the filter performances in simple problems in which various 
controls are possible and then gradually increase the complex- 
ity for more relevance to realistic ocean data assimilation prob- 
lems, such as incorporation of satellite altimetry data. The 
prognostic equations (4) in these problems are given by dy- 
namic components of the Navier-Stokes equations with pro- 
gressively less simplifications. The first set of experiments con- 
sists of univariate diffusion and advection dynamics in which 
the exact evolution of the prognostic variable is known analyt- 
ically. In the second set of experiments a linearized shallow- 
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Figure 3. Covariance approximation using the wavelet and Markov random field (MRF) approaches: (a) 
nonapproximated covariance matrix (over a one-dimensional periodic domain); (b) error resulting from 
approximation using the wavelet approach (•b 3'3, f = 1); (c) error resulting from approximation using the 
MRF approach (second-order structure); and (d) diagonal elements (variances) of the original matrix (solid 
line), wavelet approximation (dotted line), and MRF approximation (dashed line). The periodic advection 
dynamics of equation (20) for N = 3 2 was used with four regularly spaced observation points and integrated 
over k = 128 time steps. The noise parameter was q/r = 0.3. 

35 

water equation over a periodic domain, as studied by Ghil et al. 
[1981], with a known analytic solution is used. In the final set, 
identical twin experiments with a reduced-gravity, shallow- 
water dynamics configured for an idealized midlatitude basin 
are conducted using the sampling pattern of the TOPEX/ 
POSEIDON satellite. A multilayer version of this dynamic 
configuration has also been examined but will be discussed in 
a separate paper (in preparation) to elaborate on the vertical 
correlation structures due to a relatively implicit nature of 
cross-layer interactions in shallow-water systems. 

Realization of the locality assumption is of particular inter- 
est here. The approximation schemes thus examined are spa- 
tial regression realized by the MRF-based information filter 
(section 3.2) and subspace projection using biorthogonal wave- 
lets as the mode functions (section 3.1.2), hereafter referred to 
as the "MRF approximation" and "wavelet approximation," 
respectively. The biorthogonal wavelet functions used here are 

depicted in Figure 1, middle (f = 2, n = N/4) and described 
in Appendix A. The second-order MRF structure (a block 
pentadiagonal matrix, e.g., Figure 2d) is used in the MRF 
approximation. All computations in the experiments presented 
here have been performed on desktop workstations (300 MHz 
DEC-Alpha). 

The filter parameters are given by the homogeneously diag- 
onal matrices Mk - q-•I and Nk = r-•I or, equivalently, Qk 
= q I and Rk = rI. The correlation structures in Qk and Rk are 
inherently dependent on the application (particularities of the 
model, data, and observation network). While using the un- 
correlated parameter matrices may lead to slight computa- 
tional advantages for their sparsity, it can also affect the reg- 
ularity of the computed covariance Pk and hence present a 
stringent test for stability of the filter. Our study focuses on 
asymptotic filter performance, to which the effects of the ini- 
tialization parameters L o or Po would become negligible with 
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Plate 3. (top) Prediction fields after 180 days (12,960 time steps) of assimilating the h field from the 
(bottom) truth. 

increasing time steps (except in degenerate cases such as q = thus considered and are given, for the dynamic variable 
0). The effective filter parameters are therefore the scalars •(s, t), as 
q- • and r- ], representing the respective weights of the model 
and data terms in the least squares formulation (3). Since only 
the relative weights affect the outcome, filter performance is 
actually controlled by a single scalar q/r. 

4.1. Equations of Diffusion and Advection 

4.1.1. Filtering problem. Simple numerical configura- 
tions are used to enable computation of the nonapproximated 
Kalman-filter estimates, which serve as a reference to evaluate 
the approximation schemes. Two equations of univariate dif- 
fusion and advection over a 1-D periodic spatial domain are 

0 0 2 

O t rl = D •-S•s 2 rl 
0 0 

Ot r• = -U •ss rt 
which are discretized over space and time as 

x• = I + U•t x•_• 

(19) 

(20) 



CHIN ET AL.: SPATIAL REGRESSION AND WAVELET FOR KALMAN FILTER 8001 

2OO 

180 - 

160 - 

140•[ 

120 - 

•100- 
E 

80- 

60- 

40- 

20- 

0 
0 

RMS error: H 

'T- 

I I ! ! I I I I 

update every 10 days 

update every 5 days 

update every 2 days 

update every day 

update every 20 min. 

, ,I I i i I I 

20 40 60 80 100 120 
days 

140 160 180 

RMS error: U 
0.4 , . 

0.35 

0.3 

0.25 

0.2)• 

0.15 

0.1 

0.05 

, 

t ! , 
RMS error: V 

t ! 

t i i t i , 
0 50 100 150 0 50 100 150 

days days 
Plate 4. Time sequence of prediction error for the variaNcs h, u, and v in the identical-twin experiment. 

to yield the linear state transition matrix F for each system, 
where [02/Os 2 ] and [O/Os] denote periodic second- and first- 
order difference operators, respectively, and 

xk-- [•(s•, kAt), •(s2, kAt), ---, •(s•v, kAt)] r. 

The periodic spatial domain is discretized uniformly to N = 
128 points. The diffusion coefficient and advection speed used 
in the experiments are 

D =0.2 
(As) 2 

At 

As 
U=0.2 

At 

respectively, where As is the grid interval. Figure 4 (solid lines) 
shows the respective initial conditions for the diffusion and 
advection equations. Both initial fields are the results of trun- 
cated Fourier series, with which the analytic solutions can be 
obtained easily. Sparse observations of the state vector Xk are 
simulated by evaluating the analytic solutions at eight uni- 
formly spaced locations (Figure 4, circles) for each k. These 
observed values are then corrupted by an additive noise to 
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Figure 4. The initial states (solid lines) for the (top) diffusion and (bottom) advection experiments, their 
root-mean-square variability (dashed lines) used as the initial conditions in the flat cases, and the sample noisy 
observations (circles) at the fixed set of grid points. 

simulate a set of noisy and sparse measurements Yk. The ob- 
servation noise has been numerically generated based on a 
Gaussian distribution with variance equal to t% of the signal 
variability (10% of standard deviation) in each of the two 
dynamic recursions. 

Two extreme cases of filter initialization are examined. In 

one case the initial estimate • is perfect (i.e., completely 
sampled and noiseless), as given by the solid curves in Figure 
4. In the other case the initial estimate is just a flat line (Figure 
4, dashed lines). These two types of initial conditions combined 
with the two dynamic equations provide four cases of filtering 
problems, hereafter referred to as "diffusion perfect," "diffu- 
sion flat," "advection perfect," and "advection flat." In all cases 
the recursions for the filter covariance (and information) ma- 
trix are initialized as Po = Lo = I. 

The estimates • from three implementations of the Kalman 
filter, the "optimal" (nonapproximated), "MRF-approximat- 
ed," and "wavelet-approximated" filters, are compared to the 
analytic solution in each of the four cases described above. The 
wavelet-approximated filter here has been implemented with 
the mode function •3,3 (Appendix A, • = 2). The root-mean- 

square (RMS) error, using the analytic solution as the truth, 
over the last 20 of the 200 time steps is computed for each filter 
run as a measure of steady state performance. Each of the two 
filter parameters q and r is set to one of five values, 10 -2, 10 -1, 
1, t0, tOO, for a total of 25 parameter combinations encom- 
passing a wide range of data assimilation scenarios. In partic- 
ular, the ratio q/r ranges from 10 -4 to 10 4. 

4.1.2. Results and discussions. The three Kalman filter 

implementations (with and without approximations) displayed 
qualitatively identical behaviors under all numerical scenarios 
examined here. The long-term performance of the filters, as 
measured by the steady state RMS error, depends only on the 
parameter ratio q/r and not on the initial filter conditions, in 
general. In particular, the arbitrary and inaccurate "flat" initial 
estimates (Figure 4, dashed lines) can be compensated for by 
the noisy and sparse data yk over time. Figure 5 shows that the 
final estimates (at k = 200) for the diffusion-flat and advec- 
tion-flat cases are reasonably good reproductions of the ana- 
lytic solution, considering the sparseness and inaccuracy 
(noise) of the data. All three filter implementations have pro- 
duced very similar estimates, displaying no degradation in 
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Figure 5. Examples of the final estimates (at time step k -- 200 and with the filter parameters q - r = 1) 
for the optimal Kalman filter (solid lines), the wavelet-approximated filter (dashed lines), and the MRF- 
approximated filter (dash-dotted lines) in the (top) diffusion-flat and (bottom) advection-flat cases. The 
analytic solution for each case is given as the dotted lines. Note that the lines are difficult to distinguish owing 
to overlapping, indicating good reproductions of the analytic solutions by all three filters. 

qualitative accuracy due to the approximations of the Kalman 
filter. In the diffusion-fiat case both approximated filters have 
actually produced more desirable (regular) estimates owing to 
the imposed smoothness that compensates for our use of di- 
agonal parameter matrices (e.g., Qk). 

For each filter (optimal, MRF, or wavelet) and assimilation 
problem (one of the four cases of diffusion/advection-perfect/ 
fiat) a steady state RMS error value is computed for each of 
the 25 combinations of the filter parameters (q, r, and the 
initial variance). It is observed that, among the 25 parameter 
combinations for a given assimilation problem, the RMS val- 
ues are nearly identical when the parameter ratio q/r has the 
same value. This "model-to-data" variance ratio defines the 

relative weights assigned to the model and data in the least 
squares formulation (3). A small value of the q/r ratio implies 
relatively high trust (weight) in the model, while a large value 
implies more trust in the data. Figure 6 shows a plot of the 
average RMS error (as a percentage of the signal variability in 
the initial states, Figure 4) as a function of q/r, varying over a 
wide range from 10 -4 to 10 4 , for each filter implementation 

and assimilation case. It can be observed in Figure 6 that, for 
each and every assimilation case, the error functions for all 
three filters have very similar characteristics, giving further 
evidence that the approximated filters (MRF and wavelet) are 
performing near optimally. 

Although the model-to-data ratio q/r is effectively the only 
filter parameter in the problems examined here, the long-term 
filter performance is relatively insensitive to the value of q/r, 
except when q/r is extremely small (when the data are weighed 
negligibly compared with the model). This can be observed in 
each RMS error plot of Figure 6 as the almost-constant error 
value for q/r > 0.01. In particular, the RMS errors are, at 
most, 10% for q/r > 0.01, indicating that an estimation qual- 
ity similar to one displayed in Figure 5 (corresponding to q/r = 
1) can be expected over a wide range of values for q/r. 

The RMS error plots (Figure 6) display distinct character- 
istics for each of the four cases of data assimilation scenarios. 

In the diffusion-perfect case, lower values of the model-to-data 
ratio q/r are associated with more accurate estimates (lower 
RMS values) because of fidelity in the initial condition and 
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model numerics. For higher q/r values, implying increasing 
trust in data, the estimation accuracy decreases owing to the 
measurement noise. On the other hand, in the diffusion-flat 
case, low q/r values lead to high RMS errors and even filter 
failures, as the effects of the inaccurate (flat) initial condition 
persists owing to the implied overreliance on the model. This 
suggests that the model-variance parameter q, controlling the 
retention time for information in the filter, needs to be rea- 
sonably high relative to the data variance r to ensure that the 
filter remains sensitive to the data [Lewis, 1986; Miller et al., 
1994]. The same RMS error characteristics can also be ob- 
served in the advection-flat case for the same reason. Unlike 

the diffusion-perfect case the advection-perfect case does not 
yield good estimates when the q/r ratio is small, implying 
inadequacy in the numerical advection scheme (an implemen- 
tation of Lax-Wendroff scheme) for this particular configura- 
tion with relatively high advection speed and undulating initial 
condition. For a higher q/r the noisy data have actually com- 
pensated for the numerical biases introduced by the advection 
scheme. Miller [1986] reached a similar conclusion that Kalman 
filters can compensate for imperfect numerics and can even 
stabilize an unstable numerical scheme. 

The advection-flat case is the most difficult of the four data 

assimilation problems examined here owing to the combina- 
tion of wrong initial condition and high spatial variability. In 
this case the subspace projection approach (the wavelet- 
approximated filter) is found dependent on the choice of sub- 
space basis functions. For example, a slightly different 
biorthogonal wavelet function •)4,4 (Figure 1, • = 2), as well as 
the cubic B spline and several other spline functions, has lead 
to an instable and inaccurate filter. The performance of sub- 
space projection filter has been further examined using SVD 
and EOF subspaces (see section 3.1.1). The EOFs used here 
have been obtained from the empirical covariance matrix of 
signal variability in the analytic solution over 500 time steps. As 
depicted in Figure 7, all the singular values of the linear dy- 
namics F have comparable magnitudes, as the advection dy- 
namics have no mode selectivity. (Some singular values corre- 
sponding to high-wavenumber modes are clipped slightly 
owing to discretization effects.) The SVD subspaces are thus 
not expected to offer compact approximations in this case. For 
example, a subspace as large as n = 48 has been observed 
necessary to produce estimates that begin to resemble the 
analytic solution qualitatively. Unlike the singular values the 
EOF variances are dominated by the first 10 modes, as shown 
in Figure 7. The subspace using the corresponding 10 EOFs 
leads to a stable filter that produces estimates with a constant 
bias (Figure 7). This error has resulted because none of the 10 
EOF modes is able to represent (and hence correct for) the 
constant bias in the flat initial condition (Figure 4). The fun- 
damental difficulty is that the particular empirical statistics 
used to obtain the EOFs do not contain any constant bias 
owing to the method of ensemble simulation. Such deficiency 
in the EOF subspace may be difficult to assess in practice. In 
our idealized scenario, however, an ad hoc addition of an 
eleventh basis function of a constant (a normalized vector of all 
ones) would adequately augment the EOF subspace, leading to 
an accurate, stable, and efficient (n = 11) approximate filter 
for the advection-flat case. This illustrates the potential for 
high computational efficiency as well as strong dependency on 
subspace selection for the EOF-based method. 

In all approximate filtering approaches the absolute covari- 
ance values are too sensitive to operating conditions for a 
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Figure 7. (top left) Singular values of the 128 x 128 state- 
transition matrix F in the advection case. (top right) Variances 
(eigenvalues) of an empirical variability matrix in the advection 
case. (bottom) Sample final estimate (solid line, at k = 200) 
for a subspace-projection filter using the subspace of the 10 
dominant empirical orthogonal functions (EOFs) (eigenvec- 
tors corresponding to the large variances in Figure 7, top 
right). The corresponding analytic solution or the "truth" is 
shown by dashed line, while examples of the noisy observations 
(at k = 200) are shown by circles. Note that the set of 10 
EOFs cannot correct for the constant bias, despite the infor- 
mation available in the observations. 

reliable approximation of the second-order statistics; however, 
the correlation structures (i.e., normalized covariance) are ap- 
proximated well. Figure 3 depicts representative covariance 
matrices from optimal Kalman filter and covariance approxi- 
mation errors by the MRF and wavelet filters. The MRF-based 
approach seems to approximate local (near diagonal) correla- 
tion better, while the wavelet-based (and other subspace pro- 
jection) approach tends to capture the far-field correlation 
structure better than local correlation structure. 

4.2. Linearized Shallow-Water Model 

A multivariate dynamic system is used to observe the per- 
formance of the optimal, wavelet-approximated, and MRF- 
approximated Kalman filters. The data assimilation problem 
examined here is nearly identical (except for some differences 
in discretization and parameterization) to the configuration 
studied by Ghil et al. [1981]. The model here is given by a 
synoptic-scale atmospheric dynamics expressed by the linear- 
ized shallow-water equation 
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over a periodic spatial domain along a fixed latitude, where the 
state (prognostic) variables are the variability in the zonal and 
meridional wind speeds (u, v) and the geopotential qb. The 
mean zonal flow, mean geopotential, and ambient Coriolis 
parameter are given as U = 2 m/s, q) = 30000 m2/s 2, and f - 
0.0001 s -1, respectively. An analytic solution of this equation, 
along with other details of the experimental setup, are given by 
Ghil et al. [1981]. The spatial domain is discretized to N - 64 
points. The spatial and temporal intervals are As - 218.75 
km and At = 15 min, respectively. The measurements of the 
state variables u, v, qb are made by sampling the analytic 
solution only at the 32 grid points on the left side of the domain 
(Figure 8, reflecting land-based measurements), only twice 

daily (every 48 time steps). The measurements are artificially 
corrupted with simulated Gaussian random numbers with stan- 
dard deviations of 200 m2/s 2 for 4> and 2 m/s for u and v. 

The filter parameter matrices (Po, Qk, and Rk) used here are 
diagonal (uncorrelated) as before, and their variances (diago- 
nal elements) are homogeneous for each variable type (u, v, 
or qb). The variances in R• are given by the actual measurement 
noise variances, as above. The variances in Po and Q• are set to 
be 1% (10% root-mean-square) of the spatial variability in the 
analytic solution for each of the three variables. The resulting 
values for the model-to-data ratio (q/r) are about 0.02 for u 
and 1 for v and 

Like the advection-flat case examined previously, the nu- 
merical model here is marginally stable owing to the large 
dynamic-range mismatch among the three prognostic variables 
(e.g., qb oscillates at an order of 1000 times larger amplitude 
than u) combined with the spatial differentiations in (21). 
Without data assimilation the time trajectories of the variables 
do indeed deviate from the analytic solutions systematically 
(Figure 9). Steady state estimates (at k = 1344 or 14 days) 
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Figure 9. Time series of the root-mean-square errors between the analytic solution and the estimates by the 
optimal Kalman filter (solid lines), wavelet-approximated (dashed lines), MRF-approximated (dash-dotted 
lines), and model run without data assimilation (dotted lines) for (top) geopotential, (middle) zonal wind 
speed u, and (bottom) meridional wind speed v. 

with data assimilation by the three filters are displayed in 
Figure 8, indicating again that the noisy and sparse data can 
compensate for the imperfect model numerics and that the 
approximate (wavelet and MRF) filters are just as effective for 
this purpose as the nonapproximated Kalman filter. 

The time series of RMS errors, displayed in Figure 9, show 
that the filter errors saturate quickly, to values less than the 
corresponding measurement errors (i.e., less than the standard 
deviations given above). The RMS error plots are similar for 
the MRF and optimal filters, implying near-optimal perfor- 
mance of the MRF-based approximation. The wavelet filter, 
however, has produced estimates with systematically higher 
RMS errors, as evident from the time series (Figure 9) for v 
and, less obviously, O. The biorthogonal basis function I• 4'4 
(C = 2) has been used to construct the subspace for the wavelet 
filter examined here. The basis function/b 3'3, which has been used 
successfully in the diffusion/advection cases discussed previously, 
is found to cause unstabilities in the multivariate estimates exam- 

ined here. These again demonstrate sensitivity of the subspace 
projection approach to the selection of the subspace modes. 

4.3. Eddy-Resolving Shallow-Water Model 

The MRF-approximated filter is now applied to a wind- 
forced, nonlinear, reduced-gravity, shallow-water model con- 
figured in a rectangular domain. The numerical implementa- 
tion of the dynamic model is a single-layer version (without 
thermodynamics) of the Miami Isopycnal Coordinate Ocean 
Model (MICOM) [Bleck et al., 1992; Bleck and Chassignet, 
1994]. With a horizontal grid spacing of 20 km and grid size of 
100 x 100, this particular model configuration has been used 
to simulate mesoscale features like rings associated with the 
free-jet portion of the western boundary currents [Chassignet et 
al., 1990]. Since the multivariate prognostic state consists of the 
horizontal current velocity (u, v) and layer thickness h, the 
state dimension is about N -- 30,000. This dimension is 

relatively small for a typical ocean general circulation model 
but is already too large to be practical for the nonapproximated 
Kalman filter. The MRF-approximated filter uses the second- 
order MRF configuration shown in Figures 2b and 2d, with 
which the information matrix is represented by approximately 
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Prediction: 10-day update (day 180) 
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Plate 5. Day-180 prediction fields as in Plate 3, except using the data-update intervals of (top) 10 and 
(bottom) 2 days. 

39N parameters. (This number is approximate due to the 
staggered (C grid) discretization used by MICOM. Also, 39N 
= 13 x 3 x N, where 13 is the number of parameters per grid 
point in the second-order MRF (Figure 2b) and 3 is the num- 
ber of variable types.) A similar level of compactness in co- 
variance representation can be achieved with the wavelet- 
approximated filter (using the length scale •e = 2); however, the 
wavelet approach is not examined here owing to the sensitivity 
to basis selection as observed in previous experiments. 

4.3.1. Twin experiment with the TOPEX/POSEIDON sam- 
pling pattern. We have conducted a set of "identical-twin" 
experiments, in which one of two model runs with dynamically 
independent initial conditions is treated as the "truth," while 
the other run, called "prediction" hereafter, assimilates simu- 

lated measurements from this truth. The tenth and eleventh 

year estimates of a spin-up run are used to initialize the pre- 
diction and truth, respectively. The initial conditions for the 
truth and prediction are shown in Plate 1. To simulate (under 
the framework of the simplified model configuration) satellite- 
based altimeter measurements, the layer thickness h (which is 
directly proportional to the sea-surface height in the reduced- 
gravity model) have been sampled from the truth along a 
sequence of the TOPEX-POSEIDON sampling swaths with a 
10-day repeat cycle, as shown in Figure 10. Each satellite sam- 
pling point has been collocated to the nearest model grid point. 
Since the RMS difference in h values between adjacent grid 
points in the truth field is about 7.2 m and the full-field vari- 
ability of the same field is 77 m, the collocations have intro- 
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Plate 6. (top) Initial and (bottom) final states of a generalized data assimilation problem in which the "data" 
are the weak constrains simulating "land" along the left edge of the domain (visible as the triangular shape 
in Plate 6, bottom). Every two velocity vectors, in each of the horizontal and vertical directions, are shown. 

duced about 10% (•7.2/77) signal uncertainty, on average. 
The layer-thickness samples have thus been artificially cor- 
rupted with a 10%-RMS additive Gaussian noise to simulate 
the collocation effects. This noise level is also in rough agree- 
ment with the data noise (4/40 cm) expected across mesoscale 
features in areas such as the free-jet portion of the Gulf 
Stream. We note, however, that realistic TOPEX/POSEIDON 
data noise can be higher (4/9 cm) in less topologically active 
(low signal) ocean basins and that the along-track correlation 
in data noise is ignored while lumping these measurement and 
collocation errors together. 

At a time step At of 20 min, the twin experiment has been 
performed for 360 simulated days, during which the prediction 

computed by the MRF-approximated filter has remained sta- 
ble throughout. As before, diagonal parameter matrices are 
used for the filter, with the model-to-data ratio q/r = 10 for 
the variable h. Plate 2 shows an instance of prediction at day 
30 and the corresponding truth, displaying a transition period 
during which the MRF filter attempts to track the truth, given 
the sparse and noisy observations of the h field. Plate 3 shows 
that by day 180 the prediction has been able to reproduce 
essentially all the mesoscale features in the truth. The RMS 
difference (prediction error) between the truth and prediction 
(Plate 4, black lines) displays an exponential decay in time, 
with an e-folding scale of about 30 days. These results indicate 
that a half-year to year sequence of the TOPEX/POSEIDON 
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Figure 10. TOPEX-POSEIDON satellite tracks over the 100 x 100 grid (at 20 km grid size) used for the 
Miami Isopycnal Coordinate Ocean Model (MICOM) shallow-water model. Circles represent the observed 
grid points for a given day. Stippled lines denote all the tracks from the previous days. 

altimetry data can be used to estimate the entire prognostic 
state of a reduced-gravity, shallow-water dynamics for repro- 
duction of mesoscale and possibly larger-scale features. 

4.3.2. Data-update frequency. The duration of each 
TOPEX/POSEIDON satellite swath over the model domain is 

well within the model time step of 20 min. The data updates 
are thus performed only two or three times per day, corre- 
sponding to the number of swaths per day (Figure 10). For 
computational economy, as well as for possible dynamic ben- 
efits of increased data density, we have considered performing 
data update (5) at an interval significantly larger than At, by 
accumulating the measurements during that interval and treat- 
ing the accumulated data set as "synoptic." An update interval 
equaling the repeat cycle of 10 days is particularly attractive, not 
only for the near-regular coverage during the assumed synoptic 
interval (Figure 10) but also for possible computational saving 
due to a steady state filter approximation [e.g., Fukumori and 
Malanotte-Rizzoli, 1995] enabled by the time independence in 
data pattern over this interval. On the other hand, large update 

intervals can undersample dynamic mesoscale features such as 
advecting rings [Chassignet et al., 1992], which desirably should 
not be compromised for computational convenience. 

Data-update intervals of 1, 2, 5, and 10 days have been used 
to repeat the identical-twin experiments. Plate 4 shows the 
resulting RMS prediction errors in time for each update inter- 
val. In general, the RMS error at a given time increases mono- 
tonically with the length of the update intervals, indicating that 
systematic biases have been introduced to the estimates owing 
to delays in data update. For the longer intervals of 5 and 10 
days, more pronounced oscillations in RMS error are observed 
after each data update owing to larger data densities. These 
oscillations are especially noticeable in the error plots for the 
velocity components (u, v). The steady state estimates are, 
nevertheless, stable for each update-interval, as exemplified by 
Plate 5, displaying the day-180 predictions for the 2-day and 
10-day update intervals, where the mesoscale features have 
been reproduced well in both cases. The differences between 
the two prediction in Plate 5 are in the details of the features, 
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such as the locations and intensities of the rings. Such differ- 
ences in qualitative features are significantly smaller between 
the cases of 2-day and 20-min intervals (Plate 3, top), in accord 
with the RMS error values (Plate 4). These imply that the data 
can be updated at an interval larger than the model time step 
without degrading feature reproduction and filter stability, if 
the increase in the interval is moderate, i.e., up to 2 days in this 
particular twin experiment. 

4.3.3. Assimilation of generalized data. The generic ob- 
servation equation (2) in the Kalman filter leads to the weak 
constraint term I• - I-Ikxk 2 in the least squares formulation (3). 
Algebraically, it makes no difference whether or not this data 
term contains physical measurements. Any extraneous constraint 
on the prognostic variables at a given time, e.g., a discretized 
diagnostic equation, can be expressed as a quadratic norm and 
treated as a data term. With this perspective of data in Kalman 
filter, a data assimilation technology can, in principle, be applied 
for numerical incorporation of such external constraints as open 
boundary conditions, air-sea interfaces in coupled models, and 
multiscale (e.g., coastal and open ocean) coupling. 

Plate 6 illustrates that an arbitrary diagnostic constraint can be 
assimilated as a conceptually generalized observation using the 
MRF-approximated filter. The constraint in this case is intended 
to form an intrusive boundary, referred to as "coastline" hereaf- 
ter, which can be seen in Plate 6, bottom, as the slanted right side 
of the vectorless triangular region, referred to as "land," near the 
left edge of the domain. The equations of the constraint, 

4u - • = 0 (22) 

h - • (23) 

where • - 1000 m is the mean layer-thickness, are imposed 
on the prognostic variables in the "land" area. The first equa- 
tion (22) is designed to constrain the ocean current to flow 
parallel to the coastline. Note that the left-hand side of (22) is 
an inner product between the current vector (u, •) and the 
normal vector (4, -1) that defines the orientation of the coast- 
line. The second equation, (23), is designed to null the fluid 
flow over land by smoothing. The algebraic constraints (22) 
and (23) can be organized as H/•x k -- yk and then be incorpo- 
rated into the shallow-water model dynamics using a Kalman 
filter. The initial and final estimates produced by the MRF 
filter, applied over 12 days (864 time steps) to a 64 x 64 grid 
version of the model equation used in the twin experiment 
described previously, are shown in Plate 6. The final estimate 
at day 12 displays intended patterns of velocity and layer- 
thickness fields. Note that the model performs dynamic evolu- 
tion of the state variables over the land throughout as if it were 
"ocean"; the appearance of the triangular land region is strictly 
the effect of data assimilation. The numerical treatment of the 

coastline boundary condition examined here is applicable (in 
term of the algorithmic structure) to time-dependent con- 
straints like an open-boundary condition as well. A realistic 
simulation of basin-scale ocean often requires a continuous 
incorporation of both measurements and extraneous boundary 
conditions into the model equations. The illustration here im- 
plies the possibility that a data assimilation scheme like the 
MRF filter can be used as a single consistent framework for 
numerical treatment of both types of extraneous information. 

5. Discussion and Summary 

Success in data assimilation depends heavily on character- 
ization and parameterization of the prediction/analysis error 

covariances. A highly compact parameterization is not only a 
computational necessity but also inevitable by virtue, as error 
characterizations available to data assimilation tend to be only 
qualitative and/or empirical. For example, if a physical or sys- 
tematic description of prediction errors were available, it is 
much more likely that this knowledge is used to improve the 
prognostic equations (4) rather than the data assimilation pro- 
cedure. The two numerical approaches examined in this paper, 
subspace projection and MRF-based regression, can effectively 
represent the N x N error covariance matrix using only n 2 and 
nN parameters, respectively, where n < N. For subspace 
projection, n can have a wide range of values depending on the 
subspace dimension. In particular, an EOF subspace tends to 
have a very small n, e.g., n • 10 for cases in section 4.1. The 
scale-dependent subspace of wavelets usually requires a larger 
n (n/N is constrained by the scale constant), while the spectral 
(wavenumber) mode subspace is still larger. For the MRF- 
based approach, n is determined by the order of approxima- 
tion, e.g., n = 13 for the second-order structure (Figure 2b) 
used in our numerical experiments, all of which have been 
performed on a desktop workstation. Our calculations with 
simple but geophysically relevant models of fluid flow have 
demonstrated that the second-order MRF parameterization 
(inhomogeneous and anisotropic) is both efficient and effective 
in producing near-optimal estimates of the prognostic variables. 

The sequential assimilation schemes approximating the Kal- 
man filter based on the two parameterization approaches have 
consistently produced estimates (analyses) nearly identical to 
those of nonapproximated Kalman filter, under a wide range of 
dynamic equations and filter parameters examined in this pa- 
per. The numerical experiments, conducted with uncorrelated 
parameter matrices Q•,. and R/•, have presented a stringent test of 
regularity in the covariance structure and hence stability of the 
filter. It is then noted that stability of the subspace projection 
approach can be dependent on choice of the modal functions. 
Both the empirical (e.g., EOFs) and prescribed (e.g., wavelets) 
modes have shown such dependency, while the MRF approach 
has been stable under all numerical situations examined here. 

The performance of the approximate filters, if stable, is 
generally insensitive to the relative weights (i.e., the ratio q/r) 
given to the model and data, especially when the weight for the 
data is at least that of the model (q/r >_ 1). This parameter 
insensitivity is encouraging with respect to robustness of the 
filter outputs, such as analyses of satellite altimetric data. As- 
similation of simulated TOPEX/POSEIDON data into a mul- 

tilayer version of MICOM has resulted in asymptotically di- 
minishing RMS tracking errors (to be presented), similar to 
those in the single-layer case discussed in section 4.3. For a 
much more sparsely sampled data set, assimilation outputs can 
become sensitive to the filter parameters, particularly to the 
correlation structure of model error in Q/•, as noted by Bennett 
and Budgell [1987] and others. This implies that the correlation 
scale of the error covariances depends partly on the resolving 
power of the observation network at hand. 

The particular method of MRF parameterization has addi- 
tional possibilities that remain to be investigated. First, the 
MRF framework has been used for statistical characterization 

of geometrical patterns like discontinuity contours and estima- 
tion of them using a stochastic relaxation procedure like sim- 
ulated annealing [Geman and Geman, 1984]. This may lead to 
an assimilation procedure for contour data such as fronts and 
rings detected on sea-surface temperature maps (satellite 
based). Second, the MRF parameters should be able to be 
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dynamically updated by simulation of error ensemble [Evensen, 
1994], as an alternative to the tangent linear approximation 
scheme used in this paper. This alternative appears to be useful 
for a prediction of MRF over multiple time steps. Finally, the 
use of diagnostic equations as "generalized data" (section 
4.3.3) needs to be examined for practical cases such as "assim- 
ilation" of open boundary conditions. In summary, the Kalman 
filter generally regards the prognostic equations (4) as a first- 
order autoregression in time, on which the covariance predic- 
tion equation (6) is based. It is then conceptually consistent 
that the covariance structure be parameterized in space by a 
regression procedure as well, and this has been achieved suc- 
cessfully here with an MRF. Spatial regression with an MRF is 
implicative of a differential/difference diagnostic equation, 
such as the geostrophic balance, which is a classic constraint 
for the error fields in data analysis/assimilation. 

Appendix A: Wavelet Subspaces 
Consider a discrete one-dimensional periodic domain con- 

sisting of N points. Compactly supported basis functions in a 
multiresolution framework can be given as the so-called scaling 
functions of orthonormal and biorthogonal wavelet transforms 
[Daubechies, 1992]. In particular, the symmetric biorthogonal 
basis functions given by Daubechies [1992, section 8.3] have 
compactly supported inverses as well. For example, the two 
scaling functions, referred to as •b 3'3 and I• 4'4, used in this 
paper are given by 

0.1768 

•3,3= 0.5303 0.5303 ' 

0.1768 

0 

0 

-0.0645 

- 0.0407 

0.4181 

0.7885 

0.4181 

-0.0407 

- 0.0645 

0 

(24) 

The basis vectors b i in (9) are periodically shifted versions of 
these scaling functions. In the standard multiresolution analy- 
sis with diadic scaling, the scaling functions are shifted by two 
spatial indices. For example, using the scaling function •b 3'3, 
the subspace B (whose columns are bi) would look like 

0 0 0 

0.1768 0 0 

0.5303 0 0 

0.5303 0.1768 0 

0.1768 0.5303 0 

0 0.5303 0.1768 

0 0.1768 0.5303 

0 0 0.5303 

0 0 0.1768 
. 

and have a dimension of N x N/2. 

(25) 

Further (diadic) reductions in the subspace dimension can 
be achieved by cascading. By letting B ("') denote the 2m x m 
subspace matrix with the exact same local structure as given in 
(25), an/'th scale-level subspace is obtained as 

B = B(N/2)B(N/4)... B (N/2() (26) 

resulting in a N x N/2e subspace B for Kalman filter approx- 
imation. 

An advantage of this particular biorthogonal wavelet trans- 
formation is that the basis functions for the pseudoinverse 
subspace T (wavelet decomposition) are locally supported, 
promoting computational efficiency. In particular, the columns 
of T r can be obtained in exactly the same manner as columns 
of the corresponding B, starting from the scaling functions •b 3'3 
and (D 4'4, 

0 

0.0663 

-0.1989 

-0.1547 

0.9944 

0.9944 

-0.1547 

-0.1989 

0.0663 

0 

ß ß 

0 

0.0378 

-0.0238 

-0.1106 

0.3774 

0.8527 

0.3774 

-0.1106 

-0.0238 

0.0378 

0 

. 

ß ß 

(27) 

which are the counterparts of i•) 3'3 and I•) 4'4, respectively. Fig- 
ure 1 shows the basis functions associated with the four scaling 
functions •b 3'3, •4,4, (D3,3, and (D 4'4, for the first three scale 
levels. 

Appendix B: Time Recursion of Information 
Matrix 

The Kalman filter that results from time recursion of the 

information matrix L k instead of the covariance Pk is often 
referred to as the information filter [Lewis, 1986]. The MRF- 
conforming recursion (see (16)-(18)) is an approximation of 
such filtering equations. The nonapproximated version of the 
equations can be retrieved by replacing (16) with 

O/• r " F/½Mk = (FkM•F• + L•_•) -• r (28) 

A systematic way to numerically approximate this is to perform 
the matrix inverse on the right-hand side with the Jacobi iter- 
ations [Chin et al., 1992, 1994], where (16) represents the 
simplest of such approximations. Since (17) and (18) are sums 
of quadratic terms, Lk can remain as positive semidefinite 
throughout the recursion for any matrix Ok, i.e., for an arbi- 
trary approximation of (28). If O k has a full rank for each k, 
then Lk would retain positive definiteness. 

This appendix presents a derivation of the exact recursion 
for the information matrix; L k is not approximated by trunca- 
tion here. While the usual form of the information filter in- 

volves explicit computation of inverse (time reverse) dynamics 
F• -1, the recursion steps (28), (17), and (18) avoid such an 
inversion. Duality with the standard recursion of the covari- 
ance matrix Pk can also be recognized, when comparing (28) 
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with (7), (17) with (8), and (18) with (6). The original recursion 
(6)-(8) of the covariance matrix in Kalman filter corresponds 
to the following dynamic system for the error process ek: 

ek = Fke•_• + w• (29) 

0 = H•e• + vk (30) 

where % and v/• are zero-mean processes representing the 
model and data error processes, respectively, with respective 
covariance matrices of Q/• and R/•. Our interest here is to 
derive an equivalent time recursion for the information matrix 
Lk, defined as the square L/• -- F•F/• of the regression oper- 
ator F/• satisfying (15). 

B1. Information Matrices for Model and Data Errors 

The information matrices associated with the model and 
data error processes % and v/• can be obtained simply as the 
inverses of the corresponding covariance matrices, M/• -= Q/• 
and N/• -= R• •, yielding the weighting matrices in the least 
squares formulation (3). For these error processes the regres- 
sion operator can usually be translated from linear diagnostic 
balance equations that are given or assumed. The correspond- 
ing information matrix is then obtained by squaring. For ex- 
ample, Jiang and Ghil [1993] (among others) have assumed 
that the model errors/residuals (u', v', h') in a two- 
dimensional, shallow-water dynamic system satisfy a geostro- 
phic balance, which can be written (assuming a proportionality 
between the dynamic pressure and layer depth) as 

0 u 
fOy 

c c') • 

fox h 
(31) 

for a proportionality constant c and Coriolis parameter f. 
When this equality is accepted with some form of uncertainty 
(e.g., replacing the right-hand side with a zero-mean uncorre- 
lated process with a variance of w-t), the left matrix operator 
represents a regression operator for the error vector [u', v', 
h '] T. The corresponding information matrix Mgcostrophy would 

(32) 

be a finite difference version of 

1 0 1 0 c 0 
0 I roy 

Mgcøstrøphy :W C 0 C 0 C 0 

y Oy • 0• 0 1 fox 
c 0 

1 0 fOy 
c O 

=w 0 1 fox 
c 2 

cO cO f 2V f Oy fox 

where V is the Laplacian operator. The difference operators 
tend to make the information matrix like Mgeostrophy singular, 
preventing an explicit expression of the corresponding covari- 
ance matrix Qgeostrophy' 

B2. Forecasting of Information Matrix 

We consider computing the information matrix L/• associ- 
ated with the forecast error, given the nearest-past analysis 
error information L•_ • and the forecast equation (29). The 
key algebraic steps involve application of the standard maxi- 

mum likelihood (ML) estimation formulas and block matrix 
inversion techniques. 

Assume for the moment that the regression operator F•_ • is 
available, so that F•_ •ek_ • = 5. Augmenting with (29) will 
yield an ML formulation for a joint estimation of e•_• and e• as 

Because e•_ • is uncorrelated with % (a fundamental assump- 
tion in the standard Kalman filter), this ML problem is equiv- 
alent to the optimal single-step forecasting for the estimation 
error. The standard formula for the 2N x 2N posterior esti- 
mation error covariance 9 • for the ML problem is [e.g., Lewis, 

fiO?l 

(34) 

in which the square of the regression operator F•_ • has been 
replaced by the information matrix L•_ • in the last step. By 
partitioning this covariance matrix by N x N blocks P,s as 

Pll P•:] (35) •5 : P21 P22 ' 

we can identify from (33) that the posterior covariance for e• is 
P2:. The desired information matrix can thus be obtained as 

M; M•F•(F r , -1 r - - F/•M• - /•MkF/, + L•_•) (36) 

The last step is due to a block matrix inversion formula, i.e., 
denoting (34) concisely as 

[L• L12] -1 •: L21 L22/ ' 
it can be verified by substitution that Pl• = L• • + 

- -•L 2) -t P = -IL 2P22L2 L 1 P22 -- (L22 - L21Lll 1 1 '> Lll I 1 11 , ' - 
-L(i•L 2P22, and P2 - -P22L21L• • Equation (36) can bc 1 1 ' 

shown to be equivalent to the recursion steps (28) and (17), 
which can be verified by elimination of terms after substituting 
(2S) into (17). 

B3. Data Update of Information Matrix 

To verify the data-update step (18), we assume initially that 
the regression operator Ff• is available, so that F•e/• = 5. The 
following ML estimation problem can then be formulated by 
augmentation with the observation equation (30): 

whose posterior covariance matrix is the desired analysis error 
covariance. Using the standard ML formula as before, we then 
have 

L• =- (P•) -• 

r (38) = L• + H•N•H• 

which is (18). 
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