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Motivation to study sea level in CORE-II 
simulations
There are a growing number of observation-based measures 
of sea level related patterns with the advent of the Argo floats 
(since the early 2000s) and satellite altimeters (since 1993).  
These measures provide a valuable means to evaluate aspects 
of global model simulations, such as the global ocean-sea ice 
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simulations run as part of the interannual Coordinated Ocean-
ice Reference Experiments Griffies et al. (2009), Danabasoglu 
et al. (2013).  In addition, these CORE-II simulations provide 
a means for evaluating the likely mechanisms causing sea 
level variations, particularly when models with different skill 
are compared against each other and observations.  We have 
conducted an assessment of CORE-II simulations from 13 
model configurations Griffies et al. (2013), with a focus on their 
ability to capture observed trends in ocean heat content as well 
as the corresponding dynamic sea level over the period 1993-
2007.  Here, we provide a synopsis of the assessment.

The CORE-II simulations are designed primarily for studies 
of interannual variability (Doney et al., 2007, Large and 
Yeager, 2012).  The atmospheric state of Large and Yeager 
(2009), used as part of the CORE-II air-sea flux calculations, 
contains interannual satellite-based radiation only after 1983.  
Over the 15 year period from 1993-2007, observed sea level 
variations have a large component due to natural variability 
e.g., Zhang and Church (2012), Meyssignac et al (2012).  The 
CORE-II simulations thus provide a useful means to evaluate 
interannual variability in ocean-ice models against observations 
of sea level.

A notable limitation of our study is that we are not focused on 
sea level changes associated with melting land ice.  There are 
complementary global model studies that consider the ocean’s 
response to melt events (Gerdes et al., 2006, Stammer (2008), 
Weijer et al., 2012 and Lorbacher et al, 2012).  However, there are 
large uncertainties with rates of observed liquid and solid runoff 
from Greenland and Antarctica, thus prompting us to focus on 
steric aspects of global and regional sea level variations.

Questions asked by the CORE-II sea level study
Ocean warming causes ocean volume to increase due to a 
decrease in density.  According to Church et al. (2011), such 
changes in global mean thermosteric sea level determine 
about one-third to one-half of the observed global mean sea 
level rise during the 20th and early 21st centuries.  Although 
limited largely to examinations of natural variability over the 
relatively short period of 1993-2007, our assessment is of use 
to determine the suitability of global ocean-ice models for 
capturing the longer term trends that are the focus of studies 
such as Church et al. (2011), and of great concern for climate 
impacts from anthropogenic warming.  In particular, we can 
assess the ability of models to respect observed changes in 
global ocean heat content and associated sea level trends, 
as well as regional patterns of sea level change due to ocean 
dynamics.

With this motivation, we focus the assessment on two general 
questions:

•  Do CORE-II global ocean-ice simulations reproduce the 
observed global mean sea level variations associated with 
thermosteric effects estimated from the observation-based 
analyses?  To address this question, we focus on ocean heat 
content trends, and how these trends are associated with 
changes in thermosteric sea level.

•  Do CORE-II ocean-ice simulations reproduce observation-
based changes to dynamic sea level patterns?  To address 
this question, we partition dynamic sea level trends into 
their halosteric and thermosteric patterns, as well as 
bottom pressure contributions.

Results and discussion
As part of our synopsis, we present patterns from the CORE-
II ensemble mean from the suite of 13 models analyzed by 
Griffies et al. (2013), where again all results are computed over 
the years 1993-2007.  Where available, we compare CORE-II 
simulations to observation-based analyses.  We also exhibit 
time series of global volume integrated upper ocean heat 
content and thermosteric sea level. 

1. Time mean and anomalous dynamic sea level
We show the time mean dynamic sea level in Figure 1 (Front 
cover image), both from the CORE-II simulations and from the 
satellite-based analysis from AVISO (Archiving, Validation, and 
Interpolation of Satellite Oceanographic Data) LeTraon et al. 
(1998), Ducet et al. (2000).  The models cluster around a global 
root-mean-square difference from AVISO between 0.09-0.15 m, 
with the ensemble mean having an RMS difference of 0.10 m. 
The models generally are more consistent with observations 
in the lower latitudes, with the high latitudes leading to 
larger differences, particularly in regions of mode and deep 
water formation (40-50 degrees latitude) as well as western 
boundary currents in the Atlantic and Pacific. The north-south 
gradient of dynamical sea level accross the Southern Ocean is 
weaker for many of the simulations relative to AVISO, perhaps 
suggesting a fluctuation towards a weaker than observed zonal 
transport in the Antarctic Circumpolar Current, or perhaps 
a shift in the overall latitude of the current.  In general, we 
conclude that each of the CORE-II simulations produces a 
respectable 1993-2007 time mean dynamic sea level, meeting 
or surpassing the accuracy of the historical simulations 
considered as part of the CMIP3 analysis of Yin et al. (2010).   

2.  Linear trend in heat content and thermosteric 
sea level

As shown in Griffies et al., (2013), the linear trend in CORE-II 
simulated dynamic sea level over years 1993-2007 is dominated 
by the trend in steric sea level, with changes in bottom pressure 
(column mass) roughly an order of magnitude smaller.  To 
illustrate changes in the steric patterns, we show in Figure 2 the 
linear trend in heat content per unit horizontal area as computed 
over the upper 700 m of ocean, and the corresponding trends in 
thermosteric sea level.  The thermosteric trends largely reflect 
the heat content trends, but with some modulation from the 
thermal expansion coefficient.  We compare these trends to 
those found in observation-based analyses.

We note that the two observation-based analyses themselves 
have differences, particularly in the North Atlantic, where 
Domingues et al. (2008) show much less warming than Levitus 
et al. (2012), and the Southern Ocean, where Domingues et al. 
(2008) show a cooling absent from Levitus et al. (2012).  To 
the leading order, models capture the observed warming of the 
central-west Pacific found in both observation-based analyses, 
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as well as the strong warming in the subpolar North Atlantic 
as found in Levitus et al. (2012).  The models show a general 
cooling trend in the tropical northern hemisphere for the 
Atlantic and Pacific, with a westward extension in this simulated 
trend absent from both of the observational analyses.

The mechanism for the Pacific trend in the CORE-II simulations, 
with general rise in the west and fall in the east, accords with 
that discussed in such studies as Timmermann et al. (2010), 
Feng et al (2010), Bromirski et al. (2011), Merrifield et al. (2012), 
Zhang and Church (2012), and Meyssignac et al (2012), with 
these studies suggesting that the west-east gradient reflects 
the negative phase of the Pacific Decadal Oscillation.  Likewise, 
the increased heat content in the North Atlantic over this 
period is dominated by natural variability.  It is associated with 
a decrease in surface cooling in the subpolar region related 
to a change in the North Atlantic Oscillation (NAO) phase in 
the presence of a positive Atlantic meridional overturning 
circulation (AMOC) anomaly. Specifically, in the 1980s and 
early 1990s, the NAO exhibited a persistent positive phase and 
the associated large negative surface fluxes acted as a pre-
conditioner for enhanced AMOC. During this period, enhanced 
poleward oceanic heat transport associated with an enhanced 
AMOC was largely balanced by surface cooling due to the 
positive NAO. Around 1995/1996, a reduction in the surface 
ocean heat loss associated with a change in the NAO to its 
negative (or neutral) phase allowed for the northward oceanic 
heat transport to cause the subpolar gyre to transition to an 
anomalously warm phase (e.g., see the discussion in Lohmann 
et al., 2009, Robson et al., 2012, and Yeager et al., 2012).

3.  Evolution of global mean heat content and 
thermosteric sea level

For many purposes, the CORE-II simulations are relatively 
short, with the 60 years of CORE-II atmospheric state (1948-
2007) repeated five times with an aim to reduce, although 
admittedly insufficient to eliminate, long-term drift in the 
deep ocean.  Notably, the repeated 60-year cycle introduces a 
spurious periodicity, and it also leads to a lag in the response 
of the simulations to potential long term trends, such as the 
warming of the latter portion of the 20th century. Additionally, 
as discussed in Griffies et al. (2013), there is a slightly 
weaker linear trend in the CORE-II simulations relative to the 
observations, with this smaller trend in CORE-II revealed by the 
time series in Figure 3 for the global mean heat content and 
thermosteric sea level.  Additionally, if we remove the linear 
trend, the variability in the CORE-II simulations correlates more 
to that in Domingues et al (2008) than to Levitus et al (2012). 

Conclusions
There is a general agreement between the CORE-II simulated 
patterns of heat content change and thermosteric sea level 
change with the observation-based analyses.  The global mean 
also shows a general agreement, though with a cool bias.  These 
results lend confidence to both the observation-based analyses 
and the CORE-II simulations.  Yet as with any model comparison 
project, one is perhaps left with more questions than answers, 
with this situation perhaps representing the real use of 
comparison projects.  Namely, it is critical to identify relevant 
questions to make steps towards understanding as well as to 
improve numerical models and observation-based analyses.
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Figure 2: The upper row shows the linear trend in annual mean ocean heat content per unit horizontal ocean
area as vertically integrated over the upper 700 m of ocean (W m  2) for the years 1993-2007, computed from
CORE-II ensemble mean as well as the observation-based analysis from Levitus et al. (2012) and an updated
analysis from Domingues et al. (2008) and Church et al. (2010) (see their Figure 6.3b). The lower row shows
the corresponding trends in thermosteric sea level (mm yr  1).
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Model-model and model-observational differences may be 
due to model error, CORE-II atmospheric state errors, CORE-II 
experimental design limitations, and/or observational error or 
limitations Griffies et al. (2013).  One avenue to make progress 
on these questions from the modelling perspective is to conduct 
detailed analyses of physical processes, term-by-term.  We have 
in mind, for example, the analysis of Griffies and Greatbatch 
(2012), who decomposed the global mean sea level budget 
according to physical processes, as well as that from Palter et 
al. (2013), who decomposed the local steric sea level budget 
according to physical processes.  Such analyses are nontrivial 
to perform with a single model, and logistically even more 
difficult across a suite of models such as the CORE-II simulations 
assessed here.  Nonetheless, we contend that significant 
progress will be made to understand model-model, and to some 
extent model-observational, differences only when careful budget 
analyses are performed at the level of physical processes.
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Figure 3: Time series for ocean heat content and thermosteric induced sea level integrated over the upper 700 m
of ocean. To reduce dependence on a single chosen reference date, each result is computed with respect to the
ten year mean for the respective model or observational time series, as computed over years 1988-1997. The
CORE-II ensemble mean is also shown, as computed from all of the simulations. We also show estimates from
observations based on analysis of Levitus et al. (2012) and Domingues et al. (2008), within the latitude range
65◦S − 65◦N. Model results are global.
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