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a b s t r a c t

In an effort to more fully employ underutilized satellite observa-
tions in ocean modeling, this work demonstrates a method for
quantifying the agreement between time-evolving spatial features
evident in fields of differing, but functionally related, variables that
are more commonly compared qualitatively via visual inspection.
This is achieved through application of theModified Hausdorff Dis-
tance metric to the evaluation of ocean model simulations of sur-
face salinity near riverine sources using satellite ocean color data.
TheModified Hausdorff Distance is ametric from the field of topol-
ogy designed to compare shapes and the methodology provides
quantitative assessment of similarity of spatial fields. The Mod-
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Shape comparison
Hausdorff distance

ified Hausdorff Distance can be applied for comparison of many
geophysical and ecological fields that vary spatially and tempo-
rally. Here, the utility of the metric is demonstrated by applying
it to evaluate numerical simulations of the time-evolving spatial
structure of the surface salinity fields from three ocean models in
the vicinity of large riverine sources in the northeast Gulf of Mex-
ico. Using the Modified Hausdorff Distance, quantitative compari-
son of modeled sea surface salinity contours to contours of a grid-
ded satellite-derived ocean color product is made under the as-
sumption that themodeled fields are related to optically significant
quantities that indicate the spatial extent of riverine influencedwa-
ter. Three different ocean models are evaluated and are compared
individually to the satellite data. The sea surface salinity values and
ocean color index values that most closely match (lowest Modified
Hausdorff Distance score) are identified for each model. The Mod-
ified Hausdorff Distance scores for these best pairings are used to
both determine the degree to which surface salinity fields from the
modelsmatch the satellite observations and obtain an empirical re-
lationship between the two variables for eachmodel. Furthermore,
the best pairings are compared between models allowing key dif-
ferences in the simulated riverine water distributions to be distin-
guished. TheModified Hausdorff Distance proves a robust and use-
ful diagnostic tool that has the potential to be utilized inmany geo-
physical applications and facilitates the use of satellite ocean color
data for quantitative evaluation of hydrodynamic ocean models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For decades satellite sensors have been used to detect the color of the ocean surface by measuring
light reflectance in different spectral bands (McClain, 2009). These ocean color data products have
been utilized to identify and analyze ocean features that affect pigment and particulate content of the
water andhence the ocean color, including oil spills, algal blooms and river plumes (e.g. Hu et al., 2004;
Androulidakis and Kourafalou, 2013; Liu et al., 2013; Hu et al., 2015). They have also been integrated
into observation and detection systems for harmful algal blooms and oil spills (e.g. Stumpf et al., 2003;
Brekke and Solberg, 2005; Hu et al., 2016). With both broad spatial and frequent temporal coverage,
satellite ocean color observations also have the potential to be valuable resources for numerical ocean
modeling, however the ocean circulation modeling community has not fully capitalized on the utility
of this data.

Satellite ocean color data have been used for ocean model assessment qualitatively, as patterns
evident in the ocean color are often similar to, and may generally be visually compared to, features
in dynamical fields (e.g. Binding and Bowers, 2003; Gregg et al., 2003; Chassignet et al., 2006; Liu
et al., 2011; Schiller et al., 2011). Quantitative comparisons generally rely on point-wise differences
that demand the same field be used and/or an empirical relationship between different but related
fields is determined (e.g. Binding and Bowers, 2003; Gregg et al., 2003; Gregg, 2008; Mariano et al.,
2011; Chaichitehrani et al., 2014; Zhang et al., 2014). While the types of statistical measures derived
from point-wise comparisons (e.g. biases or correlations) are useful, they do not necessarily provide
comparison of spatial distributions and/or shape that are related to circulation patterns or dynamical
processes, and neither are they expressly designed for such a purpose. In an effort tomore fully utilize
the vast amount of remotely sensed data for ocean model assessment and analysis, the objective of
this work is to apply and demonstrate the potential of ametric called theModified Hausdorff Distance
(MHD) to quantitatively compare spatial and temporal patterns derived from satellite ocean color
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observations to ocean circulation models. It is anticipated that the methodology introduced here will
have extensions in future to new satellite observations (such as surface salinity) and the development
of cost functions for adjoint data assimilation techniques.

2. Background

The MHD originates from the field of topology and is designed specifically to compare shapes
(Dubuisson and Jain, 1994). The MHD and Hausdorff distance, from which the former is derived,
are frequently used in imaging software for object location and pattern recognition (Huttenlocher
et al., 1993; Huttenlocher and Rucklidge, 1993; Rucklidge, 1997; Daoudi et al., 1999; Zhang and
Lu, 2004). There has been some application to analysis of geospatial data, an example being
precipitation patterns where the Hausdorff distance forms one component of a Forecast Quality Index
(e.g. Venugopal et al., 2005; Nan et al., 2010) and application of the MHD for skill assessment of
sea ice models based on analysis of spatial distribution of sea ice concentration (Dukhovskoy et al.,
2015). However, themetric has not beenwidely utilized in oceanographic applications. The particular
application considered here compares ocean model surface salinity fields with satellite ocean color
data near a large river source, the Mississippi River. This presents the opportunity to utilize ocean
color data from satellites for quantitative model assessment and intermodel comparison in a region
with high spatial and temporal variability of the salinity field.

TheMississippi River enters the northeast Gulf of Mexico (NEGoM) through several channels along
the end of the Mississippi Delta. This study focuses on the area east of the Mississippi Delta where the
shelf is nearly non-existent and smallmesoscale deep ocean eddies dominate the circulation field over
the nearbyDeSoto Canyon. The domain for this analysis extends fromapproximately 50 kmwest of the
Mississippi Delta eastward to Apalachicola Bay inNorth Florida, and from28°Nnorthward to the coast
(Fig. 1). The surface salinity in this region is influenced by several rivers and is dominated by outflow
from the Mississippi River (Fig. 2). During the fall and winter months, the Mississippi River plume
tends to be trapped closely to the coast westward of the study domain (Morey et al., 2003a, 2005).
In the spring and summer, reversal of the climatological wind allows the plume to spread eastward
over the DeSoto Canyon region (Morey et al., 2003b; Walker et al., 2005) (Fig. 3). Interaction with
circulation features such as the Loop Current and Loop Current Eddies leads to a complex structure,
with salinity contours forming intricate shapes with filaments extending across the domain (Figs. 3
and 4, Walker et al., 1996; Morey et al., 2003b; Schiller et al., 2011; Androulidakis and Kourafalou,
2013). The geometry of these fields presents a challenging system for the MHD to assess, making the
region and the system analyzed an excellent scenario for demonstration and evaluation of the utility
of the metric.

3. Data and methods

This study demonstrates application of the MHD for comparing satellite-derived and ocean model
fields of different, but related quantities. In particular, an ocean color product derived from satellite
optical data is compared to salinity fields from three different models to evaluate the models’
representations of the distribution of riverine water. In this section, the MHD and Hausdorff distance
(from which the MHD is derived) are introduced, the ocean color product and the model simulations
are described, and the application of the MHD and diagnostic techniques are detailed.

3.1. The Modified Hausdorff Distance

The Hausdorff Distance, from which the Modified Hausdorff Distance is derived, is a topological
metric commonly used in the context of visual imaging for pattern recognition and shape
matching, with utility for applications such as facial recognition (Huttenlocher and Rucklidge, 1993;
Huttenlocher et al., 1993; Rucklidge, 1997; Daoudi et al., 1999; Zhang and Lu, 2004). The Hausdorff
Distance is very sensitive to outliers within a dataset and modified versions (the Modified Hausdorff
Distance, MHD) of the metric that have a more robust response to both outliers and noise have been
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Fig. 1. (a) Model domain and bathymetry for the GoM-HYCOM simulation. Boxes represent domains for the DSC-ROMS and
NGoM-HYCOM (model configurations and acronyms are defined in Section 3.3). (b) Subdomain common to all models used for
analysis. The bathymetry is shown for the DSC-ROMS configuration. The squares indicate which river sources are simulated in
each model (determined by the presence or absence of fill color). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

investigated (Dubuisson and Jain, 1994; Mattern et al., 2010). Here, following Dubuisson and Jain
(1994) and Dukhovskoy et al. (2015), the version of the MHD used is given by

MHD = max {d (A, B) , d(B, A)} , (1)

where

d (A, B) =
1
|A|


a∈A

d(a, B); d (a, B) = inf b∈Bd (a, b) , (2)

and

d (B, A) =
1
|B|


b∈B

d(A, b); d (A, b) = inf a∈Ad (a, b) (3)

with A the set of points on one contour, B the set of points on a second contour and d(a, b) the distance
between those points (here, great circle distance, km). In simple terms, it may be considered to be the
largest of the average of the minimum distances between each point on contour A and contour B and
the average of the minimum distances between each point on contour B and contour A. A schematic
illustrating application of the methodology given in (1)–(3) for computing the MHD can be found in
Dukhovskoy et al. (2015, their Figure 3 and related text).
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Fig. 2. (a) Daily river discharge calculated from US Geological Survey data used for DSC-ROMS transport. NGoM-HYCOM uses
the samedata source to calculate daily river transport andhas similar variation andmagnitude. (b)Monthly climatology used for
GoM-HYCOM river transport. (c) Temperature climatology calculated from NOAA tides and currents data used for DSC-ROMS.
For river locations see Fig. 1.

The MHD increases as the shapes of the contours become increasingly different and decreases
as they become more similar. It is noted that the MHD is a topological distance and d(a, b) in Eqs.
(2) and (3) has units of distance (kilometers in the examples shown here). However, in general,
the value of the MHD should be viewed simply as a score with a lower value indicating a better
match, and is therefore shown without units here. An example illustrating this metric for comparing
different Sea Surface Salinity (SSS) contours from a model is shown in Fig. 5. In this example, the
SSS = 33 contour from one of the models used in this study (the DeSoto Canyon simulation based on
the Regional Ocean Modeling System, DSC-ROMS, described in Section 3.3) at a particular ‘‘control’’
time (t = T ) is compared to SSS = 33 contours from the simulation at times T + δt for δt ∈

[−93, −69, −45, −21, 3, 27, 51, 75, 99] hours. As expected, the SSS contour shapes most closely
match for the shortest time offset of 3 hours, and become increasingly different as the magnitude of
the time offset increases. The MHD values computed between the ‘‘control’’ contour and the contours
at other times mirror these changes, decreasing and increasing as the contour shapes become more
and less similar, respectively. Hence, the metric can be used to provide a measure of the agreement
between the contour shapes.

Unlike other shape comparisonmetrics such as Root Mean Square Deviation andMean Dispersion,
Dukhovskoy et al. (2015) show an increase in MHD score when a shape is compared to rotations
and translations of itself. This is desirable for the river plume comparison considered here, as
orientation and location of certain features (e.g., filaments) in surface salinity contours are important
characteristics and manifest as differences in rotation (orientation) and translation (location) of
contours. Dukhovskoy et al. (2015) also show that the MHD is robust to noise, with contours being
shown to be similar (small MHD score) if the amplitude of the noise is small but also showing an
increase in theMHD score (i.e. a difference in the contours) as the amplitude of the noise grows larger.
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(a) Winter satellite. (b) Summer satellite.

(c) Winter GoM-HYCOM. (d) Summer GoM-HYCOM.

(e) Winter NGoM-HYCOM. (f) Summer NGoM-HYCOM.

(g) Winter DSC-ROMS. (h) Summer DSC-ROMS.

Fig. 3. Example 8-day averaged fields of typical winter (left) and summer (right) Ocean Color Index (OCI, a–b) and Sea Surface
Salinity (SSS) fields fromGoM-HYCOM (c–d), NGoM-HYCOM (e–f) and DSC-ROMS (g–h). Animations for the entire time periods
from each of the above can be found at: https://youtu.be/w3mf0EtYWOU (satellite), https://youtu.be/OogU7VVn4fI (GoM-
HYCOM), https://youtu.be/2HdHTF7CCAg (NGoM-HYCOM) and https://youtu.be/YyQmd4OxzB0 (DSC-ROMS).

Robustness to noise is a very useful property for comparing river plumes. If small-scale features (small-
amplitude noise) are diffused and therefore smoothed out of the contours of onemodel relative to the
contours of another slightly less diffuse model, then ideally a metric will still be able to determine

https://youtu.be/w3mf0EtYWOU
https://youtu.be/OogU7VVn4fI
https://youtu.be/2HdHTF7CCAg
https://youtu.be/YyQmd4OxzB0
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(a) Winter satellite. (b) Summer satellite.

(c) Winter GoM-HYCOM. (d) Summer GoM-HYCOM.

(e) Winter NGoM-HYCOM. (f) Summer NGoM-HYCOM.

(g) Winter DSC-ROMS. (h) Summer DSC-ROMS.

Fig. 4. Examples of contours of the fields shown in Fig. 3. The ocean model data have been regridded to the 4-km
grid of the OCI product. Animations for each of the above can be found at: https://youtu.be/AEdhNoDk_P8 (satellite),
https://youtu.be/5tn7b2PIjuQ (GoM-HYCOM), https://youtu.be/eg4IJoDZvK0 (NGoM-HYCOM) andhttps://youtu.be/xvmjccO5JiA
(DSC-ROMS).

whether there is a general similarity in shape between the two sets of contours. At the same time, if
one model is notably more diffusive than another such that the plume shape and hence contours are
warped significantly in the diffuse case relative to the less diffusive case (i.e. large-amplitude noise in

https://youtu.be/AEdhNoDk_P8
https://youtu.be/5tn7b2PIjuQ
https://youtu.be/eg4IJoDZvK0
https://youtu.be/xvmjccO5JiA
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Fig. 5. Maps of contours of SSS= 33 from the DSC-ROMS simulation. On each plot, the black contour is frommodel time T , and
themagenta contours are from themodel time indicated on each plot. Bottom:MHD values showing the agreement of SSS= 33
contours from the model control time (T ) and nine different model times. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the diffuse case), the metric should be able to determine that there is a lack of similarity between the
two and return a larger MHD score.
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3.2. Satellite Ocean Color Index

An Ocean Color Index (OCI, Hu et al., 2012) derived from data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) is used as a proxy for identifying riverine influenced water to
evaluate the ocean model salinity fields in the vicinity of the Mississippi River. The algorithm is based
on a three-band subtraction for relatively clear waters (chlorophyll a concentration <0.25 mg m−3),
but switches to a blue/green band ratio algorithm for more productive waters. MODIS data (NASA
reprocessing # 2014.0, processed using SeaDAS version 7.2) were obtained from the NASA Goddard
Space Flight Center (GSFC, http://oceancolor.gsfc.nasa.gov) and processed with the most current
algorithms. This OCI product has 4 km resolution and is temporally averaged over eight days.

The choice of OCI presents a compromise between accuracy, data availability, and applicability in
tracking riverine waters. In addition to fresh water, rivers discharge suspended sediment, Colored
Dissolved Organic Matter (CDOM), and nutrients that facilitate primary productivity (chlorophyll-
rich phytoplankton growth). Relationships between CDOM and SSS have been previously used
to investigate oceanographic and estuarine waters (e.g. Hu et al., 2003; Green and Sosik, 2004;
Chaichitehrani et al., 2014; Chonga et al., 2014). Therefore, CDOM from MODIS measurements might
be considered an obvious candidate to use as proxy for SSS to trace plume waters. However, from the
perspective of algorithms, it is difficult to derive an accurate CDOM product in riverine waters for a
number of reasons including uncertainties in atmospheric correction in the blue bands and difficulty
in separating CDOM and phytoplankton in CDOM-rich waters.

As an alternative to a satellite CDOM product, the OCI is derived from an empirical algorithm that
accounts for both phytoplankton and CDOM thus making it a good proxy for representation of total
absorption (Hu et al., 2012), similar to the use of the light attenuation (Kd derived from the blue–green
band ratio algorithm, which is essentially a total absorption as well) to trace the Amazon River plume
(Del Vecchio and Subramaniam, 2004). As a river plume advects offshore and mixes with ambient
seawater, most sediment particles settle to the bottom in near shore waters while CDOM and often
phytoplankton decrease, resulting in a decrease in OCI. Hence, a higher OCI tends to correspond to
fresher water closer to the river mouth (i.e. a lower SSS value) than further offshore and vice versa.
Because OCI contains information about both CDOM and phytoplankton in offshore waters where
suspended sediments are low, it is therefore reasonable to assume that there is a correspondence
between OCI and SSS, particularly in the CDOM rich riverine waters. One exception to this is in
coastal upwelling zones where phytoplankton are abundant but CDOMmay be low, leading to a false
interpretation of the OCI–SSS relationship. However, in the study region, intense coastal upwellings
are rare (e.g., Muller-Karger et al., 2015), making OCI a reasonable proxy to trace plume waters. In
addition, the availability of OCI data makes it a useful product. Since 2015, NASA has made OCI the
standard (default) chlorophyll data product, where 4-km resolution global data are generated and
provided to the community at daily, 8-day, and monthly intervals. Note that OCI is used here as a
relative index to trace plume waters rather than as an index to derive absolute SSS values.

3.3. Numerical models

Three ocean model simulations are evaluated, two of which use the Hybrid Coordinate Ocean
Model (HYCOM) and one of which uses the Regional Ocean Modeling System (ROMS). They differ in
numerical methods and configuration. Of particular relevance are differences in: data assimilation
(assimilative or not), as this impacts representation of the mesoscale features that have been
shown to impact riverine water spreading in the NEGoM (e.g. Morey et al., 2003b; Schiller et al.,
2011); horizontal spatial resolution, which can impact both representation of fields and horizontal
mixing; surface forcing, particularly as the wind patterns have been shown to impact riverine water
distribution in the NEGoM (e.g. Morey et al., 2003a,b); and parameterization of river inflow. This
information is summarized in Table 1. For further information, the reader is directed to the cited
references and references therein.

http://oceancolor.gsfc.nasa.gov
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Table 1
Summary of the three model simulations.

Simulation GoM-HYCOM NGoM-HYCOM DSC-ROMS

Data-assimilation Data-assimilative Free-running Free-running
Horizontal resolution 1/25° 1/50° 1 km
River parameterization Surface freshwater flux

with enhanced vertical
diffusivity

Surface freshwater flux
with enhanced vertical
diffusivity and barotropic
adjustment

Temperature, salinity and
momentum point source
(or series of point
sources).

Surface forcing NOGAPS COAMPS CFSR

3.3.1. The Gulf of Mexico Hybrid Coordinate Ocean Model
The Hybrid Coordinate OceanModel (HYCOM) is a finite-difference primitive equation hydrostatic

ocean circulation model (Bleck, 2002; Chassignet et al., 2003, 2006). It incorporates a flexible vertical
coordinate system allowing smooth transition between isopycnal, terrain-following (sigma) and
pressure coordinates to meet the demands of different ocean modeling challenges, for example
complex bathymetry or changing stratification. HYCOM is used operationally by the US Navy and
National Ocean Atmospheric and Administration (NOAA) in the global ocean forecasting systems
(Chassignet et al., 2005;Metzger et al., 2014). In this paper, a data-assimilative HYCOMGulf of Mexico
hindcast product is evaluated andwill be referred to asGoM-HYCOM. The archived datawere obtained
from the HYCOM server (HYCOM-31.0, http://hycom.org/data/goml0pt04/expt-31pt0). The domain
encompasses the full Gulf ofMexico, [−98.0°W, −76.4°W] and [18.90°N, 31.96°N] in longitude and
latitude respectively (Fig. 1). The horizontal resolution is (1/25)° of longitude by (cos(latitude)/25)°
in latitude resulting in grid spacing of approximately 3.8–4.2 km. The vertical grid has twenty layers,
which are primarily isopycnal-following in the stratified deep ocean, transitioning to pressure levels in
themixed layer and terrain-following (sigma) coordinates in shallowwater. Themodel is forced at the
lateral open boundaries with climatology fields derived from a 1/12°HYCOMmodel simulation of the
Atlantic Ocean (Kourafalou et al., 2009). The surface forcing is provided by theNavyOperational Global
Atmospheric Prediction System (NOGAPS, Rosmond et al., 2002). Data-assimilation is incorporated
using the Navy Coupled Ocean Data Assimilation (Cummings, 2005). River runoff is specified at 40
locations along the coast using a monthly climatology. The river input is implemented as a virtual salt
flux at the surface (Huang, 1993; Schiller and Kourafalou, 2010). The virtual salt flux, Sf , is calculated
from precipitation (P), evaporation (E) and river input (R), with Sf = [−(P − E) − R]S/α0 where S
is the salinity in the top layer of the model and α0 is a reference specific volume. Sf is then used to
calculate the salinity increment in the top layer of the model, dS = Sf dtbcling/dp where dtbclin is the
baroclinic time step, g is gravity and dp is the layer thickness in pressure units. At each baroclinic time
step, the salinity in the top layer of the model, S, is updated to account for changes due to freshening
via the virtual salt flux as S(t + dtbclin) = S(t)+ dS where t is time. For each river, the freshwater flux
is distributed over several ocean grid points adjacent to the river source and an enhanced diffusivity is
employed over a depth of 6 m tomix the source water through the water column. The surface salinity
is relaxed to climatology.

3.3.2. The northern Gulf of Mexico Hybrid Coordinate Ocean Model
A northern Gulf of Mexico free-running (non-assimilative) configuration of HYCOM (NGoM-

HYCOM) has been developed (Schiller et al., 2011; Androulidakis and Kourafalou, 2013; Kourafalou
and Androulidakis, 2013) with an advanced river input representation that extends the standard
HYCOM code (Section 3.3.1) to include momentum fluxes (in addition to salt fluxes) at the river
mouth and the ability to distribute the river input both vertically at the river mouth and across
estuarine cells (Schiller and Kourafalou, 2010). The domain extends across the Louisiana–Texas shelf
and the Mississippi–Alabama–Florida shelf [−95.52° W, −82.52° W] and [27.98° N, 30.70° N] in
longitude and latitude respectively (Fig. 1) and has 1/50° horizontal resolution. This simulation
has thirty vertical layers, 15 of which are at fixed depths in the upper 40 m of the water column
(transitioning to terrain-following in shallow water). The model is nested in the 1/25° data-
assimilative Gulf of Mexico HYCOMmodel (Section 3.3.1) and atmospheric forcing is derived from the

http://hycom.org/data/goml0pt04/expt-31pt0
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CoupledOcean/AtmosphericMesoscale Prediction System (COAMPS,Hodur et al., 2002). Daily average
freshwater discharges derived from United Stated Geological Survey data are prescribed for 16 rivers,
with monthly climatologies imposed for the Pearl River and Mobile Bay. These rivers are specified
as point sources (or multiple point sources for the Mississippi River) and there is no relaxation to
climatology. In addition, the barotropic pressure change of the water column is adjusted to take into
consideration the additional pressure exerted by the additional mass, and hence volume, of the river
inflow.

3.3.3. The Regional Ocean Modeling System northeast Gulf of Mexico configuration
The Regional Ocean Modeling System (ROMS) is a finite-difference primitive equation ocean

circulation model that employs the hydrostatic and Boussinesq approximations (Shchepetkin and
McWilliams, 2003, 2005). ROMS uses a variation of sigma coordinates (sometimes referred to as s-
coordinates) in the vertical that can be stretched to allow increased resolution in areas of interest
(Song and Haidvogel, 1994).

The domain for the ROMS configuration encompasses the De Soto Canyon region in the northeast
Gulf of Mexico (Fig. 1) and will be referred to as DSC-ROMS (https://data.gulfresearchinitiative.
org/data/R1.x138.080:0022/). The domain extends from the Mississippi Delta to Apalachicola Bay
[−90.5° W, −84.5° W] and [27.1° N, –30.7° N] in longitude and latitude respectively. The model
grid has one kilometer horizontal grid spacing with 40 layers in the vertical dimension, compressed
to increase resolution in the upper part of the water column. The model is nested in the 1/12°
data-assimilative global HYCOMmodel and atmospheric forcing is derived from the Climate Forecast
Reanalysis System (CFSR, Saha et al., 2010). The river input is treated as vertically distributed source
terms for temperature, salinity, and momentum. Daily average discharges are calculated from US
Geological Survey data while temperature climatology is calculated from NOAA tides and currents
buoy data (Fig. 2).

3.4. Diagnostics

3.4.1. Procedure overview
Two-dimensional contours (isolines) of select values are computed from the satellite OCI fields

and from the SSS fields for each of the ocean models. The OCI generally decreases with distance from
the river sources as the riverine waters spread and mix with seawater. Conversely, the SSS values
generally increase with distance from the river sources as the fresh river water mixes with the saline
ambient water. These fields are thus indicators of the region influenced by riverine water, and the
similarity of their spatial patterns is quantified using the MHD metric. Conducting this analysis on
multiple pairings of values of SSS andOCI contours identifies the SSS–OCI relationships for eachmodel
and the differences in these pairings are utilized to compare the river plume representations between
models.

3.4.2. Preprocessing
The satellite product and model data have differing time resolution, spatial resolution, and spatial

domain bounds. To compare these datasets, the coarsest common temporal and spatial resolutions
are adopted and the smallest common spatial domain is used (Fig. 1). (When determining common
spatial domains, regions of the nestedNGoM-HYCOMandDSC-ROMS inwhich relaxation to the parent
model fields takes place are not considered as part of the model domains for analysis purposes.)
The satellite OCI dataset used in this study has the coarsest temporal resolution of the datasets with
an eight-day average, as well as the coarsest spatial resolution with 4 km grid spacing. Therefore,
the model data are temporally averaged over eight days and regridded to the satellite product’s
4 km grid using a nearest neighbor average. The land and cloud masks from the satellite data are
then applied such that only areas with data present in all products are compared at each time.
The smallest common spatial domain is determined by the DSC-ROMS model for the eastern and
western boundaries and the NGoM-HYCOM for the southern boundary. The northern boundary
is bounded by the Mississippi–Alabama–Florida coastline. The resultant domain bounds used are

https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/
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https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/
https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/
https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/
https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/
https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/
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Fig. 6. Ocean Color Index (OCI) contours (gray and blue) and the SSS = 33 contour (magenta) from the 8-day averaged DSC-
ROMS salinity field. The OCI contours are shaded based on the MHD computed between them and the SSS = 33 contour. The
OCI = 1.65 contour has the lowest MHD (12.20) and is in blue. Dashed contours represent OCI contours with MHD greater than
40. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

therefore [−89.5° W, −84.5° W] and [28.0° N, 30.7° N] in longitude and latitude respectively, and
only contours within this region are compared.

3.4.3. Application of the Modified Hausdorff Distance
The similarity between contours of OCI from the satellite data and contours of SSS from each of

the models is quantified by calculating the MHD. An example illustrating application of the MHD
to compare SSS and OCI contours is shown in Fig. 6. In this example, the SSS = 33 contour from
a particular 8-day average salinity field from the DSC-ROMS simulation processed as described in
Section 3.4.2 is shown by the magenta line. Contours for several satellite OCI values are overlain in
gray, with the shading of those contours indicating the MHD computed between them and the model
SSS = 33 contour. (OCI contours that correspond to an MHD > 40 are dashed.) The OCI contour
(OCI = 1.65) that most closely matches the model SSS = 33 contour determined by the lowest (best)
MHD score (12.20) is shown by the blue line.

A further example of a satellite OCI field and amodel SSS field and correspondingMHDvalues for all
testedpairs of SSS–OCI contours at a particular time is shown in Fig. 7. A smallerMHD indicates a better
correspondence between the SSS and OCI contours. As the SSS increases, the value of the OCI with the
smallest MHD increases reflecting the inverse relationship between SSS and OCI and suggestive of
an OCI–SSS functional relationship (Fig. 7(c)). In this example, fresher (higher OCI) contours are found
closer to the coastlinewhere they are similar in shape leading to smallerMHDvalues. Further from the
shore, the higher salinity (lower OCI) contours havemore complex shapes that are less similar and the
MHD values for OCI–SSS pairings that most closely match reflect this lack of similarity by increasing
correspondingly. It is noted that in the case of cloud cover, contours may become segmented. Since
the contours are decomposed into a set of discrete points for the MHD calculation this segmentation
does not affect the calculation of the MHD.

While both SSS and OCI are good indicators of riverine-influenced water, the functional
relationship between SSS and OCI values is not known. To determine this relationship empirically for
the SSS field for each model, the MHD is calculated for all pairs of OCI–SSS contour values, as shown
by the example in Fig. 7. The MHD values are then averaged over time for each OCI–SSS pairing. The
best pairings (lowest MHD) over all times are then identified and a polynomial is fit to these data.
This yields an empirical functional relationship between SSS and OCI for each model. Inspection of
the MHD for these optimum OCI–SSS pairings also provides information about the model agreement
with the satellite data.

4. Results

4.1. Qualitative representation of the plume

The seasonality of surface salinity in the region, characterized by summer spreading and winter
retraction (Walker et al., 1996; Morey et al., 2003a; Androulidakis and Kourafalou, 2013) is evident
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(a) Satellite. (b) DSC-ROMS.

(c) MHD.

Fig. 7. Contours of satellite OCI (a) and SSS from the DSC-ROMS (b) for a particular 8-day average (1–8 June 2012). (c) The
corresponding MHD values for each SSS–OCI pair, with SSS on the horizontal axis and OCI value indicated by marker color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in the satellite OCI and model SSS contours (Figs. 3 and 4). During the fall and winter OCI and SSS
contours are often compacted near the coast as northwestward prevailing winds drive a coastally
trapped current. During the spring and summer, generally northward winds allow spreading to the
east consistent with Ekman drift, where mesoscale circulation features over this deeper region can
transport the low salinity water further south (Morey et al., 2003b). Features such as filaments and
smaller scale structures and undulations in the contours can be seen in the model SSS and OCI
contours at the 4 km resolution, although model fields have increased complexity at their higher
native resolutions.

In general, the near shore riverine waters correspond to values of OCI of 5 and above. Further from
the Mississippi Delta (the far field), values of OCI less than 0.35 approach the values of the ambient
Gulf of Mexico waters making the full extent of the river plume difficult to distinguish. The optical
properties of the offshore waters of the Gulf of Mexico have a distinct seasonal cycle largely due
to changes in the mixed layer (e.g. Muller-Karger et al., 2015). OCI values between 0.37 and 12.19
are taken to be representative of riverine water in the region and 15 values in this range, selected
incrementally on a logarithmic scale, are compared to model SSS contours.

Contours of SSS values from 30 to 34.5 with increments of 0.25 are computed from the re-gridded
model data. This range spans waters from the edges of the near field plume to the outer far field
where riverine waters have largely mixed with the open ocean waters and approach the ambient
salinity of the offshore Gulf of Mexico. The structure of the plume varies between the models (Figs. 3
and 4): GoM-HYCOM, the coarsest native resolutionmodel with climatological river forcing, generally
has a broad spread of smoother contours, with little clustering and few small scale variations. NGoM-
HYCOMandDSC-ROMS,with increased native resolution and high frequency river forcing, show some
additional detail in the contours and smaller scale features such as filaments. DSC-ROMS tends to have
more of the lower salinity riverine water pushed further offshore compared to the GoM-HYCOM and
NGoM-HYCOM in which the lower salinity riverine water does not generally extend as far offshore.
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4.2. Comparison of MHD scores between models

The MHD scores for all OCI–SSS contour pairings are calculated for each model and each eight-day
segment for the time period February 2010–February 2013, the longest time common to all datasets.
For each of the 285 OCI–SSS pairings per model, the MHD scores are averaged over time resulting
in one MHD score per pair per model (Fig. 8(a)–(c)). For a given SSS, the OCI value that yields the
minimum MHD score (i.e. best match) can be identified (and vice versa). This provides a set of best
pairings that can be compared between models, Fig. 8(d). It should be noted that there is not an exact
one-to-one correspondence between the pairings based on minimum MHD distances computed for
each SSS contour and for each OCI contour. This is due to the spacing between values of the SSS and
OCI contours chosen for this analysis. For example, in one region, several SSS contours may cluster
in between more widely spaced OCI contours. The OCI contours will only be closest in shape to
one SSS contour but two SSS contours may have the same OCI contour that is closest in shape. As
the resolution of the SSS and OCI space increases, this discrepancy in the correspondence will likely
decrease. However, using a substantially finer resolution of the SSS and OCI values will increase the
computational cost of the analysis given the already large number of combinations tested for each of
the three models over the three year period.

For the best pairings, theminimumMHD scores range from20 to 40 km (Fig. 8(d)). The values show
significant differences between eachmodel, particularly for SSS in the range 31–34 (as determined by
the 95% confidence intervals shown in Fig. 8(d)). TheMHD values are smaller for the GoM-HYCOMand
NGoM-HYCOM than DSC-ROMS by approximately 5–15 km. This indicates a better correspondence of
GoM-HYCOM and NGoM-HYCOM simulated SSS spatial patterns with the satellite OCI data across a
broad range of OCI values. The exception is for very low salinity and high OCI values, where DSC-ROMS
has lower MHD scores.

The OCI–SSS value pairs that give the best MHD scores are not the same for each model. Variations
among the best OCI–SSS pairings can be used to analyze the differences between riverine water
distributions and salinity biases between models.

4.3. SSS and OCI relationships

The optimal pairings, identified by the minimum MHD scores, are compared between models
(Fig. 8). For a specified SSS value, a lower OCI value for the model in the best pairings indicates that
the SSS contours are generally further offshore when compared to the other models and vice versa.
Alternatively, for a specified OCI value, a lower SSS value in the best pair for a model indicates that
model has a low SSS bias relative to the other models.

DSC-ROMS has a lower OCI for a given SSS (and lower SSS for a given OCI) when compared to GoM-
HYCOM and NGoM-HYCOM. Therefore, DSC-ROMS tends to simulate fresher water further offshore
and tends toward a low SSS bias in this region compared to the other models. At the other end of the
spectrum, analysis of the NGoM-HYCOM yields the highest OCI for a given SSS, and higher SSS for a
given OCI. Therefore, the model tends to have a high SSS bias relative to the other models over this
region of freshwater influence. Thus, overall, from DSC-ROMS to GoM-HYCOM to NGoM-HYCOM the
salinity bias moves from fresher to more saline.

Allmodel river representations showa transition fromhigh to lowSSS asOCI increases. Considering
SSS as a function of OCI defined by the best pairings (Fig. 8(a)–(c)), the SSS values change very
abruptly over OCI values from 1 to 2 for DSC-ROMS indicating a more rapid variation in SSS, or a
more compact salinity front, compared to the other two models (compare the slope of the quadratic
fit lines in Fig. 8(a)–(c)). Furthermore, the transition from low to high salinity water begins at a lower
OCI (further from the river source) for DSC-ROMS than for GoM-HYCOM and NGoM-HYCOM. GoM-
HYCOM displays a broader transition over a wider range of OCI values than NGoM-HYCOM indicating
less defined fronts. This is expected given the lower resolution of GoM-HYCOM, its specification of
river input from climatology as opposed to daily measured discharge rates and parameterization of
rivers using surface salinity relaxation.

Empirical functions describing the relationship between SSS to OCI were derived from the best
pairings for eachmodel (Appendix). For eachmodel, a quadratic function is fit to all of the best pairings
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(a) GoM-HYCOM. (b) NGoM-HYCOM.

(c) DSC-ROMS. (d) MHD for best pairings.

Fig. 8. (a)–(c): Time averaged MHD values (indicated by the color of each dot) for each SSS–OCI pairing for each model. Black
circles represent the OCI value at which the MHD is minimum for a given SSS and the black crosses represent the SSS value at
which the MHD is minimum for a given OCI. These symbols, therefore, represent the best pairings, as determined by the MHD,
and can be interpreted for each model as OCI as a function of SSS (black circles), or SSS as a function of OCI (black crosses). The
back lines show the monotonic quadratic fit (Appendix) to the best pairings for each model (excluding values at the limits of
the ranges of OCI and SSS contours tested). (d): The MHD for each SSS and corresponding best match OCI value. The error bars
represent the 95% confidence t-interval (for non-normal data) based on the distribution ofMHDvalues over time for the pairing.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

including both those derived from the OCI that yields the minimum MHD for a given SSS and those
derived from the SSS that yields the minimum MHD for a given OCI (more details may be found in
Appendix). The functions generally indicate a faster rate of change of OCI with SSS at higher SSS
values for NGoM-HYCOM and GoM-HYCOM than for the DSC-ROMS simulation (Fig. 8). This may be
an indication of generally enhanced lateral mixing in the HYCOM simulations compared to the ROMS
simulation.

A picture of the differences in the plumes can be built from the MHD analysis, with DSC-ROMS
simulating a large area of low salinity water with a sharp transition to high salinity water and GoM-
HYCOMdisplaying a broader transition from low to high salinity water. NGoM-HYCOM tends towards
lower SSS values than GoM-HYCOM, and the riverine water does not spread as far across the domain
in NGoM-HYCOM compared to GoM-HYCOM.

5. Discussion and summary

Borrowing from the field of topology, the MHD has been introduced and demonstrated as a tool
for quantitative comparison of ocean model fields to satellite remotely sensed data. This approach
provides a method to quantify the agreement in shape and spatial structure between fields of either
similar or different but related variables as well as producing an empirical relationship between the
variables. Typically in ocean modeling, satellite optical data have been used to qualitatively compare
features in geophysical fields that are known to manifest changes in the ocean color. By focusing
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on shape characteristics, the MHD showcased here provides a numerical metric to complement this
qualitative comparison.

The applicability of the MHD has been demonstrated in this work through an analysis of the
agreement of the temporal and spatial variability of modeled SSS contours with satellite OCI contours
in the vicinity of a large river. A large number of MHD values have been calculated for pairings of
multiple SSS andOCI levels at eight-day intervals over a three-year time span, and this information has
been condensed into a set of best OCI–SSS pairings for each model. These provide a means to evaluate
how well different models simulate the spatial structure and temporal evolution of the salinity field,
and to better understand systematic differences (biases) between the models.

Specific differences among the tested models revealed by the MHD analysis include: (1) Lower
salinity water is found further offshore in the DSC-ROMS model than in either of the HYCOM models
as revealed by the closermatches between lower SSS contour values and the higher OCI contour values
that are typically further from the river source. (2) SSS contours for GoM-HYCOM are more broadly
spaced than in DSC-ROMS andNGoM-HYCOMas shown by the slower variation of SSSwith OCI for the
relationship inferred by the set of best pairings. (3) NGoM-HYCOMhas the best overallmatch between
the shapes of contours of surface salinity and OCI, followed closely by the GoM-HYCOM and then the
DSC-ROMS as shown by the lowest MHD values in the optimum SSS–OCI relationships calculated for
each model. These results agree with the visual analysis of the SSS fields and provide a quantitative
assessment of the comparison between the models and observations. Furthermore, these findings
are in agreement with the ability of NGoM-HYCOM to represent details in the development and
evolution of the Mississippi River plume (Androulidakis et al., 2015), as evidenced from comparisons
with various other data sources (e.g. Kourafalou and Androulidakis, 2013; Smith et al., 2016).

There are many factors that can affect the simulation of a river plume in models with different
numerics and configurations. Important differences between models that impact the dynamics and
horizontal spreading of a river plume include among other factors surface forcing (data sources
and flux calculations), river parameterization, horizontal and vertical mixing parameterizations, and
spatial resolution. For example, the river parameterization in DSC-ROMS prescribes a lateral flux of
volume and momentum of fresh water, whereas GoM-HYCOM relaxes the surface salinity in a region
surrounding the river source, which is distributedwith depth, and NGoM-HYCOM further corrects the
pressure to account for the mass influx. The momentum and volume fluxes at the river source may be
responsible for the greater offshore penetration of the very low salinitywater in DSC-ROMS compared
to the two HYCOM simulations. Alternatively, river discharge rates are prescribed differently among
the models, which may also account for these differences. The coarser spatial resolution for GoM-
HYCOMmay lead to more horizontal diffusion and hence weaker salinity gradients inferred from the
MHD analysis. A sound investigation of these influences is beyond the scope of this study. However,
the MHD offers a diagnostic that would be highly advantageous for such an analysis as it permits
objective quantitative skill assessment across models with different river parameterizations and/or
within one model for sensitivity testing.

The MHD values for the best contour pairings indicate that GoM-HYCOM and NGoM-HYCOM
have a closer match overall in shape of SSS contours with the satellite OCI contours in comparison
to the DSC-ROMS model. As GOM-HYCOM is data assimilative, it most likely better represents the
mesoscale features that transport low salinity water. NGoM-HYCOM also benefits from the good
representation of these features, as it is nested within GoM-HYCOM. Both NGoM-HYCOM and DSC-
ROMS are free-running models nested in data-assimilative ocean models. Differences in the nesting
procedures, the location of the nesting boundaries and the product themodel is nested inmay impact
how the outer model constrains the mesoscale eddy influences. Significant effort has been placed
on parameterization of river inflow in the NGoM-HYCOM, which has been previously assessed with
in situ SSS measurements (e.g. Kourafalou and Androulidakis, 2013; Androulidakis and Kourafalou,
2013; Ghani et al., 2014). These are important factors for achieving a better match in shape to the
satellite optical observations.

Though the surface salinity in the vicinity of large rivers is linked to structures evident in satellite
ocean color imagery, it is important to note that without robust analysis of in situ measurements
within the specific region of study one cannot determine which model’s agreement to the satellite
data is truly ‘‘best’’. In an example of such an exercise, Chaichitehrani et al. (2014) derived CDOM
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and SSS relationships from in situ observations which were used to calculate CDOM from a numerical
model SSS output. The model-derived CDOM was compared to satellite-derived CDOM qualitatively
and the model-derived values used to study the factors that affect CDOM distribution. With the MHD,
an additional step could be included which would allow quantitative comparison of the satellite-
derived CDOM with the model-derived CDOM and determination of an empirical relationship.

Application of the MHD analysis technique to synoptic maps of salinity produced from in situ
surveys could yield functional relationships between OCI and SSS that could enhance the utility
of this procedure to evaluate models. Another benefit of the MHD metric is that it can also be
readily used to evaluate model fields with satellite observations of the same variable providing
valuable information on the simulated spatio-temporal evolution of the surface fields, even when
significant biases exist between the model and satellite observations, as is now commonly the case
with simulated biogeochemical fields as well as satellite salinity observations. Furthermore, the MHD
provides the comparison between the datasets without the need for visual inspection, allowing
automation, as well as quantification. Finally, since the MHD provides a robust metric indicating the
agreement between simulated variables and observations, it may be possible to utilize this metric to
construct a cost function to be used in an adjoint data assimilation method, allowing assimilation of
a wealth of satellite data that are presently underutilized in ocean modeling.
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Appendix. Fitted OCI–SSS functional relationships

For each model, a quadratic function is fit to all of the best pairings including both those derived
from the OCI that yields the minimumMHD for a given SSS and those derived from the SSS that yields
the minimum MHD for a given OCI (both plus and circle symbols in Fig. 8). Pairings corresponding
to the minimum and maximum SSS and OCI values considered in the analysis (boundary rows and
columns in Fig. 8(a)–(d)) are excluded to avoid limiting cases impacting the fit. The quadratic functions
are constrained to be monotonic over the range of SSS and OCI values tested. The resulting quadratic
functions fit to the optimum pairings are:

GoM-HYCOM : OCI = −0.11 (SSS)2 + 5.42 (SSS) − 53.63 (A.1)

NGoM-HYCOM : OCI = −0.38 (SSS)2 + 23.01 (SSS) − 337.02 (A.2)

DSC-ROMS : OCI = −0.04 (SSS)2 + 1.30 (SSS) − 1.26. (A.3)
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