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Evolution of land surface air temperature trend
Fei Ji1,2,3, ZhaohuaWu3,4*, Jianping Huang1,2 and Eric P. Chassignet3,4

The global climate has been experiencing significant warming
at an unprecedented pace in the past century1,2. This warming
is spatially and temporally non-uniform, and one needs to
understand itsevolution tobetterevaluate itspotential societal
and economic impact.Here, the evolution of global land surface
air temperature trend in the past century is diagnosed using
the spatial–temporally multidimensional ensemble empirical
mode decomposition method3. We find that the noticeable
warming (>0.5K) started sporadically over the global land
and accelerated until around 1980. Both the warming rate
and spatial structure have changed little since. The fastest
warming in recent decades (>0.4K per decade) occurred
in northern mid-latitudes. From a zonal average perspective,
noticeable warming (>0.2K since 1900) first took place in the
subtropical and subpolar regions of the Northern Hemisphere,
followed by subtropical warming in the Southern Hemisphere.
The two bands of warming in the Northern Hemisphere
expanded from 1950 to 1985 and merged to cover the entire
Northern Hemisphere.

In the past two decades, a large body of studies have examined
surface air temperature variability and change over the past 160
years on global and regional scales and the resulting social and
economic impacts1,2,4,5. However, many of these studies focused on
averaged warming over that time span using traditional statistical
methods, such as straight line fitting, which can extract warming
only at a constant rate. As warming on different spatial scales is not
uniform over time, such time-unvarying change may not effectively
reveal the true nature of climate variability and change. To address
this problem, a diagnosis of the evolution of warming on different
spatial–temporal scales is necessary.

Here, we focus on how the land surface air temperature trend has
evolved since 1900. Traditionally, the shape of a trend is determined
a priori, for example, a time-unvarying linear trend or a time-
varying exponential trend. Often, little justification is given for
why a particular shape of functional form should be used, and
the traditional trend lacks the capability of reflecting the hidden
nonlinear and nonstationary nature of a time series. Here we adopt a
logically consistent definition of trend provided by a previous study6,
that is, a trend of a time series is an intrinsically fitted monotonic
function or a function in which there can be at most one extremum
within a given data span. This definition requires any identifiable
oscillatory components contained in this time span to be removed.
Also, an intrinsic trend should require no a priori functional form
and can vary with time.

The method we use to separate spatial–temporally varying trend
and spatially non-uniform variability of different timescales is
the multidimensional ensemble empirical mode decomposition
(MEEMD; ref. 3), a method based on ensemble empirical
mode decomposition (EEMD; refs 7–9) for time series analysis.

In MEEMD, a time series at a grid point x(t) is decomposed
using EEMD in terms of adaptively obtained, amplitude–frequency
modulated oscillatory components Cj (j=1,2, . . . ,n) and a residual
Rn, a curve either monotonic or containing only one extremum
from which no additional oscillatory components can be extracted:

x (t)=
n∑
j=1

Cj (t)+Rn (t)

Examples of such decomposition can be found in Supplementary
Figs 2 and 4. As demonstrated in the Supplementary Information
and previous studies6,10, the extracted trend (Rn) follows no a
priori shape and varies with time after the intrinsic variability of
multidecadal and shorter timescales is removed. This trend also has
low sensitivity to the extension (addition) of new data. This property
guarantees that the physical interpretation within specified time
intervals does not change with the addition of new data, consistent
with a physical constraint that the subsequent evolution of a physical
system cannot alter the reality that has already happened.

For multidimensional spatial–temporal data, we piece together
similar timescale components of data series from all grids to
form a temporal evolution of the spatially coherent structure of
that timescale. This is the essence of MEEMD, with more details
introduced in the Supplementary Information and ref. 3. Clearly,
MEEMD is a temporally and spatially local method, in contrast
to popular domain-dependent methods (for example, empirical
orthogonal function analysis), for analysing spatial–temporal
climate data. It is anticipated that the temporal and spatial locality
provides a better chance for the trend to identify the underlying
physical information of data (see Supplementary Information for
more discussion). Both EEMD and MEEMD have been widely
applied in climate research10–20.

The data used here are the monthly land surface air temperature
from the Climatic Research Unit, University of East Anglia, for the
period January 1901 to December 2009, with a horizontal resolution
of 0.5◦×0.5◦ (ref. 21). As we are interested in centennial scale global
land warming, the data span adopted for the trend in this study is
from 1901 to 2009, with the variability of multidecadal and shorter
timescales removed.

Owing to the time-varying nature of the trend defined above,
the averaged warming rate (slope) of trend over a given time
interval cannot reflect well how the trend has evolved. To
overcome this deficiency, here we diagnose the value increment
of the EEMD trend at a given time from the reference time
of 1901, that is, TrendEEMD (t)= Rn (t)− Rn (1901), representing
accumulated warming from 1901. This definition also facilitates
the comparison of EEMD trend with the corresponding linear
trend. The spatial evolution of the accumulated warming by a
given time is shown in Fig. 1. Before 1950, noticeable accumulated
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Figure 1 | Spatial evolution of the ensemble empirical mode decomposition trend of global land surface air temperature. a–g, Ensemble empirical mode
decomposition trends ending in 1950, 1960, 1970, 1980, 1990, 2000 and 2009, respectively. h, The spatial structure of temperature increase based on
time-unvarying linear trend over the whole data domain from 1901 to 2009.

warming (>0.5 K) or cooling (<−0.5 K) seemed to be sporadically
distributed in space, mainly along subtropical bands around 30◦ S
and 30◦ N and in the subpolar region around 60◦ N. (The statistical
significance against various null hypotheses is presented in the
Supplementary Information.) The subtropical bands coincide with
the downward branches of Hadley cells. The other noticeable
warming region appeared in western Africa near the southern edge
of the Sahara Desert. All these regions are arid or semiarid. The
earlier sporadic warming has been expanding since 1950. By 1990,
the warming regions had expanded across almost all of the northern

mid-latitudes. The warmest regions in the NorthernHemisphere do
not correspond to the original two bands near 30◦ Nor 60◦ N; rather,
they are in between, that is, located inmid-latitude semiarid regions.
The amplitude and spatial patterns of the statistically significant
EEMD trend from 1901 to 2009 are slightly different from those of
the linear trend over the same period. However, the evolution of the
warming pattern cannot be revealed by the linear trend (Fig. 1h).

As the trends obtained are time-varying, their corresponding
warming/cooling rates, which can be determined by calculating
temporal derivatives of trends, are also temporally and spatially
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Figure 2 | Warming rate of global land surface air temperature. a–g, The instantaneous warming rate of the secular trend in 1950, 1960, 1970, 1980, 1990,
2000 and 2009, respectively. h, The spatial structure of the warming rate based on the time-unvarying linear trend over the whole data domain from
1901 to 2009.

local quantities. The warming and cooling rates are shown in Fig. 2.
Before 1950, there were both moderate warming and weak cooling
regions. The cooling regions shrank and most of them turned into
warming regions with an accelerated pace of warming over the next
three decades. By 1980, except for the weak cooling in the northern
tip of Greenland and in the vicinity of the Andes, almost all the
global land had been warming. The warming rates over the global
land have changed little since. The strongest warming occurred in
the northern mid-latitudes. The spatial structure of the warming
rate in later decades resembles that obtained from straight line
fitting over the whole temporal domain (Fig. 2h). However, the later

warming is much stronger than that determined by the method of
straight line fitting.

The zonally averaged trend (over only the land area) is plotted
(Fig. 3) so that the main features of the spatial–temporal evolution
of the warming can be more evident. To eliminate the noisy pattern
caused by spatially sporadic warming, we have applied a running
mean over a 5◦ band in the meridional direction. The zonally
averaged warming indeed had a three-band structure (Fig. 3).
The noticeable zonally averaged warming (>0.2 K since 1900)
first took place in the subtropical and subpolar regions of the
Northern Hemisphere, followed by the subtropical warming in
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Figure 3 | Evolution of the zonally averaged trend of surface air
temperature. Note that colour intervals are uneven.

the Southern Hemisphere. In the Northern Hemisphere, this
noticeable warming emerged in the northern subtropical and
subpolar regions around 1920. The amplitude of the warming
grew slowly for both bands, but the latitudinal scope of warming
expanded towards mid-latitude during the next three decades, and
the 0.2 K lines of these two bands joined by around 1955. From
1955 onwards, the warming accelerated at all latitudes. The greatest
warming region in recent decades in the Northern Hemisphere was
between the original high-latitude band and the subtropical band.
However, these two bands can still be identified by the tongue-like
extensions of the contours towards the left-hand side at about 26◦ N,
62◦ N and 75◦ N.

In the Southern Hemisphere, the zonally averaged warming
greater than 0.2 K in the subtropical band lagged that of the
Northern Hemisphere and was relatively narrow in meridional
width. It seems that the poleward warming expansion in the
Southern Hemisphere is not as dominant as that of its Northern
Hemispheric counterpart, a phenomenon that is possibly related to
less land coverage in the Southern Hemisphere mid-latitudes.

It is noted that the above evolution characteristics of the land
surface air temperature trend of centennial and longer timescales
cannot be revealed by analysing only the later data (for example,
1950 onwards), for the multidecadal variability cannot be separated
well from the trend of the later (shorter) data using any analysis
method. There is also not enough evidence to argue that the
extracted varying trend contains all the anthropogenic effect, for it
has been demonstrated that multidecadal variability of land surface
air temperature can be caused by natural or anthropogenic forcing
of different timescales10,22–26. However, the slow-varying nature of
the trend seems to be consistent with the slowly increasing carbon
dioxide in the atmosphere.

At present, we do not have explanations for why the global
land surface trend has evolved as shown in Figs 2 and 3. The
relatively earlier warming in the subtropical regions suggests that
the warming may be tied to changes in atmospheric circulations,
which is consistent with the results of recent studies of the relation
between global warming and changes in Hadley cells27–29. However,
the greatest warming so far associated with (either linear or EEMD)
trends occurs in the arid and semiarid regions of the mid-latitude
Northern Hemisphere, implying the small heat capacity of the arid
and semi-arid regions may also have played a role30. The important
physical reasons for why the warming trend evolves in this way
remain to be investigated.
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Here we introduce the multi-dimensional ensemble empirical mode 

decomposition (MEEMD) method and the statistical significant test method associated 

with MEEMD. The introduction contains moderate details of these methods and 

describes the advantages of MEEMD in diagnosing climate system evolution. 

 

1. The Multi-dimensional Ensemble Empirical Mode Decomposition 

The main method used in this study is the multidimensional ensemble empirical 

mode decomposition1 (MEEMD), which was developed based on the empirical mode 

decomposition2,3 (EMD) and ensemble empirical mode decomposition4 (EEMD). EMD is 

a one-dimensional data analysis method that is adaptive, has high locality, and can 

theirby handle the nonlinear and nonstationary nature of data. EEMD adds robustness to 

the EMD decomposition when data is perturbed by noise, guaranteeing that the physical 

interpretation of the decomposition result is not sensitive to the noise inevitablly 

contained in real data. The robustness of EEMD provides the foundation for the 

development of MEEMD for analysing multidimensional spatial-temporal data. Although 

EMD and EEMD have been cited thousands of times in scientific and engineering 

literatures, they are still not standard methods in climate research. Here we introduce 

EMD, EEMD, and MEEMD methods, with an emphasis on the rationality behind the 

development of each.  

a. The Empirical Mode Decomposition 

The original purpose of the development of EMD was to set up appropriate 

conditions for using the Hilbert transform (HT) to calculate instantaneous frequency2,3,5. 

It is now well known that the instantaneous frequency of a given time series obtained via 

HT has physical meaning only when that time series is a mono-component, i.e., the time 

series can be expressed in terms of a product of an amplitude function and a carrier with 

the former having much slower variation than the latter. The very early development of 

EMD focused on decomposing any given time series in terms of mono-components of 

different time scales. The combination of EMD and HT provides a novel time-frequency-

© 2014 Macmillan Publishers Limited.  All rights reserved. 
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energy representation for any given time series and is now widely called Hilbert-Huang 

Transform (HHT). 

 

Figure 1:  The intuition behind EMD. The blue line C1 is a pure oscillatory component (mono-
component) with its amplitude a1(t) being given as the brown line at the top; the red 
line is the background slower varying component R1; and the black line is the sum of 
R1 and C1. Among the bottom group curves, the brown lines are R1(t) +a1(t) and R1(t) -
a1(t), respectively. 

EMD is intuitively simple, as shown in Fig. 1: Suppose there is a time series 

composed of a mono-component (C1) and a relatively slower varying component (R1).  

The mono-component C1 can be expressed as the product of an amplitude function a1(t) 

and a pure oscillatory function with changing instantaneous frequency ω1(t). For this 

mono-component, a1(t) is its upper envelope and -a1(t) is its lower envelope. As 

illustrated in Fig. 1, the time series C1+R1 are confined within two curves R1(t)+a1(t) and 

R1(t)-a1(t) and, therefore, these two curves serve as upper and lower envelopes of the 

inputted time series, respectively. An interesting feature that deserves attention is that 

R1(t)+a1(t) appears to be a smooth curve that passes through all the maxima of the signal 

and R1(t)-a1(t) the smooth curve that connects all the minima. If the example is 

considered in a reversed way: for any given C1+R1, by finding the upper and lower 

© 2014 Macmillan Publishers Limited.  All rights reserved. 
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envelopes that smoothly connect all the maxima and all the minima of C1+R1, one can 

define approximately R1 and separate the riding wave C1 from slower varying component 

background R1. 

The actual algorithm of EMD, in which the extracted mono-component is 

obtained through a refining process called “sifting”, is a bit more complicated: For an 

input time series x(t), (1) set ( ) ( )txtx =1 ; (2) find maxima and minima of x1(t); (3) obtain 

upper envelope eu(t) and lower envelope el(t) by using cubic splines to connect maxima 

and minima, respectively; (4) find the local mean ( ) ( ) ( )[ ] 2/tetetm lu += ; and (5) 

determine whether m(t) is close enough to zero (equivalent to the symmetric of the upper 

and lower envelopes with respect to zero line) at anywhere under a given criterion. If yes, 

stop sifting; otherwise, set ( ) ( ) ( )tmtxtx −=1  and repeat steps 2 to 5. In this way we 

obtain the first riding wave component (formally called intrinsic mode function [IMF]). 

By subtracting this riding wave component from x(t), we obtain a remainder. If the 

remainder still contains oscillatory components, we again repeat steps 2 to 5 but with new 

x1(t) being the remainder. A complete EMD process ends when the remainder is a 

monotonic function or a curve contains at most one extremum at which no more 

oscillatory component can be defined. In this way, we decompose x1(t), i.e., 

( ) ( ) n
dt (t)  i

j

n

1=j
n

n

j
j R e (t)a tRtC = x(t) j +








=+ ∫

=
∑∑ ωRe

1 ,
              (1) 

where [ ]•Re  represents the real part of “ • ”, and ( )ta j  and ( )tjω  are instantaneous 

amplitude and frequency of jth IMF, respectively.   

While EMD is intuitively simple, it does possess many wonderful properties: (1) 

The decomposition is sparse and appears to be a dyadic filter bank in its normal 

parameter regime6-8 so the decomposition is highly effective; (2) when EMD is applied to 

pulse (delta-function-like) signals, EMD performs like a bank of spline wavelet of 

different orders8,9; (3) when EMD is applied to noise of different colors, the EMD 

components of different timescales have the same Fourier spectrum6-8 after rescaling the 
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components in both frequency and amplitude;   and (4) all but the first EMD components 

of noise have a Gaussian distribution7. These naturally emerged intriguing and hidden 

simplicities not only connect EMD with earlier widely used decomposition methods, such 

as Fourier spectrum-based filtering and wavelet decomposition, but also highlight the 

unique characteristics that other methods do not possess. 

b. The Ensemble Empirical Mode Decomposition 

Since EMD uses the extrema information to separate the riding “natural” wave 

and its reference, changes in extrema locations and values could lead to significantly 

different results, which makes the extracted “natural” wave sometimes appear bizarre and 

very sensitive to any noise, since noise can alter the local extrema both in location and 

value. One of the consequences of this characteristic of EMD is that the analysis of two 

almost identical data series (e.g, the records collected by two almost identical 

observations of the same phenomenon) using EMD may result in significantly different 

decompositions, potentially leading to totally different physical interpretations. This lack 

of robustness and the “physical uniqueness” essentially caused many complaints about 

the ineffectiveness of EMD.  

To overcome this drawback, the ensemble empirical mode decomposition 

(EEMD), a noise assisted data analysis method, was developed3,4. The method is based 

on the understandings of characteristics of noise using EMD as mentioned in section 1a, 

i.e., EMD is effectively a dyadic filter bank for noise6,7. EEMD consists of the following 

steps: (1) add a white noise series to the targeted data x(t); (2) decompose the data with 

added white noise into IMFs; (3) repeat step 1 and step 2 again and again, but with 

different white noise series added each time; and (4) obtain the (ensemble) means of 

corresponding IMFs of the decompositions as the final result. The effect of the added 

white noise in EEMD is to provide a dyadic filtering reference frame in the time-

frequency space; therefore, the added noise collates the portion of the signal of 

comparable scale in one IMF, significantly reducing the chance of mode mixing and 

leading to the stability of decomposition. As the EMD is a temporal domain analysis 

method, the white noise is averaged out with a sufficient number of trials. In this sense,  
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the added noise mimics multiple observations of a phenomenon recorded by a single 

observation and serves as a “catalyst” in the decomposition that leads to stable and more 

physically interpretable results. An example of EEMD decomposition of the global 

annual mean land surface air temperature is displayed in Fig. 2.  

 

Figure 2:  EEMD decomposition of the global annual mean land surface air temperature. In 
the left panel, the original data (brown line) and successive remainders (Rj) after an 
additional EEMD component (Cj) are extracted, i.e., Rj=Rj-1-Cj for j>1. The red line is 
the EEMD trend. In the right panel, each line represents an EEMD component (Cj), 
from high frequency to low frequency. 

As argued in previous studies10,11, the locality of data analysis provides a 

necessary condition to effectively isolate physical information of data. If the information 

extracted from the data does reflect the physical processes operating at a given time, then 

the information should be temporally local quantity and the corresponding physical 

interpretation within specified time intervals should also not change with the addition of 

new data, for the subsequent evolution of a physical system cannot alter the reality that 

has already happened. For EMD, temporal locality is well preserved if a fixed number of 

sifting is given7. This locality is inherited by EEMD, as tested extensively in previous 

studies7,11. Here we presented an example displayed in Fig. 3, in which the different 

spans of the same data are decomposed. Evidently, the closeness of the corresponding 
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components over the overlapped span is very high and the locality of the decomposition 

is well preserved. 

 

Figure 3:  Temporal locality of EEMD decomposition. The brown and blue lines are identical 
to those displayed in Fig. 2. The red lines are from EEMD decomposition of the data of 
a shortened temporal span. For easier identification, the red lines are intentionally 
downshifted by a small margin.  

In addition to the well-preserved locality, EEMD also possesses two exciting 

properties that help address the problems of non-stationarity and excessive harmonics in 

data analysis: (1) EMD/EEMD analysis makes the stationarity assumption irrelevant, for 

the analysis results are not affected by the data far away. The temporal locality of an 

analysis method automatically bypasses the stationarity assumption which is often 

applied over the global domain of data; (2) when EMD/EEMD is applied, the harmonic 

problem is gone. In EMD/EEMD, the nonlinearity is expressed by the modulations of 

amplitude and frequency (scale), as illustrated by simple nonlinear oscillators2,12. Since 

EMD/EEMD approximates the envelope of the riding wave using only extrema 

information, the waveform between two neighboring maxima (minima) is well preserved, 

therefore, the harmonics become unnecessary.  
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c. The Multidimensional Ensemble Empirical Mode Decomposition 

One-dimensional data analysis methods (such as many time series analysis 

methods and EMD/EEMD described above) have limitations in extracting spatial-

temporally coherent information contained in multidimensional data. In climate science, 

various matrix-based eigenvalue-eigenfunction calculation methods have been widely 

used, e.g., empirical orthogonal function (EOF) analysis13-16 and its variations.  In such 

methods, spatial structures and temporal evolutions are often assumed separable and the 

spatial structures remain unchanged throughout the climate system evolution. Such an 

assumption is certainly questionable from both physical and mathematical perspectives17-

19.   An easy validation of this assumption can be carried out by testing the sensitivity of 

the obtained static spatial structures and corresponding temporal variations to the change 

of temporal domain of the inputted data. High sensitivity implies the lack of the validity 

of the assumption. A similar argument can be applied to the spatial sensitivity. There are 

other methods, such as principal oscillation pattern analysis20,21 or footprinting methods22 

that can handle either spatial locality or temporal locality, but not both. It should be noted 

that most of these methods contain implicit assumption of the stationarity of data. 

The MEEMD was developed to handle both spatial locality and temporal locality 

issues1.  There are two types of MEEMD: one for the decomposition of spatial data such 

as images and the other for temporal-spatial data such as gridded climate data. It is the 

latter type of MEEMD that we use in this study. As mentioned earlier, EEMD is highly 

temporally local and has low sensitivity to noise. Since the method is based on 

identifying extrema locations, the signal propagation from one spatial location to its 

neighboring area (as indicated by the different temporal locations of extrema) can be 

pinned down.  Using this property, we can identify the small variations of different 

timescales of a climate variable at neighboring areas, as demonstrated in Fig. 4. Evidently, 

the small original data differences of various timescales are well captured: the sharp, 

short-duration difference of the original data at around 1940 (the blue line having larger 

change than the red line) is identified in C1; and the relatively longer duration difference 

in the original data (the blue line staying above the red line) from 1980 to 2000 is 
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reflected in C3 and C4. The slight shifts of the troughs of C3 for these three locations 

around 1990 are also identifiable.  

 

Figure 4:  Spatial coherence of EEMD decomposition. Surface air temperatures at three 
neighboring grids are decomposed using EEMD. Brown lines correspond to grid point 
(70.25°W, 55.25°N), blue lines grid point (71.25°W, 55.25°N), and red lines grid point 
(72.25°W, 55.25°N). The top group of lines is the original surface air temperature data 
and the following groups are the components of different naturally separated 
timescales.  

The spatial coherence displayed in Fig. 4 provides the basic idea of MEEMD 

algorithm for the decomposition of multidimensional spatial-temporal climate data: (1) 

decompose the time series of a climate variable at any grid using EEMD; and (2) piece 

together the jth components (Cj) or jth remainders (Rj) from all grids to form the evolution 

of the jth components or jth remainders. An example of MEEMD decomposition is given 

in Fig. 5. From this simple procedure, it is quite evident that MEEMD is absolutely 

spatially local, for the decomposition of data at one grid is completely independent of the 

data at other grids. Since all the components are additive, a component of a broader 

timescale may combine the neighboring components (e.g., Cj+Cj+1). To some degree, 

EEMD serves as a natural filter that can handle both the static and propagating 

(expanding) signals of a climate variable of a naturally determined timescale. If there is a 
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spatially static pattern, MEEMD identifies this pattern, as the middle panel of Fig. 5 

displays; if there is a systematic propagation of signal, MEEMD also extracts this 

signature, as the fourth (from the top) panel displays.  

 

Figure 5:  MEEMD decomposition of land surface air temperature. The decomposition of 
land surface air temperature (with mean value at each grid subtracted) at 45.25°N is 
displayed in the top panel; the second panel (from the top) is the sum of C1, C2 and C3; 
the third panel C4; the fourth panel C5, and the bottom panel R5.  Color schemes for 
different panels are different (not shown). 

The adaptiveness and locality of MEEMD give unique advantages to MEEMD 

over many other methods in analyzing temporal-spatial multidimensional data. On one 

hand, MEEMD does not invoke any significant mathematical constraints such as shape 

functions (e.g., trigonometric functions in Fourier transform and mother wavelet in 

wavelet analysis), and its basic ingredient is the “natural” wave forms obtained 

adaptively from data themselves. The inclusion of amplitude and temporal-spatial scale 

modulations in a component allows for the reflection of the physical world complications 

caused by nonlinear interactions and nonstationary external forcing. On the other hand, 
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the temporal locality of EMD satisfies a fundamental physical principle: If components 

extracted from the data do reflect the physical processes operating at a given time, these 

components should be temporally local quantities and the corresponding physical 

interpretation within specified time intervals should also not change with the addition of 

new data, for the subsequent evolution of a physical system cannot alter the reality that 

has already happened. The spatial locality allows MEEMD to identify the propagating or 

expanding signals. The combination of the spatial and temporal locality of MEEMD 

provides advantages when examining both the static climate mode and changing spatial 

structures of climate variability, thereby giving a more powerful method to diagnose 

climate system evolution. 

d. Some Technical Details of EMD/EEMD/MEEMD in This Study 

As discussed in section 1a, EMD involves a sifting process to obtain an 

oscillatory mono-component. In this process, a stoppage criterion is needed to determine 

the symmetry of the upper and lower envelopes of that mono-component with respect to 

the zero line. In Huang et al.2, a Cauchy type condition that is a sort of energy integration 

over the global temporal domain is adopted. EMD decomposition of data with this 

condition is quite sensitive to the data domain as well as the noise contained in the data 

and can compromise the locality of EMD. To improve the locality, Wu and Huang4 

proposed a fixed-number sifting stoppage criterion. As shown in Wu and Huang4 and Wu 

et al.8, this new stoppage criterion can satisfy the Cauchy type condition to a high 

accuracy. With this new criterion, EMD also serves as a more accurate dyadic filter and 

the locality of EMD is dramatically improved. More details can be found in Appendix A 

of Wu and Huang4 and Wu et al.8.  

Another issue in EMD decomposition is the data end treatment. The 

determination of envelopes using spline (or other polynomials) requires boundary 

conditions of a natural spline if past and future data is unknown. There is no real solution 

to this problem, for a good extension of data requires an accurate prediction of remote 

future data, especially when low-frequency components and the trend of data are pursued. 

As we know, for any physical system, prediction of the slowly varying components of 
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data to the near future is usually more accurate than the prediction of fast-varying 

components. With this in mind, we adopted a linear extrapolation approach to obtain the 

envelope end values using the nearest two interior maxima (minima) to an end for the 

upper (lower) envelope rather than to predict actual data. Additional correction is also 

included when the actual data are located outside such determined envelopes. More 

details of this end treatment and its good performance can be found in Appendix B of Wu 

and Huang8. 

In EEMD calculation, the noise added to data has an amplitude of 0.2 standard 

deviations of the corresponding data and the ensemble number is 400. 

A MATLAB EMD/EEMD package with the above stoppage criterion and end 

treatment is downloadable at http://rcada.ncu.edu.tw/research1.htm. Although some of 

our calculations in this study use a Fortran counterpart, the results should be repeatable 

with the MATLAB package albeit with a slower computational speed. 

 2. Statistical Significant Test of MEEMD Trend 

The statistical significance test of a quantity of a given data involves three issues: 

(1) the null hypothesis adopted about the data; (2) the determination of the probability 

density function (PDF) of a quantity consistent with the null hypothesis; and (3) whether 

the quantity of the data has a small probability to occur based on the PDF. If the 

probability of the quantity to occur is indeed small, the null hypothesis is rejected and the 

quantity is considered statistically significant. In such a sense, the statistical significance 

is highly sensitive to the adopted null hypothesis and making a reasonable null hypothesis 

about the data becomes a key issue. 

In climate sciences, two widely used null hypotheses about climate data are white 

noise and red noise. Any climate data contain white noise (corresponding to stochastic 

changes) so that a white noise null hypothesis is the most intuitive. However, when a 

climate quantity is a response rather than the stochastic forcing itself, often a red noise 

process is adopted23. The redness of the process is related to the long-term memory 

(inertial) of the climate system. In a thermodynamic stochastic model in which the 
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temperature response is studied, the inertial of the climate system is the effective heat 

content of the climate system23. Due to the spatial heterogeneity of the thermodynamic 

properties of the climate system, the memory is different over different regions. Figure 6 

plots the auto-correlation of one temporal interval lag (lag-1 auto-correlation) of the 

yearly mean surface air temperature over the global land. Clearly, the spatial 

heterogeneity is quite high. 

 

Figure 6:  Lag-1 auto-correlation of land surface air temperature. The values of the lag-1 
auto-correlation are indicated by the colorbar at the bottom of the figure. 

The statistical significance test of linear trends of climate series against a red 

noise null hypothesis has been widely adopted in climate studies24-26. For nonlinear non-

stationary components extracted using EMD, various test methods have been proposed. 

The very first one was an analytical expression of statistical significance based on the 

characteristics of white noise decomposed by EMD6,7, which was applied to various 

climatic indices7. Franzke27 extended the above method to test statistical significance of 

EMD components against a red noise null hypothesis. Recently, Wu et al.11 proposed an 

alternative method for determining the significance of the multidecadal component of a 

climate series resulting from EEMD against a null hypothesis of red noise. However, 

these approaches were not designed for testing the significance of the secular trend 
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obtained using EEMD. In addition, the earlier methods did not consider the data end 

effect on the secular trend. 

 

Figure 7:  EEMD trends of white noise series and their distributions. The upper panel plots 
EEMD trends of 5000 white noise series (thin lines of different colors); the lower left 
and right panels plot the histograms of EEMD trend values for locations 1980 and 2009, 
respectively. Two bold white lines are two-standard-deviation spread lines. It is noted 
that the time axis of white noise series is from 1901 to 2009 (109 data points) so as to 
align with the temporal domain of the land surface air temperature analyzed.  

a. Statistical significance test method 

In this study, we propose an approach to determine the statistical significance of 

the secular trends of temporal-spatial multi-dimensional climate data based on a Monte 

Carlo method. In this new approach, we generate 5000 samples of red noise series of the 

same temporal data length (109) and lag-1 auto-correlation as the yearly mean land 

surface air temperature at each grid. We apply EEMD to each series to determine its 

secular trend and obtain the empirical PDF of the values of EEMD trends at any temporal 

location (the increment/decrement of the secular trend value from its starting value, see 

the main text for the definition). The EEMD trends at any temporal location and their 

PDFs of two selected temporal locations are plotted in Fig. 7 for a zero lag-1 auto-

correlation case (white noise series).  Clearly, the EEMD trends of noise series have a 
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larger spread in later period, especially near the data end, partially caused by data end 

treatment of EMD/EEMD. The PDFs are approximately normally distributed. The trend 

spread depends on the value of lag-1 auto-correlation. When the noise is getting redder 

(larger lag-1 auto-correlation), the corresponding spreads become wider, as plotted in Fig. 

8. 

 

Figure 8:  Two-standard-deviation curves of EEMD trends of red noise series of different 
lag-1 auto-correlation. The curves from the bottom to the top correspond to lag-1 
auto-correlations of -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. 
The bold black line is identical to the upper bold white curve in Fig. 7.  

To determine whether an EEMD trend of land surface air temperature at a given 

temporal-spatial location is statistically significant, we (1) divide the EEMD trend of that 

spatial location by the standard deviation of the corresponding temperature data; (2) find 

the two-standard-deviation spread value of the trends of the red noise series having the 

same lag-1 auto-correlation as the corresponding temperature data; and (3) check whether 

the trend value is beyond the two-standard-deviation level (slightly larger than 95% of 

confidence) of the noise EEMD trend PDF at the given temporal location. If it is, the 

EEMD trend is considered statistically significant. Clearly, for the same value of EEMD 

trends at different locations, whether the value is statistically significant depends on both 

spatial and temporal locations.  
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b. Statistical significance test without consideration of spatial coherence 

The result of the independent application of the designed statistical significance 

test method to the EEMD trends of individual land surface air temperature series is 

presented in Fig. 9. Compared with Fig. 1 of the main paper, the regions of 

warming/cooling that pass the statistical significance test are noticeably smaller, although 

subtropical spots of significant warming in both hemispheres and northern high latitude 

spots are still identifiable. In later decades, the warming in low latitudes fails the 

statistical significance test due to larger long-term memories, as illustrated in Fig. 6. 

 

Figure 9: Statistically significant EEMD trend of global land surface air temperature 
without considering spatial coherence. Panels a to g represent statistically significant 
EEMD trends ending at 1950, 1960, 1970, 1980, 1990, 2000 and 2009, respectively. 
Panel h displays the spatial structure of temperature increase based on time-unvarying 
linear trend over the whole data domain from 1901 to 2009. The underlying colorbar 
gives the temperature increase, with a unit Kelvin (K). 
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c. Statistical significance test with consideration of spatial coherence 

In previous studies24-28, many climatic indices studied are regional or globally 

averaged climate variables. When each of these indices is treated, spatial coherence is 

taken for granted and the averaged spatial domain is implicitly assumed uniform.  Under 

such an implicit assumption, a statistical significance test is carried out following a 

selected white/red null hypothesis on a climatic index. As clearly shown in Fig. 6, the 

heterogeneity of memory makes it hard to select configurations of domains for spatial 

averaging. In addition, the different spatial coherence itself casts doubts on the 

appropriateness of an a priori null hypothesis. These caveats make it more challenging to 

design an appropriate statistical significance test method.  

 

Figure 10: Statistically significant EEMD trend of global land surface air temperature with 
consideration of spatial coherence. Same as Fig. 9 but for the four-grid-point 
averaged red noise null hypothesis. 
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As described in previous sections, the EEMD trends of land surface air 

temperature presented in Fig. 1 of the main paper are calculated grid by grid.  When the 

spatially coherent (e.g., region averaged) trends are considered, to be consistent, the 

trends of red noise used in the null hypothesis for different grids over the same region 

must be averaged as well. Since the red noise realizations in the Monte Carlo method for 

different grids are independent of each other, based on the central limit theorem, the 

spread is inversely proportional to the square root of the number of grids averaged for 

neighboring grids of almost identical lag-1 auto-correlation. Under this consideration, the 

spatially coherent trends are much easier to pass the same statistically significant level 

than the case without consideration of spatial coherence. Examples of four-grid-point 

averaged and nine-grid-point averaged cases are presented in Figs. 10 and 11, 

respectively. 

 

Figure 11: Statistically significant EEMD trend of global land surface air temperature with 
the consideration of spatial coherence. Same as Fig. 9 but for the nine-grid-point 
averaged red noise null hypothesis. 
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As shown in Figs. 9 to 11, an inclusion of only a small spatial coherence can lead 

to significantly enlarged regions that pass the statistical significance against the same null 

hypothesis. This sensitivity illustrates the limitation of the statistical significance test 

approach.   
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