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Preface 
 

Today, millions of people tune to their favorite TV meteorologist or check the newspaper 
or their smart phones to get the latest weather forecast. Knowing what the weather will likely be 
for the next few hours and the next several days has opened up incredible opportunities for 
society as a whole—for individuals making decisions about what they will do in their daily lives, 
for industry planning and risk management, and for governments making critical life and 
property protection decisions. 

What if there were similar use of forecasts for two weeks, three weeks, or even three or 
six months from now? It is easy to envision the potential value of high-quality predictions two 
weeks to 12 months ahead for any number of industries—for example, energy, water resource 
management, and agriculture. There are undoubtedly potential benefits to other sectors that we 
cannot even imagine today. Even if such information never matches the level of confidence 
associated with tomorrow’s weather forecast, it could still be used by individuals, businesses, 
and governments to plan and make a large array of important decisions. In this study, our 
Committee puts forward a vision that subseasonal to seasonal forecasts (S2S)—i.e., forecasts of 
environmental conditions made approximately two weeks to twelve months in advance—will be 
as widely used a decade from now as weather forecasts are today. The path to realizing this 
vision and its inherent value will require focused effort on S2S processes and predictions by both 
physical and social scientists. Today, this type of commitment largely exists on both the weather 
timescale and on the scales in which climate change is expected. S2S falls in a “gap” between 
these two areas, and in general, has not received the same level of dedicated effort and support. 
This report presents research strategies for dealing with this “in-between” space over the next 
decade. 

Although the overall quality and use of products in the S2S time frame have been 
growing over the past decade, increasing the predictive skill of coupled Earth system models in 
S2S forecast ranges will be essential to increasing the benefits and expanding the number of end 
users of these products. The benefits of S2S forecasts will be further enhanced if the scope of 
operational S2S forecasts were extended beyond the traditional weather variables to include 
more Earth system variables and events. Opportunities for improvements and expansions to 
existing forecasts include, for example, enhanced predictions of the ocean state, sea ice fields, 
aerosols and air quality, and water management. A focus on developing better information on the 
likelihood of specific and disruptive environmental events, in addition to improving the skill of 
currently available forecasts of temperature and precipitation anomalies, has great potential to 
further enhance the value of S2S predictions. 

This report presents a research agenda that provides the framework for the physical and 
social science communities to collaboratively advance the skill, breadth and value of S2S 
predictions. Our Committee held five in-person meetings between October 2014 and May 2015, 
and received broad and diverse input from experts in both physical and social science as well as 
from end users of S2S forecasts. We would like to thank all of those who provided their time and 
insight. The contributors are listed in the Acknowledgments section above. The Committee is 
also greatly indebted to Study Directors Edward Dunlea and Claudia Mengelt and to Associate 
Program Officer Alison Macalady. This report would not have been possible without their 
tireless efforts and expert support. Finally, I would like to thank the Committee members for 
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their hard work and dedication to excellence. I particularly want to thank the Committee for their 
patience with me as I learned so much from them. It was indeed a true pleasure to work with this 
talented group of professionals. 

 
Raymond J. Ban, Chair 
Committee on Developing a U.S. Research Agenda to Advance Subseasonal to Seasonal 
Forecasting 
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Summary 
 

The use of weather forecasts by governments, businesses, and individuals is ubiquitous in 
the United States: Should a school system be closed due to cold or snowy conditions on a given 
day? How much power should an electric utility plan to produce in order to meet demand for air 
conditioning during a summer week? Is a weather-sensitive military sortie likely to be effective 
on a particular afternoon? Making these and myriad other decisions across virtually all sectors of 
the economy has been transformed by the availability of skillful forecasts with lead times of a 
few hours to a few days. The value and importance of weather and other environmental forecasts 
will increase as the nation’s economic activities, security concerns, and stewardship of natural 
resources become increasingly complex, globally interrelated, and affected by longer-term 
climate changes. 

While short-term forecasts already play a vital role in shaping societal decision-making, 
many critical decisions must be made several weeks to months in advance of potentially 
favorable or disruptive environmental conditions. For example, it can take weeks or months to 
move emergency and disaster-relief supplies, but pre-staging resources to areas that are likely to 
experience extreme weather or an infectious disease outbreak could save lives and stretch the 
efficacy of limited resources. Similarly, emergency managers responding to unanticipated events 
such as nuclear power plant accidents or large oil spills face the task of communicating the 
ramifications of such events on timescales that stretch well beyond a few days. There are many 
more such examples: naval and commercial shipping planners designate shipping routes weeks 
in advance, seeking to stage assets strategically, avoid hazards, and/or take advantage of 
favorable conditions; with improved knowledge of the likelihood of precipitation or drought, 
farmers can purchase seed varieties that are most likely to increase yields and reduce costs; and 
depending on the year, water resource managers can face a multitude of decisions about reservoir 
levels in the weeks, months, and seasons ahead of eventual water consumption. 

A frontier in forecasting involves extending the capability to skillfully predict 
environmental conditions and disruptive weather events to several weeks and months in advance, 
filling what has long been a gap between today’s short-term weather and ocean forecasting 
capabilities (within the next 14 days) and a growing ability to project the longer-term climate (on 
scales of years to decades or more). Seasonal—and more recently subseasonal—predictions 
(defined in Box S.1) have improved over the last decade, but there is great opportunity to further 
improve the skill of S2S forecasts, as well as the breadth of forecasted variables and routinely 
available forecast products. Doing so could dramatically increase the benefits of the 
environmental prediction enterprise: saving lives, protecting property, increasing economic 
vitality, protecting the environment, and informing policy choices.  

Despite their large potential, Earth system predictions on subseasonal to seasonal 
timescales remain challenging for researchers, modelers, and forecasters. While it is increasingly 
recognized that many sources of predictability exist in the Earth system on S2S timescales, 
representing these sources of predictability in Earth system models is challenging. Models must 
adequately capture the initial states of the atmosphere, ocean, land surface and cryosphere, as 
well as the interactions, or coupling, of these different components. Furthermore, the longer lead 
times associated with S2S predictions make the representation of uncertainty and the verification 
process more challenging and more computationally intensive than numerical weather 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

2 Next Generation Earth System Prediction 
 

PREPUBLICATION COPY 

BOX S.1—Definition of Subseasonal to Seasonal (S2S) Forecasts 
 

Seasonal forecasts often refer to outlooks of oceanic and atmospheric conditions averaged over a 
season, or about 3 months, issued with lead times ranging from a month to multiple seasons. Subseasonal 
forecasts often project average conditions over a week or more, often with lead times of 2-6 weeks or 
more. In this report, “subseasonal to seasonal” or “S2S” includes environmental predictions with forecast 
ranges from 2 weeks to 12 months (see also Box 1.1).  
 
prediction. Nonetheless, potential advances both in technology—satellites, computing, etc.—and 
in science—model parameterizations, data assimilation techniques, etc.—make advances in S2S 
forecasting feasible within the next decade.  

Another key challenge is making S2S forecasts more applicable to users. S2S forecasts 
are generally less skillful than shorter-term predictions, are issued at lower spatial and temporal 
resolutions, and may involve the communication of probabilistic information that is unfamiliar to 
many users. These barriers have the potential to be overcome through research about and 
engagement with users.  

Given the opportunities associated with improved S2S forecasts, but also the many 
challenges associated with developing them, the Office of Naval Research (ONR), the National 
Aeronautics and Space Agency (NASA), and the Heising-Simons Foundation asked the National 
Academies of Sciences, Engineering, and Medicine to undertake a study to develop a 10-year 
U.S. research agenda to increase S2S research and modeling capability, advance S2S forecasting, 
and aid in decision making at medium and extended lead times (see Appendix A for the study's 
Statement of Task). The Academies convened the Committee on Developing a U.S. Research 
Agenda to Advance Subseasonal to Seasonal Forecasting to meet this request.  
 
 

VISION AND RESEARCH STRATEGIES FOR THE NEXT DECADE 
 

The Committee believes that there is great potential to advance S2S forecasting capability 
and rapidly increase the benefits of S2S predictions to many sectors in society. However, 
overcoming the challenges to developing S2S forecasting will take sustained effort and 
investment. 

Encouraged by its sponsors to be bold, the Committee puts forward a vision that S2S 
forecasts will be as widely used a decade from now as weather forecasts are today and 
identifies four research strategies and 16 recommendations to guide progress towards that vision. 
The research strategies for improving the use of S2S forecasts in the next decade (see Figure S.1) 
are: 

 
1. Engage Users in the Process of Developing S2S Forecast Products 
2. Increase S2S Forecast Skill 
3. Improve Prediction of Extreme and Disruptive Events and Consequences of 

Unanticipated Forcing Events 
4. Include More Components of the Earth System in S2S Forecast Models  
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RECOMMENDED ELEMENTS OF A RESEARCH AGENDA 
 

Implementing the four strategies above will require research in the physical and social 
sciences, as well as improved coordination among user, research, and operational forecast 
communities. The Committee’s recommendations collectively constitute an S2S research agenda 
for the nation. Given the fluid technological, political, and financial environment in which the 
research agenda will be implemented, the Committee decided it was more important to identify 
the most important areas where progress can be made without overly prescribing the sequence or 
priority in which they should be addressed. While most recommendations support more than one 
research strategy, they are described in the following sections under the primary strategy with 
which they are associated.  

To help agencies and others within the weather/climate enterprise select specific parts of 
the research agenda to pursue, Table S.1 and Table 8.1 in the report provide additional detail 
about the recommendations: whether they involve basic or applied research; which are expected 
to have short-term benefits; which might require a new initiative; and which have a scope that 
calls for international collaboration. The chapters contain additional recommended activities that 
fall under each main recommendation, which add further specificity and breadth to the research 
agenda. While it might not be possible to pursue all of these actions simultaneously, the more 
that is done to implement these recommendations, the more advances in S2S forecasting can be 
made. 
 
 

Research Strategy 1: Engage Users in the Process of Developing S2S Forecast Products 
 

Many barriers hinder the use of existing S2S forecast information, including increasing 
demand for a wider variety of forecast variables and formats that are not readily available. An 
important first step in providing more actionable S2S forecast information is to develop a body 
of social and behavioral science research that leads to more comprehensive understanding of the 
current use and barriers to use of S2S predictions (Recommendation A). This will involve 
research to uncover the specific aspects of products—forecast variables, spatial and temporal 
resolutions, necessary levels of skill, etc.—that make S2S products more useful to decision-
makers across multiple sectors.  

Beyond such assessments, engaging the S2S research and operational prediction 
community in an iterative dialogue with user communities is necessary to help ensure that 
forecast systems, forecast products, and other model output, are designed from the outset to be 
useful for decision making (Recommendation B). Ongoing efforts will be needed to match what 
is scientifically predictable and technological feasible at S2S timescales with what users find 
actionable, as both scientific skill and user needs continually evolve. Launching such a dialogue 
requires bringing decision makers into the research and development process sooner rather than 
later. Private industry and ‘boundary organizations’ within academia and the public sector (such 
as the National Oceanic and Atmospheric Agency’s [NOAA] Regional Integrated Sciences and 
Assessments program and the International Research Institute for Climate and Society at 
Columbia University, and many others) have already started such discussions. Leveraging the 
entire weather and climate enterprise—not just the public sector—will be necessary for further 
developing such an iterative approach to the development of S2S products and services. 
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Research Strategy 2: Increase S2S Forecast Skill  
 

The skill (i.e., the quality) of S2S forecasts has been increasing, but is still limited, even 
for traditional weather and climate variables (temperature, precipitation). Improving the skill of 
S2S forecasts is fundamental to increasing their value to society. Enhancing skill begins with 
understanding sources of and limits to S2S predictability within the Earth system. Current 
research indicates that a large portion of S2S predictability originates from: 

 
 Natural modes of variability (e.g., El Niño-Southern Oscillation [ENSO], the Madden-

Julian Oscillation [MJO], and the Quasi Biennial Oscillation [QBO]—see Box 1.3);  
 Slowly-varying processes (e.g., involving soil moisture, snow pack and other aspects of 

the land surface, ocean heat content, currents and eddy positions, and sea ice); and  
 Elements of external forcing (e.g., aerosols, greenhouse gasses) that can result in a 

systematic and predictable evolution of the Earth system. 
 

Basic research on these phenomena and their interactions is fundamental to identifying 
and understanding the processes that must be included in Earth system models in order to 
increase S2S forecast skill (Recommendation C).  

In addition to extending knowledge about sources of S2S predictability, efforts are 
needed across every part of the forecast system, including improved observations and data 
assimilation methods, advances in Earth system models, and improved methods for uncertainty 
quantification, calibration, and verification.  

 
 

Observations 
 

Routine observations are essential for accurately initializing models, validating model 
output, and improving understanding of the physical system and its predictability. The ocean, 
land surface, and cryosphere remain significantly under-observed compared to the atmosphere, 
despite being major sources of S2S predictability. Maintaining and in some cases bolstering the 
network of observations across all components of the Earth system is critical to advancing S2S 
prediction skill (Recommendation E). 

While it would be beneficial to expand the geographic coverage and resolution of many 
types of observations, cost and logistics will continue to demand an identification of the most 
critical priorities. Observing system simulation experiments (OSSEs) and other sensitivity 
studies are powerful tools for exploring the importance of specific observations on estimation of 
the state of the Earth system and overall model performance, and could be better used to 
prioritize improvements to observation networks for S2S prediction systems (Recommendation 
F).  

 
 

Data Assimilation 
 

Data assimilation is the process of initializing and updating Earth system models with 
observations, and is also important for uncertainty quantification, calibration, and validation of 
forecasts. Integrating tens of millions of observations into the different components of an Earth 
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system model presents many challenges, including ensuring that initializations are dynamically 
consistent and that they minimize the growth of errors. Given that coupling between the multiple, 
dynamic components of the Earth system (e.g., atmosphere, ocean, ice, land) is central to S2S 
prediction, developing and implementing coupled data assimilation methods is at the forefront of 
S2S model development. “Weakly-coupled” data assimilation is one existing method that is 
increasingly implemented in weather prediction, and also holds promise for improving S2S 
prediction systems. “Strongly-coupled” data assimilation allows observations within one 
component of the Earth system to affect state estimates in other components (with constraints). 
This technique is still in its infancy but has the potential to spur a more dramatic leap forward. 
Realizing the method’s potential will require significant research and testing that should be 
explored while continuing to pursue weakly-coupled methods (Recommendation G).  

 
 

Models 
 

Systematic errors are numerous within the Earth system models used for S2S 
forecasting—many global models produce an unrealistically strong Pacific equatorial cold 
tongue, a spurious double Inter Tropical Convergence Zone (ITCZ), wet or dry biases in rainfall 
in many parts of the world, among other issues. These model errors can be large compared to the 
predictable signals targeted by S2S forecasts. Thus taking steps to reduce systematic errors 
within coupled Earth system models is one of the most important steps in improving the skill of 
S2S predictions.  

Modest increases in model resolutions hold potential for reducing model errors and such 
improvements should continue to be studied. However, given the computational costs of 
increasing model resolution, many critical Earth system processes will need to be 
parameterized—i.e., represented using simplified physics schemes rather than being explicitly 
resolved in models—for the foreseeable future. Thus improving physical parameterizations will 
remain fundamental to reducing model errors and increasing S2S forecast skill, even as the 
capability to resolve more and more processes expands (Recommendation H). Coordinated, 
coupled field campaigns, process-targeted satellite missions, and long-term collaborations 
between research and operational scientists are essential for developing the understanding 
required to improve models and model parameterizations.  
 
 
Calibration, Combination, Verification, and Optimization of S2S forecasts 
 

Some model errors will remain even with major improvements in models and increased 
resolution. Using multi-model ensembles (MMEs) is likely to remain critical for S2S prediction 
as one of the most promising ways to account for errors associated with Earth system model 
formulation. However, current MMEs are largely systems of opportunity (i.e., basing the MME 
design on expediency). Research is required to more systematically develop MME forecast 
systems. Careful optimization of the configurations of a multi-model prediction system will 
include systematic exploration of the benefits and costs of adding unique models to an MME and 
evaluation of other S2S forecast system design elements (“trade space”), including calibration 
methods, model resolution, number of ensemble members, averaging period, lengths of lead and 
retrospective forecasts, and options for coupled sub-models (Recommendation K). Exploring this 
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trade space will be a complicated and expensive endeavor, but determining how performance 
depends on system configuration is a key task in the S2S research agenda. 

Verification metrics are important for tracking and comparing model improvements, and 
are also a critical part of building user trust in S2S forecasts. Improving verification should be 
done in collaboration with user groups, along with research on feature-based and two-step 
verification methods and consideration of how the design of retrospective forecasts and 
reanalyses can influence the ability of some users to directly evaluate the consequences of acting 
on forecasts at various predicted probabilities (Recommendation J). 

 
 

Moving research to operations 
 

Finally, transitioning new ideas, tools, and other technology between the S2S research 
community and operational centers is challenging but essential to translating research discoveries 
into better informed decision-making. The use of MMEs in research settings, for example the 
North American Multimodel Ensemble program (NMME), has demonstrated the potential for 
improving the skill of S2S forecasts and has produced many lessons for developing an 
operational MME. Operationalizing the current NMME, which relies on non-operational 
institutions supported by research funding, is not necessarily recommended, but there would be 
great value in the development of an operational MME forecast system that includes the 
operational centers of the United States (Recommendation L).  

To make the rapid improvements to operational S2S prediction systems that are 
envisioned by the Committee, it will be generally important to speed the flow of information 
between scientists with research and operational foci (Recommendation M). This includes 
promoting and expanding existing mechanisms to facilitate knowledge transfer—such as 
NOAA’s Climate Process Teams—and developing new mechanisms to enhance researcher 
access to operational forecast data, including access to archives of ensemble forecasts, 
retrospective forecasts, and initialization data. Additionally, allowing researchers to conduct or 
request specific experiments on operational systems would provide an additional boost to the 
flow of discoveries and technical advances. 
 
 

Research Strategy 3: Improve Prediction of Extreme and Disruptive Events and of the 
Consequences of Unanticipated Forcing Events 

 
To improve the overall skill of S2S forecasts and provide more actionable information to 

users, the Committee identifies two areas that deserve special attention, and to that extent we 
promote them to our third and fourth Research Strategies. Research Strategy 3 involves an 
increased focus on discrete events, and includes two sets of recommendations. The first is to 
emphasize the prediction of weather, climate, and other Earth system events that disrupt 
society’s normal functioning (e.g., major winter storms, excessive rainfall events, monsoon onset 
and breaks, tropical storms, heat waves). Thus, in contrast to the forecasts of specific weather 
events on a scale of days, improved S2S forecasts would identify situations with high 
probabilities of disruptive consequences, especially for subseasonal forecast ranges 
(approximately 2-12 weeks). A coordinated effort to improve the forecasting of these events 
could allow communities more time to plan for these events and mitigate damages. Improved 
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forecasting of disruptive events may also involve developing “forecasts of opportunity”— 
identifying windows in time when expected skill is higher than usual at a particular place 
because of the presence of certain features in the Earth system, certain phases of large-scale 
climate patterns (e.g., seasonal cycle, ENSO, or MJO), or certain interactions of these modes, 
slowly-varying processes, and external forcing. Studying these interactions and ensuring they are 
represented in models will be important for S2S prediction and for identifying forecasts of 
opportunity (Recommendation D). 

The second part of this research strategy involves using S2S forecast systems to predict 
the consequences of disruptive events caused by outside forces. Such outside forces include 
volcanoes, meteor impacts, and human actions (e.g., aerosols, widespread fires, large oil spills, 
certain acts of war, or climate intervention). Even though these events themselves are not 
predictable, their consequences may be—in particular the consequences on S2S timescales. A 
national system for projecting the consequences from these unanticipated events on S2S 
timescales would aid emergency response and disaster planning (Recommendation N). With 
improved coordination between government agencies and academics, it would be possible to 
assist in recovery efforts by quickly generating S2S forecasts of the consequences of such 
unanticipated events shortly after they take place.  
 
 

Research Strategy 4: Include More Components of the Earth System in S2S Forecast 
Models  

 
The other area that the Committee believes needs more focused attention is the utilization 

and further development of advanced Earth system model components beyond the troposphere, 
which has been the traditional focus of numerical weather prediction. The S2S prediction 
problem is inherently a problem of capturing the coupled processes operating at the interface 
between various components of the Earth system, including the troposphere, stratosphere, ocean, 
cryosphere, biosphere, and land surface.  

Progress in recent decades has extended the coupling of more model components and 
more comprehensive representation of processes within these components in operational S2S 
forecast systems (see also Research Strategy 2). However, there is an increasing need to 
accelerate the development of model components outside the troposphere and to improve their 
coupling within S2S forecast systems. In particular, it will be important to rapidly advance 
towards next-generation ocean, sea ice, and land surface modeling capability within coupled 
Earth system models, in addition to preparing for cloud-resolving capability in atmospheric 
models. This will include moving towards eddy-resolving resolutions in the ocean, inclusion of 
ocean surface wave effects, and developing better representation of sea ice, land surface, and 
surface hydrological processes. Other strong candidates for improvements to existing practices 
for operational S2S forecasting systems include advancing prediction capabilities of aerosols and 
air quality, soil-state and seasonal vegetation growth, and aquatic and marine ecosystems. 
Research is also required to better understand which added components have significant 
interactions with the weather and climate system as a whole, pointing to the need for dynamic 
integration into operational forecasting systems (Recommendation I).  

Improving these model components may also be important for better predicting a wider 
array of Earth system variables on S2S timescales (e.g., sea ice, ocean productivity, hydrology, 
air quality), even if they do not feedback strongly to the coupled system. Iterative interaction 
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with forecast users (Research Strategy 1) can help determine what processes and variables are 
most important to include in coupled S2S systems as these systems evolve.  

 
 

Supporting the S2S Forecasting Enterprise 
 

The research strategies outlined in the report will require advances in computational 
infrastructure to support S2S forecasting, and the development and maintenance of a workforce 
ready to realize potential advances in S2S forecasting. These challenges are not unique to the 
S2S enterprise—they are also important in the weather prediction and climate modeling 
communities, among other technical enterprises.  

Similar to weather forecasting and climate modeling, S2S prediction systems test the 
limits of current cyber-infrastructure. The volume of observational data, data assimilation steps, 
model outputs, and reanalysis and retrospective forecasts involved in S2S forecasting means that 
the S2S modeling process is extremely data intensive. Advances in S2S forecast models (such as 
higher resolutions, increased complexity, the generation and retention of long retrospective 
forecasts) will require dramatic increases (likely 1,000-fold) in computing capacities, together 
with similar expansions in storage and data transport. Earth system models are not taking full 
advantage of the complexity of current computing architectures and improving their performance 
will likely require new algorithms that process more data locally and new algorithms to exploit 
even more parallelism. The transition over the next decade to new computing hardware and 
software that is not necessarily faster, but is more complex, will be highly disruptive. Future 
storage technology will also be more complex and varied than it is today, and leveraging these 
innovations will require fundamental software changes. Facing these challenges and 
uncertainties about the future, the United States would benefit from developing a national plan 
and investment strategy to take better advantage of current hardware and software and to meet 
the challenges in the evolution of new hardware and software for all stages of the prediction 
process (Recommendation O). 

There are numerous barriers to training and retaining talented workers in the S2S 
enterprise. S2S is complex and involves working across computing and traditional Earth science 
disciplinary boundaries to develop and improve S2S models, and across science-user decision 
boundaries to better design and communicate forecast products. From the limited workforce data 
available, the Committee surmises that the pipeline of workers for the S2S enterprise is not 
growing robustly in the United States and is not keeping pace with this rapidly evolving field. 
Given the importance of S2S predictions to the nation, a concerted effort is needed to entrain, 
develop, and retain S2S professionals. This involves gathering quantitative information about 
workforce requirements and expertise base to support S2S forecasting, improving incentives and 
funding to support existing professionals and attract new professionals, and expanding 
interdisciplinary programs to train a more robust and diverse workforce to employ in boundary 
organizations that fill the space between S2S modelers and forecast user communities 
(Recommendation P). 
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CONCLUSION 
 
This report envisions a substantial improvement in S2S prediction capability, and the 

Committee expects valuable benefits to flow from these improvements to a wide range of public 
and private activities. It sets forth a research agenda that describes what must be done— 
observations, basic research, data management, and interactions with users—to advance 
prediction capability and improve societal benefits. Despite the specificity in recommending 
what should be done, the report does not address the challenging issues of how the agenda 
should actually be pursued—who will do what and how the work will be supported financially. 
Given that this research agenda significantly expands the scope of the current S2S efforts, the 
Committee believes that some progress can be made with current levels of support and within 
current organizational structures, but achieving even a considerable fraction of the S2S vision 
will likely require additional resources for basic and applied research, observations, forecast 
operations, and user engagement. The scope of the research agenda will also require closer 
collaboration between federal agencies and international partners, better flow of ideas and data 
between the research and operational forecasting communities, and engagement of the entire 
weather and climate enterprise.  

Again, the Committee acknowledges that addressing the challenge of dramatically 
improving the skill and use of S2S forecasts will require many different actions, but the 
Committee reiterates that these are the actions that will need to be pursued to achieve the full 
potential for S2S forecasting. The more that can be pursued within this research agenda, the 
closer the nation can be towards realizing the full potential of S2S forecasting and the more 
benefits can be produced for a wide range of users and the nation as a whole. 
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Chapter 1: Introduction 
 

As the nation’s economic activities, security concerns, and stewardship of natural 
resources become increasingly complex and globally interrelated, they become ever more 
sensitive to environmental conditions. For the past several decades, forecasts of weather, ocean 
and other environmental phenomena made a few days ahead have yielded invaluable information 
to improve decision making across all sectors of society (Lazo et al., 2011). Enhancing the 
capability to forecast environmental conditions outside the well-developed weather timescale—
e.g., extending predictions out to several weeks and months in advance—could dramatically 
increase the societal value of environmental predictions, saving lives, protecting property, 
increasing economic vitality, protecting the environment, and informing policy choices. Indeed, 
forecasts in the subseasonal to seasonal (S2S) time range (defined in this report 2 weeks to 12 
months; see Box 1.1) have the potential to inform activities across a wide variety of sectors as 
many important decisions are made weeks to months in advance. 

The potential of S2S forecasting has advanced substantially over the last few decades, as 
improvements in numerical modeling, in the Earth observing network, and in understanding of 
sources of Earth system predictability in the so-called “gap” between short-range weather and 
climate timescales (see below) have enabled the development of extended-range weather and 
seasonal climate forecasts. As the availability and skill of seasonal climate forecasts—and more 
recently subseasonal predictions—has improved, S2S forecasts are increasingly being used in 
sectors like agriculture, energy, and water resources management. But there is enormous 
potential to further increase the benefits of S2S predictions. Many sectors have yet to exploit 
even the S2S information that is currently available. The user base could expand dramatically if 
the skill of S2S forecasts improves, if more variables of the Earth system are explicitly forecast 
(for example, a wider range of conditions of the ocean, cryosphere, and land surface), and if 
users’ awareness of and ability to apply S2S information to important decisions and actions 
increases. Because so many critical planning and management decisions are made in the 
subseasonal to seasonal time frame, it might be argued that the benefits of the longer range 
predictions has the opportunity to meet or exceed the current value of 0-14 day weather 
predictions if the quality, scope, and utilization of the forecasts can improve from their current 
state. S2S predictions may become even more valuable under anthropogenic climate change, as 
improved S2S forecasts could allow for the development of early warning systems that are 
becoming even more of a societal imperative in a warming world. 
 
 

MOTIVATION FOR THIS STUDY 
 

This report develops a vision for realizing the potential benefits of S2S Earth system 
predictions within the next decade. It identifies key strategies and proposes a research agenda 
with specific recommendations to guide progress towards that vision. There were four main 
motivations for initiating this study:  

 
 The need to develop a research agenda to close the “gap” between efforts to improve 

numerical weather prediction (NWP) and climate modeling;  
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BOX 1.1—Definitions of Subseasonal and Seasonal Forecasts  
 

This Committee’s charge was to develop a research agenda for improving forecasting on 
subseasonal and seasonal timescales, and for the purposes of this report, the Committee defined 
“Subseasonal to Seasonal” as a forecast range from 2 weeks to 12 months. There is no consensus on the 
precise meaning of a given forecast time. Often the forecast “range” is a combination of a lead time and 
an averaging period, where lead time refers to the period between when a forecast is initialized and when 
the forecast is first valid, while the averaging period is the time window the forecast is applicable. 
Similarly, terminologies and definitions of forecast times related to subseasonal and seasonal forecasting 
vary across research groups and initiatives.  

The Committee’s S2S definition reflects common usage in the community, but it differs slightly 
from the definition of “Intraseasonal to Interannual (ISI)” used in the 2010 NRC report Assessment of 
Intraseasonal to Interannual Climate Prediction and Predictability , which covers similar scientific 
topics. ISI predictions are defined as ranging from 2 weeks to several years. Thus the terms intraseasonal 
and subseasonal are virtually interchangeable both literally and in practice. However, the terms 
“seasonal” and “interannual” do have literal differences. The term “interannual” implies forecasts of year-
to-year variability, and thus brings to mind a forecast of an annual mean one or two years in the future or 
perhaps a seasonal mean a year in advance, whereas the term “seasonal” in a forecasting context usually 
refers to a forecast of a seasonal mean one or more seasons in the future, or a monthly mean a season in 
advance.  

This Committee’s definition of “Subseasonal to Seasonal” and the accompanying acronym “S2S” 
also differs from the WCRP/WWRP’s S2S Project (Box 2.3), which defines “Subseasonal to Seasonal 
(S2S)” as ranging from two weeks out to a single season (e.g., approximately 2-12 weeks). The 
Committee made a conscious choice to avoid introducing a new acronym and terminology to cover the 
time period from 2 weeks to 12 months, and chose to use the S2S acronym to refer more broadly to 
subseasonal and seasonal forecasts. This is because the acronym “S2S” is now used rather loosely  across 
the community to refer to both subseasonal and seasonal timescales.  
 

 The need to expand and improve S2S forecast capabilities beyond dynamical predictions 
of the atmosphere (i.e., to improve or develop S2S predictions of the oceans, land surface 
and cryosphere, as well predictions of atmospheric variables such as aerosols); 

 A desire to develop a more global S2S forecasting capacity, especially to meet needs 
related to national security and humanitarian response; and 

 A changing computing environment that may open up both new opportunities and 
challenges for Earth system prediction. 
 
As noted above and in the 2010 NRC report, Assessment of Intraseasonal to Interannual 

Climate Prediction and Predictability (hereafter NRC, 2010b; or ISI Report; see Box 1.2), 
subseasonal and seasonal forecasting fall in a “gap” between the current modeling capabilities 
used for short and medium term prediction and those used in climate projections. Because of the 
short lead times involved with numerical weather prediction, efforts to improve weather 
forecasting have been focused on enhancing the accuracy of atmospheric and surface data for 
specifying initial conditions and on representing the short-term evolution of the atmosphere from 
this initial state. Earth system models that were first developed for making long-term climate 
projections have focused, in contrast, on representing Earth system processes that evolve more 
slowly (such as large-scale atmosphere and ocean circulation, the cryosphere, the state of land 
surface, and feedbacks between components) and how these processes are influenced by external  
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BOX 1.2—Progress Since the NRC 2010 IRI Report  
 

The 2010 NRC report on Assessment of Intraseasonal to Interannual Climate Prediction and 
Predictability report and this report address much of the same phenomena and timescales, with the intent 
of improving ISI/S2S forecasts. However, this report provides an important update on the science and 
potential of S2S forecasts, especially on the subseasonal timescale, and the two reports further differ in 
areas of emphasis. The 2010 report focused attention on the sources and gaps in our understanding of ISI 
predictability, “building blocks” in the development and evolution of ISI forecast systems, an assessment 
of the performance of (then) current ISI forecast systems, and recommendations for strategies and best 
practices for future improvements to ISI forecasts. Three case studies—ENSO, MJO, and soil moisture—
were presented to highlight end-to-end considerations of ISI forecast systems. For each case study, the 
report described the scientific basis for the variability and predictability, the manner in which forecast 
“building blocks” were developed and implemented to realize the forecast potential, and the gaps in 
understanding and treatment of each phenomenon. Considerable attention was given to “best practices” 
for ISI forecasts, focusing on four important aspects, including the production, reproduction, evaluation, 
and dissemination of prediction information.  

This report addresses all of these same areas but does not address predictions beyond 12 months, 
and places significantly more attention on widening the consideration of S2S-relevant phenomena and 
associated Earth system processes—and by extension on Earth system modeling and prediction. The aim 
of this expansion is to consider a wider range of sources of predictability, impacted quantities, and 
processes, including extreme weather and other disruptive events. The latter dovetails with another 
significant focus of this report, which is the need to highlight the value proposition of S2S forecasts, in 
part through better engagement with the potential stakeholder community. Finally, in its targeted effort to 
develop a U.S. research agenda to advance S2S forecasting, this report gives consideration to the 
infrastructure and programmatic elements required for advancement, including workforce, 
cyberinfrastructure, and interactions between the research and operational forecasting communities.  

 
climate drivers (e.g., greenhouse gas emissions, volcanic activity, other aerosols, and solar 
variability).  

Although there is a traditional separation between research on weather and climate 
timescales, the boundaries between short-term and climate prediction are largely artificial 
(Shapiro et al., 2010). Because both fast and slower-evolving aspects of the climate system are 
important to conditions that develop in the 2 weeks to 12 month forecast range, S2S forecasting 
systems require both close attention to initial conditions and high-fidelity representation of 
coupling and feedbacks between more slowly varying aspects of the Earth system. The potential 
to close this “gap” is now supported by a body of research indicating predictability in the Earth 
system at all timescales (e.g., Hoskins, 2013). In the S2S time range, this predictability arises in 
part from coupled ocean-atmospheric phenomena such as the El Niño -Southern Oscillation 
(ENSO) and the Madden Julian Oscillation (MJO), and in stratosphere-troposphere interactions 
associated with the quasi-biennial oscillation (QBO) (see Box 1.3). Further S2S predictability 
may exist in other climate oscillations and their teleconnections, and in the Earth system 
response to slowly varying conditions in the ocean, land, and cryosphere, among other 
phenomena. Efforts are already underway in the United States and internationally to exploit these 
sources of S2S predictability, stretching the lead time of weather timescale models forward and 
climate models backward, in part through the development of improved and more highly coupled 
Earth system models. 
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BOX 1.3—Examples of Modes of Variability 
 

There are a number of natural modes of variability that have widespread effects on the weather 
and climate, including the El Niño-Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), 
and the Quasi Biennial Oscillation (QBO), among others. ENSO and MJO are prime examples of modes 
of variability that provide predictability at S2S lead times. ENSO is a coupled atmosphere-ocean mode of 
variability that involves slow variations in the equatorial Pacific that impact sea surface temperatures in 
the central and eastern Pacific, and associated changes in surface pressure and wind in the atmosphere 
that extend over most of the tropical regions. MJO exhibits planetary-scale features along the equator in 
pressure, winds, clouds, rainfall, and many other variables, with the strongest anomalies in precipitation 
propagating from the Indian to central Pacific Oceans over a period of about 30 to 50 days. The MJO has 
traditionally been described as primarily an atmospheric phenomenon, but recent research highlights the 
importance of interactions with the upper ocean in its propagation. 
 

The continued development of coupled Earth system models also presents an opportunity 
to expand and improve S2S forecasts of environmental conditions well beyond the traditional 
weather variables, which represents a second major motivation for this report. There is a strong 
desire to develop more reliable S2S forecasts of conditions in the ocean, cryosphere, and on the 
land surface, and meeting these needs is becoming more important as the financial and societal 
implications of managing environmental risk become more evident and larger in magnitude. 
Reliable ocean forecasts on S2S timescales, for example, could improve the safety and 
effectiveness of commercial, military, and humanitarian operations at sea, in part by improving 
planning and ship routing by indicating ice-free and freeze-up likelihood as well as other ice and 
ocean eddy hazards. The desire for this type of S2S forecast highlights the importance of high-
fidelity representation of ocean, sea ice, and land surface conditions in S2S forecast systems, in 
many cases for reasons beyond whether they feed back to influence the atmosphere. 

A third major motivation for this report is the increasing desire for an enhanced 
forecasting capability globally. In particular, the Department of Defense and State Departments 
desire S2S forecasting capability that can best support U.S. engagement anywhere in the world. 
In addition, commerce, agriculture, and civilian hazard warnings that are at the national level 
could be expanded to cover more of the world. Developing a comprehensive and skillful global 
forecasting capability poses an additional challenge because in many areas, only limited in situ 
weather data are publically available for use in evaluating and improving forecasts. 

Finally, accelerating computer and software capabilities could allow S2S prediction 
systems to operate with greater spatial and temporal resolution, more complete representation of 
interacting components of the Earth system, and more ensemble members for calculating 
uncertainties. Together with improved understanding of the physical process governing the Earth 
system’s dynamics and potential advances in the ability to assimilate data into more 
sophisticated models, new computing capabilities could allow for significant gains in S2S 
predictions over the next decade. 

Despite these needs and opportunities for enhanced Earth system forecasts in the S2S 
time range, a coordinated national research agenda aimed at strengthening the contributions of 
S2S forecasts to public and private activities has not yet emerged. For all of these reasons, the 
Heising-Simons Foundation, the National Aeronautics and Space Agency (NASA), and the 
Office of Naval Research (ONR) asked the National Academies of Sciences, Engineering, and 
Medicine to undertake a study aimed at outlining a ten-year research plan to advance the nation’s 
capacity to provide more skillful, comprehensive, and useful S2S predictions. The statement of 
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task that guided the study (see Appendix A) asked the authoring Committee to develop a strategy 
to accelerate progress on extending prediction skill for weather, ocean, and other Earth system 
forecasts from meso/synoptic scales to higher spatial resolutions and longer lead times, thereby 
increasing the nation’s research capability and aid in decision making at medium and extended 
lead times.  

In order to meet this request, the current study reviews present S2S forecasting 
capabilities and recommends a national research agenda to advance Earth system predictions at 
lead times of 2 weeks to 12 months. The study builds on previous reports that have described a 
grand vision to significantly advance forecasting accuracy, lead time, and prediction of non-
traditional environmental variables (NRC, 1991b, 2008), as well as reports that have discussed 
opportunities and best practices for intraseasonal-to-interannual prediction (NRC, 2010b). In the 
years to come, the research agenda proposed here and the efforts that follow could produce 
increasingly accurate numerical models of the Earth system by describing its coupled 
interactions and future evolution, thus enhancing the value of weather, climate and other Earth 
system forecasts to society.  
 
 

THE REPORT ROADMAP 
 

This report addresses the Committee’s charge in seven subsequent chapters. Chapter 2 
provides context for discussions in the remainder of the report by presenting an overview of the 
history and recent evolution of the field of S2S forecasting, descriptions of recent and ongoing 
research activities, and a summary of the current status and skill of operational subseasonal and 
seasonal forecasting systems.  

Chapter 3 covers decision-making contexts, applications for S2S forecasts, the potential 
benefits of S2S predictions, attributes of effective forecasts, and user sensitivity to forecasting 
accuracy. The chapter also contains case studies, including western U.S. water management, 
public health, and national security and defense, that provide more in-depth discussions of needs 
for and applications of S2S predictions.  

Chapter 4 introduces sources of S2S predictability from natural modes of variability and 
teleconnections, as well as from the ocean, soil moisture, terrestrial snow, and sea ice and 
external forcing. The chapter includes recommendations to further predictability research in the 
S2S context. 

Chapter 5 discusses in detail recent advances and activities needed to accelerate the 
improvement of S2S prediction systems, including discussions of gaps and research needs 
related to routine observations, data assimilation, and models, as well as calibration, 
combination, validation, and assessment of S2S forecast skill.  

Chapter 6 covers research-to-operations in the context of current operational and research 
S2S prediction systems.  

Chapter 7 presents findings and recommendations on infrastructure for computing, 
storage, programming models, shared software, and data cyberinfrastructure. The chapter also 
discusses institutional and workforce capacity building for S2S forecasting and decision support.  

Chapter 8 concludes the report by presenting the Committee’s vision for the future of S2S 
forecasts, as well as a summary of the research strategies and research agenda the Committee 
proposes to advance S2S forecasting over the next decade. 
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Chapter 2: History and Current Status of S2S 
Forecasting  

 
Providing useful weather and ocean forecasts, as well as predicting other aspects of the 

Earth system, have significantly improved national capabilities for decision making in sectors 
including energy, agriculture, transportation, insurance and finance, defense, emergency 
preparedness and response, and public security including health, water, and food. As discussed in 
Chapters 1 and 3, the ability to foresee environmental changes and disruptive events weeks and 
months in advance could have tremendous additional value because of the broad range of 
decisions that are made weeks to months in advance. As a prelude to developing a U.S. research 
agenda for advancing subseasonal to seasonal forecasting, this chapter lays out the history and 
evolution of the S2S forecast endeavor and briefly summarizes current operational capabilities 
and research activities.  

 
 

EVOLUTION OF THE FORECAST ENTERPRISE 
 

Short to Medium Range Forecasts (Up to 14 Days) 
 

Modern weather prediction evolved from the global weather observations obtained during 
World War II, the computers that followed in the wake of the war, and a working knowledge of 
equations that model the typical variations in the mid-latitude atmosphere. Earth-sensing 
satellites, starting with the Television Infrared Observation Satellite Program (TIROS) in the 
1960s, provided striking views of Earth’s changing weather patterns and contributed to the 
understanding of weather systems and to the improvement of routine weather forecasts. 	

With these improved data sources and modeling capabilities, purely subjective forecasts 
based on atmospheric synoptic maps, experience, and intuition gave way to a combination of 
computer-generated atmospheric and marine forecasts based on physics equations and a 
statistical interpretation of the forecast information. This know-how developed into highly 
capable systems operated by the civil and defense weather services. In the latter part of the 20th 
century, consumer interests in weather and the wide demand for specialized forecasts stimulated 
a vigorous private sector operating alongside the public weather services (NRC, 2003). Similar 
trends are also occurring for ocean forecasting and applications.  

Moving into the 21st century, the combination of greatly improved atmospheric and 
oceanic observations and accelerating computer power has produced increasingly accurate and 
reliable atmospheric forecasts. Computer-calculated forecasts of global and regional weather 
patterns are now as accurate at 72 hours as they were at 36 hours in the 1990s (Figure 2.1). 
Although this might suggest that lead times for useful forecasts could continue to increase 
indefinitely with further improvements in observations, understanding, and computer capability, 
the discovery of mathematical chaos in nonlinear physical systems in the early 1960s by Edward 
N. Lorenz (Lorenz, 1963) challenged this assumption. Instead, Lorenz showed that unavoidable 
small errors in initial conditions will amplify during the computation, bringing a natural limit to 
the lead time that the “weather”—or any given natural environmental phenomenon—can be  
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development of high-resolution coupled ocean-atmosphere-ice-land prediction systems for 
improving short- to medium-range forecasts, and they are being used by the ocean community to 
develop subseasonal ocean forecasts (Brassington et al., 2015). With the addition of aerosol 
chemistry and biogeochemistry, such models are often referred to as Earth prediction systems. 
Advances in coupled model systems are central to extending lead times and furthering accuracy 
of short and medium-term forecasting capabilities in the ocean and atmosphere, are the basis for 
advancing S2S forecasts, and are critical for developing a more expansive set of routinely 
forecast Earth system variables.  
 
 

Seasonal Forecasts (3 to 12 Months) 
 

Long-range and seasonal forecasts began in the mid-1950s as Weather Bureau forecasters 
noticed some identifiable large-scale patterns and relations between atmospheric and ocean 
temperature anomalies in various locations (Hoskins and Karoly, 1981; Namias, 1953; Roads, 
1999; Walker, 1924; Wallace and Gutzler, 1981). These early seasonal forecasts were made 
based on statistical methods. Dynamical seasonal predictions started in the early 1980s (Reeves 
and Gemmill, 2004), using atmosphere-only models with prescribed surface conditions. Often, 
the latest observed ocean anomalies persisted during the forecast, but other surface conditions, 
like sea ice, snow cover, and soil moisture, were proscribed from climatology (e.g., average 
historical conditions). Such systems treated the surface as a fixed boundary condition, and 
generally ignored the coupled dynamics with the surface that evolve over the forecast period 
(two-tier system). Focused on El Niño-Southern Oscillation (ENSO; see Box 1.3) prediction, the 
first coupled atmosphere-ocean forecasts were generated with simple dynamical or statistical 
models of tropical surface temperatures (Cane et al., 1986; Graham et al., 1987; NRC, 1986, 
1991a, 1994; Shukla, 1998). 

In contemporary seasonal forecast systems, many aspects of the Earth system are 
predicted in a coupled model involving the atmosphere, ocean, land, and cryosphere. These 
seasonal forecasts systems seek to better exploit ENSO as a source of predictability, while also 
representing more recently discovered predictability sources originating from other natural 
modes of variability of the coupled ocean-atmosphere system; stratosphere-troposphere 
interactions; the slow evolution of the ocean, ice, land hydrology and biosphere; and radiative 
forcing from GHG and aerosols and land use changes (see Chapter 4). In dynamic seasonal 
prediction systems, modeled Earth system components (atmosphere, land, ocean, and sea ice) are 
increasingly coupled numerically to represent the rapidly varying atmosphere exchanges of 
energy, water, and momentum, which give the system much of its predictability on timescales 
longer than a few days. Additional progress could be made: some components, such as the ocean, 
are more realistically coupled with the atmosphere, while aspects of coupling to the cryosphere 
and land are widely recognized to be oversimplified in today’s forecast systems (Doblas-Reyes 
et al., 2013). Recent research indicates that much of the seasonal predictability in some parts of 
the world derives from trends associated with GHG warming superimposed on natural 
variability, thus more realistic representation of atmospheric chemistry and biogeochemistry 
(GHG forcing, land use changes, aerosols, etc.) in seasonal prediction systems is also 
increasingly common (Doblas-Reyes et al., 2006).  

Seasonal forecasting has improved over the last decade with efforts to reduce systematic 
model errors and with better understanding and representation of sources of predictability within 
the coupled Earth system. There are two other notable strategies for advancing the skill and 
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utility of seasonal forecasts. One is the inclusion of quantitative information regarding 
uncertainty (i.e., probabilistic prediction) in forecasts and probabilistic measures of forecast 
quality in the verifications (e.g., Dewitt, 2005; Doblas-Reyes et al., 2005; Goddard et al., 2001; 
Hagedorn et al., 2005; Kirtman, 2003; Palmer et al., 2004; Palmer et al., 2000; Saha et al., 2006, 
among many others). This change in prediction strategy naturally follows from the fact that Earth 
system variability includes a chaotic or irregular component, and, because of this, forecasts must 
include a quantitative assessment of this uncertainty. More importantly, the prediction 
community now understands that the potential utility of forecasts is based on end-user decision 
support (Challinor et al., 2005; Morse et al., 2005; Palmer et al., 2000; Chapter 3), which 
requires probabilistic forecasts that include quantitative information regarding forecast 
uncertainty or reliability.  

The use of perturbed parameter ensembles represents a second strategy that is now 
commonly used to quantify uncertainty in the initial conditions of seasonal prediction systems, 
though the number of such ensembles in both the forecast and the retrospective forecast vary 
widely across different operational centers (Appendix B). Other techniques have been 
implemented to account for uncertainty in model formulation. Most prominent among these is 
the development of multi-model ensembles (MMEs). By combining the predictions from more 
than one model, MMEs quantify some of the uncertainty associated with individual model 
formulations, and also tend to improve the forecast, probably because errors in one model may 
not appear in the others. With a few caveats, MMEs that include multiple operational and/or 
research models appear to achieve a better skill than individual models, by combining different 
approaches to data analysis, data assimilation, model parameterizations and resolutions (Weigel 
et al. 2008; Kirtman, 2014; Kirtman et al., 2014). Other techniques, such as perturbed physics 
ensembles or stochastic physics (e.g., Berner et al., 2008; Berner et al., 2011) have now also 
been developed and appear to be quite promising for representing some aspects of model 
uncertainty (e.g., Weisheimer et al., 2011). Chapter 5 covers these developments in more detail. 
 
 

Subseasonal Forecasts (2-12 Weeks) 
 

A prevailing expectation is that subseasonal prediction in the 2-12 week range between 
short and medium-range and seasonal prediction poses serious challenges. This expectation arose 
because of the perception that the subseasonal atmospheric forecast problem does not fit neatly 
into the simplistic paradigms of an initial-value weather forecast problem (because the lead times 
are too large and initial-value information can be lost) or the so-called “boundary-value climate 
prediction problem,” terminology associated with the early seasonal climate forecast systems that 
were driven by prescribed surface temperature anomalies. However, recent work indicates the 
potential for predictability across all timescales (Hoskins, 2013; WMO, 2015a). There is 
evidence to indicate that the existing coupled ocean-atmosphere-ice-land Earth system forecast 
models, mentioned above, integrate the information from the initial conditions across the coupled 
system, including the slowly varying components (e.g., ocean, sea ice, and land hydrology), to 
produce subseasonal forecasts with realized skill in traditional weather variables often 
comparable to that of the seasonal forecasts (Dutton et al., 2013; Dutton et al., 2015). 

Predictability and prediction studies on intraseasonal tropical variability and the Madden 
Julian Oscillation (MJO; see Box 1.3) have further advanced the prospects of subseasonal 
forecasting (e.g., Lin et al., 2008; Vitart et al., 2007b; Waliser et al., 2006). However, it is 
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important to note that within the subseasonal timescale, predictability and prediction in sub-
monthly timescale is still relatively underexplored and underdeveloped compared to forecasts 
with lead times of a month to a season (Doblas-Reyes et al., 2013; Vitart et al., 2012). An 
important goal for subseasonal (and seasonal) forecasting is to move beyond multi-day averages 
of typical meteorological variables to prediction of the likelihood of important and disruptive 
events in all components of the Earth system, such as heat and cold waves, unusual storminess, 
ice cover, sea level, Gulf of Mexico Loop current position, etc. 
 
 

CURRENT STATUS OF ACTIVITIES AND RECENT PROGRESS 
 

This section provides a brief survey of current capabilities and ongoing activities in both 
seasonal and subseasonal prediction, along with recent progress at operational centers. This is a 
prelude to establishing a U.S. research agenda that will lead to improved S2S forecasts and 
better-informed decisions in both the public and private sectors. 

 
 

Seasonal 
 

Most operational centers have produced routine dynamical seasonal predictions for more 
than a decade. A majority of the centers utilize global atmosphere, ocean, land, and sea ice 
coupled models (one-tier systems) to predict climate anomalies out to lead times of 6-12 months. 
There are a few centers, such as the International Research Institute for Climate and Society 
(IRI1), that use so-called two-tier systems, in which the ocean component is predicted first, and 
then those predicted sea surface temperatures are used as boundary conditions for an atmospheric 
forecast with lead times out to 3-4 months. IRI has been issuing seasonal climate forecasts from 
this system since 1997 (Barnston et al., 2010). Examples of one-tier systems include the U.S. 
National Weather Service’s Climate Forecast System (Saha et al., 2010; Saha et al., 2006), which 
produces operational predictions with lead times of up to nine months, and the European Centre 
for Medium-Range Weather Forecasts’ (ECMWF) seasonal climate prediction system, which is 
soon to be in its fourth generation2. Other nations have similarly developed seasonal prediction 
systems that include models developed specifically for this purpose, and the WMO Lead Centre 
for Long-Range Forecast Multi-Model Ensemble3, coordinated by the Korea Meteorological 
Administration and NOAA, collects seasonal forecasts from 12 such seasonal prediction systems 
(Global Producing Centers) and combines them into multi-model seasonal forecasts that are used 
by regional and local climate centers around the world (see Box 2.1). 

Seasonal prediction has been increasingly prominent at national and international 
operational centers for several decades. Almost all operational centers produce seasonal 
predictions at least once per month. Usually, deterministic and probabilistic forecasts of seasonal 
mean anomalies of surface temperature (atmosphere and ocean) and precipitation are issued for 
above, below, and near normal values. Seasonal outlooks and ENSO index predictions are also 

                                                 
1 http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html, accessed January 27, 2016. 
2 http://www.ecmwf.int/en/forecasts/documentation-and-support/evolution-ifs/cycles/technical-description-seasonal 
(accessed February 3, 2016). 
3 https://www.wmolc.org/, accessed January 27, 2016. 
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issued based on a combination of dynamical predictions, statistical models, and expert 
knowledge of teleconnection patterns.  

In addition to the ensemble of model integrations into the future, seasonal forecasts 
require a historical series of model integrations over past decades (these are also called 
retrospective forecasts, reforecasts or hindcasts). To create retrospective forecasts, the model 
configuration is integrating over a large sample of historical cases (forecasts with known 
outcomes). These are then used to calibrate future forecasts for biases and reliability as well as to 
evaluate model skill. An average (or another statistic such as an anomaly) over time is also 
required for the forecast to be meaningful. For seasonal prediction, this averaging period is 
usually a season (three months). A common practice is to produce categorical (e.g., above 
normal, below normal, or near normal) probabilistic forecast of seasonal mean anomalies of 
some basic variables such as surface air temperature and precipitation at monthly lead times (see 
Figure 3.2). 

In addition to seasonal forecasts from operational centers throughout the world, 
collaborative international efforts aimed specifically at improving seasonal predictions have been 
critical for advancing forecasting capabilities. Many of these efforts have a focus on studying 
predictability and improving forecast skill via multi-model approaches. In addition to the MME 
seasonal forecasts issued by IRI, the Asia-Pacific Economic Corporation Climate Center (APCC) 
provides routine seasonal MME forecasts to member countries, and the aligned Climate 
Prediction and its Application to Society (CliPAS) developed a database of retrospective 
forecasts for prediction and predictability research (Box 2.1). The North American Multi-Model 
Ensemble (NMME) is a demonstration project for S2S prediction involving universities and 
laboratories in the United States, the National Centers for Environmental Prediction (NCEP), and 
the Canadian Meteorological Center (CMC). NMME started producing seasonal multi-model 
ensemble forecasts in 2011 (Kirtman et al., 2014), and these are now issued in a quasi-
operational mode (Box 2.2). 

In Europe, the Development of a European Multi-model Ensemble system for seasonal to 
interannual predictions (DEMETER) produced a comprehensive set of seasonal retrospective 
forecasts in order to evaluate MME skill (Palmer et al., 2004). The ENSEMBLES Program4 has 
built on DEMETER to assess how advances in individual seasonal forecast systems translate into 
reductions in ensemble mean error (Weisheimer et al., 2009). ENSEMBLES has attempted to 
objectively evaluate uncertainty in MME and other ensemble predictions at seasonal through 
decadal and longer timescales, including the relative benefits of different model and system 
configurations. Several model intercomparison efforts, including, the WCRP Seasonal Prediction 
Model Intercomparison Project (SMIP-2),5 have also provided valuable insights into model 
predictive skill and predictability. 
 
 

Subseasonal 
 

Building on a number of research and experimental efforts over the last decade, 
subseasonal predictions began in earnest with the establishment of an MJO prediction metric and  

 

                                                 
4 http://www.ecmwf.int/en/research/projects/ensembles, accessed January 27, 2016. 
5 Seasonal Prediction Model Intercomparison Project-2. 
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BOX 2.1—The Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) Climate 
Outlook  

 
The Asia-Pacific Climate Center (APCC6) is a joint activity of Asia-Pacific Economic 

Cooperation involving 17 operational and research centers from nine APEC member countries, including 
the United States. Along with Climate Prediction and its Application to Society (CliPAS)7 the aim of the 
APCC is to produce a well-validated multi-model seasonal prediction system to support the Asia-Pacific 
region. APCC has been collecting dynamic ensemble seasonal prediction data from affiliated centers 
since 2006, and it produces one month and three-month forecasts of precipitation, temperature at 850hPa, 
and geopotential height at 500hPa with lead times ranging from one month to six months. These forecasts 
are disseminated to APEC members, and verification is conducted in compliance with the WMO 
guideline on verification of long-range forecasts. APCC also produces routine forecasts of several climate 
modes including ENSO and Indian Ocean Dipole (IOD) on seasonal timescales, as well as the Boreal 
Summer Intraseasonal Oscillation (BSISO), which is an important modulator of Asian monsoon onset and 
breaks on subseasonal timescales. APCC also provides multi-model output-based statistical downscaling 
results for Taiwan, Philippines, Thailand, South Korea, and Japan. As examples, the output of these 
forecasts has been useful for predicting the electricity demand in Japan and the local level forecasts in 
South Korean and Taiwan are being applied to drought forecasting to manage water resources. As part of 
the research activities of the APCC, CliPAS assembled a database of retrospective forecasts (1980-2004) 
to gain a better understanding of the factors that limit seasonal prediction (e.g., Wang et al., 2008; Wang 
et al., 2009a) and to foster research on improving MME methodologies (e.g., Kug et al., 2008; Min et al., 
2014). 
 
 

BOX 2.2—The North American Multi-Model Ensemble (NMME) 
 

The North American Multi-Model Ensemble (NMME8) is a demonstration project for S2S 
prediction involving universities and laboratories in the United States, NOAA NCEP, and the Canadian 
Meteorological Center (Kirtman, 2014). NMME has multiagency support from the NOAA, the National 
Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and the Department 
of Energy (DOE). The Phase 1 experimental real-time system started issuing forecasts in August 2011 
(Kirtman, 2014). The Phase 2 system (NMME-2), with a slightly different suite of systems, began 
operations in August 2014 and is being used in a demonstration mode as part of the NOAA NCEP 
Climate Prediction Center (CPC) seasonal forecast system. NMME-2 participating centers, climate 
projection systems, and ensemble members are shown in Appendix B. Real-time data are provided to 
users on an NCEP server system, while retrospective forecast data are provided by IRI and archival data 
are passed to the National Center for Atmospheric Research (NCAR) as time and funding allow for 
research access. 

The first phase of NMME focused on seasonal-to-interannual timescales and only monthly data 
were collected. Due to the growing interest in forecast information, there is a strong emphasis in NMME-
2 to focus on the 2-4 week timescale. The requirements for operational S2S prediction are used to define 
the parameters of a rigorous retrospective forecast experiment and evaluation regime. An additional focus 
of Phase 2 will be the hydrology of various regions in the United States and elsewhere in order to address 
drought and extreme event prediction. 

                                                 
6 http://www.apcc21.org/, accessed January 27, 2016. 
7 http://iprc.soest.hawaii.edu/users/jylee/clipas/, accessed January 27, 2016. 
8 More information on the National Multi-Model Ensemble is available at 
http://www.cpc.ncep.noaa.gov/products/NMME/NMME_description.html and 
https://www.earthsystemcog.org/projects/nmme/ (both accessed January 27, 2016). 
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its uptake by a number of forecast centers (e.g., Gottschalck et al., 2010; Vitart and Molteni, 
2010; Waliser, 2011). As of 2009, the outputs from 10 operational centers have been used in an 
operational manner to provide ensemble predictions of the phase and magnitude of the MJO.9 
These systems all produce daily ensemble forecasts (sizes range from 4 to 51) with lead time of 7 
to 40 days. Some centers also produce single deterministic forecasts using high-resolution 
versions of their models. NCEP CPC receives the daily forecasts of zonal wind and outgoing 
longwave radiation (OLR) from these centers and calculates the predicted MJO index. The 
forecast products are delivered as plume phase diagrams of the predicted MJO index for each 
center. APEC’s BSISO forecasts are produced similarly (see Box 2.1). 

Many operational numerical weather prediction centers have also recently implemented 
extended-range (10-30 day) prediction systems that provide building blocks for more useful 
subseasonal prediction systems (Brassington et al., 2015). Such forecasts are developed in three 
basic ways: (1) by using forecasting systems designed for seasonal climate predictions, but 
utilizing only the first 30 to 60 days of the forecast, and paying more attention to the daily or 
weekly variations rather than the mean monthly or seasonal variations within the forecast; (2) by 
running an air-sea-ice-land coupled model with a higher resolution than the seasonal system; and 
(3) by extending the lead times of an ensemble medium-range weather forecast using a 
Numerical Weather Prediction (NWP) model out to lead times of 30 days or more. Methods 2 
and 3 produce systems that are independent of the seasonal system. Current operational systems 
include a 4-times-per-day, 4 member, 45-day lead ensemble from the U.S. National Weather 
Service (NWS), a 2-times-per-week, 51 member, 46-day lead ensemble from the European 
Centre for Medium-range Weather Forecasts (ECMWF), a once-per-week, 21 member, 32-day 
lead ensemble from Environment Canada, and at least eight others. See Appendix B, Table B.2 
for more detail on forecasts and the configuration of subseasonal forecast systems. 

Many of the same statistical considerations and associated trade-offs cited above for 
seasonal forecasting (e.g., forecast lengths and averages, ensemble sizes, multi-model ensembles 
[MMEs], verification periods) are relevant for subseasonal forecasting, although the shorter lead 
times for subseasonal prediction allow for increased verification instances for a given size 
observation period. A number of operational centers now compute retrospective forecasts (also 
known as forecast histories or reforecasts) as part of the operational forecast process and provide 
them along with the forecast itself. Frequently computing retrospective forecasts has allowed for 
continuous improvement of some aspects of forecast systems and permits the calibration to take 
account of recent events in the current weather/climate regime.  

As for seasonal forecasts, an important component of subseasonal forecasts is the 
retrospective forecast, which is performed over a few years to decades in order to calibrate the 
real-time forecasts. In contrast to operational medium-range weather prediction, there is lack of 
standardization among the centers in producing subseasonal forecasts. For example, some 
centers produce the forecast once a month, some once a week, some twice a week, and some 
every day. Some centers start all the ensemble members from the same initial time, whereas 
others use a time-lagged method where they start with different initial times and therefore 
different initial analyses. The retrospective forecasts are also produced very differently, e.g., 
some on-the-fly, and some with a fixed model version which may not represent the latest 
operational configuration. These differences can make it difficult for data exchange, performance 

                                                 
9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/CLIVAR/clivar_wh.shtml, accessed January 27, 
2016. 
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inter-comparison, and research. Further details of current subseasonal forecast systems’ 
resolutions, lead times, ensembles, etc., can be found in Appendix B.  

Common targets for subseasonal prediction beyond intraseasonal tropical variability (e.g., 
the MJO and BSISO forecasts mentioned above) include tropical cyclones and extratropical 
weather. A number of centers provide long-lead information for one and two week outlooks 
depicting the probability of United States-based hazardous weather, as well as tropical cyclone 
frequency, tropical-midlatitude teleconnection impacts, etc. (e.g., the National Centers for 
Environmental Prediction [NCEP]/Climate Prediction Center’s [CPC’s] Global Tropical Hazards 
and Benefits Outlook and U.S. Hazards Outlook10). These products are graphically highlighted 
areas with expected persistent above- or below-average rainfall and regions favorable or 
unfavorable for tropical cyclogenesis in weeks 1 and 2. The outlooks are based on expert 
combination of various statistical and dynamical forecasts, including the MJO forecast 
mentioned above. More recently, the private sector has also become active in developing 
commercial subseasonal forecasts; for example, the NWS and ECMWF subseasonal forecasts 
have been combined in a commercial MME by the World Climate Service (Dutton et al., 2013; 
Dutton et al., 2015). Many centers produce forecasts at various lead times of the mean values and 
probabilities of anomalies averaged over periods of a week or a month. Research efforts to 
support the further development of subseasonal forecasts are also beginning to develop. The 
WMO’s World Climate Research Program (WCRP) and World Weather Research Program 
(WWRP) have jointly developed a new initiative on Subseasonal to Seasonal Prediction (the S2S 
Project) (Robertson et al., 2015; Vitart et al., 2012; see Box 2.3 and Chapter 6 for additional 
information). The thrust of the S2S Project is on improving the subseasonal prediction of 
extreme weather, such as droughts, heat waves, tropical cyclone development, monsoon 
precipitation, and also subseasonal prediction in polar areas. To do so, the project is collecting 
forecasts and retrospective forecasts from a number of operational modeling centers into a 
common database and disseminating them in delayed mode for research purposes to the science 
and applications communities. 

In addition to the seasonal forecasts discussed in the previous section, NMME (Box 2.2) 
is also focusing on a second phase of effort to issuing in demonstration mode and further 
developing subseasonal forecasts and retrospective forecast databases (see Chapter 6 for more 
details). These forecasts are issued in real time in near-operational mode, and are already used by 
NCEP Climate Prediction Center (CPC) to inform subseasonal hazards outlooks, as well as being 
available to other users and for the purposes of predictability research and model and forecast 
system improvement.  
 
 

Recent Progress in Advancing S2S Forecast Skill 
 

There has been substantial progress in improving the skill of both subseasonal and 
seasonal forecasts in recent years. Generally, forecast skill for traditional atmospheric variables 
is still low (see discussion below), but the skill of forecasts of indices of coupled ocean-
atmosphere modes of variability is often higher. For seasonal prediction, the Niño 3.4 index, a 
major indicator of the ENSO, shows useful skill up to one year in some models (e.g., Jin et al., 
2008; Stockdale et al., 2011). ECMWF System 4 and NCEP CFSv2 also capture the year-to-year 

                                                 
10 http://www.cpc.ncep.noaa.gov/products/predictions/threats/threats.php and 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/index.php, both accessed January 27, 2016. 
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BOX 2.3—The Subseasonal to Seasonal Prediction Project 
 

The World Weather Research Programme (WWRP) and World Climate Research Programme 
(WCRP) started a joint research project, S2S Project11, in January 2013. The S2S Project has three 
primary objectives: (1) to improve forecast skill and understanding on the subseasonal to seasonal 
timescale; (2) to promote its uptake by operational centers and exploitation by the applications 
community; and (3) to capitalize on the expertise of the weather and climate research communities to 
address issues of importance to the Global Framework for Climate Services. Specific attention will be 
paid to the risk of extreme weather, including tropical cyclones, droughts, floods, heat waves, and the 
waxing and waning of monsoon precipitation. 

The central activity of the S2S Project is the establishment of a multi-model data base consisting 
of ensembles of subseasonal (up to 60 days) forecasts and supplemented with an extensive set of 
retrospective forecasts following THORPEX Interactive Grand Global Ensemble (TIGGE) protocols. As 
of January 2016, nine operational centers (i.e., BoM, CMA, ECMWF, HMCR, JMA, Météo-France, 
UKMO, CNR-ISAC, and NCEP) have begun to send retrospective forecast and forecast data to the S2S 
Project archive (see Appendix B for details on these centers), with a total of eleven centers expected to be 
contributing by the end of 2016. Note that while this project leverages operational systems, the forecasts 
are disseminated with a three-week delay, and thus at present there is a focus on leveraging operational 
model output for research that can improve subsequent forecast systems, rather than on issuing MME 
forecasts in demonstration mode. However, there are plans to provide the forecasts in near real-time to the 
WMO Lead Center for Extended Range Prediction (WMO, 2015b).  

A major research topic will be evaluating the predictability of subseasonal events, including 
identifying windows of opportunity for increased forecast skill with a special emphasis on events that 
have high societal or economic impacts. Attention will also be given to the prediction of intraseasonal 
characteristics of the rainy season that are relevant to agriculture and food security in developing 
countries. The Project’s research implementation plan (WMO, 2013) calls for six subprojects that focus 
on key S2S research and application areas, including the MJO, Africa, extreme weather, verification, 
stratospheric link, and teleconnections. The project will last five years, after which the opportunity for a 
five-year extension will be considered.  
 
ENSO variability with fair accuracy, and both capture the main ENSO teleconnection pattern in 
the tropical and extratropical regions (e.g., Kim et al., 2012).  

Prediction skill of extratropical modes and patterns such as the North Atlantic Oscillation 
(NAO) has also recently improved. Scaife et al. (2014a) show good prediction skill of the winter 
NAO from the UKMO system, with a correlation in excess 0.6 between ensemble mean and 
observed NAO index for December-February for forecasts from the start of November (Figure 
2.2). They also show that the model is capable of capturing at least qualitatively the observed 
influence of ENSO on the NAO, as well as the influence of Atlantic heat content, sea ice from 
the Kara Sea, and the QBO on NAO seasonal predictability. The performance of this model 
relative to what was possible a few years ago was likely achieved primarily through reducing 
biases in the model atmosphere and ocean, leading to an improved model climate (Scaife et al., 
2011). Increases in model resolution were also likely important. 

Similar progress in forecasting indices has also been made on subseasonal timescales. 
About 15 years ago, dynamical models had some MJO forecast skill out to 7-10 days (Waliser, 
2011), but performed worse than empirical models that use statistical methods to predict MJO 

                                                 
11 Details of the S2S Project, including the database, contributing centers / forecast systems, descriptions of the 
subprojects, project organization can be found at s2sprediction.net. 
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Enhanced forecast skill is sometimes possible during specific windows of time in specific 
regions. Skill to 20 days is possible, for example, during specific MJO phases (Lin et al., 2010; 
Rodney et al., 2013). Such contingent improvements in forecast skill, along with generally low 
skill for traditional atmospheric forecast variables over large areas and time windows, highlights 
the importance and promise of so-called forecasts of opportunity (see Chapter 4).  

The recent extreme low sea ice extent in summer in the Arctic prompted the Sea Ice 
Outlook12 to begin gathering seasonal forecasts in 2008. The first published skill of a 
retrospective forecast of sea ice extent appeared soon after, in 2013 (Wang et al. 2013; Sigmond 
et al, 2013; Merryfield et al, 2013). Dynamical models exhibit skill at these lead times, but their 
skill is still substantially below estimates of perfect-model forecast skill (see also Figure 4.2). 
Further, no study has yet published an evaluation of S2S forecast skill at the regional or local 
scale for sea ice variables such as concentration, thickness, or ice-type, which are likely to be 
useful to forecast users.  

In summary, over the past two decades substantial progress has been made understanding 
some of the physical drivers for S2S prediction, and operational centers have made some 
progress in improving S2S forecast skill. While prediction skill for indices of climate modes 
such as the MJO and ENSO has improved more dramatically, current operational skill is low for 
many traditional weather and climate variables. S2S forecasts for Earth system variables outside 
traditional weather and climate forecasts are less well developed, but have also been advanced by 
the development of coupled Earth system prediction systems. 

The growing interest by the science community and operational forecast centers to 
develop and implement many of the projects and experiments described above, in addition to 
recent progress in S2S predictability research and operational predictions, illustrates the research 
priority and expectations associated with S2S timescales. However, an associated U.S. national 
research agenda aimed at strengthening the contributions of S2S forecasts to public and private 
activities has not yet emerged.  

 
Finding 2.1: Although there has been considerable progress in S2S forecasting over the past 
several decades, there are still many opportunities for improvements in S2S forecast skill. 

                                                 
12 http://www.arcus.org/sipn/sea-ice-outlook, accessed January 27, 2016. 
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Chapter 3: Enhancing the Value and Benefits of 
S2S Forecasts 

 
Determining the economic value of climate and weather forecast information remains 

challenging (Dutton, 2002; Morss et al., 2008; Lazo et al., 2011; Letson et al., 2007; U.S. 
Department of Commerce, 2014). Some work indicates that a significant portion of annual U.S. 
gross domestic product (tens of billions or even trillions of dollars) may be sensitive to the 
weather (Dutton, 2002). Regardless of forecasts’ exact economic value, there is growing 
recognition that subseasonal to seasonal (S2S) predictions could play an important role in 
reducing society’s exposure to weather, climate, and other environmental variability, both in the 
United States and globally (e.g. Thiaw and Kumar, 2015;World Bank, 2013). 

Realizing potential benefits of S2S predictions will require physical science research to 
advance understanding of the many complex interactions at play within Earth system and to 
overcome the many technical hurdles associated with translating such research into improved 
S2S forecast systems (see Chapters 4 through 7). However, a crucial aspect of realizing the value 
of S2S forecasts involves generating and applying knowledge about the many social and 
behavioral dynamics, as well as the legal and equity issues that are associated with using such 
forecasts to improve decision making (NRC, 1999, 2010a, c). While addressing the latter set of 
issues in their entirety is beyond the scope of this report, the Committee believe that it is 
important both to highlight in more detail the value proposition of S2S forecasts and to outline 
critical steps that the S2S research community can take to ensure that investments made in 
current and future S2S forecast systems are leveraged to maximize the ability to inform choice, 
action, and social and economic benefit.  

This chapter presents the context in which S2S forecasts are or could be used by a diverse 
set of decision makers, highlights some barriers to use, and presents findings and 
recommendations to help ensure that future S2S forecast systems and forecast products realize 
their potential to benefit society.  

 
 

THE POTENTIAL VALUE OF S2S FORECASTS TO DECISION MAKERS 
 

A number of federal, state and private users presented information to the Committee 
about how they make decisions for which S2S Earth system information is or has the potential to 
be a factor. Building on these presentations, the Committee developed information on a large set 
of sectors and decisions for which S2S forecasts are or have the potential to inform decisions 
(Figure 3.1, and Table 3.1). Case studies later in this chapter expand upon some of these 
examples, including applications to water management, public health, emergency response and 
national defense. As the case studies make clear, some of the potential value of S2S forecasts lies 
in their ability to inform decision processes that begin months or even years in advance of a 
potential event. Often, the long-term average or climatology of a particular phenomenon—such 
as assumptions for the seasonal volume of water held in a reservoir—are incorporated into 
decision making as a first step. As the decision point draws nearer, adjustments are made as 
additional information becomes available. In this context, S2S forecasts can inform the process  
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TABLE 3.1 Example decisions from a range of sectors that can be informed by S2S and longer forecasts. 
Variables needed to make these decisions are shown in parenthesis. The examples are based upon 
presentations to the Committee, examples of use solicited from the State Climatologists and other climate 
services providers, and from published research. 
Sector Decision Process Weeks-Months Seasonal-Annual Longer-Term 
Water 
Resources 
Management 
(see case study 
for more detail) 

Water Supply 
Management (including 
flood control and 
drought) 

Probability of heavy 
rainfall or runoff; 
probability of unusually 
high demand 
(precipitation; 
temperature; snowpack; 
runoff; likelihood of 
atmospheric river 
events) 

Allocation of water 
supply; water transfer 
requests; assuring 
minimum flows for 
endangered species 
(accumulation of winter 
snowpack; timing of 
seasonal snowmelt; 
summer water demands; 
precipitation; 
temperature; snowfall; 
evapotranspiration) 
 

Storage capacity and 
sources; conservation 
programs (changes in 
mean annual 
temperatures, 
precipitation, snowfall 
accumulation, runoff, 
evapotranspiration) 

 Hydropower Scheduling Available water supply 
in reservoirs; anticipated 
demand (lake levels; 
stream flow; 
evaporation; 
temperatures for demand 
estimates) 

Probability of reaching 
target elevation levels in 
reservoir (snowmelt / 
inflow; evaporative loss) 

Changes in demand and 
supply (changes in mean 
seasonal and annual 
temperature across basin 
and service area; 
changes in snowmelt 
patterns; changes in 
precipitation, changes in 
evapotranspiration) 
 

 Recreation Budgeting Reservoir/Lake levels 
and temperature—e.g., 
high temperatures may 
increase probability of 
algal blooms or fish kills 
(inflow; evaporative 
loss; temperature 
departures) 

Probability of reaching 
target elevation levels in 
reservoir / lake 
(snowmelt/inflow; 
evaporative loss) 

Probability of 
maintaining seasonal 
target elevation levels 
(net water supply to 
reservoir / lake; changes 
in evaporative loss) 

National 
Security 
 (see case study 
for more detail) 

Anticipating disruptive 
events / deployment of 
resources (aid, security, 
evacuation) 

Pre-deploy resources to 
areas that are at greatest 
risk of high-intensity 
events (probability of 
disruptive events, 
especially flooding and 
drought) 

Anticipate staffing and 
resource needs; identify 
timing of Arctic 
shipping lanes open (sea 
ice; probability of 
disruptive events 
including flooding and 
famine) 

Identifying areas that 
may become at-risk 
from natural disasters-
e.g., climate change, 
famine (regional 
changes in temperature 
and precipitation 
patterns; sea-level rise) 
 

 Food and water security Emerging areas of food 
or water shortage that 
may require transport of 
large quantities of food 
(precipitation 
departures; monsoon) 

Areas at risk of famine 
or flood during coming 
months to year (monthly 
to seasonal precipitation; 
drought forecasts; 
temperatures exceeding 
critical thresholds for 
major crop areas) 
 

Areas undergoing 
desertification or decline 
in water quantity and/or 
quality (changes in 
precipitation patterns; 
salinity; changes in jet 
stream, monsoon, or 
ITCZ) 

 Tactical planning Shipping routes and 
operations planning 
(wind; wave height; sea 
ice; ocean currents) 

Projected dates of Arctic 
ice breakup and thawing 
permafrost rendering ice 
roads and runways 
unusable (sea ice; 
monthly temperatures)  
 

Inundation of coastal 
facilities from sea-level 
rise and storm surge 
(sea-level rise; changes 
in hurricane intensity) 
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Sector Decision Process Weeks-Months Seasonal-Annual Longer-Term 
Energy Energy generation, 

trading and hedging 
Potential spikes in 
demand; availability of 
renewable energy (heat 
waves / cold outbreaks; 
mean daily wind speed; 
daily solar radiation; 
adverse weather impacts 
such as ice storms, wind 
storms, hurricanes) 

Seasonal supplies of 
natural gas and 
renewable energy 
sources; trading with 
other producers, hedging 
in futures markets and 
over the counter trades; 
fuel adjustment clauses 
(winter and summer 
temperatures; 
probability of heat 
waves or cold outbreaks; 
projected runoff from 
snowmelt) 
 

 

 Operations and 
Maintenance scheduling 

Potential disruptive 
events / damage to 
infrastructure or supply 
chain (severe storms; 
hurricanes; floods; heat 
waves; wind) 

Taking units off-line 
(probability of heat 
waves or cold outbreaks 
leading to unusually 
high demand)  

Building, upgrading, and 
relocating new facilities 
(summer and winter 
temperatures; sea-level 
rise; changes in 
snowpack / spring 
runoff) 

Agriculture Crop production Susceptibility to disease; 
application of nutrients, 
pesticides & herbicides 
(temperature; 
precipitation; wind 
speed; relative humidity; 
soil temperature) 

Projected yields; food 
production and 
distribution 
(precipitation; soil 
moisture; temperature; 
projected dates of 
first/last freeze; 
probability of disruptive 
events—flood, drought, 
heat waves, freeze) 

Types of crops that can 
be grown in a changing 
climate; trees and vine 
varieties (changing 
ecoregions; changes in 
monthly and seasonal 
precipitation; 
evapotranspiration; 
length of growing 
season) 
 

 Commodity trading in 
grains and other high-
value crops 
 

Protect profit, anticipate 
market movement 

Protect profit, anticipate 
market movement 

 

 Ranching Forage management 
strategies; altering 
stocking rates 
(probability of 
abnormally wet or dry 
weeks; extreme 
temperatures; abrupt 
changes in temperatures) 
 

Herd size, pasture 
availability (total 
rainfall; vegetation 
health) 

Long-term changes in 
viability of operations in 
semi-arid areas 
(precipitation; 
evapotranspiration; 
frequency of drought) 

 Fisheries Stocking, fish kills 
(water temperatures; 
stream flow; salinity) 

Migratory patterns-e.g., 
salmon (snowpack; 
streamflow) 

Viability of species-
appropriate habitats in 
lakes and rivers 
(temperature; water 
temperature; 
streamflow; snowpack) 
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Sector Decision Process Weeks-Months Seasonal-Annual Longer-Term 
Severe 
Weather / 
Event 
Management 

Event Management Pre-deploy resources to 
areas most likely to be 
impacted (probability of 
disruptive events-
storms, hurricanes, 
floods, fire) 

Seasonal outlooks for 
number and intensity of 
hurricanes, storm 
outbreaks, or flooding 
(weekly to monthly 
precipitation 
accumulation; patterns 
favorable for 
development of storms; 
ENSO phase and 
intensity) 

Areas likely to become 
more or less at-risk from 
disruptive events 
(changes in wildfire 
frequency or magnitude; 
changes in extreme 
precipitation; changes in 
drought; changes in 
storm tracks; changes in 
hurricane frequency or 
intensity) 

 Risk Awareness Encouraging people to 
stock sufficient supplies 
(probability of 
disruptive events) 

Initiate public awareness 
and preparedness 
campaigns (probability 
of an active season-
hurricane, storm, flood) 

Changes in patterns or 
timing of severe weather 
(changes in frequency or 
magnitude of disruptive 
events) 

 Wildfire Management Pre-deploying resources, 
wildfire management 
(temperature; wind; 
humidity) 

Seasonal outlooks 
(precipitation; 
temperature; wind; fuel 
load) 

Changes to fire 
susceptibility (expansion 
of pine bark beetle 
habitat; changes in 
seasonal water balance; 
changes in temperature) 

Environmental 
Impacts 

Oil spill  Loop currents (e.g., 
tracking where oil is 
likely to go) 

Dispersion and dilution; 
impacts on fisheries 

Changes in natural 
habitats 

 Coastal Zone 
Management 

Hurricane / wave 
impacts 

Beach erosion and re-
nourishment 

Loss of wetland habitat 
due to sea-level rise; 
Changes in shoreline 
habitat and wildlife 
(e.g., conversion of salt 
marshes to mangroves) 

Transportation Shipping & Navigation Disruptions to surface 
transportation systems; 
preparing evacuation 
routes for hurricanes 
(probability of flooding; 
periods of active tropical 
activity) 

Timing of opening 
shipping lanes in the 
Arctic (sea ice; summer 
temperatures; 
streamflow on major 
waterways) 

Susceptibility of ports to 
inundation; transit routes 
(sea-level rise; storm 
surge; ice-free Arctic) 

 Maintenance of 
highways, railroads, 
waterways, airports 

Positioning equipment 
and assets-e.g., salt for 
roads, barges and 
railcars for 
transportation, de-icing 
equipment and supplies 
for airports (probability 
of adverse weather, 
including snowfall or 
ice, heavy rainfall, 
drought) 

Positioning equipment 
and assets for repairs of 
infrastructure and 
equipment; seasonal 
supplies of road salt, de-
icing supplies, fuel; 
(probability of 
favorable, adverse, or 
severe weather; number 
of freeze/thaw cycles; 
first and last frost; 
seasonal snowfall; ice 
storms) 

Re-sizing bridges and 
culverts to handle flood 
flows; selection of 
materials to handle 
extreme temperatures 
(projected number of 
days exceeding critical 
temperature thresholds; 
changes in maximum 
probable precipitation) 
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Sector Decision Process Weeks-Months Seasonal-Annual Longer-Term 
 Maintenance Positioning equipment 

and assets-e.g., salt for 
roads (probability of 
winter weather including 
snowfall or ice) 

Planning for pothole 
repairs; seasonal 
supplies of road salt; 
possible repair of 
flooded roadways and 
bridges (probability of 
extreme rainfall; number 
of freeze/thaw cycles; 
first and last frost; 
seasonal snowfall; ice 
storms) 

Re-sizing bridges and 
culverts to handle flood 
flows; selection of 
materials to handle 
extreme temperatures 
(projected number of 
days exceeding critical 
temperature thresholds; 
changes in maximum 
probable precipitation) 

Construction  Probability of weather-
related delays-e.g., 
staffing (precipitation; 
temperature; snowfall; 
humidity; wind) 

Timing of materials 
delivery; contract 
incentives and penalties 
(probability of 
disruptive events; 
consecutive days of 
hot/cold or wet weather) 

Annual number of days 
with suitable work 
conditions (changes in 
temperature and 
precipitation patterns; 
length of frost-free 
season) 

Business Retail Supply chain decisions-
e.g., promoting products 
in response to weather 
events (probability of 
heavy rainfall; extreme 
temperatures; snowfall) 

Production and purchase 
of seasonal items-e.g., 
umbrellas, outdoor 
activities, snow sports; 
possible disruption of 
supply chains (seasonal 
snowfall, number of 
rainy days, extreme 
temperatures; 
probability of disruptive 
events) 

Probability of disruptive 
events 

 Insurance & Financial 
Management 

Hedging / risk 
management; shifting 
funds in anticipation of 
large payouts from 
widespread events such 
as flooding or active 
period of extreme events 
such as hurricanes 
(probability of 
disruptive events) 

Potential demand for 
energy; potential crop 
yields; contracts for 
insurance or 
reinsurance; setting 
premiums (above or 
below normal number of 
hurricanes; large-scale 
patterns favoring 
flooding or drought; 
extended periods of 
abnormally hot or cold 
temperatures) 

Insurability of coastal 
property; changes in 
regional patterns of risk 
(sea-level rise; storm 
surge; storm patterns; 
frequency and intensity 
of hurricanes and 
droughts; changes in 
maximum daily rainfall 
events) 

Public Health 
(see case study 
for more 
detail) 

Potential disease 
outbreaks 

Conditions conducive to 
development of disease 
vectors (temperature; 
precipitation; easterly 
waves; extratropical 
cyclones) 

Seasons that may have 
above-average number 
of cases—e.g., 
meningitis, malaria (sea-
surface temperatures; 
cumulative rainfall; 
temperature variability; 
strength of Indian 
Monsoon) 

Changes in regions 
susceptible to spread of 
disease—e.g., areas 
where viruses and 
bacteria can survive due 
to warming temperatures 
(changes in regional 
temperature and 
precipitation patterns) 

 Extreme temperatures, 
heat waves, cold spells 

Likelihood of a 
significant event 
(maximum and 
minimum daily 
temperatures; humidity) 

Likely number of events 
during a season 
(probability of 
occurrence of 
consecutive days with 
temperatures above or 
below critical 
thresholds) 

Changes in the 
frequency of extended 
periods of abnormally 
hot or cold weather 
(daily temperature) 
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Sector Decision Process Weeks-Months Seasonal-Annual Longer-Term 
 Heat waves Likelihood of a 

significant event 
(maximum and 
minimum daily 
temperatures; humidity) 

Likely number of events 
during a summer 
(probability of 
occurrence of 
consecutive days above 
temperature thresholds) 

Changes in the 
frequency of extended 
periods of abnormally 
hot weather (daily 
temperature) 

 Algal blooms / release 
of neurotoxins in water 

High temperatures with 
relatively stagnant water 
and abundant sunshine 
(air and water 
temperature; 
precipitation; cloud 
cover) 

Probability of extended 
periods (weeks) of hot, 
dry weather 
(temperature; 
precipitation; runoff) 

Changes in conditions 
conducive to algal 
blooms (summer water 
and air temperatures; 
changes in cloud cover; 
changes in frequency of 
drought and runoff) 

 
 

CHALLENGES TO THE USE OF S2S PREDICTIONS 
 

Despite the wide range of potential sectors in which S2S forecasts are or have the 
potential be valuable, there are many challenges and barriers to their uptake by decision makers. 
For example, many water managers can see the potential application of seasonal and subseasonal 
forecasts to their work, and in some cases such information has provided valuable context for 
planning (see case water management case study below). However, the outcomes of forecast use 
have not always been positive; currently available products do not always fit easily into 
institutional decision-making frameworks, and managers are eager for forecasts of variables and 
at resolutions that are more directly relevant to their contexts. These points are broadly consistent 
with published research on applications of S2S predictions to decision making, which to date 
focuses on the use of seasonal predictions in the agricultural, energy, or water management 
sectors (e.g., Breuer et al., 2010; Hansen et al., 2006; Lemos, 2008; Mase and Prokopy, 2014; 
Pagano et al., 2002). For example, Patt et al. (2007) document how use of a seasonal forecast in 
Ethiopia enabled an emergency management team to identify specific relief actions with months 
of lead time, alleviating food shortages in 2002. In contrast, seasonal forecasts prompted the 
restriction of credit for seed in Zimbabwe in 1997, which prevented planting and led to food 
shortages even though seasonal rainfall ended up at near-normal levels.  

Beyond the experience of negative consequences of seasonal forecast use, one important 
set of documented barriers to the use of S2S forecast products relates to mismatches between 
currently available products and the stated needs of end users. Forecast products currently 
available from organizations such as NOAA’s Climate Prediction Center (CPC) or the seasonal 
MME forecasts from the APCC (see Chapter 2), for example, are issued in the form of low-
resolution depictions of the probabilities of departure from mean temperature and precipitation 
over a 3-month period (Figure 3.2), or as forecasts of climate indices such as ENSO.  

These forecasts, and text discussions that accompany them, provide general guidance on 
future temperature and precipitation, but they do not readily translate into operational decision 
support for many applications. In agriculture, S2S information could be used to assist in 
determining planting dates, irrigation needs, crop types, fertilization, expected market conditions, 
pests and disease, livestock management, and the need for insurance (Breuer et al., 2010; Mase 
and Prokopy, 2014). However, these decisions are dependent on the timing, magnitude, 
frequency, and duration of weather events within the three-month forecast window, not 
departures from seasonal average conditions (Vitart et al., 2012; Srinivasan et al., 2011). 
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spanning several different forecast domains (see also water management case study; 
Srinivasan et al., 2011; Robertson et al. 2014). For example, seasonal forecast skill is 
enhanced by a strong El Niño-Southern Oscillation (ENSO) signal, but by the time 
forecasters have confidence of likely impacts from the event, many decisions on crops, 
water storage, or other resources have already been made. Furthermore, different 
combinations of forecast lead times and averaging period may be more or less useful in 
different contexts (see also Chapter 5). 

4. There is often a lack of understanding in and trust of forecasts. Many users do not 
understand the process by which forecasters come to their conclusions, and existing 
forecast verification metrics are often not directly relevant to users’ contexts (Morss et 
al., 2008). Consequently, users often have little confidence in the forecast (Mase and 
Prokopy, 2014). Familiarizing users with the processes by which forecasts are produced 
often requires direct interaction over a sustained time period. Such interactions are 
expensive, resulting in fewer communication pathways between the producers and users. 
Thus a lack of resources issue often exacerbates this issue and hampers delivery of 
information to end users (see also Hansen et al., 2011; Klopper et al., 2006; Lemos and 
Morehouse, 2005).  
 
Such examples extend beyond agriculture. For example, forecasting events such as heat 

waves for the public health sector, or environmentally caused anomalous electromagnetic 
propagation and mirages for ocean communications applications, have the potential to provide 
much greater value to decision makers than information about departures from average 
temperature and precipitation across a wide region (see also case studies below). Contextual 
factors, such as lack of trust or inflexible personal or institutional operations, also impede 
forecast use in water management and public health sectors. In water management in the United 
States, for example, some institutions may even have policies that designate certain sources as 
official information, posing a barrier to the use of new products (Lemos, 2008; Pagano et al., 
2002; J. Jones, personal communication, January 2015). Differences in perceptions of risk and 
bias, fear of bearing personal responsibility for making decisions based on probabilistic forecasts 
that are still less familiar to the public are also barriers to use in some cases (e.g., Suarez and 
Tall, 2010). Lack of resources can also influence the ability to access decision support. Although 
some private companies and research laboratories produce higher temporal or spatial resolution 
and tailored forecasts for their clients (e.g. IRI tailored products, and see case study on national 
security and defense), these are not necessarily widely available to the public. Beyond specific 
barriers to use, many decision makers (and even entire sectors) may not be fully aware of S2S 
forecasting efforts and the potential to apply such information to decision making (Buontempo et 
al., 2014; public health case study below).  

To summarize, the current use of S2S forecasts at present is primarily limited to general 
guidance, although there are emerging sectors and businesses that make more in-depth use of 
forecasts. Reasons for the slow adoption of and demand for S2S forecasts into operational 
environments include: (1) a poor fit between aspects of the forecast (skill, scale, and lead time—
e.g., salience and credibility [Hansen et al., 2011; Klopper et al., 2006]); (2) contextual factors 
such as lack of trust, inflexible operations, market fluctuations, and lack of resources; and (3) 
lack of awareness.  

That said, the number of studies that address the role of S2S forecasts in decision making 
across important sectors, including transportation, infrastructure, or heath and humanitarian 
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crises, is still limited (though studies within humanitarian and health contexts are growing—see 
Braman et al., 2013 and Coughlan de Perez and Mason, 2014). The relative paucity of analysis 
about the use (or lack of use) of S2S forecasts—particularly subseasonal forecasts—across 
multiple sectors and regions inhibits the understanding of the potential value of S2S predictions 
and the development of strategies to maximize the benefits of S2S predictions to society. 
 
Finding 3.2: Research about the demand for and utilization of S2S predictions across multiple 
sectors is still limited. Studies that have been conducted often indicate significant barriers to 
using S2S forecasts in decision making, including mismatches between available and desired 
forecast products, barriers associated with policy and practice, and lack of understanding of 
what could be provided.  
 
Finding 3.3: Decision makers generally express a need for a wider range of skillful model and 
forecast variables—particularly information about the likelihood of disruptive or extreme 
events—that are valid at finer spatial and temporal scales to inform management practices. 
 

Some of the issues highlighted above are not new or unique to S2S forecasts. The 
weather forecast community, for example, faces many similar challenges, and a developing body 
of social and behavioral science research on forecast use is beginning to increase understanding 
about how to overcome challenges associated with increasing forecast use in decision making 
(Brunet et al., 2010; NRC, 2010c). Learning from experiences on both the shorter-term weather 
forecasts, as well as leveraging existing knowledge about the use of seasonal forecasts, can 
provide guidance to maximize the use of subseasonal and seasonal forecasts across many more 
sectors of society. As an example, findings about the barriers to use of seasonal forecasts above 
are broadly consistent with previous research on the use of weather forecasts, which identified 
similar types of information that users generally consider to be the most relevant to decision 
making (Pielke and Carbone, 2002): 

 
 Extreme events, including droughts, hurricanes, floods, blizzards, tornadoes, and 

thunderstorms (including hail); 
 The benefits of good weather, meaning favorable conditions for a particular activity; 
 Routinely disruptive weather, defined as not extreme, but significant enough to warrant 

behavioral adjustments; and  
 Forecast impacts, particularly associated with misses and false alarms (including over-

warning). 
 
Finding 3.4: Building on experience related to increasing the usability and use of weather and 
seasonal forecasts will be important for rapidly broadening the role of S2S forecasts in 
decision making.  
 
 

Uncertainty and Lead Times 
 

In addition to user-relevant forecast output variables and scales, there are key attributes of 
forecasts that must exist before a prediction can make a value-added contribution to decision 
processes. Forecasts must be available in a timely manner, be provided in a readily 
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understandable format with known accuracy, and be accepted as an available tool by the users 
and policy makers (Hartmann et al., 2002; Pagano et al., 2002). 

Different users have different tolerances for how accurate a forecast must be before it 
becomes useful to them. Some users need high confidence before they can take action, while 
others may be more tolerant of incorrect forecasts (Lemos and Rood, 2010; Mase and Prokopy, 
2014). According to a cost-loss model, if the probability of occurrence of an event exceeds the 
ratio of the cost of mitigation action to the losses that would be expected to occur without 
mitigation then the mitigation actions are considered worthwhile. Consequently, if the costs of 
action are high, then the user would require a higher level of certainty that the forecasted event 
will occur (Murphy, 1977). Such specific probability thresholds are usually unknown to 
forecasters, however, as they are situationally and geographically dependent. 

Decision makers always operate under uncertainty; even a 24-hour forecast has 
uncertainties. Such uncertainty is now frequently and more appropriately presented in terms of 
probabilistic forecasts. However, as has been shown by notable errors in weather forecasts, such 
as predictions of winter precipitation, when decisions have significant associated costs, people 
are more critical of forecast errors (Joslyn and Savelli, 2010; Roulston and Smith, 2004; Savelli 
and Joslyn, 2012). Furthermore, seasonal forecast information, when presented at finer spatial 
and temporal scales, increasingly has larger bounds of uncertainty. Thus, there may be a higher 
likelihood of an outcome that is different than the forecast at the particular location where the 
decision is made. When presented on a value or cost/loss basis, this may make decision makers 
reluctant to invest in actions based upon generally lower-skill, highly probabilistic S2S forecasts. 
For example, a 53% probability of greater than normal snow fall may not justify contracting for 
additional snow removal availability. However, in order to make valid value decisions and 
actions, decision makers need established reliability measures. If preventive action requires steep 
costs, and reliability measures are not well developed, policy-makers are less likely to adopt 
(especially experimental or new) forecast products and are more likely to resort to a wait-and-see 
position (Lemos and Rood, 2010). When confronted by crisis, however, such as reservoirs 
operating above or below their capacities, the willingness to use S2S forecast information may 
increase significantly (Lemos, 2008). 

Thus creating more skillful forecasts does not necessarily guarantee that the forecasts will 
be useable or used. To be useful, a user must also have confidence in the prediction. Confidence 
is typically established by evaluating the success of the forecast against a large number of 
previous occurrences. However, S2S predictions have a number of major challenges in 
establishing such confidence. For example, because forecasts are typically averaged over weekly 
or longer time intervals, there are fewer data points against which to verify the forecasts. 
Furthermore, if users are interested in a prediction of a weather-driven event such as severe 
flooding, then multiple forecast variables are involved, including precipitation amount and 
intensity, soil moisture, snow pack, and temperature. Errors in any one of these variables will 
lead to errors in the projected outcome. The issue of developing confidence in forecasts is of 
central importance to users, but also links centrally to S2S forecast systems, and is therefore 
covered in greater detail in Chapter 5(see the section on Calibration, Combination, Verification, 
and Optimization) 
 
Finding 3.5: Assessing tolerance for uncertainty and developing user-oriented verification 
metrics are important to building confidence in the use of forecasts among decision makers. 
At the S2S timescales this aspect has been generally under-developed.  
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IMPROVING THE USABILITY AND USE OF S2S FORECASTS 
 

Given the current barriers to use highlighted in the section above, this section highlights 
potential avenues for increasing forecast uptake into decision making. Decision makers have a 
range of capabilities, from those able to apply statistical techniques to extract useful information 
from forecasts, to those with less ability to modify or interpret probabilistic forecasts. Tailored 
and interpreted forecast information has the potential to increase the value of S2S forecasts by 
expanding the range of forecast variables and outputs that are available to specific users. Some 
tailored product variables may be obtained through the development of statistical models or 
correlation fields for relating existing forecast variables and spatial scales, such as regional 
temperature and precipitation averages, to other, more useful variables (Mase and Prokopy, 
2014). For example, extension agents in the agricultural sector prefer derivative information over 
simple climate predictions (i.e., forecasting impacts instead of seasonal departures of temperature 
and precipitation). Here, forecasts of the probability of receiving sufficient precipitation during 
crop maturation or sufficient soil moisture for seed germination can help the agricultural sector 
anticipate the amount and timing of irrigation needs. 

Creating some tailored products is possible using currently available forecast output. 
Developing other tailored forecast variables will require advances in the S2S forecasting system 
itself, particularly through an expansion of the capabilities of coupled Earth system models that 
enable, for example, new forecast variables such as the occurrence of unusual surf or extreme 
waves, mean cloud cover, and likelihood of harmful algal blooms. Similarly, some progress on 
predicting the less probable but high-impact events, so-called extreme events, can be made 
through tailoring existing forecasts. Such events may include a very hot week in an otherwise 
near-normal summer. Because these are part of a continuous distribution, there is potential to 
predict the probability of such events occurring within a forecast period. However, 
improvements in coupled model forecast systems are likely also needed to meet user demands 
for predictions of such extreme or disruptive events, especially since the noteworthy nature of 
extremes is typically sector specific. For example, uncharacteristically low winds might not 
represent a problem for water, transportation, or agriculture sectors, but would be significant for 
the wind energy and air quality sectors.  

Qualitative interpretation of forecasts can also increase their uptake and value. For 
example, simplified forecast discussions that accompany National Hurricane Center public 
advisories provide the explanations behind the forecast that increases many users’ trust of such 
forecasts. Thus increasing the use of such simplified forecast discussions in other routinely 
issued forecasts could yield almost immediate benefits. However, careful thought needs to be 
given to how such information is integrated into decision-making processes (NRC, 2009). 

The multitude of potential applications, driven by a multitude of different decision 
makers with different needs requiring different formats, increases the complexity of production 
and dissemination of forecast information. To some extent, private sector providers may develop 
products that meet this need, but on a large, advisory scale it is likely that the producers of 
information will need to consider multiple formats, along with broader scale efforts to develop 
tailored, sector-specific products. 
 
Finding 3.6: Many forecast products that have the potential to provide greater benefit to 
society could be developed from existing modeling technology. Developing other important 
forecast variables and uses will require advances in modeling technology. These variables are 
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likely to be sector or decision-specific and their provision is likely to involve derivative 
products and/or other decision support. 

 
 

The Need for Social and Behavioral Sciences 
 

As highlighted in the paragraphs above, developing a system that supports use of S2S 
information requires more than increased understanding of sources of predictability and 
improved prediction skill. Advances in use and value require consideration of the decision-
making context, which often requires complementary research in the social and behavioral 
sciences. Specifically, social science research can help to address many of the barriers to use 
previously highlighted in this chapter, including increasing understanding users’ confidence in 
the accuracy of forecasts, understanding users’ decision-making contexts and how to best 
integrate forecast information, and understanding decision making in contexts of high 
uncertainty and limited skill (see also NRC, 2010c). This includes research into how users react 
to false alarms and the costs associated with incorrect forecasts, and how probabilistic 
information can be better communicated to fit into users’ operations (R. Morss, G. Eosco, S. 
Jasko, J. Demuth, personal communication, March 2015). Social science research on perceptions 
of quality—e.g., at which point users will make an investment of time and resources to integrate 
forecasts in their operational contexts and what types of products are needed to mesh into 
existing decision-making infrastructures—will also be important to understanding the potential 
value of S2S forecasts. As much of S2S information is probabilistic, research will be needed on 
the interface between probabilistic forecasts and decision maker applications to determine new 
ways of translating forecasts to mesh with common usage of other Earth system information. 
This may involve setting more nuanced decision limits, particularly around low probability 
predictions (e.g., 51-55%). Additional research is also needed on the role that social networks 
may play in the dissemination of information and practice (e.g., Mase and Prokopy, 2014). 
 
Finding 3.7: Understanding decision contexts for a wide array of users in both sectoral 
applications and technical capacities is essential for increasing use of S2S forecasts. Such 
understanding cannot be advanced without social and behavioral science research.  
 
 

Integrating Users into the Process of Developing Forecast Products 
 

Perhaps even more critical than improving forecast products and access is building trust 
in the S2S forecast process. Scientists and operational forecasters who create the information are 
often disconnected from how that information is being applied, at least outside of agency 
operations (Lemos et al., 2012). Broader use of S2S forecasts will be encouraged by creating 
systems of integrated actors and organizations that initiate, modify, import, and diffuse science 
and technology, identifying information pathways, relating new information to prior experience 
of the users, and creating toolkits to enable application of information to various decision 
contexts (Lemos et al., 2012; Vitart et al., 2012). This requires integration of users in decisions 
relating to the research and development process, from defining relevant research questions to 
the process of production and dissemination of products (Lemos and Morehouse, 2005). 
Developing a mechanism for integration may be informed by existing mechanisms used for 
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integration of NWP forecasts with a variety of users, but will need to be adjusted for different 
circumstances related to the production of S2S forecasts. Model developers and operations in 
NWP interact with a variety of forecast centers around the country and with the media in annual 
meetings and routine correspondence. To the extent practical, expanding this existing 
stakeholder network to include mechanisms for collaboration with S2S model developers and 
operations would be beneficial as compared to developing a separate network from scratch.  

The discussion of opportunities and limitations involved in producing S2S forecasts 
highlights potential trade-offs and risk of using the products that enhances the users’ confidence 
in adopting new products or practices (Lemos et al., 2012). Such discussions are facilitated, in 
many cases, by boundary organizations, such as NOAA’s Regional Integrated Sciences and 
Assessments (RISA) Program and the IRI. These organizations conduct interdisciplinary 
research on decision-making processes with the goal of better coupling the production and use of 
climate information (Goddard et al., 2014; Lemos and Rood, 2010; Pulwarty et al., 2009). The 
growing experience of these organizations points to the considerable effort and long-term 
relationships that are needed to help users understand what types of forecasts are available, the 
process of producing the forecasts, and to engage them in the design of forecast products and 
aligned decision-making frameworks to take advantage of currently available forecast 
technology. For example, IRI has found that seasonal climate forecasts of relatively low skill can 
still be successfully applied to water management problems in Brazil and Chile, but only through 
coupling climate forecasts with streamflow projections and working with managers to explicitly 
link such tailored forecasts to their reservoir management decision-making process (Robertson et 
al., 2014). Similarly, malaria early warning systems based on S2S forecasts have been successful 
through extensive efforts to forge relationships between end users and physical and social 
scientists who manage the technical aspects of designing forecast products (see case studies 
below). Growing experience among interdisciplinary researchers has resulted in a similar set of 
conclusions relating to the benefit of ‘co-producing’ forecast products and information together 
with the end users of such information (Meadow et al., 2015).  

 
Finding 3.8: An ongoing, iterative process between the developers, the providers, and potential 
users facilitated by the relevant social science researchers improves the use and value of S2S 
predictions. 
 

Ongoing engagement between decision makers and scientists involved with producing 
forecasts can facilitate the development of iterative or multi-step decision-making processes, 
such as the “ready, set, go” framework. Here, warnings, preparation, and action are keyed to 
increasing probabilities of adverse events (e.g., Coughlan de Perez and Mason, 2014). 
Preliminary planning may be initiated when an extended S2S prediction indicates the possibility, 
perhaps at a small probability, of a significant event. This would be followed by preparatory 
actions (such as prepositioning emergency supplies) if subseasonal predictions indicated 
increasing probabilities of the event. Finally, action (such as evacuation) would be initiated 
based on a deterministic or short-range ensemble prediction with a high level of certainty. This 
scenario assumes a reliable transition of the predicted probabilities between the seasonal climate 
system, the subseasonal system, and the short range deterministic or ensemble systems—all with 
their own statistical characteristics and skill levels. Blending the probabilities on these diverse 
timescales (and possibly spatial scales as resolution improves) into a coherent chain of 
predictions for a user is a difficult post-processing challenge.  
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As mentioned above, the decision makers will be concerned with some measure of risk 
and consequence based on a combination of the evolving probability of the adverse event and the 
costs of mitigating compared to those of not mitigating. The more quantitative the model of risk 
and consequence, the more meaningful will be the estimates derived from the evolving 
probabilities of the adverse event. Not all organizations will necessarily participate in all three 
stages. Certain organizations may enter the process at different points and levels of certainty. 

The set of actions taken and the probability thresholds that act as triggers are usually 
dependent upon users’ unique circumstances and institutional landscapes. Developing models for 
applying S2S information in these types of scenarios represents an opportunity for growth in the 
private sector. For example, applications requiring acquisition of resources, such as power poles 
in advance of an expected ice storm, may require more lead time than others for which resources 
are already available, such as frost protection for an orchard. Such decisions are not static; they 
are revised as new information becomes available, including reduced uncertainty as the forecast 
lead time shortens. Decision processes on weather timescales could be instructive, such as how 
public safety officials change their decisions from the timescales of outlooks several days before 
an event to watches and then warnings. 
 
Finding 3.9: Successfully aiding users with a multi-step decision model for mitigating the 
effects of adverse events is a difficult challenge and one not yet considered carefully in the S2S 
prediction community. 
 
 

Resources Required to Encourage Use 
 

Developing interactive, transparent processes is a time-consuming and expensive process. 
It is constrained by limited resources of research, forecasting and many user communities. As 
forecasting capabilities improve, the demands users place upon providers of forecast information 
will only increase. Forecasters and researchers need to be careful not to over-promise the 
capabilities of improved systems. Especially if they are unable to also address the translation 
process, the demand for services and interpretation of products may exceed the level that can be 
met, resulting in disenchantment and abandonment of forecasts (Meinke et al., 2006).  

As mentioned above, boundary organizations can play an important role in facilitating 
transparent dialogs and processes that can help overcome many barriers to forecast use. There 
are many existing structures that are engaged as boundary organizations at the weather and 
climate change scales, including the NOAA RISA Program, IRI, National Weather Service 
Forecast Offices, the Department of Interior’s Climate Science Centers, the Department of 
Defense Climate Services, the emergent USDA Climate Hubs, and other programs within 
academia. All of these programs and offices engage with decision makers and possess expertise 
in social science methodology coupled with a physical understanding of weather or climate. 
They often work in interdisciplinary teams and with those intermediaries who ultimately reach 
the individual decision makers. 

 
Finding 3.10: Growth in the use of S2S products will place more demands upon operational 
agencies and boundary organizations to explain reasoning employed in producing forecasts, 
and in developing a suite of products that meet the needs of a diverse user community. 
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CASE STUDIES WITH EXAMPLE APPLICATIONS OF S2S FORECASTS 
 

Water Management in the Western United States 
 

Improved forecasting capability on S2S timescales is an oft-stated goal of water 
managers, especially in the drought-prone basins of the western United States (e.g., NIDIS 
Program Implementation Team, 2007; WGA, 2008). Federal, state, and local water managers in 
California, for example, seek improved forecasts in order to stretch their ability to balance the 
needs of 38 million residents (representing 12% of the U.S. population), the needs of an 
agriculture sector that farms over 9 million irrigated acres and leads the nation in production, and 
demands for hydroelectricity from the state’s 13,765 MW of capacity.13 The state’s recent, severe 
drought (e.g., Griffin and Anchukaitis, 2014) has only heightened awareness of the challenges 
associated with meeting these needs (Figure 3.3). 

In California, winter precipitation makes up the majority of the annual water budget, and 
estimates of spring run-off from winter snowpack are currently used to help manage and 
coordinate the in- and outflow from the state’s vast system of reservoirs, aqueducts, and 
groundwater storage facilities. A primary tool used for making decisions about reservoir levels, 
water allocations, and water transfers is the California Department of Water Resource’s forecast 
of total April - July river runoff. These forecasts are issued beginning in February, and are 
updated monthly through May. Water-year (i.e., September - August) based indices are also 
issued based on historical analogs. In other western states, similar forecasts are issued by the 
USDA Natural Resources Conservation Service in partnership with NOAA/National Weather 
Service (NWS). The skill of these forecasts is currently derived entirely from a sparse network of 
snowpack measurements, which means they are not readily disaggregated by month. 

In contrast to forecasts derived from observations of the winter snowpack, water 
managers have not relied heavily on the current array of operational S2S weather and climate 
forecast products. When used, the forecasts tend to be assessed qualitatively and used as a ‘tie-
breaker’ in higher-stakes, scarcity situations (M. Crimmins, personal communication, March 
2015). There are a number of barriers to use of currently available S2S forecast products. First, 
users may not be aware of times when forecast products have higher skill, such as during a 
strong ENSO event. This potential variability of skill from month-to-month is critically 
important in the California context. Second, the spatial resolution of current S2S forecasts is 
often inadequate for quantitative use. Finally, institutional barriers can sometimes limit the use of 
experimental information. For example, state and federal water managers are sometimes 
restricted to using only forecasts that are operationally issued by federal agencies in their 
decision-making process (J. Jones, personal communication, January 2015). 

Water managers are in broad agreement that better S2S forecasting could improve the 
basis for a number of their decisions. On the subseasonal timescale, efforts to incorporate 
quantitative precipitation and temperature forecasts from existing numerical weather and climate 
predictions may help improve the temporal resolution of river run-off forecasts and allow for 
better decisions about, for example, flood control. For example, anticipating atmospheric river 
events with several weeks’ notice would allow managers to assure capacity to contain excess 
runoff. During dry winters, the likelihood that drought will persist into late winter and spring is 
information that is also consistently sought, but is not yet reliably available. This might again be 
achieved through better anticipation of the likelihood of extreme precipitation events associated  
                                                 
13 http://www.energy.ca.gov/hydroelectric/, accessed January 27, 2016. 
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efforts and institutional collaborations between climate information providers and the public 
health community (Jancloes et al., 2014; Thomson et al., 2014; Roger Nasci, personal 
communication, March 2015). However a few emerging efforts provide a glimpse into how 
improvements in Earth system forecasting could enable important advancement in the 
management of disease and other public health risks. 

 
 

Meningitis  
 

Improved subseasonal (in particular for 2-4 weeks) forecasts of relative humidity have 
the potential to improve response to meningococcal meningitis epidemics, particularly those in 
the so-called meningitis belt of central Africa (Pandya et al., 2015; Thomson et al., 2006b). 
Meningitis, a bacterial infection, has a history of devastating impact in this region, with large 
outbreaks affecting hundreds of thousands of people. Untreated infections lead to death 50% of 
the time (WHO 2012). Epidemics in the Sahel region emerge during the dry season, and 
correlations between low humidity and meningitis cases were first noted more than 30 years ago 
(Greenwood et al. 1984). Further research revealed strong relationships between meningitis and 
dusty, dry conditions (Sultan et al., 2005; Thomson et al., 2006b), and abrupt cessations of 
epidemics with increases in humidity (Molesworth et al., 2003). However, environmental 
conditions are only one of many factors, including demographic, behavioral, and ecological 
conditions, which can precipitate infection. Specifically, in many regions, lack of disease 
surveillance limits the potential to develop accurate disease transmission models of any kind. 
This can make translating correlations between disease and environmental conditions into 
actionable information very challenging (Pandya et al., 2015; M. Hayden, personal 
communication, March 2015). 

The MERIT (Meningitis Environmental Research Information Technologies) initiative 
was launched in 2007 by the World Health Organization (WHO) as a multi-sector partnership 
between climate and environmental scientists, social scientists, and the public health community 
to encourage collaboration and the development of innovative solutions for controlling 
meningitis epidemics (Thomson et al. 2013, Garcia-Pando et al. 2014). Years of subsequent data 
collection, climate data and forecast output analysis and collaboration with public health officials 
in Ghana has led to the development of relative humidity thresholds that can readily be 
incorporated into existing public health frameworks. Forecasts of relative humidity and 
storminess up to two weeks in advance, coupled with the observed two-week lagged relationship 
between humidity and meningitis, have led to a prototype decision-support tool that issues 
meningitis predictions at lead times of up to one month—enough time to influence positioning of 
vaccines (Pandya et al., 2015). The end of the dry season is paced by the annual northward 
migration of the Intertropical Convergence Zone, but rainfall events can modulate the timing of 
seasonal change on local-to-regional scales (Figure 3.4). Knowledge generated in developing the 
prototype early warning system is now driving research into the dynamics of west African 
monsoon onset and retreat that is specific to meningitis-prone regions (e.g., Broman et al., 2014). 
Rainfall events are usually associated with African easterly waves, equatorial Kelvin Waves and 
Rossby Waves, extra-tropical cyclones, and/or the MJO (Mera et al., 2014). Better representation 
of these phenomena in forecasts may thus increase predictability of the end of the dry season and 
of meningitis risk. 
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Other Diseases 
 

Sixteen additional climate-sensitive diseases have been identified as targets for research 
and other investments to promote the development of climate-inclusive early warning systems 
(Kuhn et al., 2005). This list contains some of the world’s most devastating diseases, such as 
cholera, dengue fever, and West Nile virus. In many cases, non-traditional forecast output 
variables, such as ocean nutrient forecasts in addition to ocean temperature information for 
cholera (e.g., Jutla et al., 2011), daily temperature fluctuations instead of average temperature for 
dengue virus and malaria (Lambrechts et al., 2011; Paaijmans et al., 2010), and extreme rainfall 
and temperature events instead of average conditions for a variety of other public health disasters 
(Coughlan de Perez and Mason, 2014), are likely to be important. Close collaboration between 
the forecasting and applications communities is critical to develop research agendas that will 
support the identification and development of new forecast products that maximize benefits to 
the public health sector (Buontempo et al., 2014; Morse et al., 2005).  
 
 

National Security and Defense 
 

One specific area where S2S forecasting could prove particularly beneficial on a routine 
basis is global ocean and ice predictions, particularly as the Arctic warms. In addition, disaster 
preparations in advance of catastrophic tropical cyclones and other severe events where the 
military may be called to respond could benefit from pre-staging of relief efforts around the 
world. Food and water security will be important areas where S2S prediction can contribute key 
information to national security, and having insight into possible famine due to drought or flood 
conditions will be crucial to economic and stability concerns in the future. 

There are important decisions that the defense sector makes regarding military operations 
which involve advance warning of environmental conditions on S2S timescales include: vessel 
routing; military exercise planning; war games; tactical planning; disaster relief; search and 
rescue advance planning (e.g., in the Arctic). In addition, there are serious threats posed by 
extreme events to military facilities in vulnerable locations. For example, military facilities on 
the remote Indian Ocean island of Diego Garcia house the Air Force Satellite Control Network 
which serves as an essential GPS command and control hub (Vedda, 2011). Other installations 
vulnerable to extreme weather and ocean events include Bahrain, Guam, Eglin Air Force Base, 
FL, and Norfolk, VA. 

The Department of Defense (DOD) currently uses standard public climate data sets, 
forecast model products, and specialized data sets, models, and methods developed by DOD 
(Fleet Numerical Meteorology and Oceanography Center [FNMOC], Naval Oceanographic 
Office [NAVO], Air Force Weather Agency [AFWA]). DOD has, and continues to develop, 
advanced and tailored products to aid decision making. These include predictions about 
performance of equipment and people/organizations given environmental conditions. DOD has 
many downstream decision-support tools into which the predictions feed. For example: 

 
1. Commander Third Fleet ship operation planning in the eastern North Pacific utilizes 

seasonal forecasts of NE Pacific winds and waves, by month based on both standard 
climatologies and statistical predictions derived from multiyear model reanalyses as a 
basis to revise/update the timing of the operations.  
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2. For tropical cyclone/hurricane predictions, 2-4 week timescales and below are essential 
for avoiding adverse impacts to sea operations before, during, and after cyclone passage. 
Military exercises, supply chains, and ship movements are vulnerable to tropical 
cyclones. DOD currently issues monthly tropical cyclone formation probability forecasts 
based on dynamical-statistical ensemble forecasts (Navy statistical module attached to the 
NOAA dynamical model output Climate Forecast System version 2 (CFSV2), which are 
1-2 week Climate Prediction Center (CPC)-issued forecasts of above and below average 
probability of cyclogenesis and rainfall). 

3. Piracy activity predictions (Figure 3.5) are based on forecasts of wave height and surface 
winds in the Indian Ocean, and a statistical module relating operations/behavior to 
environmental conditions and similar models for disaster relief operations, etc. Versions 
of this methodology are also used by agencies involved in migrant and drug interdictions. 

4. Forecasts of beach and amphibious landing conditions for planning are based on high-
resolution air, ocean, wave, and surf model predictions from historical reanalyses and 
statistical/analog techniques. 
 
To summarize, for this type of decision making, the DOD has a well-developed capacity 

to utilize and ingest the type of tools/specialized forecasts that users often demand. But areas for 
improvement abound. In the short-term, improvements in observations for setting initial 
conditions (especially in areas with insufficient observations like oceans and geographic regions 
like Africa and the Western Pacific), and in forecast skill covering the global oceans are 
especially needed (see Chapter 5). On slightly longer time horizons, improvements in S2S 
predictions will be vital for future tactical and operational planning under climate change. For 
example, there is great need for better-integrated predictions of sea ice in a changing Arctic. The 
Navy and Coast Guard have focused attention on Arctic via their 2014 Roadmap and 2013 
Strategy, respectively (US Navy Task Force Climate Change, 2014; USCG, 2013). Indeed, 
Arctic installations are some of the most vulnerable.  

 
“The combination of thawing permafrost, decreasing sea ice, and rising sea level on the 
Alaskan coast have led to an increase in coastal erosion at several Air Force radar early 
warning and communication installations. According to installation officials, this erosion 
has damaged roads, utility infrastructure, seawalls, and runways…..As a result, only 
small planes or helicopters are able to land in this location, as opposed to larger planes 
that could land on the runway when it is fully functional. 
Daily operations at these types of remote radar installations are at risk due to potential 
loss of runways, and such installations located close to the coastline could be at risk of 
radar failure if erosion of the coastline continues. Air Force headquarters officials noted 
that if one or more of these sites is not operational, there is a risk that the Department of 
Defense early warning system will operate with diminished functionality.” (GAO, 2014) 
 
For the Coast Guard, there is an acute need to engage in medium-range (subseasonal) 

response planning in the event of an accident in Arctic seas (for example an oil spill or a cruise 
ship evacuation). Navy forces are also much more likely to be engaged in the Arctic to assist 
Coast Guard search and rescue and other civil support operations (US Navy Task Force Climate 
Change, 2014). Within this context, there is a need for better forecasts now, but the need will be  



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

54 
 

FIGURE
Center. R
ocean cur
environm
indicate a
Center. 
 
particular
and activ
 
 

 
O

11 worke
Mexico t
et al., 20
the respo

O
spills, ev
where su
sufficient

 3.5 A piracy
eal-time para

rrents, waves, 
ental conditio

a higher proba

rly great as c
vity related to

On April 20, 
ers and trigg
that lasted fo
12). For the 

onse on S2S 
Oil spill traje
ven beyond th
urface slicks 
tly accurate.

y threat-level f
ameters—inclu

and wind—a
ons and pirate
ability of attac

climate chan
o shipping/to

T

2010, an exp
ered a massi

or 87 days be
purposes of 
timescales to
ctory foreca
he scale of th
moved for th
. However, t

PREPUBL

forecast issue
uding intellig
are combined 
e attacks to pr
ck. SOURCE

nge begins to
ourism and e

The Deepwa

plosion aboa
ive spill of o
efore it was 
f this report, 
o a large, un

asting system
he 1989 Exx
he following
the vast volu

N

LICATION C

ed by Naval O
gence informa

with historic
rovide a forec
: Naval Ocea

o initiate ice 
energy extra

ter Horizon

ard the Deep
oil and natura
finally cappe
DWH provi

nexpected fo
ms in 2010 w
xon Valdez o
g 72 hours fo
ume and dept

Next Genera

COPY 

Oceanographi
ation, shippin
cal correlative
cast of pirate t
anographic Of

free passage
action begins

 Oil Spill 

pwater Horiz
al gas into th
ed off (Grah
ides an instru
rcing event.

were well-sui
oil spill, and
or which we
th of spilled 

ation Earth S

c Office, War
ng information
e analysis betw
threat levels. 
ffice, Warfigh

e through th
s to increase

zon (DWH) d
he deep wate
ham et al., 20
uctive case s
 
ited for respo
d worked wel
ather foreca
hydrocarbo

System Predi

rfighting Sup
n, and forecas
ween 
Warm colors

hting Support

he Arctic Oce
. 

drilling rig k
ers of the Gu
011; Lubche
study regardi

onding to su
ll for predict

asts were 
ns associate

iction 

 
pport 
sts of 

s 
t 

ean 

killed 
ulf of 
enco 
ing 

urface 
ting 

d 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

Chapter 3: Enhancing the Value and Benefits of S2S Forecasts 55 
 

PREPUBLICATION COPY 

with the DWH, the extended duration of the spill, and the spatial extent of its impacts presented 
unique challenges for projecting of the consequences of the spill to an alarmed public. 

To help meet this challenge, there was a massive mobilization of the relevant scientific 
community to document the event observationally and understand its consequences (e.g., 
Lubchenco et al., 2012). This response included model forecasts and predictions, with three 
additional near-term ocean forecast systems being added to the initial three member ensemble 
used for 72-hour surface slick predictions (Lubchenco et al., 2012). For S2S timescales, both 
National Center for Atmospheric Research (NCAR)/ Los Alamos National Laboratory (LANL) 
(Maltrud et al., 2010) and NOAA/Geophysical Fluid Dynamics Laboratory (GFDL; Adcroft et 
al., 2010) adapted existing regionally eddy-permitting (1/10° and 1/8° horizontal resolution 
respectively) global Earth system models to explore the long-term transport and dilution of 
hydrocarbons or the resulting oxygen drawdown from the spill.  

Despite the mobilization of the climate and ocean modeling community to address the 
consequences of the DWH, a frenzy of popular media activity during the spill created a 
particularly challenging environment for clearly communicating credible scientific guidance 
regarding what could be expected on S2S timescales. There was at times a particular focus by the 
official sources on defending the government’s scientific integrity, especially after the first 
official estimates placed the flow rate as at least 5,000 barrels per day based on observed surface 
slicks, but subsequent analysis by academics revealed the true rate to be an order of magnitude 
larger (McNutt et al., 2011). During the event, there was also extensive speculation by scientists 
from a wide range of backgrounds about the implications of the spill, often going directly to the 
media without first passing through peer review. For example, one widely covered NCAR press 
release on June 3, 2010 with vivid animations (Figure 3.6A) was based on scientifically correct 
ocean model simulations, but was widely misinterpreted in the popular press as suggesting the 
impending arrival of harmful concentrations of oil along the entire east coast of the United States 
(McNutt et al., 2011). About the same time, NOAA scientists developed projections of the 
regional spreading and dilution of dissolved oil and the possibility of significant oxygen 
drawdown in the deeply submerged plumes of oil that took into account the estimated spill rates 
and the biological consumption of oil (Adcroft et al., 2010). These projections were based on a 
prototype high-resolution climate model and extensive input from NOAA’s oil-spill projection 
team. An animation from this study (Figure 3.6B) correctly depicted the localization of dissolved 
oil from the spill to the Northern Gulf of Mexico, but as a new government product, it was only 
publicly released after being published in a peer-reviewed journal, about two weeks after the 
well had been capped.  

These two early studies illustrate some of the specific challenges of using innovative 
modeling tools to provide insights during an emergency. The particular challenges of 
communicating across scientific disciplines and using scientific expertise to inform the public 
awareness during a high-profile incident like DWH has led to calls for the development of a 
“community of disaster science” (McNutt, 2015), with expertise that can be applied to 
responding to a wide range of high-profile events. 
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on S2S timescales during the summer of 2010, it may have been unnecessary to deploy as many 
Local Incident Command Posts and oil response equipment to Florida. A portion of these 
resources was never used, and with more skillful S2S forecasts, could have been sent to alternate 
locations where they would have been of much greater value (D. Payton, personal 
communication, June 2015).  

There is a high cost to incorrect projections of the direction of an oil spill, and in an 
emergency there is little time to identify the sources of incorrect current directions or other 
model biases. For use in official government guidance, therefore, it is important that models are 
observationally validated or have their quality otherwise established. For an unprecedented 
forcing event, observational validation may be impossible, and scientific journals’ peer-review 
and embargo may be inconsistent with the time constraints of the situation. Thus alternate 
approaches may be required for establishing legally required quality assurance. 

As result of the challenges in coordinating the broad participation of the scientific 
community to DWH, a number of the leaders in the response to DWH joined together to found 
the Scientific Partnerships Enabling Rapid Response (SPERR) to promote rapid communication 
and coordination of efforts and sharing of expertise during disasters. This was a one-year pilot 
project that ended in 2015, but such efforts provide a forum for developing the expertise and 
frameworks necessary to build capacity on forecasting the consequences of unanticipated events. 
This is an important step towards developing a “community for disaster science” in advance of 
an incident (McNutt, 2015). 

 
Nuclear Events 

 
Catastrophic/unprecedented (unusual/infrequent) events include nuclear power plant 

accidents that could distribute radioactive material over wide areas and impact many nations 
(e.g., Chernobyl and Fukushima), and intentional nuclear detonations affecting large populations 
(e.g., Nagasaki and Hiroshima). Accidental radiological release events have the potential to 
impact the air/sea over S2S timescales. Linked modeling systems encompassing the Earth system 
components can provide important benefits in forecasting the scope of impacts (Pullen et al., 
2013).  

Nuclear weapon scenarios in the current geopolitical context include limited nuclear 
exchanges. The range of possible scenarios transcends the “mutually assured destruction” 
envisioned during the Cold War where nuclear winter was an assured outcome (NRC, 1985). 
Recent simulations of a regional nuclear exchange (100 15-kt yield) with a comprehensive Earth 
system model including atmospheric chemistry, ocean dynamics, and interactive sea ice and land 
components have revealed significant impacts at S2S timescales (Mills et al., 2014). Under this 
scenario, black carbon injected into the stratosphere would deliver global ozone losses of 20-
50%, reduced sunlight, and catastrophic effects on global crop yields. 

In the immediate aftermath of such rare events, emergency response-focused simulations 
would be conducted through the Department of Homeland Security (DHS) Interagency Modeling 
and Atmospheric Assessment Center (IMAAC) utilizing DOD Defense Threat Reduction 
Agency (DTRA) for national consequences. (Separately, the Department of Energy [DOE] 
National Atmospheric Release Advisory Center [NARAC] and DOD DTRA consequence 
assessment assets can be mobilized for international events, as in Fukushima.) However, these 
simulation tools were not designed to provide forecast information on S2S timescales.  
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The DHS National Exercise Division engages in major emergency exercises every year—
gaming out the response to such events as pandemics and earthquakes. They utilize the National 
Infrastructure Simulation and Analysis Center (NISAC) at Sandia National Laboratory as an 
extensive tool set to examine the impacts from catastrophic events. But these tools do not 
encapsulate real-time prediction out to S2S timescales. We need to be prepared as a nation to 
anticipate, prepare, and react to such impactful events at the appropriate timescales. A 
framework that could encompass multiple temporal scales of impacts, while exercising state-of-
the-science models, could prepare agencies to collaborate and respond in the event of a 
catastrophic/unprecedented incident. Such incidents that could produce sustained regional-to-
global impacts beyond several weeks duration include volcano eruptions and forest fires/biomass 
burning. 
 
 

THE WAY FORWARD FOR REALIZING THE POTENTIAL OF S2S PREDICTIONS 
 

Even though user needs are not fully articulated at this point and reside mostly in case 
studies and anecdotal information, it is clear that there is much potential value in developing S2S 
forecasts. However, decision makers need a wider range of model and forecast variables than 
what is generally available at present. Producing forecast products that are valid at finer spatial 
and temporal scales, and generating event- and impact-based information, are some of the most 
commonly expressed needs. For example, knowing the probability of receiving an abnormally 
high number of heat events during a summer can help local and state emergency management 
officials prepare resources to minimize impacts.  

Advances in S2S predictions, which will be described in Chapters 4 and 5, will provide 
opportunities to advance from basic products and provide both finer spatial and temporal 
resolution and additional variables that are not presently available to most end users. Some of 
these specialized products will continue to be created off-line, through techniques such as 
downscaling of S2S forecasts, coupling S2S forecasts with sector-specific dynamic or decision 
models, such as in the case of predictions of piracy activity (Figure 3.5), or seasonal hydrology 
forecasts to inform water management. Such specialized products do already provide some of the 
needed capabilities, but access to such products is limited, as developing derived products can be 
costly. 

Decision makers may also benefit from an ability to run on-demand simulations to 
respond to unanticipated events. This could be useful in responding to an event or it may be 
useful in generating scenarios that can be used in a planning context. A capability of using 
similar models to those used to make operational predictions can allow decision makers the 
flexibility of generating a range of scenarios. For example, forecasts of a range of ocean currents 
and surface winds can help decision makers anticipate where to deploy resources for containing 
an oil spill, or possible outcomes of a volcanic eruption. 

However, advancing effective use of S2S information requires both “knowledge of” and 
“knowledge in” the process (c.f., Lasswell (1971) discussion of the policy process). Knowledge 
in the process focuses on mechanisms that promote the use of S2S information, including 
understanding product requirements as described above, evaluation metrics, and integration into 
operational systems. Knowledge of the process includes research on decision-making processes 
and contexts that promote or inhibit the use of information. These can roughly be thought of as a 
need to understand use and a need to promote use. 
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An essential first step is improving understanding of what stakeholders view as 
actionable information. S2S information has transformative potential but the path forward 
towards application of such information is unclear due to lack of study and synthesis of existing 
information. More generalized information on what end users want, which is important to help 
inform advances in S2S forecasts, requires more than ad hoc case studies of particular decision 
contexts, such as water managers’ use of information in a particular basin. Case studies need to 
be broadened to include more sectors, the interaction between sectors, and more regions of the 
country, in order to develop a more systematic assessment of user needs across sectors. Such an 
assessment will be particularly important for developing forecasts of variables such as sea ice or 
harmful algal blooms that are not as readily available at the present time. Furthermore, 
quantification of the value of use of seasonal forecasts is needed to establish a baseline against 
which improvements in use can be measured. 

The S2S community also needs to learn more about decision makers’ tolerances for use 
of products with limited skill. Under what conditions are decision makers willing to accept 
limited skill and still use the products? Are they more willing to accept limited skill in the 
context of general guidance as compared to concrete decisions? How do they respond to failed 
forecasts? A more thorough examination of decision makers’ tolerance for forecasts with lower 
skill will reveal some sectors or applications that can make effective use of present and near-term 
products, as well as identifying longer-term opportunities and targets for new products as skill 
improves. 

S2S information may be used to consult, consider, incorporate, or engage in dialogue 
about risks (A. Ray, personal communication, March 2015). Examining the decision-processes in 
each of these applications will enable development of new products, and also drive 
improvements to the dissemination of such products by both the public and private sectors. It is 
likely that targeted products will need to be developed for a range of different sectors and 
decision-making contexts. 
 
Recommendation A: Develop a body of social science research that leads to more 
comprehensive and systematic understanding of the use and barriers to use of seasonal and 
subseasonal Earth system predictions. 
 
Specifically: 
 

 Characterize current and potential users of S2S forecasts and their decision-making 
contexts, and identify key commonalities and differences in needs (e.g., variables, 
temporal and spatial scale, lead times, and forecast skill) across multiple sectors.  

 Promote social and behavioral science research on the use of probabilistic forecast 
information. 

 Create opportunities to share knowledge and practices among researchers working to 
improve the use of predictions across weather, subseasonal, and seasonal timescales. 
 
Realizing the full value of improvements in S2S predictions will also require engagement 

of end users throughout the process of developing and disseminating forecast products. Just as 
the retail sector places consumers at the center of their research and development, decision 
makers who are the likely consumers of S2S information should be integrated into the research 
and development process. Integrating developers, providers, and users in the context of strategic 
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planning for the S2S enterprise assures the growth of S2S applications and helps push the 
boundaries of the science of S2S prediction. An iterative engagement with users is required in 
part because the diversity of applications of S2S forecasts is large, and the science of S2S 
forecasting is rapidly advancing. Ongoing work will be necessary to continually match and 
integrate what is technologically feasible with what is most actionable for decision makers. In 
particular, it will be important to: 1) understand what variables and timescales provide the most 
value and opportunities; 2) understand how decision makers might operate within the context 
limited skill or high uncertainty predictions; and 3) determine the formats and message content 
for products in partnership with those using those products. Such iterative engagement will also 
provide guidance to the operational community on the critical research challenges, such as 
forecasting extreme events, and the way in which information can be most effectively delivered. 

As with weather forecasts, most decision makers are likely to acquire information via an 
intermediary (Breuer et al., 2010; Lemos and Rood, 2010; Mase and Prokopy, 2014; Pagano et 
al., 2002). There are opportunities to utilize existing programs, such as NOAA’s Regional 
Integrated Sciences and Assessments, which actively engage decision makers in co-production of 
knowledge related to needs for climate information and services. There are also numerous 
academic programs that promote inter-disciplinary research related to the use of climate and 
scientific information in societal applications. These present existing avenues that should be built 
upon to examine decision making, generate decision-support tools, and provide guidance on 
future S2S research priorities, operational forecast products, and services.  

As demand for S2S products grows, there will be new opportunities for research and 
applications, necessitating changes in the workforce. Blended research between the physical and 
social sciences will facilitate the transfer of knowledge between forecasts, outlooks and 
predictions of the physical environment, and their social applications. Growing the number of 
“extension agents” or other boundary roles and institutions should also be considered to improve 
the outcomes of S2S forecast use, and to better integrate decision makers into the process of 
developing S2S forecasts. Changes in the structure of the workforce are discussed further in 
Chapter 7.  

Although it is important to bolster the capabilities of operational centers to produce 
useful forecasts, it is also important not to neglect the private sector’s role in delivering new 
products. S2S forecasts offer an obvious opportunity for private sector providers to transform 
forecasts of conventional variables into new, value-added products focused on user needs and 
preferences. There is an emerging private sector already providing detailed analyses needed for 
specialized applications. Thus private sector providers should be closely involved in any 
program for engaging stakeholders, and should be informed of the results and conclusions of 
such efforts. The U.S. Small Business Innovation Research (SBIR) program is one such a 
mechanism for the weather and climate research agencies to engage the private sector in 
developing improvements for operational commercial offerings and to more effectively target 
specific user groups. Continued growth of both the private sector and the array of products in the 
public sector are thus required to meet the growing demand for services.  
 
Recommendation B: Establish an ongoing and iterative process in which stakeholders, social 
and behavioral scientists, and physical scientists co-design S2S forecast products, verification 
metrics, and decision-making tools. 
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Specifically: 
 

 Engage users with physical, social, and behavioral scientists to develop requirements for 
new products as advances are made in modeling technology and forecast skill, including 
forecasts for additional environmental variables. 

 In direct collaboration with users, develop ready-set-go scenarios that incorporate S2S 
predictions and weather forecasts to enable advance preparation for potential hazards as 
timelines shorten and uncertainty decreases. 

 Support boundary organizations and private sector enterprises that act as interfaces 
between forecast producers and users. 
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Chapter 4: Sources of Subseasonal to Seasonal 
Predictability 

 
INTRODUCTION 

 
This chapter will:  
 

 Outline important concepts in the consideration of predictability and its relation to 
practical aspects of prediction and prediction skill;  

 Identify important sources of subseasonal to seasonal (S2S) predictability and highlight 
recent progress in understanding and modeling these sources;  

 Recommend research in these areas that will further our understanding of sources of 
predictability and allow us to better exploit them to extend and improve S2S forecast 
skill. 
 
During the early developments of seasonal to interannual climate prediction, weather 

prediction was often described as an “initial-value” problem and seasonal orlonger-term climate 
prediction as a “boundary-value” problem (Box 4.1). However, as our aspirations and 
capabilities for providing skillful predictions across timescales and Earth system components has 
increased, the value of such distinctions has become limited.  

The schematics in Figure 4.1 are meant to further illustrate the above considerations and 
the complexities in estimating predictability across a range of timescales and phenomena (e.g., 
S2S) and implementing them in a forecasting system. The top schematic shows time series 
depicting variations in an arbitrary quantity (e.g., temperature, precipitation) that are typical of 
weather, subseasonal, and seasonal variability over a roughly six-month period, with an 
indication of what processes might be associated with the given variation and timescale (e.g., 
green ~ Madden-Julian Oscillation [MJO], soil moisture). The bottom schematic is similar but 
for longer timescale variations. For weather forecasting, the forecast proceeds from an observed 
initial state (solid blue circle) out to lead times of a few days. For subseasonal or seasonal 
forecasts, the same is true out to a few weeks or months, respectively. Along the lines of the 
discussion above, the influence on weather or S2S forecasts from the sorts of (long timescale) 
phenomena indicated in the lower schematic could feasibly be provided as a fixed boundary 
value. However, this practical separation between processes and timescales is not always 
possible or straightforward, particularly as the different timescales become closer. In fact, filling 
the forecast capability gap between the weather (initial value) and the seasonal (previously 
referred to as boundary value) problems with subseasonal capabilities has served to strongly blur 
the perception that they are separate sorts of forecast “problems” and helped to instigate the 
desire for “seamless” forecasting systems (e.g., Palmer et al., 2008, see Box 5.2). 
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BOX 4.1—“Initial Value” Versus “Boundary Value” Modeling Problems  
 
The distinction in the application of these two terms—”initial-value” and “boundary-value”—

does not arise from the inherent nature of the weather/climate phenomena, but rather from the 
practicalities of the prediction framework. Put another way, virtually every prediction problem of the 
natural weather/climate system is, in its purest and most comprehensive form, an “initial-value” problem. 
However, the practicalities of producing a forecast nearly always also include the application of the 
“boundary-value” paradigm in one form or another, which arises from one of three practical reasons. In 
one case, an incomplete knowledge or model of the state or evolution of a given process necessitates that 
the representation of that component/process be specified (or approximated) as a fixed boundary 
condition to the part of the system that is being modeled and forecasted. An example of this might be how 
sea ice was treated in the first global weather forecasts. Although there was reason to think that sea ice 
could evolve and influence weather patterns over the course of the forecast, there did not exist the process 
knowledge, associated models, and observations to accurately include it in a manner that would improve 
the forecast. Thus, it was of necessity in that case to provide a fixed specification (i.e. a “boundary 
value”) for the distribution of sea ice and not explicitly include its interaction in the forecast. The 
influence/interactions of vegetation in today’s weather forecasts, are often treated similarly, i.e., there is 
reason to think they influence key water and energy processes relevant to the weather and climate, but the 
process models and associated observations for initialization are too incomplete to include in an 
operational forecast setting. The above considerations are important because as long as a process is 
relegated to a boundary condition, the estimate of the predictability of that phenomenon is incomplete or 
at least compromised, even though it might be key to the fidelity of a modeled or forecast phenomenon. 

In the second case, there may be a skillful and efficient model of a process relevant to a forecast 
and even observations that could be utilized to initialize the relevant quantities. However, because of a 
relatively slower evolution of that component of the system, it is both feasible and advisable to simply 
specify the values for that part of the system from observations, leaving them as constant “boundary-
values” for the forecast period. Examples of this case might be the specification of the solar forcing, 
greenhouse gas concentrations, aerosols, ice sheet and glacier coverage, etc. Note that a skillful prediction 
of any of these quantities is in itself an “initial-value problem.” But when it comes to a shorter timescale 
forecast (e.g., weather or S2S forecasts) or an associated estimate of predictability, it is an excellent 
approximation to simply consider them as “boundary-values.”  

The third case is a hybrid of the first two. For cases where the coupled interaction between two 
Earth system components or processes is weak, the knowledge of the coupling between the two is 
incomplete, or there are technical challenges yet to be overcome in fully coupling the two working 
component models, it is often the case that a forecast model for one of the components will be produced 
and the values from it supplied as “boundary-values” to the forecast model of the other component. The 
most salient example of this was the use of dynamical seasonal forecasts first developed from the growing 
knowledge that El Niño Southern Oscillation (ENSO)-related tropical sea surface temperature (SST) 
variations. The SST variations had a substantive impact on the seasonal climate anomalies in the tropics 
and some mid-latitude regions. In this case, our early dynamical ocean model forecasts of tropical SSTs 
were initialized and run to lead times of 3-12 months to produce future estimates of tropical SST 
anomalies. These SSTs—forecast as an initial value problem—were in turn used as the SST boundary 
conditions to global atmospheric forecast models run over the same lead times to produce a seasonal 
climate forecast. In this case, the atmospheric initial condition information that strongly influences 5-day 
weather forecast outcomes become irrelevant after the first month and only the SSTs, provided as 
“boundary values”, dictated the climate forecast outcome. This particular example is when/where the 
short-term climate prediction problem became strongly equated to a “boundary-value” problem, whereas 
in actuality the underlying and evolving tropical SST (i.e., ENSO) portion of the forecast is an “initial-
value problem” of an ocean model (e.g., a “two-tier” forecast system—see Chapter 2). A related example 
is air quality forecasting, which often utilizes the temperature, humidity, pressure, and flow fields from a 
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DEFINING PREDICTABILITY 
 

In this report, predictability refers to a phenomenon’s potential, i.e., its upper limit, for 
being predicted. Theoretically, this is inherent to the phenomenon itself and its limit comes from 
inevitable errors in initial conditions, which are amplified through nonlinear processes in a 
perfect model. Practically, predictability can only be estimated through various means using 
empirical or numerical models that are not perfect (NRC, 2010b). Such models can lead to over 
or under estimates of predictability. For example, by not adequately accounting for “noise” 
relative to the specific phenomenon (i.e., the “signal”), models will often over estimate 
predictability. Similarly, if the specific phenomenon is only weakly represented, models will 
often underestimate its predictability. A firm estimate of the lower bound of predictability is the 
upper limit on the observed forecast skill of operational systems. Achieving the upper limit of 
predictability with a prediction system is hindered by practical factors. In addition to a lack of 
accurate specification of the initial conditions (typically due to inadequate observation sampling 
in space, time, and physical quantity), there are shortcomings in forecast systems (typically 
limited by models with too coarse spatial resolution and incomplete or inaccurate physical 
process representations) and shortcomings in the data assimilation systems (see Chapter 5). For 
the purposes of this report and the associated research agenda, it is critical to explore and 
quantify the predictability of various components of the Earth system, especially weather and 
climate. The estimated upper bounds of predictability for the various phenomena and processes 
discussed in this chapter are key to identifying unexploited or underexploited prediction 
capabilities and providing a quantified means to measure our progress in practical forecast skill 
against our predictability (i.e., upper limit) estimates (e.g., Figure 4.2). Together these help to 
prioritize areas of research and model development across the range of sources of predictability 
to pursue.  
 
 

PREDICTIBILITY RESEARCH 
 

Research on predictability and its sources is a central part of carving a path to new and 
improved forecast capabilities (e.g., S2S). Advancements in this research critically hinge on 
observations, a variety of models, forecast system analogs, and ensemble retrospective forecast 
datasets. Such research typically begins with theoretical considerations or empirical analysis 
based on observations (Figure 4.3, Facet I; e.g., a lagged correlation analysis between two or 
more variables) that point to a process or phenomena that exhibits predictability. From this 
perspective, it is essential to have long-records of multi-variate observations for both the 
predicted and the potential predictor(s). Often predictability of a particular observed 
phenomenon is investigated through process-oriented studies using a hierarchy of models (Figure 
4.3, Facet II). Models used for this purpose may be reduced order or idealized. In other cases 
researchers may create a series of sensitivity experiments in complete Earth system models or 
make intercomparisons across models.  

Further advancement (Figure 4.3, Facet III) is made by the development of robust models 
that incorporate the physical relationships underlying the phenomena or coupled interactions that 
yield the predictability, as demonstrated by simulation or retrospective forecast experiments that 
are evaluated against observations. Such model development generally requires additional 
targeted process observations, research and analysis in order to properly understand the 
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In summary, research on predictability and its sources is critical for helping to identify 
and prioritize advancements between the various phenomena and Earth system components that 
might impact/offer S2S predictability. Such research is also critical guiding model and forecast 
system development and helping identify observing systems for sustained observations.  

A useful technique to estimate predictability is the analysis of variance (ANOVA). An 
atmospheric variable, such as air temperature or precipitation, may be decomposed into a 
predictable component (signal) and an unpredictable component (noise), Z = Zs + Zn. The 
predictable signal comes from sources of predictability such as those discussed in the next 
section, and the unpredictable noise comes from chaotic processes with respect to S2S, such as 
high-frequency eddies. The total variance is then the sum of the signal variance and the noise 
variance i.e., Var(Z)=Var(Zs)+Var(Zn). The extent to which the signal variance, Var(Zs), 
exceeds the noise variance, Var(Zn), determines the potential predictability. Thus potential 
predictability can be defined as the ratio of signal variance to the total variance, Var(Zs)/Var(Z), 
or the ratio of signal to noise, Var(Zs)/Var(Zn). In S2S, forecasts averaged over a period of a 
week, a month or a season, are usually produced. Such time averaging can increase the signal-to-
noise ratio, as it reduces high-frequency noise variance while keeping most of the slow-varying 
signal variance, and thus improve predictability. Estimates of predictability with ANOVA can be 
performed using observational data (Facet I of Figure 4.3) or with ensemble model integrations 
(or retrospective forecasts) (Facet II of Figure 4.3). For example, Madden (1976) estimated 
weather noise variance of seasonal means by extrapolating the power spectrum derived from 
observed daily time series in a season. In the case of dynamical ensemble retrospective forecast, 
the ensemble mean represents the “predictable signal component”, as it is independent of the 
uncertainties (in initial condition or model parameter). On the other hand, the difference among 
the members of the ensemble retrospective forecast (spread) represents the “unpredictable noise 
component”. This ANOVA approach has been applied in many previous studies to assess 
predictability (e.g., Quan et al., 2004; Straus et al., 2003; Zwiers, 1996).  

Estimates of predictability of a given process or phenomenon when accounting for 
(unavoidable) uncertainties in the initial conditions and model configurations can also be done 
from “twin experiments” or an ensemble of experiments where one of the ensemble members is 
considered truth (or the “observed” state) and the other member(s)—which only differ by some 
small perturbation in the initial conditions and/or model parameters—are used to predict it. 
These predictability estimates can then be put into the same context as retrospective forecast 
experiments that instead compare the same predictions to observations in order to quantify 
forecast skill. This is the type of prediction skill and predictability experimentation that is shown 
in Figure 4.2. One of the main messages from this figure is that the practical forecast capabilities 
are still far from what might be achieved given the associated estimates of predictability (i.e., at 
least 2-3 weeks of additional lead time might be possible). An additional message is that 
predictability estimates are model dependent, as stated earlier. Further research and exploration 
can be performed with this type of system of experimentation through categorizing results by 
season or the conditions of other portions of the climate system (e.g., warm or cold ENSO state). 
In summary, predictability research is critical for helping to identify and prioritize advancements 
between the various phenomena and Earth system components that might impact/offer S2S 
predictability, as well as guiding model and forecast system development and helping identify 
observing systems for sustained observations.  
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Finding 4.1: Predictability research is critical for identifying predictable phenomena and 
providing lead time dependent upper limits on prediction skill. These serve to guide model 
and forecast system developments with practical targets for forecast skill. Further research 
on predictability is needed to more completely identify sources and quantify levels of 
predictability, including interactions across scales and phenomena and how these impact 
predictability of extreme events. 

 
 

SOURCES OF PREDICTIBILITY 
 

As illustrated in Figure 4.1, predictability derives from a number of processes and 
phenomena that exhibit a wide range of timescales. For the purpose of this discussion, these 
sources will be generalized into three types.14 The first occurs in the form of recurring and/or 
quasi-oscillatory patterns of variability—often referred to as “modes” of variability—that vary 
with S2S timescales. When a space-time pattern of variability tends to reoccur in the observed 
record, particularly when it includes positive and negative phases and/or space-time propagation 
of the given pattern, it is often referred to as a natural “mode” of variability. Attempts are made 
to understand the physics behind the pattern(s) and the evolution of a typical event life cycle for 
such modes. Examples include ENSO, Madden-Julian Oscillation (MJO), Quasi-Biennial 
Oscillation (QBO), and Indian Ocean Dipole (IOD). Referring to Figure 4.1, this type of S2S 
predictability would be exhibited as a quasi-oscillatory phenomena with a period ranging 
somewhere between about two weeks to a year (based on this report’s definition of S2S). 

The second source of predictability occurs from an anomaly in the initial state of one of 
the components of the Earth system whose typical timescale of evolution (i.e., persistence time) 
is similar to the target forecast. For the S2S timescale, this might be large-scale anomalies in 
upper ocean heat content, sea ice, snowpack, soil moisture, etc. Given their relatively slow 
variation compared to weather, such anomalies are said to retain “memory” of the initial state 
and impart “inertia” to the system’s subsequent evolution. They typically have a systematic or 
recurring manner of evolving on timescales much longer than the forecast. For the purposes of 
this discussion, we refer to these as “slowly varying processes.” 

The third type of predictability stems from anomalous external forcing that is extensive 
or strong enough to have an impact globally or regionally for weeks to months (such as cyclic or 
anomalous solar output, anthropogenic factors, and events such as volcanoes). In this case, its 
predictability in relation to S2S is derived from a combination of being able to specify the 
anomalous external forcing and the forcing evolving relatively slowly or in a well-defined way 
over the forecast lead times (for example the annual cycle of solar radiation).  

Understanding and being able to model the dynamics of each of these three types of 
predictability sources, as well as their interactions and teleconnections, is essential to generating 
S2S forecasts. Although much progress has been made in recent years in furthering 
understanding of how some of these sources of predictability, such as the MJO or soil moisture, 
influence environmental conditions or events that forecasters would like to be able to predict 
(e.g., precipitation anomalies, heat waves, or tropical cyclones), more work is needed and 
continued progress in this area remains fundamental to advancing S2S predictions (e.g., NRC, 
2010b; Vitart et al., 2014). Indeed large gaps remain in our understanding of sources of 

                                                 
14 Using an analog from basic physics, these three types can very loosely be equated to a harmonic oscillator, a 
strongly damped harmonic oscillator and a forced harmonic oscillator. 
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predictability and how they may interact, and discoveries of new sources of predictability for 
forecasts of different phenomena remain likely. Each of the sub-sections below describes 
progress and gaps in understanding the three types of predictability important for S2S 
prediction—natural modes of variability, slowly varying processes, and external forcing. 
 
 

Predictability from Natural Modes of Variability 
 

Natural modes of variability display distinct and organized patterns that are typically 
oscillatory or cyclic in some fashion, or at least bimodal with the given “mode” having a 
tendency to occur with an anomaly pattern of one sign or its opposite (e.g., see Figure 4.4). The 
“modes” are typically identified in a given field (e.g., SST, 500 hPa heights, 200 hPa zonal 
winds) but are correlated to impacts on, or interactions with, other features in the Earth system, 
such as temperature, precipitation, drought, bio-productivity, ozone, etc. These modes of natural 
variability are characterized by dynamical interactions within or across Earth system 
components. A canonical example of a coupled mode of variability is ENSO. When these modes 
have life cycle lengths similar to S2S forecasts(e.g., 2 weeks to 12 months), their characteristic 
evolution offer a source of S2S predictability (Figure 4.1). For such cases, it is imperative that 
the forecast system be able to accurately represent the mode of variability and its life cycle. If the 
life cycle is much longer than the S2S timescale, then practically speaking for the purpose of the 
S2S forecast, the mode’s variation would likely be considered a “slowly varying process”. 
Natural modes of variability are often associated with teleconnection properties that relate 
variability at one location to conditions in another. For example, the mechanisms that produce 
ENSO occur and evolve in the tropical Pacific Ocean, yet influence mid-latitude variability 
through atmospheric dynamics. As a result, the sign, strength, and frequency of occurrence of 
known patterns of extratropical atmospheric circulation (such as the Pacific North America 
pattern, PNA) partly depend on ENSO (e.g., Zhang et al., 1997). Atmospheric patterns are in turn 
important drivers of winter weather and climate over North America. Some of the more well 
recognized natural modes of variability already found to or expected to be important for S2S 
predictability are discussed in more detail below, with specific attention to areas that are ripe for 
or in need of further research.  

A large part of the signal for S2S weather and climate predictions have tropical origins 
(NRC, 2010b). Through relatively long-lived SST anomalies (e.g., ENSO, IOD) and/or 
systematic dynamic flows (e.g., wave-like motions, MJO, Kelvin waves), large-scale storm 
systems become highly organized and produce systematic variations in atmospheric heating. This 
excites circulation anomalies that have local impacts on rainfall and temperature in the tropics 
but that also “propagate” to the extra-tropics via sequences of circulation anomalies of alternate 
sign, often referred to as “waves” (Horel and Wallace, 1981; Trenberth et al., 1998). The remote 
impact is referred to as a teleconnection, in this case connecting variability in the tropics to 
middle- and high-latitude weather.  

 
 

ENSO 
 

ENSO, treated in detail in the NRC (2010b) ISI report, is a coupled atmosphere-ocean 
mode of variability that involves slow equatorial waves in the ocean that impact SST,  



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

72 
 

FIGURE
illustrate t
in its pos
with the E
top panel 
 
particular
wind var
variation
organized
circulatio
dynamics
subseaso
persisten
anchored
events an
emerges 
fall or wi

 4.4 Two ex
the atmosphe
itive (left) an
ENSO pheno
from njweath

rly in the cen
riations in the
ns in the Paci
d convection
on via teleco
s provides a 
nal predictio

nt tropically f
d to the seaso
nd La Niña f
during borea
inter, and the

xamples of c
eric circulatio
nd negative (
menon, show

herblogs.com

ntral and eas
e atmospher
ific and asso
n and precipi
onnections as

major sourc
ons, the relat
forced atmos
onal cycle, it
for cold even
al spring or 
en typically 

PREPUBL

common and
n anomalies a
right) phases

wing both El 
, other panels

stern Pacific
re that extend
ociated circul
itation in thi
s described a
ce of skill (e.
tively slowly
spheric circu
t is often des
nts (e.g., Figu
summer, and
decay in spr

N

LICATION C

d impactful “
associated wi
s. Bottom pan
Niño (left) an

s from NOAA

c, and associa
d over most 
lation chang
is region, wh
above. For se
.g., NRC, 20
y varying SS
ulation anom
scribed as an
ure 4.4). The
d the associa
ring.  

Next Genera

COPY 

“natural mod
ith the Pacific
nels illustrate
nd La Niña (

A. 

ated changes
of the tropic

ges result in s
hich in turn i
easonal pred

010b; Shukla
ST anomalie
maly. Becaus
n event, with
e signature o
ated SST ano

ation Earth S

des of variab
c North Ame
e the SST ano
(right) phases

s in surface p
cal regions. T
strong modu
influence the
diction, ENS
a et al., 2000
s provide a r

se the evolut
h terms El N
of an ENSO 
omalies peak

System Predi

 
bility”. Top p
rica (PNA) p
omalies assoc
s. SOURCE: 

pressure and
The SST 
ulations of 
e extra-tropi

SO’s coupled
0), while for 
relatively 
tion of ENSO
iño for warm
event first 

k the followi

iction 

panels 
pattern 
ciated 
From 

d 

cal 
d 

O is 
m 

ing 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

Chapter 4: Sources of Subseasonal to Seasonal Predictability 73 
 

PREPUBLICATION COPY 

The normal progression of ENSO and its impacts on the tropics and elsewhere through 
teleconnections are relatively well studied (e.g., Hoerling and Kumar, 2000; Latif et al., 1998; 
Rasmusson and Mo, 1993). Recent work has advanced our understanding of ENSO’s impact on 
predictability, the impacts of a number of distinct types of ENSO events, and ENSO’s decadal 
and longer timescale change. For example, there are lagged impacts of ENSO on predictability of 
the Indian Ocean in summer. In the summer after a positive ENSO first emerges, the tropical 
Pacific SST returns to normal, but the Indian Ocean SST is anomalously high, with a strong 
suppression of tropical cyclones and impacts on temperature and precipitation across Southeast 
Asia and Japan (Chowdary et al., 2011; Kosaka et al., 2013). Despite the large body of existing 
work on ENSO, there are important gaps related to understanding both ENSO and its influence 
on S2S predictability (McPhaden, 2015). For example, there is neither consensus on a theory nor 
agreement on the predictability limit of ENSO. Recent work shows that variations in the 
structures and seasonal timing of ENSO strongly affect the persistence and predictability (Lee et 
al., 2014), as well as ENSO teleconnections (Capotondi et al., 2014). In recent decades, the SST 
anomalies in El Niño events have often peaked in the central Pacific rather than the more typical 
location of the past in the eastern Pacific. Whether such ENSO diversity is a consequence of 
greenhouse warming, and hence the recent shift can be expected in the future, is also unclear 
(Cai et al., 2015; Capotondi et al., 2014).  

 
 

MJO 
 

The MJO, also discussed in detail in the NRC (2010b) ISI report, is the dominant mode 
of intraseasonal variability in tropical convection, precipitation, and circulation. Through its local 
influences in the tropics and its teleconnections to higher latitudes, it represents a primary source 
of predictability at the subseasonal timescale (e.g., Waliser, 2011). The MJO is mainly an 
atmospheric phenomenon, but it also exhibits some modest interactions with the upper ocean—
both in forcing and responding to coupled SST anomalies and exciting ocean currents and waves. 
It exhibits planetary-scale structures along the equator in pressure, winds, clouds, rainfall, and 
many other variables, with its strongest anomalies in precipitation propagating from the Indian to 
central Pacific Oceans over a period of about 30 - 50 days. An eight phase index for MJO, 
referred to as the Real-time Multivariate MJO (RMM1 and RMM2) indices of Wheeler and 
Hendon, are usually used to describe the east-west location and amplitude of the MJO (Wheeler 
and Hendon, 2004). See NRC (2010b), Lau and Waliser (2011), and Zhang (2005) for further 
description.  

The MJO has been shown to have significant connections to a number of important 
global weather and climate phenomena, including high impact events (e.g., see reviews in Lau 
and Waliser, 2011; Zhang, 2005, 2013). This includes a strong influence on the onset and breaks 
of the Asian and Australian summer monsoons and on the modulation of synoptic variability—
including tropical cyclones—and even the triggering of ENSO variations. Improving 
representation of the MJO in global models has led to better prediction on S2S timescales at high 
latitudes as well as in the tropics (e.g., Ferranti et al. 1990; Vitart, 2014). For example, North 
American wintertime surface temperatures are found to be anomalously warm 10-20 days after 
MJO-related convection occurs in the Indian Ocean (Lin and Brunet, 2009) (Figure 4.5). Such a 
lagged relationship implies predictability of North American temperature anomalies up to about 
three weeks given knowledge of the initial state of the MJO. Forecasts using statistical models  
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Extratropical Modes 
 

Extratropical weather is frequently dominated by recurring circulation patterns, often 
referred to as weather regimes or extratropical modes of variability. Because of their large-scale 
and low-frequency nature, these circulation patterns can contribute to atmospheric S2S 
predictability. For example, it has long been recognized that the Pacific - North American pattern 
(PNA), has a significant impact on the North American surface air temperature and precipitation 
(e.g., Wallace and Gutzler, 1981). Although the state of the PNA and its predictability on S2S 
timescales is influenced by ENSO (Zhang et al., 1997) and MJO (Mori and Watanabe, 2008) 
variability, it is unclear how interactions between these coupled modes and/or additional drivers 
may influence PNA variability and its associated weather patterns. 

The North Atlantic Oscillation (NAO) is another major circulation pattern that influences 
weather from eastern North America to Europe, and it is highly correlated with the Northern 
Annular Mode (NAM). The NAO/NAM exhibits predictability on S2S timescales because its 
variability is linked to other components of the Earth system that are more predictable, such as 
the stratospheric polar vortex. Observational studies also show a robust lagged connection 
between the MJO and NAO (Cassou, 2008; Lin et al., 2009), and indeed a higher level of skill in 
predicting the NAO on a subseasonal timescale can be achieved when a strong MJO signal 
occurs in the initial condition (Lin et al., 2010). Similarly, skillful seasonal NAO predictions 
have been made by improving the initialization procedure to more realistically capture the initial 
state of the QBO and ocean and sea ice conditions (Scaife et al., 2014b). It follows that forecasts 
of the NAM have also been found to be skillful on seasonal timescale and that this skill was 
improved through more realistic initialization (Riddle et al., 2013). 

Understanding and correctly representing phenomena like the NAO/NAM, the PNA and 
the Southern Annual Mode (SAM) in the southern hemisphere are additionally important for S2S 
predictions because their state can influence the development of strong and persistent anomalies 
in midlatitude atmospheric circulations that are sometimes caused by blocking events. Blocking 
can be exploited as a source of predictability (Hoskins and Woollings, 2015) and has been linked 
to high impact weather such as severe cold spells in winter and droughts in summer. Variability 
in the NAO has been related to blocking episodes (Woollings et al., 2008), and as the NAO has 
proved to be more predictable than previously thought, so has blocking (Athanasiadis et al., 
2014).  
 
 
Future Directions on how Modes of Variability Influence Predictability 
 

Natural modes of variability represent key sources of S2S predictability. Although much 
progress has been made in understanding these modes, in particular ENSO and MJO, less is 
known about the how the interactions between coupled modes and slowly varying processes 
influence the development of specific environmental conditions. Continued research into 
variability in coupled modes, and their interactions across timescales, is necessary in order to 
fully exploit their predictability for S2S forecasting. Important questions that need to be 
addressed include: How does the MJO influence rainfall over southeast Asia during El Niño vs. 
La Niña, or in different phases of the Indian Ocean Dipole? How do tropical Kelvin and other 
atmospheric waves influence the initiation, amplitude, or decay of the MJO? Under what 
conditions can the various modes of tropical variability ensure the high or low occurrence 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

76 Next Generation Earth System Prediction 
 

PREPUBLICATION COPY 

probability of tropical cyclones in a given region? These sorts of investigations fall under Facet I 
in Figure 4.3. Moreover, as correlations between these modes and impactful weather/climate are 
discovered, it is essential that our models can re-create such variability and its impact in 
simulations and retrospective forecast experiments (i.e., Facet II and III in Figure 4.3). For 
example, some models do quite well at representing intraseasonal variability in the eastern 
Pacific—which has a strong impact on tropical cyclones in that area—while others perform 
relatively poorly (Jiang et al., 2012a; Jiang et al., 2012b). Many such examples are evident from 
the literature where empirical analysis has indicated potential relationships that can be exploited 
for S2S predictability, yet models still struggle to represent the variability and relationships 
correctly. These include IOD and boreal summer monsoon interactions (Ajayamohan et al., 
2009), Kelvin wave and MJO interactions (Guo et al., 2015), and many others. Of particular 
challenge are those modes of variability that stem from coupled processes, including ENSO, but 
that could also include land-atmosphere or cryosphere-atmosphere coupling.  

Finally, as our models become more capable of representing these processes, it is critical 
to carry out the predictability experimentation described above and highlighted as Facet IV in 
Figure 4.3. Such experimentation can point to forecasting system research and development 
avenues that would yield the greatest benefits and help to identify and/or characterize forecasts 
of opportunity based on specific modes of variability being in a particular phase (e.g., when the 
MJO is in phase 4-5 there is a strong enhancement of tropical cyclones to the west of the 
maritime continent and a suppression of them to the east).  

 
Finding 4.2: Natural modes of variability represent key sources of S2S predictability, and it is 
essential that S2S models accurately represent them. Further research is needed especially to 
understand the interaction of natural modes across timescales, associated impacts on 
teleconnection patterns, and the formation of extreme environmental conditions. Long and 
sustained observational records are essential for such research.  
 
 

Predictability from Slowly Varying Processes 
 

As discussed briefly above, S2S predictability can stem from persistence in the initial 
state of various components of the Earth system. For example, anomalous conditions in the 
stratosphere or ocean can persist for several months owing to their vertical stability and slowly 
overturning circulation. In addition, persistence in anomalous environmental conditions often 
stems from storage of anomalous energy, typically in the form of heat or water in a given phase, 
such as in snow, sea ice, soil moisture, or ocean heat content. For example, the heat capacity of 
the entire atmosphere column is about the same as just the top 2.5 m of the ocean, and the 
melting of a global 25 cm shell of ice would take as much energy as warming the entire 
atmosphere by 10°C. When these anomalous stores of heat occur on large spatial scales (e.g., 
greater than ~1,000s of kilometers), their evolution/dissipation typically occur on timescales of 
several days, weeks, or months and thus provide predictability to the Earth system. Smaller 
anomalies may also provide predictability for important ocean and coastal properties that are of 
interest to predict in their own right. Similarly, anomalies in momentum (e.g., ocean currents or 
atmospheric circulation patterns), aerosols and chemical species, and phytoplankton can also 
instill slow and anomalous variations on the coupled Earth system, impacting the ability to make 
skillful S2S forecasts. 
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Sometimes persistence is used as a threshold for predictive skill, which does not preclude 
considering persistence as a source of predictability. By the Committee’s definition, a 
phenomenon can exhibit predictability even if it is can be predicted with an idealized model or 
theoretical means. Furthermore, the threshold for predictive skill must itself have a source of 
predictability. Even so, the probability of a phenomena occurring due to persistence in a system 
with many interacting processes may not be possible to predict with an idealized model or 
theoretical means, and may require a predictive system, even though the mechanism for 
predictability at some level appears basic and might not be considered “dynamical.” Additional 
details of a number of slowly varying processes within the coupled Earth system that provide 
predictability on S2S timescales are provided below. 

 
 

Ocean  
 

Given the ocean’s relatively larger heat capacity compared to other components of the 
Earth system and the persistence of its temperature, salinity, and currents, the ocean represents a 
key source of predictability on S2S timescales in a number of ways (NRC, 2010b). Here we 
focus on mechanisms involving the ocean surface conditions owing to their relevance for 
humans (e.g., fisheries, harmful algal blooms, controls on the atmosphere and sea ice, etc.), 
rather than those that primarily affect the deep ocean. These mechanisms include large- and 
small-scale ocean dynamics in the tropics (e.g., Alexander 1992) and the extratropics (e.g., 
Hartmann 2015), as well as ocean interactions with the atmosphere and sea ice through surface 
exchange of energy, moisture, and momentum, yielding both one-way influences and coupled 
feedbacks. 

The persistence of surface anomalies depends primarily on the depth of the upper ocean 
mixed layer. Other secondary factors include the net surface energy and freshwater fluxes, 
upwelling rates (via Ekman pumping and entrainment), and the properties of upwelling 
subsurface waters. Anomalous upwelling driven by persistent wind regimes associated with 
atmospheric modes of variability can lead to predictable anomalous surface conditions because 
subsurface waters generally also have longer-lived properties, including concentrations of 
nutrients that can drive biological productivity (e.g., Waliser et al., 2005). Subsurface anomalies 
may even lie “dormant” (unrelated to the mixed layer properties) until one or more storms with 
high winds mixes the upper ocean, transporting the anomaly vertically to the surface (Alexander 
et al., 1999). 

Small-scale (10s-100s of kilometers) surface ocean features, such as circular motions 
known as eddies and regions of strong gradients known as fronts, can also exhibit persistence for 
months to years (Chelton et al., 2004; Chelton and Xie, 2010). These small-scale variations in 
SST cause divergence and convergence in the surface wind and vertical motions that link the 
small-scale ocean features to cloud properties and other atmospheric features (e.g., Chelton and 
Xie, 2010). Ocean eddies also have an association with ocean biogeochemistry through their 
influence on upwelling or downwelling, horizontal advection, and isolation of nutrients and 
ecosystems (Gaube et al., 2014). Because of their persistence and coupling with the atmosphere 
(20% of the heat flux between the atmosphere and ocean is related to the ocean eddy field [Boas 
et al., 2015]), these eddies represent a potential source of S2S predictability for the ocean and 
even the entire Earth system if feedbacks to the atmosphere are prominent. 
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Terrestrial Snow  
 

Snow also contributes to predictability of atmospheric and land conditions due to its 
storage of surface water and its influence on surface energy budgets. The latter occurs due to its 
high albedo relative to snow-free areas; it acts as a significant surface heat sink via the latent heat 
required to melt the snow, and in changing the interface conditions it influences the fluxes of 
heat and moisture between the land and atmosphere. Knowledge of anomalous snow conditions, 
particularly the snow water equivalent as opposed to just snow cover, can improve forecasts of 
air temperature and humidity, runoff, and soil moisture during the winter and spring seasons 
(NRC, 2010b; Jeong et al., 2013; Peings et al., 2011; Thomas et al., 2015). For large-scale 
anomalies in snow conditions, there is also some evidence that snow can influence remote 
atmospheric conditions by altering large-scale atmospheric circulation features (e.g., Rossby 
waves) (also see section below on Sea Ice and Polar Land Surface). For example, correlations 
have been documented between autumn anomalies in Eurasian snow and the large-scale northern 
hemisphere atmospheric circulation a few weeks to months later through the influence of snow 
cover on the vertical propagation of wave energy into the stratosphere and the NAO (Brands et 
al., 2012; Fletcher et al., 2007; Orsolini et al., 2013; Orsolini et al., 2015). Snow cover and snow 
water can have a profound influence on the evolution of the local, regional, and even large-scale 
weather patterns as well as a number of Earth system components. This influence places a high 
priority on ensuring observations of snow are available for process understanding and forecast 
initialization (e.g., Orsolini et al., 2013) and that our terrestrial hydrology and atmospheric 
models properly represent snow and related processes (see Chapter 5).  

 
 

Sea Ice and Polar Land Surface 
 

Sea ice lends predictability to the Earth system because its presence strongly reduces heat 
and moisture fluxes from the ocean to the atmosphere, it serves as a significant reservoir of 
freshwater within the upper ocean, and it is an excellent reflector of solar radiation. The 
persistence of sea ice anomalies has several important timescales (Figure 4.7). There is an initial 
persistence of anomalies in the sea ice cover that varies from 2-4 months (Lemke et al., 1980), 
depending on the season (Blanchard-Wrigglesworth et al., 2011a; Day et al., 2014) and location 
(Bushuk and Giannakis, 2015). After this initial period of persistence, there is a reemergence that 
occurs in some seasons owing to sea ice internal dynamic and coupled interactions between sea 
ice and SST. Modeling studies suggest anomalies of sea ice thickness are far more persistent and 
about as important as SST in controlling the persistence characteristics of the sea ice cover (Bitz 
et al., 1996; Blanchard-Wrigglesworth and Bitz, 2014; Blanchard-Wrigglesworth et al., 2011b; 
Chevallier and Salas-Melia, 2012; Holland et al., 2013; Lindsay et al., 2008). The lack of long-
term sea ice thickness measurements forces researchers and forecasters to turn to models to 
estimate these quantities. When models factor in transport, sea ice thickness anomalies can 
persist for almost two years and exhibit typical length scales of about 500-1,000 km (Blanchard-
Wrigglesworth and Bitz, 2014). 
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Finding 4.3: A number of slowly varying processes impart predictability to the Earth system in 
the S2S time range, including processes and interactions related to sea ice, the thermal and 
dynamic evolution of the upper ocean, and soil moisture, surface water, snow and vegetation 
on the land surface.  
 
Finding 4.4: It is essential to maintain and increase observations of the slowly varying 
components of the Earth system relevant to S2S (e.g. snow, soil moisture, sea ice and near-
surface ocean) for the purpose of process understanding, model development, and to improve 
the initial conditions in forecast system. Further studies are needed to understand the relative 
importance of these processes as sources of S2S predictability. 
 

 
Predictability from External Forcing 

 
Variability on S2S timescales may also be driven by external forcing, such as from 

anomalies in solar forcing, anthropogenic emissions of pollution or aerosols, or the episodic 
input of aerosols from volcanoes. Advanced knowledge of changes in the radiative, thermal, 
biogeochemical, or hydrological forcing of some part of the Earth System can lead to skillful 
predictions of other quantities of interest such as surface temperature or precipitation. Two 
leading cycles in the Earth system, the diurnal cycle and seasonal cycle, are very predictable 
precisely because they are driven by highly repeating patterns in the incoming shortwave 
radiation at the top of the atmosphere. While these timescales are very relevant to S2S variations, 
particularly when considering interactions across scales, it has not been a trivial matter to 
represent their impacts in global weather/climate forecast models.  

Over the last decade or so, numerical weather and climate models have started to be able 
to better reproduce credible seasonal variability through careful representation of the relevant 
processes. However, there are still significant shortcomings in representing the effects from these 
very well defined external forcings that are highly relevant to S2S prediction, such as the diurnal 
cycle. For example, there is potential influence of the diurnal cycle over the maritime continent 
on the MJO as it propagates eastward from the Indian Ocean into the western Pacific Ocean. 
Observations exhibit a relative minimum in the MJO-driven subseasonal variability over the 
maritime continent, possibly because of the relatively stronger diurnal cycle in this region 
relative to the open ocean to the east and west. Representing this scale interaction in models has 
been challenging and has represented a barrier to producing accurate forecasts of MJO amplitude 
and propagation in this region (e.g., Weaver et al., 2011) 

Aerosol variability in a number of forms holds the potential to influence variability on 
S2S timescales and represents an important source of S2S predictability in some cases.15 A 
volcanic eruption has the potential to loft significant ash and dust into the troposphere and 
stratosphere, which can result in substantial anomalies in both incoming solar radiation and 
outgoing infrared radiation. Depending on the magnitude of the mass injection and its altitude, 
the anomalous aerosol forcing can last for days to a couple of weeks in the troposphere and 
months to a year in the slow, stable circulation of the stratosphere. Accurate representation of the 

                                                 
15 Aerosols also play a key role in cloud formation and the development of precipitation.  Understanding and 
modeling this process accurately is critical to producing high fidelity models of the atmosphere for nearly all 
forecast timescales.  Given its place as a key physical process, rather than a source of predictability, aerosol-cloud 
interactions are treated in Chapter 5.  
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aerosol content, types, and interactions with clouds and radiation provides a potential source of 
predictability. Demand for realizing this forecast potential stems from the needs to better 
represent and forecast its influence on weather and short-term climate as well as to better 
understand and predict the lifetime of the aerosol anomaly itself and its societal impacts (e.g., 
how long will the ash plume last, will it affect air traffic?).  

In some cases, ash, dust, and other aerosols can influence the Earth system even after 
they are removed from the atmosphere, most notably when they are deposited on ice or 
snowpack. In this case, they can have a substantial influence on the subsequent evolution of the 
surface, producing considerably faster melting than would otherwise be the case. This has both 
hydrological implications (Qian et al., 2009) via the change in the runoff and implications for the 
evolution of the snow pack and the manner it influences weather and short term climate (see 
section above on Slowly Varying Processes). Aerosols can also impart predictability on near-
surface ocean biology by providing input of key nutrients, namely iron, that can facilitate the 
development of widespread phytoplankton blooms (Langmann et al., 2010), which have life 
cycles of days to weeks. Such blooms influence the vertical profile of solar absorption in the 
upper ocean, typically leading to greater warming of SST and a more stable surface mixed-layer 
than would otherwise occur (Siegel et al., 1995). The latter can have considerable implications 
for large-scale variations and spatial structure of SST anomalies, which in turn can influence 
weather and short-term climate. 

While the lifetimes of other atmospheric constituents can be much longer, it is still 
critical that they be accounted for in S2S forecast systems. Notable examples for this are the 
concentration of anthropogenic greenhouse gases (GHGs, e.g., carbon dioxide, methane, etc.). 
The typical lifetime of anthropogenic greenhouse gas anomalies is on the order of a decade to 
centuries, and fluctuations and trends in the emissions of greenhouse gases also tend to occur on 
timescales that are long relative to the S2S forecast. These long timescales imply that, for a given 
forecast, the GHG concentration can be specified to be a constant. However, because multi-
decade retrospective forecast datasets are a crucial component of a S2S forecast system for bias 
correction (see Chapter 5), it is imperative that the values of impactful constituents be specified 
to the forecast system as time-varying boundary condition over the time period of the 
retrospective forecasts. This type of slowly varying forced signal can lead to systematic shifts in 
the probability distributions of variables (e.g., temperature and precipitation) that can be 
predicted given the known value of the forcing. Furthermore, such external forcing has caused 
the seasonal minimum of Arctic sea ice extent to decline by over 40%, radically changing the 
probability of where the sea ice edge lies at the end of summer in recent years compared to the 
beginning of the satellite record in 1979. As S2S forecast systems encompass more Earth system 
components and coupled processes that are influenced by such external forcing, it is important to 
have an accurate representation of GHG forcing and other slowly varying external forcing (e.g. 
solar constant, surface albedo).  

 
Finding 4.5: Given the requirement that S2S forecasts have for multi-decade retrospective 
forecast datasets for the purposes of bias correction, is it imperative that the model forecast 
system account for all slowly varying external forcings that influence the frequency, spatial 
distributions, and temporal distributions of S2S forecast quantities (e.g., temperature, 
precipitation). Such external forcing includes the influences from natural and anthropogenic 
aerosol emissions, GHG concentrations, variations in the solar constant, and surface albedo, 
where the latter may derive from snow/ice cover or land use/land cover changes.  
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see Figure 4.1). Similarly, an El Niño condition along with MJO phases 8 and 1 will produce 
subsidence and thus dry conditions over the same region. On top of modes of variability, other 
processes lending predictability can act on the given anomaly to further exacerbate the condition. 
For example, wet conditions will produce positive soil moisture anomalies, which can in turn 
positively influence the further development of precipitation in the given region. Such timescale 
and process interactions, in terms of their additive or in some cases counter-acting influences, 
can occur in a number of places around the globe depending on the phenomena, region and 
season. These multi-scale interactions of an inherent, albeit intermittent, source of S2S 
predictability, represent “forecasts of opportunity”—a foundational consideration in S2S 
forecasting. Better understanding these interactions will make it possible to develop more 
forecasts of opportunity, e.g., forecasts that take advantage of windows of time in which higher 
predictability are possible. This will be particularly important for the prediction of events that are 
of interest to decision makers. 
 
Finding 4.6: The nature of sources of S2S predictability, namely intermittent natural modes of 
variability, wide and often disaggregated variations in anomalous conditions in a number of 
slowly varying processes/quantities, and varied natural and anthropogenic external forcings, 
liken the S2S prediction challenge to the identification and successful prediction of a series of 
“forecasts of opportunity.” Identifying such windows of predictability will be particularly 
important for forecasts of extreme and disruptive events. 
 
 

THE WAY FORWARD FOR RESEARCH ON SOURCES OF PREDICTABILITY 
 

The relative value of predictability sources is dependent on location of the forecast and 
time of the year. While some processes have a stronger local impact, others influence the climate 
through teleconnections and have a far-reaching effect. For example, initial anomalies in soil 
moisture can influence the local forecast precipitation and surface air temperature through 
changes in surface energy budget associated with evaporation. Anomalies of tropical convection 
associated with ENSO and the MJO influence the middle latitude climate through 
teleconnections related to Rossby wave energy propagation, and thus a large impact is usually 
observed along the path of Rossby wave train. In the Northern Hemisphere extratropics, the 
wintertime westerlies provide a more favorable background for Rossby wave propagation than in 
summer, thus the teleconnection contribution is stronger in winter. On the other hand, the 
influence of soil moisture becomes relatively more important in summer than in winter. 

Our understanding of the source of S2S predictability is still lacking. The relative value 
of predictability sources has not yet been established. The approaches that have been used in 
predictability study may not be appropriate to separate the contributions of different sources. For 
example, the specification of soil moisture in the initial condition in the retrospective forecast 
experiment that is designed to identify the contribution of soil moisture may contain information 
of ENSO or other sources of predictability. In the relaxation experiment that is designed to 
identify the origin of skill source, the analysis fields that are relaxed to in a given region may 
already contain variability propagating from other regions. The combined effect of several 
different sources of predictability may not be a simple sum of individual processes. More studies 
are needed to understand how different sources of predictability interact.  
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Climate models that are used to do retrospective forecasts are imperfect, and different 
models have different model errors, leading to inaccurate, incomplete, and model-dependent 
estimates of signal and noise variability in ANOVA analysis, as well as false representation of 
the “truth” in the twin experiments used to estimate the upper predictability limit. The 
assessment of impact of a particular process on forecast skill is also model-dependent. 
Encouraging future studies to use a multi-model framework would help to reduce the uncertainty 
related to model configurations. Also, innovative methodologies to estimate predictability need 
to be explored in order to better understand the nature of S2S forecast. 

It is essential to maintain and increase observational records for different components of 
the Earth system. These observations can be used to explore new sources of predictability and to 
better initialize S2S models. It is important for S2S models to capture the natural modes of 
variability, slow processes, and externally forced trend and variability. 

 
Recommendation C: Identify and characterize sources of S2S predictability, including natural modes 
of variability (e.g., ENSO, MJO, QBO), slowly varying processes (e.g., sea ice, soil moisture, and ocean 
eddies), and external forcing (e.g., aerosols), and correctly represent these sources of predictability, 
including their interactions, in S2S forecast systems. 
 
Specifically:  
 

 Use long-record and process-level observations and a hierarchy of models (theory, 
idealized models, high-resolution models, global Earth system models, etc.) to explore 
and characterize the physical nature of sources of predictability and their 
interdependencies and dependencies on the background environment and external 
forcing. 

  Conduct comparable predictability and skill estimation studies and assess the relative 
importance of different sources of predictability and their interactions, using long-term 
observations and multimodel approaches (such as the World Meteorological 
Organization-lead S2S Project’s database of retrospective forecast data). 

 
Decision makers are particularly interested in guidance on the likelihood, magnitude, and 

impacts of disruptive events (see also Chapter 3). Prediction of these types of events will rely on 
identifying multi-scale interactions of inherent, albeit intermittent sources of S2S predictability. 
Thus prediction of such features will require developing “forecasts of opportunity”—a 
foundational consideration in S2S prediction. While any given extreme event (e.g., storm) is 
typically not predictable more than a few days in advance, understanding interactions between 
sources of S2S predictability offer the means to infer changes in the likelihoods of extreme 
events—including their spatial distribution, occurrence frequency, magnitude, and type. More 
specifically, this means that an accurate S2S forecast system will provide quantitative forecast 
information—likelihoods and uncertainties—on extreme events with lead times from weeks to 
months. However, it is critical that all of the important and impactful phenomena be represented 
faithfully in order to yield accurate forecasts. For example, based on the discussion above, if the 
ENSO modulation is accurately depicted by the forecast system but there are temporal, spatial, 
and/or amplitude biases in the representation of the MJO, the forecast accuracy of precipitation 
amounts and extreme events—will be heavily compromised. 

In summary, accurate prediction of extreme weather/environmental events hinges 
critically on the accurate representation of all of the dominant modes of variability and slowly 
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varying processes that operate and yield predictability on S2S timescales. Forecast models must 
represent these processes individually as well as collectively, with specific attention to their 
multi-scale interactions and influences on the development of extreme events. Thus all four 
facets of predictability research highlighted in Figure 4.3 need to be undertaken to improve the 
prediction of disruptive, high impact, or extreme events.  

 
Recommendation D: Focus predictability studies, process exploration, model development and 
forecast skill advancements on high impact S2S “forecasts of opportunity” that in particular 
target disruptive and extreme events. 
 
Specifically: 
 

 Determine how predictability sources (e.g., natural modes of variability, slowly varying 
processes, external forcing) and their multi-scale interactions can influence the 
occurrence, evolution, and amplitude of extreme and disruptive events using long-record 
and process-level observations. 

 Ensure the relationships between disruptive and extreme weather/environmental events—
or their proxies—and sources of S2S predictability (e.g., modes of natural variability and 
slowly varying processes) are represented in S2S forecast systems. 

 Investigate and estimate the predictability and prediction skill of disruptive and extreme 
events through utilization and further development of forecast and retrospective forecast 
databases, such as those from the S2S Project and the NMME. 
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Chapter 5: S2S Forecast Systems: Capabilities, 
Gaps, and Potential 

 
Chapter 4 covered the processes of discovering, characterizing, and understanding the 

theoretical limits of various sources of predictability in the weather-climate system. After those 
sources are identified and begin to be understood, they can be incorporated into Earth system 
models for subseasonal to seasonal (S2S) prediction. This chapter examines the features of such 
S2S prediction systems and makes recommendations about advancing each component in order 
to produce more skillful S2S forecasts. To begin, the chapter provides an overview of the 
functioning architecture of a typical S2S system.  

The production of probabilistic forecasts on S2S timescales is similar in many ways to 
contemporary numerical weather prediction: observations of the atmosphere, ocean, cryosphere, 
and land provide initial conditions for computing the evolution of these Earth system 
components forward in time. But there are some important differences between S2S and shorter-
term weather and ocean prediction. First, chaotic aspects of the Earth system mandate averaging 
S2S predictions over long enough periods, or over a large enough set of realizations, that stable 
forecast statistics are produced for each place and lead time. Longer and/or larger-ensemble 
averages are generally needed for longer lead times. A second difference is that a set of similar 
forecasts—made in retrospect for 20 or more years with the same forecast system—is typically 
compared with verification observations to calibrate the forecasts, with the aim of correcting the 
predicted probability distribution on the basis of how the model reproduces past conditions. This 
is crucial and standard practice at least at seasonal timescales (where the desired signals may be 
small compared to the corrections); similar methods are beginning to spread to extended range 
Numerical Weather Prediction (NWP). Finally, the longer-timescale predictions typically include 
interactive Earth system components (e.g., interactive ocean and sea ice), since the evolutions of 
these components have important impacts on the atmosphere or provide valuable forecasts in 
their own right. For weather and climate, the distinctions among prediction methods at various 
time ranges are beginning to diminish as even short- to medium-range weather forecast models 
move to encompass interactive ocean and sea ice components. 

The basic architecture of S2S prediction systems is depicted in Figure 5.1, which also 
provides an organizational structure for the content in this chapter. Coupled Earth system models 
(ESMs) lie at the core of most of these systems. The ESM itself—a system of partial differential 
equations that describe the evolution of the components of the Earth system and the interactions 
between them—projects state variables forward in time. The separate components—atmosphere, 
ocean, land, sea ice—are discretized on a computational grid with specific spatial and temporal 
resolutions. The components are linked together at the interfaces via a coupler, which transfers 
information, such as heat and momentum fluxes. Meanwhile, the coupler also transfers model 
errors from one component to another, making the model error growth a coupled process as well. 
Due to the finite resolution in space and time, many processes in the models remain unresolved 
and require parameterizations of their effects on the components that are resolved. The 
Committee notes that for certain S2S predictions, integrating a subset of an ESM can be 
sufficient to achieve useful predictive skill. For example, some ocean and ice forecasts can be 
issued on S2S timescales with prescribed atmospheric surface conditions without two-way  
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investigating multi-scale variability in the Earth system with the same ESM and as consistent of 
observation data streams as possible. Running the ESM forward from an initial condition, with 
no further data assimilation, produces a forecast. The numerical output from an ESM forecast 
usually consists of an ensemble of ten or more members, each containing some 100 or more 
physical variables on spatial grids at intervals of hours (or much shorter for specific 
applications). The ensemble is created by running multiple realizations, perturbing the initial 
conditions and/or the model formulation, to produce a distribution of results that are intended to 
sample uncertainties in the estimate of the initial state, external forcing, and model 
parameterizations. 

In order for these outputs to be transformed into S2S forecast products, they first must be 
calibrated and verified by comparing forecasts to the subsequent observations. To obtain a large 
enough data set to be statistically meaningful and avoid over-fitting, comprehensive retrospective 
forecasts or hindcasts16 are performed in which the forecast system is exercised over a historical 
period of some 10 to 30 years. In this process, the reanalysis in Figure 5.1 provides initial 
conditions, the retrospective forecasts are computed with the ESM, and then the forecasts are 
compared to a reanalysis or some other verification data set. 

After any part of the forecast system is changed, the retrospective forecasts must be 
recreated to be consistent with the modifications. Today, some forecast centers are producing 
them as part of the model forecast process itself. This permits the centers to take advantage of 
model improvements with frequent updates. Thus some retrospective forecasts are static and 
some are produced “on the fly” along with the forecasts themselves. Such on-the-fly 
retrospective forecasts have been employed in atmospheric models and ESMs (e.g. MacLachlan 
et al., 2015; Vitart, 2013) and also real-time ocean forecasting (e.g. Lermusiaux et al., 2011; 
Ramp et al., 2009; Robinson et al., 2002). Either way, calibrations derived from the retrospective 
forecasts are applied to improve new forecasts. For example, if August temperature in a specific 
geographic region of the historical forecasts tends to be biased, then the mean temperature of the 
new forecasts is adjusted accordingly. Similarly, if the probability distribution of the 
retrospective forecast is too narrow, then the probability can be made wider in subsequent 
operational forecasts.  

The rest of this chapter examines in more detail the pieces of S2S prediction systems that 
were described in brief above. Aspects of S2S forecast systems—routine observations, data 
assimilation, models, and the calibration and production of forecast products—are covered in 
separate Chapter sections. For each of these sections, the Committee has identified findings and 
developed a set of research recommendations. The implementation of these recommendations 
will be critical to advancing S2S forecast skill and to better meeting the needs of users as 
highlighted in Chapter 3.  
 
 

ROUTINE OBSERVATIONS AND THEIR USE 
 

Observations are a fundamental building block of any prediction system. They provide a 
basis for understanding the Earth system, guide model development, enable the initialization of 
forecast systems, and provide the foundation for evaluating model fidelity and quantifying 
prediction skill. There is an expansive network of in situ and remotely sensed observing systems 

                                                 
16 As noted in Chapter 1, other commonly used terms for retrospective forecasts are ‘reforecast’ and ‘forecast 
history’. These terms are interchangeable.  
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that is used for S2S forecasting. However, maintaining this network to ensure no degradation of 
present-day nascent S2S forecast skill represents a significant challenge in and of itself. 
Improved utilization of other existing observations, along with new observations to increase 
geographic coverage, spatial and temporal resolution, and the breadth of routinely measured 
Earth system variables, are critical for further advancing S2S model development and 
operational S2S forecasts.  

This section describes the current state of observations to support S2S forecast systems 
and highlights important gaps and vulnerabilities in the coverage of observational networks. The 
focus is on observations for operational model initialization, calibration, evaluation, and routine 
monitoring, though these types of observations are also generally useful for studies on sources of 
predictability (covered in Chapter 4). Generally the most basic quantities are needed (e.g., 
temperature, wind speeds, etc.), with continuous temporal and broad spatial coverage, and at 
spatial and temporal resolutions that are relevant for S2S processes. Because S2S forecast 
systems are often driven by observations of anomalies from a climatological mean, overlapping 
measurements between successive generations of observing systems are particularly valuable so 
that changing observation system biases are not aliased into estimated anomalies in the state of 
the real world. Observations of the atmosphere are important for S2S prediction as they are with 
NWP. However, observations of the ocean, land, and cryosphere represent additional critical 
needs for building, calibrating, initializing, and evaluating the coupled ESMs that will be used to 
generate S2S forecasts in the next decade. This is because while the ocean, land surface, and 
cryosphere contain important sources of Earth system predictability on S2S timescales, 
observations within these components are neither as numerous nor as distributed as observations 
of the atmosphere.  

Recommendations and priorities for observations to support S2S forecast systems follow 
at the end of the section. Field observations for process studies designed to develop and improve 
model processes and parameterizations and reduce systematic biases are covered in more detail 
in the modeling section of this chapter. 
 
 

Observations of the Atmosphere 
 

The current observing system for the atmosphere is among the most comprehensive of all 
the components of the Earth system. Yet observations of the atmosphere need to be maintained 
or advanced for continued improvement to S2S prediction systems. The current atmospheric 
observing system includes in situ measurements of moisture, temperature, pressure, and wind 
from radiosondes, aircraft (e.g., Aircraft Meteorological Data Relay [AMDAR] and 
Tropospheric Airborne Meteorological Data Reporting [TAMDAR]), and sensors at the Earth 
surface (land, moorings, and ship). Satellites provide additional information on ocean surface 
winds (covered in more detail in the ocean observation section), clouds and precipitation, 
radiation, surface temperature, winds (from feature tracking), and vertical profiles of temperature 
and moisture. These measurements come from a range of sensors including microwave radars, 
radiometers and sounders, hyperspectral infrared sounders, visible and infrared imagers, 
scatterometers, and GPS radio occultation. 

The world radiosonde network is extensive (Figure 5.2) and has been a main source of 
three-dimensional input to atmospheric models. These data have historically been supplemented 
by measurements from aircraft-based sensors. However, the radiosonde network lacks coverage  
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Vincent, 1995), but at present operational centers routinely receive only data at the mandatory 
pressure levels (with resolution at best of about 700 m). High altitude and finer-resolution 
vertical profiles could be used to help resolve troposphere-stratosphere interaction, cumulus 
convection, and mesoscale atmospheric organization—processes that are particularly important 
for S2S predictions (See Chapter 4 and Chapter 5, models section). Implementing this type of 
change has remained challenging because of the extensive international coordination and data 
management it requires.  

Gaps in the coverage of radiosonde observations, along with the recent deterioration of 
the radiosonde network (NRC, 2000), have led to increasing reliance on satellite data for 
atmospheric monitoring and modeling. Today, the Advanced Microwave Sounding Unit 
(AMSU) is actually the most important observing system for shorter-term weather predictions in 
a current version of the NASA GEOS-5 global NWP model, followed closely by aircraft, 
radiosondes, and hyperspectral infrared sounders such as the Infrared Atmospheric Sounding 
Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS) (Figure 5.3). This finding is 
generally representative of other NWP systems such as NCEP (Ota et al., 2013) and ECMWF 
(Cardinali, 2009). 

Given the uncertainties about the future of the radiosonde network and gaps in its 
coverage, continued investment into satellite-based atmospheric observations is important for 
moving forward. The development of platforms and algorithms for the retrieval of key 
variables—including vertical profiles of temperature, humidity, and wind—at resolutions that 
can capture the development and evolution of mesoscale systems and more detailed information 
in the boundary layer are particularly important. Advancing S2S predictions will also hinge on 
the ability to perform data assimilation in cloudy and precipitating regions (see section on data 
assimilation). Such capability will in turn rely on a host of routine, global high-resolution 
observations of radiation, clouds, and precipitation. On a slightly longer time horizon, 
developing such observations and the ability to assimilate them will also be important for fully 
implementing cloud-permitting forecast models (see section on models). Similarly, as models 
progress to better represent aerosol-cloud interactions—especially for regions where radiative 
forcing from aerosols (e.g., polluted cities) is substantial—it will become essential to expand 
routine in situ (e.g., Aerosol Robotic Network [AeroNet] and Micro-Pulse Lidar Network 
[MPLNet]) and satellite observations of aerosols and to have the capability to exploit these 
observations via data assimilation. 

The United States is a leading contributor to the operational global satellite data coverage 
used in weather and climate prediction. U.S. federal agencies have been planning for 
replacements to aging polar orbiter and geostationary satellites, some of which are near or past 
their expected lifetime. However, the replacement programs have been beset with delays and 
cost overruns, leading to the potential for a gap in coverage. In particular, a gap in microwave 
sounder coverage from polar orbiting satellites could lead to significant degradations in 
atmospheric monitoring and prediction at weather and S2S timescales, a scenario the U.S. 
Government Accountability Office identified as high risk in a 2015 report.17 

Two new satellite missions could lead to important improvements in global observations 
of three-dimensional winds and precipitation—two of the major gaps in the atmospheric 
observing network discussed above. The Atmospheric Dynamics (ADM-Aeolus) by the  

                                                 
17 http://www.gao.gov/products/GAO-15-290, accessed January 27, 2016. 
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tropics, over oceans, and in polar areas. However, issues remain regarding the assignment of 
vertical location for these observations. On the very cusp of development are small, capable 
sensors that can be deployed on less expensive small satellites (e.g., “cubesats”), which in turn 
can be implemented into multi-satellite constellations providing rapid revisits and a low-cost 
approach for some operational observation needs (Ruf et al., 2013).  

 
Finding 5.1: The current atmospheric observing system is relatively robust, but components of 
the network are in danger of deteriorating and/or are underutilized and spatial coverage is still 
poor in remote areas such as over the oceans and in polar regions.  
 
Finding 5.2: As S2S prediction systems evolve in complexity and resolution, routine broad-
coverage and higher-resolution atmospheric observations of thermodynamic profiles, clouds, 
precipitation, and aerosols will become essential to better characterize convection and 
troposphere-stratosphere interactions, as well as to enable cloud-permitting models. 
 
Finding 5.3: Space-based satellite observations are likely to be the most efficient way to 
develop the new atmospheric observations that will be required for S2S predictions, although 
other cost-effective approaches to obtain the requisite accuracy and coverage are worthy of 
continued investigation. 
 
 

Ocean Observations 
 

The ocean is significantly under-observed compared with the atmosphere, despite being a 
major source of S2S predictability (Cummings, 2011; Robinson, 2006). Sea-surface temperature 
(SST) may be the most important oceanic variable for driving the atmosphere in the coupled 
system. This is due to the strong dependence of air-sea heat flux, evaporation, and even the 
stability of the atmospheric boundary layer on SSTs. Accurate initial conditions for SST as well 
as for ocean currents are not sufficient for predicting the time evolution of SST on S2S 
timescales because the effective ocean heat capacity on S2S timescales depends strongly on how 
deeply surface thermal anomalies are mixed by near-surface winds, ocean surface waves, and 
convective instabilities in the ocean mixed-layer. Thus measurements of winds, waves, air-sea 
fluxes, and near-surface ocean heat content anomalies and density structure (the latter determines 
the depths to which near-surface thermal anomalies can be easily mixed) may be just as critical 
for ocean prediction as SST measurements. Measurements of salinity are also important for 
constraining SST evolution, as both salinity and temperature determine the ocean’s density 
structure. There are many places where a layer of relatively fresh water in the top few meters is 
observed to stabilize an ocean water column that would be unstable if only thermal properties 
were considered.  

Transport of properties by ocean currents and associated eddies as well as vertical mixing 
driven by sheared ocean velocities also play an important role in the evolution of the coupled 
system at S2S and longer timescales. For example, re-stratification by finite-amplitude, 
submesoscale, mixed-layer eddies plays a strong role in the evolution of the coupled system 
(Fox-Kemper et al. 2011), as does the atmospheric response to oceanic variability in areas of 
high SST variability (Kirtman et al. 2012). When averaged over timescales of the inertial period 
and longer, extratropical ocean velocities are well approximated by a geostrophic and Ekman 
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balance, which can be determined from knowledge of the ocean’s sea-surface height or bottom 
pressure anomalies, surface wind stresses, and the ocean’s three-dimensional density structure. 
Tropical currents tend not to be as well constrained by geostrophy, and tidal flows and rectified 
tidal effects can be important, especially in coastal areas. Thus direct measurements of ocean 
velocity (e.g., from moorings with current meters or drifters) or estimates of the surface 
geostrophic and Ekman components estimated via remote sensing (Lagerloef et al., 1999) and 
tides are particularly valuable for constraining the state of the ocean in tropical and coastal areas 
at S2S timescales. Velocity measurements that are available in real-time can be directly 
assimilated into S2S forecast systems, while delayed velocity data (e.g., data that is only 
available after instrument recovery) plays an important role in evaluating the realism of S2S 
forecast systems. Additional ocean-related observations that may benefit Earth system forecasts 
at S2S timescales include biogeochemical quantities such as nutrient distributions, oxygen levels, 
and initial plankton distributions. Used as tracers, these quantities may improve the initialization 
of the physical aspects of the system, but as the ocean model grows in sophistication to include 
biogeochemical processes, such quantities will be needed for initialization of these components. 

Many of the ocean surface processes described above can be well sampled by remote 
sensing. Satellite measurements of SST, sea surface height (SSH), and scatterometer-derived 
surface wind stress are routinely used by ocean prediction systems. However the value of 
remotely sensed measurements for S2S forecasting depends critically on having enough 
instruments to provide continuous measurements with adequate temporal and spatial coverage. 
For example, the quality and reliability of forecasts of the ocean mesoscale eddy field depend 
upon the availability of multiple altimeters for coverage and resilience to instrument failures 
(Jacobs et al., 2014; Le Traon et al., 2003). Beyond the above physical variables, remotely 
sensed ocean color (visible wavelength) can be used to constrain biogeochemical ocean model 
components, which in their simplest use are needed to determine the vertical profile of solar 
heating in the near surface layer of the ocean (e.g., Murtugudde et al., 2002).  

The TOPEX/Poseidon and NASA/CNES/NOAA/EUMETSAT Jason missions19 have 
provided continuous SSH measurements since 1992. The Jason-3 mission, to be launched in 
January 2016, and the Copernicus European Program,20 which will deliver Earth data from a 
dedicated constellation of satellites known as “Sentinels,” will also provide operational SSH 
measurements into the coming decade. Additional upcoming satellite missions for oceanography 
and hydrology include the “Surface Water and Ocean Topography” (SWOT) mission—a 
collaboration between the United States and France.21 With an estimated launch date of 2020, 
SWOT will continue the TOPEX/Jason record of global ocean altimetry but will also 
complement it by providing unprecedented global high-resolution elevations for small-scale 
ocean eddy features and for lakes and rivers over land. SWOT will likely allow for an important 
improvement in model representations of the ocean’s geostrophic eddy fields and provide an 
altogether new resource for estimating surface-water elevations, both of significant value to S2S 
forecast considerations and applications. However, since SWOT is a research satellite, its three-
year projected mission lifetime is shorter than is desirable for operational use as a part of a well-
validated S2S forecasting system. While there is a foundation for remotely sensed SSH 
measurements via Jason and the European Sentinel program, there is great concern regarding the 
continuity of surface wind observations over the ocean. Much of the evolution of the ocean 

                                                 
19 http://sealevel.jpl.nasa.gov/missions/ostmjason2/, accessed January 27, 2016. 
20 www.copernicus.eu, accessed January 27, 2016. 
21 http://swot.jpl.nasa.gov/mission/, accessed January 27, 2016. 
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circulation on S2S timescales is driven by wind stress, and scatterometer wind stress 
measurements are of particular importance for constraining the ocean and atmosphere in remote 
areas of the ocean with little other observation coverage for wind. Presently, the only U.S. 
scatterometry asset is RapidScat, a two-year mission on the International Space Station (ISS). 
While this implementation comes with some advantages (namely the orbit allows resolving the 
mean diurnal variability of ocean surface winds and can provide cross calibration of other agency 
scatterometers such as the European Organisation for the Exploitation of Meteorological 
Satellites [EUMETSAT] Advanced Scatterometer [ASCAT]), its inclined orbit does not provide 
global observations. An additional experimental resource for winds will come from NASA’s 
upcoming Cyclone Global Navigation Satellite System (CYGNSS) mission, composed of a 
constellation of eight small satellites that use GPS reflections off the surface to estimate wind 
speed (direction not measured). While the coverage from this experimental mission will be 
limited to the tropics, it will provide an additional consideration for future observations of ocean 
surface wind speed that are likely to be complementary to the broad swath sampling of 
scatterometers that provide vector wind observations. Despite their potential for improving ocean 
wind measurements, RapidScat and CYGNSS are experimental missions with very limited 
lifespans. To advance S2S prediction, it is vital to determine a longer-term, sustainable plan for 
providing global, continuous satellite measurements of ocean surface winds.  

Satellites also estimate ocean surface salinity (i.e., from the Soil Moisture and Ocean 
Salinity, SMOS22, and, until recently, Aquarius missions23). The assimilation of such data has 
already improved some aspects of coupled forecasts (e.g., Hackert et al., 2011; Hackert et al., 
2014; Tang et al., 2014), but salinity is a challenging measurement to make from space, and 
further advances are needed. Salinity anomalies of order 0.1 psu are dynamically important on 
S2S timescales (e.g., Guan et al., 2014), but this is near the threshold accuracy of current satellite 
retrieval capabilities on spatial scales relevant to S2S (cf. Tang et al., 2014).24 However, with a 
combination of a robust in situ network (e.g., Argo, buoys, see below) and satellite 
measurements, a highly complementary set of measurements can be provided. In situ data can 
provide accurate absolute salinity values with the benefit of vertical profile information, and 
satellites can provide global coverage of (only the) surface salinity with the benefit of spatial 
gradient information and for measurements in marginal seas (although at a distance at least one 
satellite footprint away from the coast; ~50-100km) where drifters/buoys are limited. 

Remote sensing has the potential to deliver routine observations of the ocean surface with 
coverage (space and time) that cannot be matched by current in situ observations. However, as 
illustrated with salinity above, in situ data will continue to be essential for calibrating remotely 
sensed ocean observations, and some in situ observations are critical for providing routine 
measurements of variables that are not well-observed via satellite platforms. Furthermore, 
because radiation penetrates only a short distance (millimeters to 10s of meters, depending on 
wavelength) into the ocean, observing the three-dimensional ocean fields mentioned above (e.g., 
sub-surface temperature, salinity, and ocean velocities) usually calls for in situ data. 

 
                                                 
22http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/SMOS/
ESA_s_water_mission_SMOS, accessed January 27, 2016. 
23 The Argentine Space Agency/CONAE’s satellite, hosting NASA’s Aquarius instrument, failed in June 2015, 
terminating the 4-year record of salinity observations. http://aquarius.nasa.gov/, accessed January 27, 2016. 
24 Recent comparisons of satellite to in situ values show RMS errors on the order of 0.28 to 0.51 psu for SMOS 
(Reul et al., 2014) and 0.2 to 0.3 psu for Aquarius (Tang et al., 2014), each for monthly timescales and grid averages 
of ~100km.   
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In order for tropical ocean surface moorings to continue to benefit operational ocean and 
S2S forecasting, they need to deliver consistent and reliable observations. However, tropical 
surface moorings are subject to instrument failures due to long-term exposure to a difficult 
environment, and they are also commonly damaged by fishing activities and vandalism. Regular 
and sustained maintenance of these moorings is necessary, but limited access to ship-time for 
missions to refresh moorings has resulted in data losses and thus time series breaks. For example, 
lack of maintenance during the period from June 2012 through September 2014 severely 
degraded the TAO array, causing the returned data volume to drop to roughly half its historical 
rate from the 2000s (Tollefson, 2014). Though the tropical mooring array can be expensive and 
logistically challenging to maintain, allowing it to decay through neglect is unacceptable for 
what has proven to be a vital element in delivering skillful and societally valuable ENSO 
forecasts (NRC, 2010c). 

A global array of surface drifters (e.g., Niiler, 2001) provides synergistic information for 
satellite measurements of SST, salinity, and absolute sea surface height (SSH), but its spatial 
coverage is coarser than Argo (roughly one float on a 5°x5° grid). For example, the Global 
Drifter Program (GDP25) provides satellite-tracked surface drifting observations of currents, SST, 
atmospheric pressure, winds, and salinity over the world’s oceans. Other routine in situ 
measurements are collected and reported back in real-time by volunteer observing ships and 
research vessels and moorings. Sensors on marine mammals also provide important subsurface 
ocean data, and such sensors are currently one of the only ways to observe the subsurface ocean 
in polar regions and beneath sea ice (Roquet et al., 2013, Charrassin et al., 2008). Autonomous 
Underwater Vehicles (AUVs, e.g., gliders or self-propelled vehicles) can also be used to collect 
routine ocean measurements (see Box 5.1). The range and usage of gliders is increasing, but the 
range of propelled AUVs is often still too limited. They are however, relatively cost effective 
and can be outfitted with many sensors and sent into areas not commonly covered by other 
techniques, making further development of this technology attractive. 

Coastal areas represent a significant challenge for satellite observations. Specifically, 
satellite-based observations of winds and SSH are not yet accurate in coastal regions, where the 
winds can change rapidly over smaller spatial and temporal scales relative to coarse microwave 
footprint sizes (~25km). In addition, the side-lobe contamination from the land renders the near-
costal observations unusable. Although the SWOT mission will improve the situation for SSH 
due to its higher resolution (~2km), coastal winds and surface current observations will need to 
rely on the high-frequency shore-based radar (such as Coastal ocean dynamics applications radar 
[CODAR] and WavE RAdar [WERA]). These radar observations are increasing in availability 
and are a backbone component of NOAA’s Integrated Ocean Observing System (IOOS), but 
many more of these data sets are needed globally in order to increase predictability near the 
coasts. Finally, while there is a global tide network, it is important to keep maintaining it 
together with measurements from submarine cable instruments to ensure accurate tidal 
prediction. Wave predictions and the associated air-sea interactions also require that the wave 
buoy network is sustained to ensure availability of wave data. 

In summary, while progress continues to be made in advancing in situ and remote sensing 
measurements of the ocean, including expanding temporal and spatial coverage and capabilities, 
the ocean continues to be under-observed relative to its importance in the coupled Earth system. 
Coverage and continuity of existing SST, SSH, and surface wind observations are important to 
maintain in order to produce S2S forecasts that are skillful. Further advances in observing  
                                                 
25 http://www.aoml.noaa.gov/phod/goos.php, accessed January 27, 2016. 
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BOX 5.1—Autonomous Underwater Vehicles 
 

Most interior properties of the ocean cannot be remotely sensed. In addition to ships and other 
classic in situ infrastructures (National Academies of Sciences Engineering and Medicine, 2015a), there is 
a need for inexpensive but efficient ocean sensing capabilities. Since the “weather of the sea” (e.g., 
Robinson, 1983 ) has timescales relevant for S2S predictions, such capabilities will likely be most useful. 
Fortunately for S2S, in the past 10 to 20 years, the increasing deployment of autonomous ocean observing 
systems has started a revolution as imagined by Stommel (1989). Autonomous underwater vehicles 
(AUVs) such as gliders and propelled vehicles (including surface crafts) are employed today for scientific 
exploration, ocean mapping, commercial applications, naval reconnaissance, and security. This is possible 
due to advances in manufacturing (Yuh, 2000), reliability (Bahr et al., 2009; Fiorelli et al., 2006), robotics 
(Bellingham and Rajan, 2007), and autonomy (Curtin and Bellingham, 2009; Curtin et al., 1993; 
Lermusiaux et al., 2015).  

Equipped with physical sensors and even biogeochemical analyzers, AUVs collect observations 
useful for ocean estimation and forecasting. Their use in adaptive sampling and exploratory missions is 
now feasible (e.g., Fiorelli et al., 2006; Haley et al., 2009; Leonard et al., 2010; Ramp et al., 2009; 
Schofield et al., 2010). Such missions can involve onboard routing (Davis et al., 2009; Wang et al., 
2009b) as well as coordination, cooperation, and inter-vehicle information exchanges (Bahr et al., 2009; 
Leonard et al., 2007; Paley et al., 2008; Zhang et al., 2007). Ocean sensing vehicles are now used in 
groups of heterogeneous type with varied operating speeds. They provide sparse but multivariate data, 
and their motions can be strongly affected by ocean currents (Lermusiaux et al., 2015). Optimal path 
planning towards key sampling locations is thus critical to save time and energy (Lolla et al., 2014a; Lolla 
et al., 2014b; Subramani et al., 2015). Since the vehicles provide observations that are ultimately 
assimilated into ocean models, their optimal control is thus often linked to uncertainty prediction and data 
assimilation (e.g., Lermusiaux, 2007; Schofield et al., 2010). 

Even though the use and deployment of varied types of AUVs for S2S forecasting is not yet 
common, within the next 10 years they are likely to become useful for such predictions. Long-duration 
deployments of gliders and other AUVs with sufficient endurance or drifting capabilities is now an area 
of active research. Several major research projects (Northern Arabian Sea Circulation—autonomous 
research [NASCar], etc.) are underway. In addition, similar efforts are being completed in the air domain 
with autonomous sensing drones and other UAVs. Coordinating efforts among autonomous oceanic and 
atmospheric sensing research will improve the collection of observations for coupled S2S forecasting of 
the Earth system. 

 
technology and coverage could have tremendous value for characterizing important S2S ocean 
processes, for model improvement, and for providing information for forecast initial conditions. 
Effective integration of the increasing ocean observations and platforms with S2S ocean 
modeling systems is also necessary, including data-model comparisons for improving ocean 
model formulations and advanced data-assimilation for better S2S forecasts. 
 
Finding 5.4: Continued investment into routine space-based observations of sea-surface 
height, SST, surface winds—which represent key inputs to estimates of air-sea fluxes of water, 
heat, and momentum—are critical to support S2S prediction systems. Developing satellite-
based estimates of ocean surface salinity, currents, mixed-layer, and biogeochemical 
properties may further advance S2S forecasts. 
 
Finding 5.5: In situ measurements of SSH and winds in coastal areas continue to be critical 
for S2S forecasting, as do surface meteorological observations from tropical moored arrays. 
Routine, in situ measurements of temperature and salinity structure at depth, as well as of 
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coastal and equatorial currents, are also particularly important. Expanded use of new and 
improved drifters, buoys, and autonomous instruments could facilitate cost-effective 
expansion of the observing network below the surface. 
 

Observations of the Cryosphere and Polar Regions 
 

More than anywhere else on Earth, the polar regions depend on unique observing 
methods to confront the challenges of taking measurements in extreme and harsh environments. 
Much of the important phenomena for S2S polar prediction contain small spatial scales, such as 
the high degree of spatial variability associated with melt ponds, openings in sea ice, patchiness 
of snow cover, and eddies in the ocean. The high reflectivity of ice and snow surfaces on land 
and ocean, lack of strong horizontal and vertical temperature gradients, and the extended polar 
night make atmospheric observations difficult from passive radiances, e.g., visible measurements 
based on sunlight reflected from clouds or snow, or infrared measurements based on thermal 
contrasts. Further, sea ice is a barrier to most ocean-observing satellites. As a result, routine in 
situ observations are critical to complement satellite observations around the poles, in particular 
for ocean observations. Traditional field-based measurements are also hindered by the presence 
of sea ice (e.g., Figure 5.4) and a shortage of population centers from which to operate or launch 
instruments.  

Sea ice concentration is one of the most essential variables for predicting weather and 
climate in the polar regions. Fortunately, sea ice concentration can be measured by passive 
microwave retrievals (the same satellites that observe terrestrial snow cover) through clouds and 
during both day and night. Passive microwave retrievals also can be used to distinguish first-year 
(ice that first grew on open water less than a year ago) and multiyear ice. These observations are 
available since 1979 and provide the only continuous coverage of sea ice longer than a decade. 
However, there is high uncertainty in sea ice concentration measurements when melt water is 
present at the surface and resolutions are relatively coarse (~10 km). 

Sea ice thickness is less well observed than sea ice concentration, but it is at least as 
important for sea ice prediction (Blanchard-Wrigglesworth et al., 2011a; Day et al., 2014). Sea 
ice thickness is a key constraint on the timescale of variability (~ months to years) for sea ice 
concentration anomalies. For example, summer sea ice coverage—a variable that is often a target 
for prediction—is strongly influenced by sea ice thickness in spring (Chapter 4). Scattered field-
based measurements of sea ice thickness are available since the late 1950s (e.g., Lindsay and 
Schweiger, 2015), and in the last two decades a series of satellites and aircraft have provided 
good spatial coverage but not continuously; in some cases instruments were turned off to extend 
the life of the mission (ICESat26) and in others melt water on the surface obscured the 
measurements in late spring and summer (IceBridge27, CryoSat-228). At present, the only 
thickness-observing satellite is CryoSat-2, operated by the European Space Agency, which has 
been in orbit since 2010. Because remote sensing actually measures the freeboard (height of sea 
ice and snow above sea level), the accuracy of estimates of sea ice thickness depends critically 
on the availability and quality of measurements of snow depth on top of the sea ice. The lack of 
simultaneous measurements of snow depths and freeboard leads to significant uncertainty in the 

                                                 
26 http://icesat.gsfc.nasa.gov/, accessed January 27, 2016. 
27 http://www.nasa.gov/mission_pages/icebridge/index.html, accessed January 27, 2016. 
28http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_ 
Explorers/CryoSat-2, accessed January 27, 2016. 
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estimate of thickness, but even more problematic for S2S forecasting is the impossibility of 
retrieving data from the radar altimeter instrument on CryoSat-2 (and CryoSat) in the presence of 
surface meltwater, or roughly May-September in the Arctic. Nonetheless, CryoSat thickness 
measurements have been used for sea ice data assimilation to initialize forecasts in spring of the 
ensuing summer season (see section on data assimilation). 

NASA’s IceBridge aircraft mission offers one of the best opportunities to measure 
simultaneous freeboard and snow depth, though the measurements are limited to about a dozen 
flight tracks each year over a few weeks in spring since 2007. Even in these opportune 
conditions, the uncertainty in IceBridge sea ice thickness is estimated to still be 40 cm (Kurtz et 
al., 2013). Less accurate snow depths have been estimated for the purpose of computing sea ice 
thickness from satellite based measurements of freeboard in a variety of ways, including from 
climatological measurements (Kwok et al., 2004), accumulation of snowfall from reanalysis 
(Kwok and Cunningham, 2008), and using an empirical method based on ice type and 
climatological measurements (Laxon et al., 2013). However, the accuracy of resulting sea ice 
thickness was not reported in these studies. Recently, snow depths have also been estimated from 
the SMOS satellite mission to be nearly as accurate as the IceBridge measurements (Maaß et al., 
2013), which is very encouraging. 

NASA plans to launch a satellite known as the second generation Ice Cloud and Land 
Elevation Satellite (ICESat2) in 2017 that can measure sea ice thickness year round, but accurate 
and simultaneous snow depth measurement are still necessary to fully utilize these observations. 
Further, the data need to be processed within a day or so of the observation to be useful as input 
for prediction of the sea ice edge at shorter lead times in S2S forecasts. 
 
Finding 5.6: Reliable and accurate year-round sea ice thickness measurements are the 
greatest need for sea ice prediction, and continued satellite missions will enable this key 
objective. However, accurate and simultaneous in situ measurements of snow depths on sea 
ice are needed to translate signals observable from satellite into dependable and timely sea ice 
thickness estimates.  
 
 

Land Surface Observations 
 

As discussed in Chapter 4, land surface characteristics are important for Earth system 
prediction on S2S timescales, and may be particularly important for predicting extreme events, 
such as heat waves and droughts, as well as for characterizing the water cycle. This may be 
especially true during boreal spring and summer, when coupled Earth system models often 
exhibit lower predictive skill due to weaker links between mid-latitude climate systems and the 
oceans and an increase in land-atmosphere interactions (NRC, 2010b; Roundy et al., 2014). Soil 
moisture, snow depth, vegetation, water table depth, and land heat content all influence the 
fluxes of heat and moisture between the land surface and atmosphere, sometimes with important 
feedbacks to large-scale weather and climate and events such as heat waves (e.g., Guo et al., 
2011; Roundy et al., 2014; Roundy and Wood, 2015). As also mentioned in Chapter 4, a number 
of recent studies have found that more realistic initialization of precipitation and land surface 
variables, such as soil moisture, snow cover, and vegetation in coupled Earth system models and 
multi model forecast systems improves the predictability of atmosphere and hydrologic variables 
on S2S timescales (Koster et al., 2004; Koster et al., 2010; Koster et al., 2011; Koster and 
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Walker, 2015; Kumar et al., 2014; Peings et al., 2011; Prodhomme et al., 2015; Roundy and 
Wood, 2015; Thomas et al., 2015). The regions and time periods for which such land-atmosphere 
coupling is important for weather and climate prediction are also likely to expand with global 
warming (Dirmeyer et al., 2013; Dirmeyer et al., 2014). 

The ability to measure land surface and hydrological variables, particularly on a global 
scale, is currently limited, hindering realistic model initialization and representation of important 
land processes and land-atmosphere coupling. For example, critical data input into land data 
assimilation systems comes from in situ measurements of precipitation (from rain gauges) and 
snow and snow depth (from weather stations and snow courses), but prediction skill has been 
shown to be limited in the many areas where such measurements are sparse (Koster et al., 2010). 
Networks such as CoCoRaHS29, the Community Collaborative Rain, Hail, and Snow Network, 
have improved the density of rain gauge data in the United States for research and monitoring 
purposes, and such networks might be leveraged for improving real-time modeling. However, 
there are still vast areas in less populated parts of the country and especially abroad where there 
is little to no gauge data.  

While in situ networks need to be maintained and in some cases expanded in the near-
term to enhance S2S forecasting (see below), measurements from satellites may hold the most 
promise for improving the global characterization of many land surface variables. A few recent 
and planned satellite missions have the potential to rapidly accelerate progress towards the goal 
of improved surface soil moisture estimates. The European Space Agency launched SMOS in 
2009 to monitor surface soil moisture (~ < 10 cm) using an L-Band microwave radiometer (Kerr 
et al., 2010; Mecklenburg et al., 2012). In January of 2015, NASA launched the Soil Moisture 
Active Passive (SMAP) satellite30, which is designed to monitor the freeze-thaw state as well as 
surface soil moisture using an L-Band microwave radiometer and radar (Entekhabi et al., 2010). 
Despite these recent and planned developments, a number of critical gaps remain. The current 
failure of SMAP’s radar has (at best) delayed the full potential of SMAP data until a stand-in 
radar onboard another satellite can be used in tandem with SMAP’s radiometer. Observations (or 
better estimates) of soil moisture into the root zone will be key to exploiting the longer-term 
predictability associated with soil moisture and are also for constraining hydrologic predictions. 
Root zone soil moisture provides the atmosphere a source of moisture through plant 
transpiration, with this deeper layer typically exhibiting longer timescales of variability than soil 
moisture near the surface. Remote sensing observations of root zone soil moisture are typically 
based on longer (i.e., P-band) microwave wavelengths. Recently, airborne radar implementations 
have shown skill in estimating root zone soil moisture, with an indication that satellite 
implementations may be possible (Konings et al., 2014; Tabatabaeenejad et al., 2015).  

Observations of snow cover, multi-spectral albedo, and depth are also particularly 
important for improving S2S forecasts of the atmosphere and the hydrological cycle. Highly 
accurate global-scale observations of snow cover are currently now available from satellite 
platforms (e.g., the Moderate Resolution Imaging Spectroradiometer [MODIS]). Snow water 
equivalent (SWE) can also be estimated from space-based passive microwave radiometers, such 
as the special sensor microwave imager (SSM/I) and advanced microwave scanning radiometer 
(AMSR-E). However, these estimates contain significant caveats and uncertainties (Byun and 
Choi, 2014; NRC, 2010b), and the ability to retrieve snow depth and/or SWE remains a 
significant challenge. Continued improvement to SWE remote sensing technologies and retrieval 

                                                 
29http://www.cocorahs.org/. 
30 http://smap.jpl.nasa.gov/, accessed January 27, 2016. 
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algorithms are needed. However, given the importance of snow measurements, more networks 
like SNOTEL (Snowpack Telemetry), which provides real-time in situ measurements of snow 
depth from the 600-plus stations across the western United States, are likely needed, particularly 
in areas where accumulated snow pack is a large portion of the annual water cycle (e.g., for 
California—see case study in Chapter 3). 

In addition to improved precipitation, soil moisture, and snow measurements for 
initializing S2S prediction systems, a number of other land surface measurements are important 
for advancing S2S model calibration, model development, and for initializing next-generation 
operational systems. For example, the NASA SWOT mission mentioned above will provide new 
constraints on surface hydrology via surface water elevations and stream flow estimates. Such 
data will be useful for hydrology model development and land surface model calibration; similar 
data may be important in the longer term for initializing hydrology and river components of 
future S2S forecast systems. Similarly, littoral observations are useful for monitoring and 
modeling the effects of coupled ocean-atmosphere processes in coastal areas. For example, 
characterizations and fine-scale observations of land elevation, roughness, cover, soil content, 
vegetation, man-made structures, and anthropogenic heating would be useful for improving 
models of wetting-drying, as well as for risk models for storm surges from hurricanes and 
typhoons making land-fall and heat wave prediction. These littoral processes are directly linked 
to a general need to increase and automate ocean observing systems for S2S predictions, as 
discussed above. 

Satellite measurements that can generate better estimates of evapotranspiration are sorely 
needed to better constrain the terrestrial water budget and its influence on surface fluxes of heat 
and moisture to the atmosphere. The NASA ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS) mission is an experimental multi-spectral infrared 
spectrometer that will provide high-resolution observations of surface temperature which will be 
used to explore their value for estimating evapotranspiration and plant water stress and 
consumptive use. The implementation of ECOSTRESS on the International Space Station (ISS) 
provides for characterizing the mean diurnal cycle (which the current 16-day LandSat repeat 
does not offer) but it does not provide global coverage. Further, the ISS arrangement only 
provides for a two-year hosting provision, and considerations of continuity need to be undertaken 
in conjunction with the determined need and value of such measurements. 

The global network of flux towers are also an important source of data in this regard, as 
flux towers provide critical measurements of land-atmosphere fluxes of heat, moisture, and 
carbon dioxide (Figure 5.5). Such flux measurements are particularly useful for developing and 
validating the components of dynamic models that account for processes associated with surface 
energy balance. In order to maximize improvement in the characterization of land surfaces fluxes 
within S2S predictions systems, these types of observations are needed with larger spatial 
coverage, higher density, and in a timely enough fashion to be useful in real-time operational 
data assimilation.  
 
Finding 5.7: Land observations are critical for modeling large-scale land surface-atmosphere 
feedbacks and for making predictions of the terrestrial water cycle. Networks of in situ 
measurements of precipitation, snow depth, and root-zone soil moisture are likely to remain 
important, but the poor spatial coverage of such networks currently limits S2S prediction. In 
addition to expanding in situ networks, significant research is needed to evaluate the quality  
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explore the role of snow cover on the evolution of the winter hemisphere climate (Allen and 
Zender, 2010; Klingaman et al., 2008; Sobolowski et al., 2010). These types of sensitivity studies 
can help determine sources of predictability while also emphasizing the importance of 
initialization by certain variables and quantities in order to realize predictability. An alternative 
approach to perturbing the initial conditions explicitly is to perform data denial studies 
(Observing System Experiments, OSEs) using S2S prediction models. This has become 
common, regular practice for operational NWP and their partners in order to accurately assess 
the utility of various observing platforms in reducing forecast errors in real systems with real 
errors. Similar efforts are also done within academic and operational ocean forecasting. 

Observing system simulation experiments (OSSEs) (e.g., Arnold and Dey, 1986; Dickey, 
2003; Masutani et al., 2007; Masutani et al., 2010) provide another means of exploring the 
potential impact of future observing systems on S2S predictions. In an OSSE, a reference run, 
typically at the highest resolution possible, is generated from a free run of an ESM without data 
assimilation. This so-called “nature run” is considered to be the true state. Sampled values, 
considered as “observations,” from this nature run are then used to initialize a forecast system. 
The simulated observations from the nature run are thus analogous to the traditional observations 
used in an actual forecast and can be used by an ESM with data assimilation to assess the impact 
of various observations on the analysis and forecast accuracy. Since the true state is known, 
analysis error can be computed explicitly. Using this methodology, a perturbation experiment is 
then run in which hypothetical observations are evaluated in the context of data assimilation and 
hypothetical forecasts. Such OSSE experiments have been used in the design and decision phases 
for the Aeolus Doppler wind Lidar instrument for NWP (Baker et al., 2014; Stoffelen et al., 
2006). OSSEs have also been proposed as a tool designing optimal air quality observations 
(Timmermans et al., 2015). 

OSSEs are powerful tools since they allow for the exploration of hypothetical 
observations. However, they need to be designed and executed carefully to ensure that the results 
are meaningful and applicable to the real Earth system. “Perfect model” OSSEs (such as the 
experiments described above) measure the impact of hypothetical observations on a forecast 
system in which model and forecast errors are assumed to be non-existent. To address the more 
realistic scenario in which models are assumed to have errors, two or more (significantly) 
different models are required to evaluate the impact of observations within prediction systems. 
The first model provides the reference/nature run and generates the “true states” from which 
simulated observations are extracted. The other models are then used to assimilate the simulated 
observations and generate forecasts that are then compared with the states generated in the first 
model. If the same or largely similar models are utilized, model error goes unaccounted for, 
resulting in a system that is too predictable.  

In order to assess and prioritize new observations specific to the S2S problem, either type 
of OSSE would need to be designed and carried out using Earth system forecast models, with the 
generation of the nature run performed with a high fidelity, state-of-the-art Earth system model. 
This can be computationally expensive, especially when it comes to the storage and distribution 
of the nature run data. Coordination among the parties interested in such a nature run is critical. 
Once available, further coordination on the simulation of the observations that already exist in 
the current observing system will be required, paying special attention to the generation and 
calibration of realistic observation errors. Once these pieces are available, any hypothetical 
observation network could be explored for assessing its potential importance. This is one of the 
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more promising avenues available for prioritizing what new observing systems will provide the 
largest benefit for S2S prediction systems. 

 
Finding 5.8: Cost-benefit analyses will be necessary to prioritize what new observations (of 
current variables at higher spatial or temporal resolution and/or of new variables) will most 
benefit S2S prediction systems. OSSEs, and sensitivity studies more generally, are powerful 
tools for exploring the benefits of specific observations on state estimation and overall model 
performance, and could be better used to prioritize improvements to observing networks as 
well as S2S model parameterizations. 
 
 

The Way Forward for Observations  
 

Observations form the foundation of S2S prediction systems, allowing the 
characterization of physical processes, model initialization, and the calibration and verification 
of model outputs. Relatively robust observing networks exist for the atmosphere over land 
(outside the polar regions), but current observations networks for the ocean, cryosphere, and land 
surface will require more attention in order to advance S2S forecasts over the next decade. The 
ocean in particular does not have the necessary coverage despite its very clear importance for 
S2S prediction. Furthermore, even for the atmosphere, some critical networks are in danger of 
deteriorating or of suffering breaks in continuity within the next decade. These observing 
systems must be maintained or replaced to prevent an erosion of S2S forecasting skill. Beyond 
maintaining the current observing network, development of new observing technologies and 
expansion of existing observing networks will present opportunities to drive improvements in 
models and model initializations, especially as more components are added to ESMs and forecast 
system capability expands, growing the need for routine observations of new variables within the 
Earth system (e.g., aerosols, biogeochemistry). 

As described above, special effort is needed to improve observations in many parts of the 
world where unique physical processes take place but few routine measurements are available. 
These include polar regions, where sea ice, land surface, and atmospheric processes can feed 
back to high and mid-latitude weather and ocean conditions; tropical areas characterized by 
convection centers that strongly influence global circulation (e.g., Africa, South America, Indian 
and western Pacific warm pool); and highly dynamic coastal areas. Developing observational 
networks specific to capturing the fluxes of matter and energy within the Earth system also need 
attention, as the improper treatment of these quantities in models can result in substantial biases 
in water and energy budgets that compromise S2S forecast skill.  

Both remotely sensed and in situ measurements will be important to maintain and 
expand. Satellite-based measurements are an increasingly important component of air, ice, land, 
and water observing systems and are critical for initializing Earth system models. For 
atmospheric variables, it will be particularly important to maintain remotely sensed 
measurements of the vertical profiles of key atmospheric variables (e.g., temperature, moisture, 
wind) and to continue to develop measurements likely to become more important to S2S in the 
next decade (e.g., precipitation, cloud liquid/ice, aerosol concentration and composition). For the 
ocean, remotely sensed observations of SST, SSH, and ocean surface winds are vital globally, 
and preferably at resolutions fine enough to resolve mesoscale currents and eddies. Coverage in 
some cases is currently provided by short-term research missions, but these must be converted to 
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long-term missions in order to remain valuable for operational S2S forecasting in the next 
decade. Advances in satellite observations of salinity, mixed-layer depth, and near-surface ocean 
currents also have potential to benefit S2S forecasting and should be pursued. 

In coastal areas, targeted and sustained in situ measurements using moorings, ships, 
AUVs (including gliders), and other autonomous sensing platforms (see Box 5.1) should be 
better coordinated and more rapidly utilized for varied S2S research and applications. The S2S 
needs include critical data assimilation for land-ocean coastal predictions and also the evaluation 
of satellite products. Further advances in ocean observing technology and coverage could have 
tremendous value for characterizing important S2S processes, for model improvement, and for 
providing information for forecast initial conditions. Effective integration of the increasing ocean 
observations and platforms with S2S ocean modeling systems is also necessary, including data-
model comparisons for improving ocean model formulations and advanced data-assimilation for 
better S2S forecasts. 

For the cryosphere, continued investment into generating year-round, remotely sensed sea 
ice thickness measurements, including snow depth on top of the sea ice, are critical, though in 
situ measurements may continue to be needed in order to translate these measurements into 
dependable and timely routine estimates. For the land surface, new and/or planned missions for 
surface soil moisture, surface water, and evapotranspiration may add considerable value to S2S 
forecasting, especially for model development, but again many of these are research missions 
with limited lifespans. Quantities for which there would be a great benefit to develop new or 
better satellite measurements include snow water equivalent and root zone soil moisture. 

For many remotely sensed variables, continued work to develop better retrieval 
algorithms will be necessary to realize the full potential of the observations. Looking further 
ahead, the development of more capable and cost-effective satellite observing systems should 
continue to be investigated, including constellations that provide multi-sensor observations, 
small satellite deployments (for example, CubeSat31) that reduce costs and increase sampling 
rates and coverage, and new, expanded, and/or more economical sensor designs that provide 
routine measurements for operational forecasts. Investment in in situ and high-resolution 
observations, especially from remote or uninhabitable regions and other regions with poor 
coverage remains important, in many cases even with current and planned advances in the 
remotely sensed observation network. These include measurements from radiosondes, 
precipitation gauges (particularly in mountainous areas where TRMM is compromised), snow 
courses, flux towers, and subsurface ocean measurements of salinity, temperature, and ocean 
velocity at depth from drifters. More broadly distributed coastal radar networks for surface 
current measurement are also a key need. 

Measurements from moored tropical arrays, which are critical for S2S forecasts of 
ENSO, also need to be maintained. The design of the tropical moored arrays predates modern 
S2S forecast systems or the Argo drifter network. If the agencies that have been sustaining the 
tropical mooring network now find it to be fiscally unsustainable, its optimal and sustainable 
design should be revisited using OSSEs with modern S2S forecasts systems to assess their value 
for ENSO and other S2S forecasts and an analysis that deliberately takes into account the relative 
maintenance costs, historical instrument attrition rates, and or issues (e.g., international political 
considerations and cost-sharing) of the various mooring locations. However, it is the view of the 
Committee that until such a deliberate analysis and redesign has been carried out, every effort 

                                                 
31 http://www.cubesat.org/, accessed January 27, 2016. 
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should be taken to maintain the current operational tropical mooring network with its current 
configuration. 

The Committee recognizes that setting up and maintaining in situ networks poses unique 
challenges, especially in remote locales not suitable for staffed observations and difficult 
climates. Looking ahead, developing automated and semi-automated instruments that can operate 
to a year or longer with minimum or no maintenance would allow for large increases in spatial 
coverage. Technology for automated instruments (e.g., automated radiosonde launchers and 
ocean gliders and floats) exists but needs to mature (see Box 5.1). On the ocean side, power 
consumption typically limits the range or lifetime of floats and gliders, and the ongoing 
development of smaller and more energy efficient sensors would be beneficial for a diverse 
range of autonomous observing platforms. Cost-benefit analyses are necessary to justify the 
financial and logistical burden. 

 
Recommendation E: Maintain continuity of critical observations, and expand the temporal 
and spatial coverage of in situ and remotely sensed observations for Earth system variables 
that are beneficial for operational S2S prediction and for discovering and modeling new 
sources of S2S predictability. 
 
Specifically: 
 

 Maintain continuous satellite measurement records of vertical profiles of atmospheric 
temperature and humidity without gaps in the data collection and with increasing vertical 
resolution and accuracy. 

 Optimize and advance observations of clouds, precipitation, wind profiles, and mesoscale 
storm and boundary layer structure and evolution. In particular, higher-resolution 
observations of these quantities are needed for developing and advancing cloud-
permitting components of future S2S forecast systems. 

 Maintain and advance satellite and other observational capabilities (e.g., radars, drifters, 
and gliders) to provide continuity and better spatial coverage, resolution, and quality of 
key surface ocean observations (SSH, SST, and winds), particularly near the coasts, 
where predictions of oceanic conditions are of the greatest societal importance in their 
own right.  

 Maintain and expand the network of in situ instruments providing routine real-time 
measurements of sub-surface ocean properties, such as temperature, salinity, and 
currents, with increasing resolutions and accuracy. Appropriate platforms for these 
instruments will include arrays of moored buoys (especially in the tropics), AUVs, 
marine mammals, and profiling floats.  

 Develop accurate and timely year-round sea ice thickness measurements; if from remote 
sensing of sea ice freeboard, simultaneous snow depth measurements are needed to 
translate the observation of freeboard into sea ice thickness.  

 Expand in situ measurements of precipitation, snow depth, soil moisture, and land-
surface fluxes, and improve and/or better exploit remotely sensed soil moisture, snow 
water equivalent, and evapotranspiration measurements.  

 Continue to invest in observations (both in situ and remotely sensed) that are important 
for informing fluxes between the component interfaces, including but not limited to land 
surface observations of temperature, moisture, and snow depth; marine surface 
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observations from tropical moored buoys; ocean observations of near-surface currents, 
temperature, salinity, ocean heat content, mixed-layer depth, and sea ice conditions.  

 Apply autonomous and other new observing technologies to expand the spatial and 
temporal coverage of observation networks, and support the continued development of 
these observational methodologies. 

  
Although it would be beneficial to expand the geographic coverage and resolution of 

many types of observations, cost and logistics demand that priorities be determined. Beyond the 
general need for more routine observations of the ocean, land, and cryosphere to support coupled 
S2S prediction systems, it is not always clear a priori what measurements will be most 
beneficial. Determining where to add measurements of existing variables or which new variables 
to add can be planned more effectively through the use of OSSEs, OSEs, and other types of 
sensitivity studies that specifically utilize S2S forecast systems in their design and execution. For 
the case of satellite observations, a recent NRC study also provides a value and decision 
framework that allows prioritization of new versus continuous measurements (National 
Academies of Sciences Engineering and Medicine, 2015b).  

 
Recommendation F: Determine priorities for observational systems and networks by 
developing and implementing OSSEs, OSEs, and other sensitivity studies using S2S forecast 
systems. 
 
 

DATA ASSIMILATION 
 

Data assimilation (DA) is the process of quantitatively estimating dynamically evolving 
fields by combining information from observations with the predictive equations of models. A 
key purpose of DA is to create initial conditions, which are used to produce operational forecasts 
as well as retrospective forecasts and reanalysis (see Figure 5.1). DA is also used to control error 
growth within the model due to limits in predictive capability. Most assimilation schemes are 
derived from estimation theory (Gelb, 1974; Jazwinski, 1970), information theory (Cover and 
Thomas, 2012; Sobczyk, 2001), control theory (LeDimet and Talagrand, 1986; Lions, 1971), and 
optimization and inverse problem theory (Tarantola, 2005).  

In operational weather and ocean forecasting centers today, approximations are 
commonly made to assimilate observations into the model state and parameter spaces. Some 
common assumptions include: assuming normal, Gaussian error distributions for the 
observations and for the model state (which are often not normally distributed); using small 
ensemble sizes to characterize the uncertainties in a high dimensional space (i.e., rank 
deficiency); assuming uncorrelated observation errors; and using linearized operators for 
transforming the model state to observation space or using a linearized version of the S2S model 
itself. These assumptions can have significant impacts on the quality of the analysis (Daley, 
1991; Evensen, 2009; Kalnay, 2003), and research is needed to develop data assimilation 
techniques that help overcome these challenges.  

While traditionally grounded in linear theory and the Gaussian approximation (Kalman, 
1960), recent research progress has focused on the development of more efficient assimilation 
methods that account for nonlinear dynamics and to utilize non-Gaussian probabilistic features. 
Even though several of these schemes would be challenging to employ in large, realistic S2S 
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systems, some of the recent progress is promising for probabilistic S2S predictions and for the 
reduction of inherent uncertainties. Enhancing the coupling between components of ESMs is an 
important challenge in S2S prediction, and recent research on coupled DA is also promising. 
Accounting for the accurate and possibly non-Gaussian transfer of observed information from 
one component of the Earth system to the other is very important for enhancing the capabilities 
of strongly coupled S2S forecasting systems. 

In this section, the Committee provides details on the status of data assimilation efforts in 
major components of S2S Earth system models and then highlights opportunities for advancing 
S2S forecast systems through coupled data assimilation, hybrid assimilation methods, Bayesian 
data assimilation, reduced order stochastic modeling, and the estimation of parameter values and 
parameterizations. Recommendations for priority research in these topics conclude the section. 
 
 

State Estimation in Earth System Model Components 
 

State estimation of Earth system components has generally been performed using data 
assimilation techniques from one of two classes of estimation approaches: (1) maximum 
likelihood estimates or (2) minimum error variance estimates. In geophysical applications, the 
former can be associated with the so-called variational methods (Courtier and Talagrand, 1987) 
and the latter to Kalman Filters/Smoothers (Kalman, 1960) and ensemble-based schemes 
(Evensen, 2009).  

As pointed out in the 2010 NRC report on improving ISI climate prediction, improving 
the assimilation of atmospheric observations has yielded significant gains in numerical weather 
prediction skill (Figure 5.6). For operational atmospheric NWP applications, incremental 
variational assimilation has become the method of choice, including 3DVAR (Kleist et al., 2009; 
Lorenc et al., 2000) and 4DVAR (Courtier et al., 1994; Rabier et al., 2000). More recently, 
hybrid assimilation algorithms that combine ensemble and variational methods have led to some 
further success (Bonavita et al., 2015; Clayton et al., 2013; Kuhl et al., 2013; Wang et al., 
2013b). Some operational centers are pursuing hybrid four-dimensional ensemble-variational 
(4DEnVar) techniques either as a first implementation of a 4D scheme (NCEP, Kleist and Ide, 
2015), as a replacement (Environment Canada, Buehner et al. 2013), or potential replacement 
(United Kingdom Met Office [UKMO], Lorenc et al., 2015) for 4DVAR. The hybrid ensemble-
variational algorithms have potential computational savings and scalability. This is because 
tangent linear and adjoint (transpose of the tangent linear to propagate sensitivities backward in 
time) versions of the prediction model are not needed as direct components of the assimilation 
solver itself. Such scalability has implications for coupled data assimilation (see below) given 
that strong coupling can be achieved without the need for the adjoint of the coupled models 
(Bishop and Martin, 2012). 

Ocean data assimilation has led to substantial improvements in ocean forecasting 
capabilities and scientific understanding of ocean processes (Bennett, 1992; DeMey, 1997; 
Evensen, 2009; Lermusiaux, 2006; Malanotte-Rizzoli, 1996; Rienecker, 2003; Robinson et al., 
1998; Wunsch, 1996). Ocean data assimilation is frequently employed for reanalyses that 
optimally combine model simulations with observations and so allow for quantitative scientific 
studies of ocean phenomena from the small to the global ocean scales. Operational ocean 
forecasting has also been enhanced by data assimilation from estuaries and regional seas to the 
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from satellites has been too shallow (at only a few millimeters depth) to be useful for data 
assimilation directly, and SWE has not been available with sufficient accuracy or coverage.  

Often, land surface state estimates are generated offline using Land Data Assimilation 
Systems (LDAS) incorporate near real-time information about meteorological forcing such as 
wind, temperature, and precipitation from both models and observations (NRC, 2010b). The 
global land data assimilation system (GLDAS; Rodell et al., 2004), developed jointly by NASA 
and NOAA, makes use of both ground- and space-based observational information to constrain 
modeled land states in addition to the meteorological forcing from a separate atmospheric data 
assimilation system. The GLDAS is a mixture of traditional data assimilation for parameters 
such as surface temperature and snow cover, with constraining offline land model-integration 
that produces estimates of other variables such as soil moisture, snow depth, soil temperature, 
surface water storage, etc. Thus for some land surface variables, LDAS systems are not 
necessarily data assimilation systems in the same sense as described for atmospheric and oceanic 
components, but instead constrain integrations of offline land surface models. 

There is progress within LDAS algorithms and within the Land Information System (LIS; 
Kumar et al., 2006) to use more traditional assimilative techniques such as a simplified Extended 
Kalman Filter for other variables such as soil moisture (de Rosnay et al., 2013). This will 
become more viable as new instruments for measuring soil moisture from the SMOS and SMAP 
satellite missions come online and are directly assimilated into LDAS (e.g., LIS User’s Manual). 
While difficulties with monitoring SWE remain, assimilation of the related variables of snow 
cover fraction from MODIS (Zhang et al., 2014) and terrestrial water storage from GRACE (Su 
et al., 2010) in an ensemble Kalman filter scheme has improved the simulation of SWE 
indirectly. However, progress has been slow as the application of traditional (atmospheric) data 
assimilation techniques for the land surface is complicated by the spatial variability and 
heterogeneities of surface parameters and because of the aforementioned issues with 
observations (Balsamo et al., 2014). 

In summary, although not as advanced as data assimilation in operational atmospheric 
models, DA systems in other Earth system components are beginning to embrace ensemble-
based or hybrid assimilation algorithms as a way forward. Results so far indicate that this is a 
promising direction because it allows for a combination of the advantages of the different 
approaches. Xu et al. (2014) show one such example for a land surface application, where a 
hybrid assimilation scheme is used to improve the assimilation of snow fraction information. 
Extending schemes such as this to generate coupled ensembles could help forecast the 
uncertainties and then be used to perform the data assimilation accordingly, either within a 
weakly or strongly coupled update step (see below). The use of an ensemble from coupled 
models would also significantly simplify the design and implementation of coupled background 
error covariances, which are needed for coupled assimilation. In other words, the data in one 
field can update the state in another field directly based on these coupled error covariance 
estimates.  

As a final note, it is important to keep in mind that while advanced data techniques are 
generally able to extract information from observations, the process of data assimilation is 
fundamentally dependent on the observing system. A system that is under-observed will not 
yield accurate state estimates, further highlighting the need to maintain and enhance the 
observing system (Recommendation E) and to utilize quantitative methods (e.g., OSSEs) to do 
so. 
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Finding 5.9: In operational centers, the most advanced data assimilation techniques are 
usually implemented in atmospheric data assimilation. Other Earth system components are 
also moving towards ensemble Kalman filter-based or hybrid data assimilation algorithms, 
allowing for the possibility of seamless assimilation and/or synergy within a framework of 
coupled data assimilation. 
 
Finding 5.10: Research activities in data assimilation schemes are occurring uniformly across 
fields, including for land, ocean, and ice applications, but also for engineering, applied 
mathematics, and other sciences. The potential of all of these multi-disciplinary advances 
cannot be underestimated, and several of these new schemes have potential for S2S 
applications.  
 
 

Coupled Data Assimilation 
 

Historically, many centers performed the assimilation of each of the Earth system 
components—atmosphere, ocean, land, sea ice—independently. But because the systems 
coevolve, such disconnected assimilations can compromise forecast skill. While this may not 
pose a problem for very long forecasts (annual to decadal), it can be a significant issue for S2S 
timescales, where initial conditions are still quite important. Advances include implementing a 
so-called “weakly coupled” assimilation, in which the background state (Figure 5.7) is computed 
from a freely evolving coupled model and then subsequently broken into parts that are needed 
for each component. Next, assimilation is done component-by-component (i.e., ocean, 
atmosphere, sea ice, and land analyses are quasi-independent). The various analyses are then 
stitched back together to initialize the coupled model and run the forecast. This is in contrast to 
the aforementioned uncoupled analyses, in which all steps in Figure 5.7 are integrated 
component-wise. NCEP’s Climate Forecast System (v2) has already developed a weakly coupled 
system for both reanalysis (necessary for retrospective forecasts and calibration) and the 
generation of initial conditions for the real-time operational seasonal forecasts (Saha et al., 
2010). Most other operational centers are moving in a similar direction, and many centers are 
adopting such a philosophy even for weather prediction (Hendrik Tolman, personal 
communication, April 22, 2015). 

Weakly coupled assimilation also allows each possible Earth system component to 
determine its most appropriate assimilation scheme. The ECMWF OOPS (Object Oriented 
Programming System32) project and the United States JEDI (Joint Effort for Data Assimilation 
Integration; Tom Auligné, Personal Communication, February 5, 2016) project are examples of 
methods to potentially achieve such coupling in a convenient, efficient manner. Specific 
assimilation schemes for each component can also be employed in a strongly coupled 
framework, assuming connections across components are maintained within the assimilation step 
(this is discussed in more detail below).  

A challenge for coupled assimilation is that the spatial and temporal scales of 
phenomena, errors, etc., are quite different among the various Earth system components. A direct 
practical effect of this is different assimilation update cycles employed in today’s single-
component assimilation systems (e.g., the time step in Figure 5.7). This is in large part a 
consequence of when and how often observations are available. For example, because of 
                                                 
32http://www.data-assimilation.net/Events/Year3/OOPS.pdf, accessed February 5, 2016. 
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example due to ensemble-rank deficiencies or too approximate adjoint models. To address this 
issue, ensemble sizes would need to be increased or efficient reduced-order uncertainty 
prediction schemes employed (see below). Attention is especially needed for variational 
approaches, since adjoint equations derived for the coupled systems are not always the same as 
each component’s adjoints stitched together, particularly when across-component fluxes (e.g., 
air-sea fluxes) are nonlinear. Similar issues apply to hybrid data assimilation schemes, as 
complex multiple dynamics (even within a single component of the Earth system) also need to be 
represented accurately in the coupled updates. Observations collected by the diverse observing 
system, which contain multiple dynamics and temporal and spatial scales, may also need special 
treatment. This might include the filtering of dynamics or scale filtering so as to remove the risk 
of spurious coupling before assimilation into S2S prediction systems. For example, in the ocean, 
short tidal scales are challenging to handle in global models, and internal tides and waves should 
not be assimilated as eddies. In conclusion, to be successful, strongly coupled data assimilation 
for S2S systems requires research in efficient methods, multiscale and coupled-dynamics 
assimilation updates, non-Gaussian nonlinear updates, and reduced-order stochastic schemes for 
efficient forecasting of coupled statistics. 
 
Finding 5.11 While so-called weakly coupled assimilation has been successful for generating 
initial conditions for S2S prediction systems, there is potential for so-called strongly coupled 
assimilation to substantially improve state estimates for coupled systems. More research is 
needed to determine the benefits of strongly coupled systems.  
 
 
Bayesian Data Assimilation, Reduced-order Uncertainty Quantification and Probabilistic 

Forecasting 
 

As mentioned above, many data assimilation algorithms used in operational systems 
today are linear, based on linearizations, or based on varied heuristic hypotheses and ad hoc 
approximations. Most of these assumptions are related to the probability densities of the model 
state and its errors, and of the observations and their errors. For highly nonlinear dynamics or 
non-Gaussian relations, these assumptions may prove difficult to overcome. S2S dynamics are 
prime examples of multiscale, nonlinear dynamics, from turbulence to large-scale dynamics, 
across the multiple physical processes occurring in the Earth system. As a result, the field 
variables that describe the S2S dynamics (e.g., temperature, winds, currents, ice cover, etc.) can 
have complex intermittent behavior, with multiple scales and unstationary heterogeneous 
statistics. Furthermore, S2S prediction requires accurate forecasts of both the likelihood of 
specific events and of overall expected conditions over longer S2S lead times. Efficient reduced-
order stochastic methods and Bayesian techniques can help address these issues of non-Gaussian 
relations, the former for the accurate forecast of probability densities (uncertainty quantification) 
and the latter for the rigorous combination of observations with these forecasts (Bayesian DA).  

The importance of accounting for nonlinearities in geophysical DA has been known for 
some time (e.g., Miller et al., 1994). Nonlinearities affect the dynamical evolution, and as a result 
geophysical fields can be characterized by complex, far-from-Gaussian statistics (Dee and Da 
Silva, 2003; Lermusiaux et al., 2006; NRC, 1993). With the introduction of the ensemble 
Kalman filter (Evensen, 1994; Houtekamer and Mitchell, 1998), error subspace schemes 
(Lermusiaux and Robinson, 1999), square root filters (Tippett et al., 2003; Whitaker and Hamill, 
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2002), and Monte Carlo methods (Doucet et al., 2001) have grown rapidly within the 
atmospheric and oceanic DA community. In addition to utilizing the inherent nonlinearities of 
the governing equations, stochastic methods allow exploration and exploitation of probabilistic 
structures. Nonlinearities in general lead to non-Gaussian structures, which need to be used in the 
assimilation updates (Bocquet et al., 2010). This allows the use of mutual information in the 
coupled DA. 

 
 

Nonlinear Non-Gaussian Data Assimilation 
 

One class of non-Gaussian DA methods is particle filters (e.g., Ades and van Leeuwen, 
2015; Pham, 2001; van Leeuwen, 2009), which evolve probability density functions (pdfs) using 
a discrete set of models states or particles. A related interest has been the approximation of 
distributions by Gaussian Mixture Models (e.g., Alspach and Sorenson, 1972; Anderson and 
Anderson, 1999; Bengtsson et al., 2003; Sondergaard and Lermusiaux, 2013b). An advantage of 
Gaussian Mixture Models (GMMs) is that they become equivalent to Gaussian schemes when a 
single component is found sufficient to describe the forecast pdfs but can represent more 
complex multi-modal pdfs by increasing and optimizing the number of components in the 
mixture. Such Bayesian DA methods could be further developed for the S2S system components 
and for strongly coupled DA. A critical need, then, is the efficient and accurate prediction of 
coupled pdfs, which is in the realm of uncertainty quantification. 

 
 

Uncertainty Quantification and Probabilistic Forecasting  
 

Probabilistic forecasting and the quantification of uncertainties are critical when systems 
are nonlinear and have uncertain terms in their governing equations or in their initial and 
boundary conditions (see also section below on Calibration, Verification, and Combination of 
S2S Forecasts). Ensemble predictions provide uncertainty estimates, but so far using only a 
relatively small number of forecasts. To address the resulting rank-deficiency, various 
localization approximations (Bengtsson et al., 2003; Lermusiaux, 2007) and useful heuristic 
arguments (Anderson and Anderson, 1999) have been used. However, just as the adjoint 
equations allow variational DA based on linearized partial differential equations (PDEs), there 
are now uncertainty propagation schemes that allow Bayesian DA using pdfs predicted based on 
nonlinear PDEs.  

Stochastic model forecasts are feasible with numerical methods for stochastic PDEs 
(Kloeden and Platen, 1999; Xiu, 2010) including direct methods (Doucet et al., 2001) and 
polynomial chaos expansion and spectral methods (Ghanem and Spanos, 1991; Le Maître and 
Knio, 2010; Najm, 2009). These approaches can be categorized as either intrusive or non-
intrusive, depending if they require modification within the numerical model itself or not. The 
non-intrusive Monte Carlo method (i.e., running an ensemble of simulations with or without 
random forcing) can provide the full statistics of the problem. However, such ensemble 
simulations have convergence rates usually proportional to the square root of the number of 
samples. The polynomial chaos expansion (Ghanem and Spanos, 1991; Li and Ghanem, 1998; 
Nouy, 2007; Xiu and Karniadakis, 2002) based on the theory by Wiener (e.g. Wiener, 1958) can 
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represent and propagate large uncertainties through complex models. (For useful ocean 
applications, see Mattern et al. [2012] and Thacker et al. [2015; 2012]). 

To account for the time-dependence of both the uncertainty and dynamics, generalized 
Karhunen-Loève expansion with time varying coefficients and basis functions have also been 
used (Lermusiaux, 2001; Lermusiaux and Robinson, 1999). Recently, dynamically orthogonal 
stochastic PDEs (Sapsis and Lermusiaux, 2009, 2012; Ueckermann et al., 2013) have been 
obtained. These reduced PDEs allow efficient probabilistic forecasts. Sondergaard and 
Lermusiaux (2013b, a) developed a Bayesian nonlinear filtering scheme that combines these 
reduced PDEs with Gaussian Mixture Models, showing advantages of respecting nonlinear ocean 
dynamics and preserving non-Gaussian statistics. 

In summary, Bayesian DA and uncertainty quantification methods have shown 
significant promise to advance coupled DA and UQ, but continued research is needed to yield 
significant impacts within the context of realistic S2S coupled ocean, atmosphere, land, and ice 
applications. If new numerical modeling systems were to be developed or augmented,  it would 
be essential to consider stochastic forcing, uncertainty quantification, observation models, and 
coupled DA schemes as part of their development for physical and numerical consistency. This 
is due to the advent of the above uncertainty forecasting and Bayesian inference methods that 
directly utilize the original coupled governing equations and their numerical schemes. Such 
integrated developments would thus be directly relevant to S2S applications, as they imply the 
integration and coupling of the S2S modeling components (atmosphere, land, sea, and ice) from 
the start. 

 
Finding 5.12: Research on Bayesian data assimilation and uncertainty quantification has 
grown substantially in atmospheric and oceanic sciences and also across disciplines such as 
applied mathematics and engineering. These methods, which allow the optimal use of the full 
probabilistic information and utilize rigorous reduced-order differential equations, hold 
promise for integrating components of S2S prediction systems and for coupled data 
assimilation. This includes research in hybrid methods, multiscale and coupled-dynamics 
assimilation updates, Bayesian data assimilation, and rigorous reduced-order stochastic 
methods. 
 
 

Importance of Reanalysis for Retrospective Forecasts, Validation, and Parameterization 
 

Retrospective data assimilation with frozen variables, so-called “reanalysis,” plays a 
crucial role in providing initial conditions for retrospective forecasts and as validation datasets 
from which to perform verification and calibration (see also Combination, Calibration, 
Verification, and Optimization section below). Reanalyses also provide insights into model 
process shortcomings (see Models section below). Indeed for over 40 years, reanalysis datasets 
have led to improved understanding of the Earth system, prediction at longer lead times, and the 
diagnosis of extreme events and long-term trends. Having physically consistent datasets across 
Earth system components is vital for diagnosing, initializing, and validating S2S prediction 
systems, which are dependent on representing coupling in order to realize forecast skill. Despite 
their importance, global reanalyses are a huge undertaking, requiring a massive amount of staff 
time, computation time, and data.  
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There are a variety of global reanalysis efforts that have been carried out at many 
different prediction centers (e.g. www.reanalyses.org [accessed January 27, 2016]). These 
reanalyses have different motivations and goals (Dee et al., 2011; Ebita et al., 2011; Rienecker et 
al., 2011; Saha et al., 2010; Uppala et al., 2005). However, the advancement of modeling 
capabilities, coupled data assimilation techniques, and harvesting of additional historical 
observations continue to have potential to vastly improve reanalysis datasets, especially coupled 
reanalysis for S2S prediction. As an example, NCEP is planning for their next generation 
coupled reanalysis capability as part of the development of version 3 of their Climate Forecast 
System. The plan includes significant developments to aspects of the reanalysis system, 
including observations, modeling, assimilation (including coupled DA), and the addition of new 
components such as aerosols and waves. There are similar efforts elsewhere in the international 
community (Dee et al., 2014). While some of these efforts involve performing reanalyses 
through the satellite era, there are other efforts underway to recreate datasets for much longer 
time periods, such as the NOAA 20th century reanalysis (Compo et al., 2011), ERA CLIM 
(Stickler et al., 2014), and CLIM-2,33 which will utilize the coupled data assimilation for climate 
reanalysis (Laloyaux et al., 2016).  

While these reanalyses will provide physically consistent state estimates for the Earth 
system components that are part of the S2S systems, there is a disconnect between the 
retrospective initialization from these reanalysis datasets and the initialization of real-time 
forecasts. The real-time initializations generally evolve away from the frozen reanalysis systems 
due to the addition of new observations and/or improvements in the data assimilation itself. In 
other words, the real-time initialization evolves with advancements to avoid significant 
deterioration that could occur if the assimilation were to be kept frozen (i.e., instruments 
eventually disappear and are replaced with new observing platforms).  

 
Finding 5.13: Reanalyses are critical for generating retrospective forecasts, for studying 
predictability, and for validating S2S forecasts. Continued investment in global reanalysis 
research and operational production will be important for advancing S2S predictive 
capabilities. Improving the temporal continuity and the frequency of reanalysis may be 
particularly beneficial.  
 
 

Data Assimilation to Improve Cloud Representation 
 

One difficult problem in atmospheric data assimilation involves the use of cloudy and 
precipitation-affected satellite radiances (Bauer et al., 2011; Errico et al., 2007). Currently, many 
centers ignore fields of view that are affected by clouds and precipitation (particularly for 
infrared radiances), only utilize the partially clear scenes, or assimilate so-called “cloud-cleared” 
radiances. Cloudy and precipitating radiances are particularly important as they help prescribe 
the state in areas of the globe undergoing disturbed conditions. Ignoring these observations 
leaves gaps in the most dynamic parts of the atmosphere, areas that are likely to have the largest 
error growth. Improving the use of observations in cloudy areas is a very active area of research 
amongst the operational NWP centers, with some progress being made over the past several 
years (European Centre for Medium-Range Weather Forecasting [ECMWF], UKMO, NCEP; 

                                                 
33 http://www.ecmwf.int/en/research/projects/era-clim2, accessed February 5, 2016 
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Geer et al., 2014). Further advancing the use of such observations may be especially critical in 
the tropics, for example, in initializing the state of the MJO. 

Along similar lines, only a tiny fraction of available satellite observations of the 
atmosphere (particularly infrared and radar observations) are actually assimilated into NWP 
models. While the assimilation of rain rate and precipitable water from TRMM and SSM/I has 
been successful for NWP (Benedetti et al., 2005; Treadon, 1996; Tsuyuki, 1997), data from 
space-based precipitation radars remain underutilized. Similar to cloud and precipitation-affected 
radiances, space-based radar is problematic for present data assimilation schemes due to 
nonlinearity and difficulty in forward simulation. Gaussian variable transform has the potential 
to improve the assimilation of precipitation data into NWP models (Lien et al, 2015), and further 
improvements may be possible through direct assimilation of dual-polarization reflectivities from 
the Global Precipitation Mission core (e.g., Hou et al., 2014, see also Observations section).  

In sum, better atmospheric initializations in cloudy and precipitating areas is important 
for predicting the evolution of important S2S phenomena such as the MJO (e.g., Benedetti et al., 
2005; Hou et al., 2014; Lien et al., 2015; Treadon, 1996; Tsuyuki, 1997; Vintzileos and 
Behringer, 2008), along with the potential for benefits in predicting soil moisture. Such 
improvements might also lead to better reanalyses, better cloud climatologies, and thus greater 
potential for exploration of sources of predictability. 

 
Finding 5.14: Observations continue to be underutilized in atmospheric data assimilation, 
particularly satellite based microwave and infrared radiances over land and in 
cloudy/precipitating fields of view. Better utilization is important for filling in some of the data 
gaps over dynamically active regions, and also for characterizing the states and properties of 
cloud and precipitation-related processes, which will be essential to preparing for cloud-
resolving capability. 

 
 

Fully Exploiting Data Sets to Estimate Parameters and Parameterizations 
 

In addition to being important for initializing models, data assimilation is a sophisticated 
means of using observational information for the estimation of uncertain model parameters (Bell 
et al., 2004; Evensen, 2009; Navon, 1998; Ruiz and Pulido, 2015; Smedstad and Obrien, 1991; 
Smith et al., 2013; Trudinger et al., 2008). Two particularly relevant recent studies have explored 
the use of data assimilation-based parameter estimation for coupled atmosphere-ocean models 
(Kondrashov et al., 2008; Zhang et al., 2015). Here, using inline parameter estimates 
significantly reduced model biases, even for variables such as deep ocean temperature and zonal 
ocean currents that had no observations assimilated to the model to constrain them directly. 
Parameter estimation has also been shown to be feasible for intermediate Earth system models 
(Annan et al., 2005). However, the challenges mentioned above for state estimation are similar or 
even more relevant for parameter estimation, due to intrinsic nonlinearity. More research is 
needed to extend the usefulness of DA for parameter estimation (e.g., Bocquet, 2012; Bocquet 
and Sakov, 2013). Data assimilation has also been used to estimate variables in the Earth system 
that are not well observed and/or may not have any a-priori information, such as surface carbon 
fluxes (Kang et al., 2012). Thus a bright research area is the use of data assimilation to rigorously 
discriminate among model formulations and parameterizations, which is critical for both 
scientific understanding and applications. 
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Finding 5.15: In addition to being useful for optimal state estimation, data assimilation can be 
an extremely powerful tool for performing parameter estimation and optimizing model 
performance, which may become critical for S2S applications. It is important that reanalysis 
datasets and diagnostics therein, such as analysis increment and innovation statistics, 
continue to be publically disseminated to assist in parameterization development and 
parameter estimation.  
 
 

The Way Forward for Data Assimilation 
 

Data assimilation is an essential part of S2S prediction systems and is critical for 
generating real-time initial conditions as well as the initial conditions for the retrospective 
forecasts (in the form of reanalysis). However, there are a number of issues in current DA that 
need to be resolved to improve S2S forecast systems. First, parts of the varied observing systems 
remain underutilized by current data assimilation techniques. Examples include the lack of 
assimilation of satellite information in cloudy and precipitation regions and the limited use of 
ocean observations collected by the increasing number of autonomous ocean platforms. More 
research is needed to comprehensively and effectively assimilate such measurements for S2S 
applications. Some of the challenges originate from the multiple spatial and temporal scales 
occurring within and across the components of the Earth system. Ideally, the multiscale and 
multi-dynamic information contained in the observations could be fully assimilated. Multiscale 
hybrid methods, coupled-covariance update algorithms, and nonlinear non-Gaussian schemes 
show promise for addressing these challenges, but need research to mature. 

Second, given that S2S predictions will continue to rely on coupled Earth system models, 
coupled data assimilation will remain at the forefront of S2S research and operational 
innovations. However, S2S-specific challenges for coupled data assimilation originate from 
practical, computational, methodological, and dynamical hurdles, all of which need to be 
overcome. For example, most operational centers continue to face inconsistencies that result 
from independent or quasi-independent state estimates being pieced together in uncoupled or 
weakly-coupled assimilation systems. Overcoming such limitations will become ever more 
important as S2S prediction systems become more complex (i.e., adding new components such 
as aerosols and surface waves). Instead of being ignored, the complex but known dynamical 
inter-connections and the corresponding coupled covariances or mutual information should be 
exploited. If the coupling is correct, it is likely to increase accuracy of S2S forecasts. To allow 
such immediate impact of observations from one component to another, and across varied 
dynamics, efficient strongly coupled assimilation schemes are needed. The potential of the first 
strongly coupled algorithms has already recently been demonstrated for simple coupled models 
with 4DVAR (Smith et al., 2015a) and EnKF schemes (e.g., Sluka et al., 2015). However, 
strongly coupled assimilation schemes are in their infancy and have not yet been tested on more 
complex S2S coupled systems. Thus practical and computational research is needed, in part to 
assess the potential value added by moving to strongly coupled data assimilation schemes, and 
also to establish whether implementing strong coupling is worth the added cost and complexity 
to operational S2S systems. Methodological and dynamical research is also needed, especially to 
employ and improve assimilation methods that exploit the coupled dynamics to perform 
multiscale and coupled assimilation updates.  
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Third, data assimilation, uncertainty quantification, and probabilistic prediction methods 
are critical for S2S forecasting, but are today often characterized by heuristics and 
approximations that are employed for computational expedience more than accuracy. Needs in 
this area include efficient stochastic schemes to forecast the coupled statistics and coupled 
Bayesian data assimilation updates to fully utilize the coupled statistics. Novel uncertainty 
quantification schemes and reduced-order stochastic methods that efficiently integrate the 
governing stochastic partial differential equations are being developed and may in the future 
represent possible further avenues for improvement of S2S forecast systems. These could replace 
computationally expensive direct Monte-Carlo S2S ensemble predictions (i.e., the integration of 
a number of model simulations with different initial conditions, boundary conditions, and 
stochastic forcing). Research on Bayesian data assimilation has also grown recently in 
atmospheric and oceanic sciences, as well as across disciplines such as applied mathematics and 
engineering. These methods, which allow the optimal use of the full probabilistic information 
and utilize rigorous reduced-order differential equations, should also be considered for 
implementation in the components of S2S prediction systems.  

Finally, as the complexity of coupled Earth system models grows, an increasing number 
of model and coupling parameters will need to be explored and specified. At present, this is done 
too often through trial and error. This could eventually become unsustainable due to the ever-
growing complexity and computational cost. Hence, the most sensitive and important model 
parameters should be identified for the next generation of coupled prediction models. Being 
informed by observations from all components, data assimilation can identify and optimize these 
parameters and also discriminate among and learn the better parameterizations. As a whole, 
novel parameter estimation and model learning schemes are promising and critical for S2S 
applications. 

 
Recommendation G: Invest in research that advances the development of strongly coupled 
data assimilation and quantifies the impact of such advances on operational S2S forecast 
systems.  
 
Specifically:  
 

 Continue to test and develop weakly coupled systems as operationally viable systems and 
as benchmarks for strongly coupled implementations. 

 Further develop and evaluate hybrid assimilation methods, multiscale- and coupled-
covariance update algorithms, non-Gaussian nonlinear assimilation, and rigorous reduced-
order stochastic modeling. 

 Optimize the use of observations collected for the ocean, land surface, and sea ice 
components, in part through coupled-covariances and mutual information algorithms, and 
through autonomous adaptive sampling and observation targeting schemes. 

 Further develop the joint estimation of coupled states and parameters, as well as 
quantitative methods that discriminate among, and learn, parameterizations. 

 Develop methods and systems to fully utilize relevant satellite and in situ atmospheric 
information, especially for cloudy and precipitating conditions. 

 Foster interactions among the growing number of science and engineering communities 
involved in data assimilation, Bayesian inference, and uncertainty quantification. 

 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

Chapter 5: S2S Forecast Systems: Capabilities, Gaps, and Potential  125 
 

PREPUBLICATION COPY 

MODELS  
 

Central to improving S2S predictions is improving the quality of the models that are at 
the core of modern state-of-the-art prediction systems. In this section, the Committee provides 
evidence to support the conclusion that reducing errors and biases in Earth system models must 
be a top priority for improving coupled S2S prediction systems. We first discuss in general terms 
model errors and the steps that need to be taken to reduce them. For convenience, issues more 
specific to advancing models of the atmosphere, ocean, land surface, and sea ice are discussed in 
separate subsections, although of course it needs to be recognized that the full problem is 
inherently a coupled one. Another subsection highlights the importance of process studies for 
model improvement. The Committee concludes with a subsection that contains recommendations 
for priority research to reduce model errors in order to increase the skill of S2S predictions. 
 
 

Model Errors 
 

One of the key challenges for S2S prediction is the reduction of model errors. Model 
errors include two types of deviations from observations, both of which contribute to the 
deterioration of S2S forecast skill:  

 
1. Deviations that are highly variable in time, which make the predicted variability 

unrealistic; 
2. Deviations from observations that are persistent in time, which make the predicted mean 

state unrealistic—these are often referred to as model biases. 
 
Improving model skill through techniques such as statistical correction using 

retrospective forecasts, and combining outputs of different models to create multimodel 
ensemble products (see section below on Combination, Calibration, Verification, and 
Optimization), clearly enhance forecast skill and will remain an important part of the S2S 
prediction process for the foreseeable future. However, model errors can be large compared to 
the predictable signals of variability targeted by S2S forecasts, and can also combine non-
linearly, making statistical post-processing very difficult. Furthermore, without reduction of 
model errors, all other steps taken to improve S2S prediction systems can only shorten the 
distance between the current skill and the model-estimated limit of predictability (see Chapter 4), 
whereas reducing model errors can bring the skill of S2S forecast systems substantially closer to 
fundamental limits of predictability within the Earth system. 

Known errors in Earth system models are numerous. For example, many global models 
produce an unrealistically strong Pacific equatorial cold tongue, a spurious double Inter Tropical 
Convergence Zone (ITCZ), erroneously high Indian Ocean and tropical South Atlantic SSTs, low 
SSTs in the tropical North Atlantic, and wet or dry biases in rainfall in many parts of the world 
(e.g., Hirota et al., 2011; Li and Xie, 2014; Richter et al., 2012; Roehrig et al., 2013; Toniazzo 
and Woolnough, 2014). Many climate models also have a large bias in MJO variance (Hung et 
al., 2013). Improving models’ ability represent processes such as the MJO and ENSO—critical 
sources of S2S predictability (see Chapter 4)—includes not only improving the representation of 
means and variances of such phenomena, but also their evolution and associated global 
teleconnection patterns. For example, it is possible for a model to have little bias in the mean and 
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variance of both conditions in the tropics and middle latitudes, yet the variability in these two 
regions may not be correctly linked. Such a connection contributes to subseasonal forecast skill 
in both regions (e.g., Lin et al., 2010; Vitart and Jung, 2010). 

Many of the same modeling errors relevant to S2S predictions are relevant to shorter and 
longer range forecasts. Figure 5.9 shows an example of the growth of SST errors in coupled 
model simulations. It is clear that many features of climate model errors are seen in forecasts of 
only a few weeks or even days in length (e.g., cold equatorial Pacific, generally warm Indian 
Ocean, and cold Arabian Sea), and that some of the errors are quite substantial on S2S 
timescales. Efforts targeted at understanding and alleviating these errors are thus relevant for 
improving predictions on multiple timescales (NRC, 2012b). The use of observational and short-
term error information has been used to identifying biases in climate models, for example 
through the Department of Energy Cloud-Associated Parameterizations Testbed Program.34 
Similarly, many issues are common across multiple modeling systems. For example, the strength 
of MJO-NAO teleconnections is deficient in subseasonal and seasonal simulations of many 
different operational models (Scaife et al., 2014a; Vitart et al., 2014). 

Model errors often have no single cause but arise from combined deficiencies in model 
representations of many important processes (e.g., clouds, microphysics, radiation, boundary-
layer processes, surface fluxes, and ocean mixing). Reducing these errors will require improving 
the representation of processes that are, for the most part, already included in models used for 
S2S prediction (e.g., increasing model resolution to explicitly represent critical processes and 
improving parameterization schemes to better represent subgrid processes—see discussions 
below for more details). In some cases, extra complexity needs to be added to better represent 
feedbacks between different components of the Earth system (e.g., coupled ocean-atmosphere, 
ice-atmosphere and land-atmosphere processes—discussed in more detail below). As described 
elsewhere in this report, an improved representation of additional variables (e.g., algal blooms, 
river levels, etc.) may also be crucial because these variables are important to decision makers, 
whether or not their evolution feeds back on other components of the Earth system. 

 
Finding 5.16: Errors in current modeling systems are a major limiting factor in the skill of 
S2S predictions. Many of the issues are common across different modeling systems and a 
broad range of timescales (days to centuries). These errors are the result of multiple 
deficiencies in model representations of key processes that are currently parameterized. 
 
 

Atmospheric Models 
Several steps are essential to improve the atmospheric component of S2S forecast 

systems. These include increasing model resolution to explicitly represent important atmospheric 
processes, improving parameterizations of processes that remain unresolved, improving the 
representation of tropical convection, and enabling global cloud-permitting models. Each is 
discussed in detail below. 
 

                                                 
34 http://www-pcmdi.llnl.gov/projects/capt, accessed January 27, 2016. 
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computational costs involved. Recent work has shown that more modest increases in 
atmospheric model resolution may bring significant benefits. Examples include increasing 
horizontal resolutions to better resolve the land-sea distribution in the Maritime Continent 
(Crueger et al., 2013), where the MJO in models exhibits more difficulty propagating eastward 
than over the open oceans (Inness and Slingo, 2006; Weaver et al., 2011) ; increasing vertical 
resolution in the atmosphere to better represent the stratosphere (e.g., Roff et al., 2011; Scaife et 
al, 2011), which is increasingly recognized as a source of predictability on S2S timescales (see 
Chapter 4); increasing vertical resolution of the upper ocean to better resolve the diurnal cycle of 
the mixed layer that interacts with the atmosphere, leading to improved MJO simulations (Tseng 
et al., 2015); and increasing horizontal resolution to improve representation of blocking and the 
Annular Modes (Jung et al., 2012; Kinter et al., 2013; Palipane et al., 2013; Scaife et al., 2011). 
Further work to investigate what can be achieved by increasing resolution in the atmosphere is 
important, and coordinating such work with research on benefits of simultaneous increases in 
resolution across other components in a coupled model framework may be particularly important 
for S2S prediction (NOAA, 2015). However, it is already clear from existing work that 
increasing resolution in atmospheric models alone is not a panacea for increasing forecast skill in 
the current generation of models. Improvement of parameterizations will still be needed for 
substantial enhancement of S2S forecast skill (e.g., Jung et al., 2012; Vitart 2014).  

 
Finding 5.17: There is evidence that increasing the resolution of atmospheric models (while 
still at resolutions that need deep convection parameterization) may improve the 
representation of processes that are key sources of S2S predictability. However increasing 
resolution is far from a panacea without also improving physical parameterizations. 
 
 
Improving Parameterizations 
 

There are very significant uncertainties with parameterizations of many physical processes 
in the atmosphere that are not currently resolved by models (e.g., boundary layer, convection, 
clouds and microphysics, radiation, surface fluxes, land surface and watershed scale processes, 
gravity wave drag). These uncertainties are in large part responsible for the model errors, which 
(as previously discussed) are a major limiting factor in the quality of S2S predictions. For 
example, leading NWP centers are taking very different approaches to the parameterization of 
drag on unresolved mountains (Figure 5.10). While in practice there is considerable 
compensation such that parameterizations with weak mountain drag tend to have higher 
boundary layer drag (and vice versa), these different balances cannot all be correct. Such 
differences matter with regard to the representation of large-scale circulation, and this situation is 
illustrative of the general uncertainties in the field of parameterization.  

Recent experience at many operational centers has indicated that improvement in 
physical parameterization typically leads to improvements in features more obviously of 
relevance for S2S (Vitart, 2014). As an example, improved entrainment in the cumulus 
parameterization of the ECMWF model has led to better representation of the MJO (Hirons et 
al., 2013). Improving parameterization requires advanced understanding of the physical 
processes at play, which involves research on theory, targeted field observations, and the use of 
cloud-resolving or cloud-permitting models as tools. Further examples of such efforts and 
additional steps needed to improve parameterizations across atmosphere, ocean, land surface,  
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FIGURE 5.10 Zonally averaged subgrid orographic torque from a number of global NWP models for 
January 2012. SOURCE: Ayrton Zadra. 
 
and sea ice models are provided below in the subsection on Process Studies for Model 
Advancement. 

 
Finding 5.18: Improving physical parameterizations is essential to reducing model errors. The 
primary barriers are incomplete understanding of real physical processes and the challenges 
associated with encapsulating new knowledge of how the real atmosphere works in multiple 
and interacting model parameterizations. 
 
 
Improving the Representation of Tropical Convection 
 

There are important challenges associated with almost all aspects of atmospheric model 
physics, as described above. However, one particular issue of great importance for the quality of 
S2S predictions (both in the tropics and beyond) is fidelity of the representation of tropical 
convection in the atmosphere (e.g., Holloway et al., 2014; Sherwood et al., 2014). Tropical 
convection is crucial to propagating teleconnections between the tropics and mid-latitudes—
associated with ENSO on the seasonal timescale and with the MJO on the subseasonal timescale 
(Chapter 4).  

One important approach to improving the representation of tropical convection is to 
continue to develop and improve upon traditional parameterizations. Progress in recent years 
includes increasing the sensitivity of models to environmental moisture, including convective 
momentum transport, incorporating at least some representation of convective organization 
(particularly at the mesoscale), treating convection as a stochastic process, and including 
nonlocal effects in cumulus parameterization. Work to improve upon traditional 
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parameterizations needs to continue; however, a more focused effort to develop completely new 
schemes may be especially valuable (Holloway et al., 2013). The time may be ripe for such 
efforts, as results from recent field campaigns continue to increase the understanding of 
convection and its interaction with other processes, and scientists are beginning to have access to 
high-resolution cloud-permitting simulations across large (e.g., Marsham et al., 2013) and even 
global domains (Satoh et al., 2012). Such high resolution numerical simulations were, for 
example, used as part of the recent international Year of Tropical Convection (YOTC—see 
Appendix C for more detail) program (Moncrieff et al., 2012; Waliser et al., 2012) and provide 
an invaluable testbed for developing understanding and approaches to be used in coarser 
resolution models, while also spearheading efforts to demonstrate a prototype of future, cloud-
resolving S2S model systems (see also discussion below). 

One intermediate step to improve cumulus parameterization within the limit of available 
computing capability is “super-parameterization” or multi-scale modeling (Khairoutdinov and 
Randall, 2001; Randall et al., 2013). In this approach, a 2-D cloud-resolving model at each grid 
point of the host model replaces a traditional parameterization in order to explicitly represent 
deep convection. This approach demands much less computational resources than a full 3-D 
global cloud-permitting model, although it still suffers (as do many traditional parameterizations) 
from the fact that it is local, e.g., without direct interaction between convection at neighboring 
host model grid cells. Sensitivities to other parameterizations (e.g., turbulence and microphysics) 
also remain. Nevertheless, there is evidence that the super-parameterization approach, by virtue 
of representing tropical convection more accurately than conventional parameterizations, 
produces superior simulations and predictions when coupled to an active ocean model (DeMott 
et al., 2011; Stan et al., 2010). The approach has led to important improvements, notably, in 
simulations of the MJO (Benedict and Randall, 2009) and diurnal cycle in rainfall (Pritchard and 
Somerville, 2009). Its feasibility to incorporate into operational models is worthy of further 
investigation. 

 
Finding 5.19: Improving the representation of tropical convection is a particularly important 
challenge for S2S. Continued efforts to develop new convection parameterizations and to build 
on recent progress in multi-scale modeling and scale-aware parameterization are needed. 
 
 
Enabling Global Cloud-Permitting Models 
 

In a cloud-permitting model, the grid spacing is fine enough (a few kilometers or less) 
that deep convection is explicitly calculated without the need of parameterization. Work to move 
atmospheric models towards cloud-permitting capacity is motivated by the notion that behavior 
of deep convection can be adequately determined only when mesoscale dynamics governing 
convective structure and evolution are explicitly represented. Simulations by the first global 
cloud-permitting model have led to improved representation of important S2S processes such as 
the MJO (Miura et al., 2007), tropical cyclones (Fudeyasu et al., 2008), Asian summer monsoon 
(Oouchi et al., 2009), and the diurnal cycle of rainfall (Sato et al., 2009), among other 
phenomena. Although such improvements suggest that the development and use of global cloud-
permitting models in operational settings should continue to be pursued, a number of important 
caveats to this approach need to be noted. The first is that while parameterization of deep 
convection would no longer be needed, parameterization of shallow convection, turbulence, 
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radiation, cloud microphysics, and surface fluxes would all still be required. Without deep 
convection parameterization, deficiencies in schemes for those processes would still lead to 
model errors (which might be different from those in coarser resolution models). Hence research 
to further improve parameterization schemes will remain crucial, even with global cloud-
permitting capacity. Also, the huge computational demand that would be required to make global 
cloud-permitting models operational for S2S is a currently a crucial limitation. For example, 
upgrading a model from a resolution of 60 km to 2 km would require the computational power to 
increase by well over a factor of ~1,000 (i.e., 30x30) for the horizontal resolution alone. A 
further factor of around 30 would be required to allow for desired decreases in time step and 
finer vertical resolution. Overall, this means increasing computation power by at least four orders 
of magnitude. Realistically, this will not be achieved in the next decade, based on the current 
trajectory of advancement in computing technology (see Chapter 7). 

Caveats aside, there are many good reasons to pursue global cloud-permitting modeling 
in research mode. Such research will show the way for operational developments beyond the 10-
year horizon and could yield significant insights and improvements to operational models with 
parameterized convection within 10 years. For example, predictability studies with cloud-
permitting models might give different indications from coarse-resolution models of what 
improvements in S2S forecast skill could be possible. Furthermore, as mentioned above, detailed 
high-resolution synthetic datasets from these cloud-permitting research models (global, or at 
least large domain) will continue to provide critical insights into real atmospheric processes, as 
well as a testbed against which new parameterizations for operational systems can be developed 
and evaluated. Lastly, even if it is unlikely that global cloud-permitting models would become 
operational in the next decade, it could be of great benefit for the S2S research community to 
develop cloud-permitting research models if an unexpected revolution in computing industry 
allowed operational cloud-permitting models to move forward. 

An alternative hybrid approach worthy of consideration is adaptive meshes, which focus 
high resolutions only in some areas (e.g., Chen et al., 2013 for hurricanes). Its justification comes 
from the fact that in many areas of the world, cloud-permitting resolution is not needed (e.g., in 
deserts, subtropical highs, and polar areas where deep convection is very unlikely to occur). 
Utilizing cloud-permitting meshes only when and where deep convection occurs would benefit 
computational efficiency, and this approach is becoming more feasible as scale-aware cumulus 
parameterization schemes are also being developed (e.g., Arakawa and Wu, 2013; Grell and 
Freitas, 2014). 

 
Finding 5.20: Continued development of global cloud-permitting models is needed to provide 
insights for improving coarser-resolution operational models, to offer research testbeds for 
understanding many issues relevant to S2S prediction, and to advance prototypes for future 
cloud-permitting S2S model systems. Improved model equations as well as improved numerics 
with adaptive meshes and higher-order schemes could serve as an important alternative or an 
intermediate approach before global cloud-permitting models become feasible for operations.  
 
 

Ocean Models 
 

The ocean is often described as the flywheel of the Earth’s climate (Visbeck et al., 2003), 
where the ocean’s large heat capacity (2.5 m of water contains as much thermal energy as the 
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entire atmospheric column) acts as stabilizer. Outside of the tropics, the ocean has traditionally 
been described as reacting to high-frequency changes of the atmospheric forcing and that its 
influence back to the atmosphere is weak on short timescales (Kushnir et al., 2002). However, 
one needs to distinguish between applications that are sensitive to slowly evolving boundary 
conditions (e.g., NAO, ENSO, etc.) and ones that are sensitive to rapidly evolving boundary 
conditions (diurnal cycle impact on MJOs, convection, severe weather, etc.). Ocean numerical 
models are often designed to be optimal for a specific application (global, coastal, ENSO, etc.) 
and do not perform equally everywhere. It is therefore important to fully understand the 
implications of the numerical and physical choices that were made when the model was 
developed in order to correctly interpret the model outputs (e.g., Griffies et al., 2000).  

In this section, ocean models, their application to S2S forecast systems, and their current 
strengths and limitations are described. Broadly speaking, many of the issues are similar to those 
outlined above in the atmospheric models section, including the importance of improving 
parameterizations of subgrid processes, while also exploring the benefits and trade-offs of 
increasing ocean model resolutions. 

 
 

Established Ocean Models 
 

Most existing ocean models are community models and are used extensively for a wide 
range of global, basin-scale, and regional simulations, with timescales ranging from hours to 
millennia for both operational forecasting (see GODAE, 2015 for a review) and research (e.g., 
Hecht and Hasumi, 2013). Most models solve similar geophysical fluid equations and use related 
finite-difference or structured mesh finite-volume numerics. These have all evolved from the 
pioneering work of Bryan (1969) and others (e.g., Bryan and Cox, 1968; Semtner, 1995) 

Substantial improvements that are typical of more modern models include the use of 
higher order and monotonic tracer advection schemes, the replacement of a rigid lid with a split 
time stepping scheme that directly models the adjustment of the free surface via external gravity 
waves, and more accurate representations of bathymetry. Significant effort has also gone into the 
selection of the vertical coordinate. This can have a large impact on the quality of a simulation, 
with geopotential-height-, terrain-following-, or density-coordinates, or hybrids between these 
options being common choices (Griffies et al., 2000). Algorithmic simplicity, interactions 
between the ocean flow and topography, water mass preservation, and the representation of 
dense gravity currents are all factors that have been used in choosing the right vertical coordinate 
for a particular ocean modeling application. Such mature, horizontally-structured-mesh ocean 
models will be the basis for global operational S2S forecasting systems for the foreseeable 
future, even as they continue to be incrementally improved. But it is clear that unstructured-mesh 
ocean models with higher order numerics have a lot of potential for S2S forecasts as discussed 
below. 

 
Finding 5.21: Horizontally-structured-mesh ocean models will continue to be the basis for 
most operational coupled S2S forecasting systems for the foreseeable future. 
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Ocean Eddies, Model Resolution, and Subgrid Processes 
 
The current resolution of horizontally-structured-mesh ocean models ranges from 

coarser-mesh, non-eddying (e.g., below the resolution required to resolve large scale eddies) 
resolutions for climate simulations (~1º), to finer-mesh, eddying models (~1/10º or 7 km at mid-
latitudes). Most of the impetus for integrating high-resolution eddying models in global 
numerical simulations comes from the need by navies throughout the world for advanced global 
ocean nowcasting/forecasting systems (in the United States, the resolution will be increased in 
2017 to 1/25º (~3.5 km at mid-latitudes); Chassignet et al., 2014; Metzger et al., 2014). Of 
course, for many ocean-related applications on S2S timescales, such as oil spill modeling (e.g., 
Deep Water Horizon) and fisheries/algal bloom prediction, higher resolution ocean models are 
necessary. While there is a demonstrated need for fine resolution ocean prediction systems for 
predicting oceanic variables outside the naval context (GODAE, 2009), the question arises as to 
whether explicitly resolving ocean eddies matters to coupling with the atmosphere and therefore 
to S2S atmospheric forecasts. In a recent comparison of coupled simulations with high and low 
resolution ocean numerical models, the correlation between SST anomalies and the surface heat 
flux was found to be small outside the tropics for the low resolution experiments, indicating that 
the atmospheric forcing of SST variability is predominant at that resolution (Kirtman et al., 
2012). On the other hand, the high-resolution (1/10º horizontal resolution, i.e., eddying regime) 
simulation showed high correlations in regions of enhanced SST variability, such as western 
boundary currents and the Antarctic Circumpolar Current. This suggests that the atmosphere 
actually responds to the oceanic variability in areas of high SST variability and that higher model 
resolution is needed to improve atmospheric as well as ocean predictions. 

There is also evidence that small-scale heat-content anomalies are more strongly and 
extensively correlated with precipitation in coupled model simulations with an eddy-resolving 
ocean, suggesting a mechanism whereby internally driven ocean variability may influence the 
deep atmosphere. For example, Bryan et al. (2010) show that characteristics of frontal scale 
ocean-atmosphere interaction, such as the positive correlation between SST and surface wind 
stress, are realistically captured only when the ocean model component explicitly resolves the 
ocean eddies. Griffies et al. (2015) further show the importance of transient mesoscale eddies on 
the ocean heat budget, providing an additional argument for either explicitly including eddies in 
coupled model simulations, or for employing parameterizations that faithfully reflect the role of 
eddies in both lateral and vertical heat transport. Submesoscale SST gradients may also be 
important loci for coupling to the atmosphere (Back and Bretherton, 2009; Li and Carbone, 
2012; Smith, 2013). 

Oceanic eddies exhibit a wide range of spatial scales, from large rings that detach from 
western boundary currents via mixed barotropic and baroclinic instabilities (Gulf Stream, 
Kuroshio, Agulhas, North Brazil, Gulf of Mexico Loop Current, etc.); to baroclinic eddies whose 
slumping effects need to be accounted for in order to correctly model the transports of water 
masses (e.g., Gent, 2011) and the dynamics and structure of major current systems like the 
Antarctic Circumpolar Current (e.g., Farneti et al., 2010; Hallberg and Gnanadesikan, 2006); to 
the sub-mesoscale eddies with horizontal scales of order of a kilometer that drive the frontal 
restratification of the surface mixed layer (e.g., Fox-Kemper et al., 2008). All of these oceanic 
eddies have effects that need to be represented in skillful ocean forecast systems, either by 
explicitly resolving them or through parameterization. The large meanders and rings are readily 
captured in ocean models with resolutions on the order of 1/4° or finer, while submesoscale 
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eddies are characterized by spatial scales of less than a kilometer and need to be parameterized in 
essentially all large-scale ocean models (Fox-Kemper et al., 2011). Baroclinic eddies pose a 
particular challenge, as the dominant length-scale of these eddies (the first baroclinic 
deformation radius) varies greatly with latitude, stratification, and ocean depth. As shown in 
Figure 5.9, global numerical ocean models with spatial resolutions ranging from 1° down to just 
a few kilometers include both regions where the dominant baroclinic eddy scales are well 
resolved and regions where the model’s resolution is too coarse for the eddies to form. Due to the 
relative spatial scales of these eddies and the mean state upon which they operate, commonly 
used baroclinic eddy parameterizations (e.g., Gent et al., 1995) are more effective at suppressing 
eddy variability than they are at replicating their effects on the mean state (Hallberg, 2013). 
Consequently, it is usually preferable to allow a model to explicitly simulate oceanic eddies 
rather than parameterize them, wherever the resolution permits this. Essentially all global ocean 
forecast models for the next 10 years and beyond will be operating within the resolution range 
where baroclinic eddies can be explicitly represented in most of the domain, but still have to be 
parameterized on the shelf and at high latitudes (Figure 5.11). Additional research is thus 
required to determine how best to parameterize the effects of ocean eddies where they are not 
resolved and how to transition between areas where eddies are resolved and where they are 
parameterized (see the CLIVAR Exchanges (2014) Special issue on “High Resolution Ocean 
Climate Modeling” for a discussion). Other subgrid processes also need to be taken into account 
for S2S prediction. Several National Science Foundation (NSF)/NOAA-sponsored Climate 
Process Teams (CPTs)35—e.g. groups of scientists who have worked together to improve 
parameterizations of particular processes—have developed parameterizations of internal tides 
and surface wave-induced mixing, but these need to be evaluated.  

 
Finding 5.22: Subgrid ocean processes, including eddies, internal tides, and surface wave-
induced mixing, need to be more explicitly resolved or better parameterized in ocean models 
used in S2S forecast systems, and their impact on S2S forecasts need to be better evaluated. 
 
 
Multi-Scale Ocean Modeling 
 

For improved S2S applications, instead of a uniform increase in resolution, one approach 
that may be more affordable computationally would be to increase the ocean horizontal 
resolution in targeted geographical areas that have a strong dynamical impact on the system, i.e., 
tropics, coastal regions, etc. This would improve the representation of energetic motions and 
exchanges that occur in regions with complex geometry and/or dynamics and that have been 
found significant for larger-scale regional and global ocean dynamics.  
Two approaches may allow for optimized refinements in areas with larger dynamical gradients, 
near steep topography, or around complex coastlines. Nesting uses finer modeling grids in 
targeted regions, while unstructured grids increase the mesh resolution progressively where 
needed within the same modeling framework. New techniques that use different equations 
depending on the space and timescales are also very promising. This would allow for the explicit 
representation of, for example, small rivers, surface waves, internal waves/tides, nonhydrostatic 
effects, ecosystem structure, localized hypoxia, or leads in sea ice. All of these approaches are  
 
                                                 
35 http://www.usclivar.org/climate-process-teams, accessed January 27, 2016. 
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representation. Furthermore, since air-sea fluxes depend not only on the conditions in the 
atmosphere, but also on processes in the upper boundary layer and mixed layer as well as the sea 
state (Chen et al., 2007), surface wave effects need to be taken into account for S2S prediction, 
as do tidal effects on mixing. While this air-wave-ocean coupling has been implemented in some 
operational models (e.g., ECMWF, COAMPS) it has not been in others (e.g., NCEP). 

 
Finding 5.24: Including surface wave effects in S2S Earth system models could lead to a more 
accurate representation of the upper boundary layer and sea state. 
 
 
Higher-Order Numerics 
 

While the existing horizontally-structured-mesh ocean models described above have 
excellent computational efficiency per degree of freedom, most are based on conservative but 
relatively low-order staggered discretizations (e.g., Griffies et al., 2010; Griffies et al., 2000). 
There is a growing body of research on the use of unstructured-grid, adaptive-mesh, or higher-
order methods (Beck, 2009; Deleersnijder et al., 2010; Mavriplis, 2011; Slingo et al., 2009) that 
aim to increase models’ accuracy without a concomitant increase in computational cost. A 
specific advantage of unstructured meshes is their geometric flexibility, which allows for more 
accurate solutions, but a significant drawback is a reduced efficiency per degree of freedom. As a 
result, many unstructured-grid models have focused on shallow water regions with complex 
geometries (e.g., estuaries) and/or continuous schemes for finite-volume or finite-elements. In 
addition, unstructured finite-volume schemes are usually limited to second-order numerics in 
space. For higher-order spatial discretizations with significant advection, finite-elements are 
possibly more versatile. Discontinuous Galerkin schemes also appear promising and are being 
developed for open baroclinic ocean modeling (e.g., Blaise et al., 2010; Karna et al., 2013; Karna 
et al., 2012; Maddison et al., 2011a; Maddison et al., 2011b; Ueckermann and Lermusiaux, 
2016). Similar efforts are occurring for atmospheric modeling at varied scales and resolutions, 
and for different purposes (e.g., Giraldo and Restelli, 2008; Marras et al., 2015; Nair et al., 2009; 
Palmer, 2012; Pielke, 2013). For example, the Naval Research Laboratory is developing a 
Discontinuous Galerkin dynamical core for its Navy Environmental Prediction sysTem Utilizing 
the NUMA corE (NEPTUNE) atmospheric model (NUMA is the Nonhydrostatic Unified Model 
of the Atmosphere DG core). It is currently being tested for accuracy, scalability, and 
computational cost (Gabersek et al., 2012). Other next-generation atmospheric models are under 
development, including community earth system models with probabilistic capabilities (e.g., 
Hurrell et al., 2013; Palmer, 2012). 
 
Finding 5.25: Inspired from computational fluid dynamics and related fields, new numerical 
methods and higher-order schemes are being developed for ocean modeling. The resulting 
higher-order accuracy and enhanced refinement capabilities can reduce numerical errors in 
ocean models, which is a promising development for the longer-term prediction needs of S2S 
applications. 
 

In summary, priorities for ocean model improvements for S2S forecasting include both 
fundamental numerical capabilities and improved depictions of important oceanic phenomena. 
An example of an important new numerical capability would be the ability to focus resolution in 
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particular regions of phenomenological (e.g., straights that constrain flows) or forecast interest 
(e.g., harbors) in global ocean models. Many important oceanic phenomena are simply omitted 
from most S2S forecasting systems, such as tides and their interactions with storm surges. 
Oceanic mixing of nutrients is important for biological productivity on S2S timescales, but in 
models it is the result of both numerical artifacts and deliberate parameterizations, motivating 
improvements on both sides. The dynamics of the near surface ocean are of particular 
importance for the coupled ocean at S2S timescales, so the representation of ocean boundary 
layer turbulence and its interactions with waves and sea ice are a promising subject of study for 
improving S2S forecasts. But the most important limitation on oceanic S2S forecasts arises from 
the global influence of the ocean at these timescales, along with the need to accurately represent 
many important oceanic phenomena at relatively small scales to capture this influence. This need 
to model the global ocean with fine scale detail places a premium on computational capacity 
available for S2S forecasts and on utilizing numerical techniques that maximize the value of the 
available resources. 

 
 

Sea Ice Models 
 

As discussed in Chapter 4, sea ice is an important source of predictability to the Earth 
system because sea ice anomalies can persist for up to a few years, during which time the 
anomalies can influence ocean and atmospheric conditions. Further, predicting sea ice itself is 
valuable for its impact on transportation and coastal erosion vulnerability, among other things. 
Sea ice models need to capture the physical processes that give rise to the high degree of 
heterogeneity in sea ice thickness, melt-pond coverage, and other characteristics that influence 
shortwave radiation, clouds, atmospheric stability, and ocean freshwater exchange. Many NWP 
models do not include interactive sea ice components, and the local sea ice concentration and 
thickness in these models is prescribed and constant with only the surface temperature and 
(sometimes) the snow depths allowed to vary (see for example, specifications of NOAA’s 
GFS36). To predict the evolution of the ice and snow thickness, and heat transfer within the ice 
and snow and with other components, the sea ice component in coupled Earth system models 
must be interactive and at a minimum include sea ice thermodynamics. Adding explicit modeling 
of sea ice dynamics—such as the sea ice motion and deformation that redistributes the ice 
thickness locally and produces openings, known as leads—can, along with modeling 
thermodynamics, allow for predictions of sea ice concentration.  

Sea ice components in climate models and Earth system models have evolved 
significantly over the past two decades due to recognition that sea ice strongly influences 
radiative and ocean feedbacks and because observations have offered improved constraints on 
sea ice processes and parameterizations (e.g., Bitz et al., 2012; Notz, 2012). Many sea ice models 
account for an ice-thickness distribution, which treats a distribution of sea ice thicknesses in an 
individual model grid cell, to improve the fidelity of processes that strongly depend on sea ice 
thickness, such as sea ice growth and compressive strength. Models are also beginning to treat 
brine cycling (Hunke et al., 2011) to simulate biogeochemistry within the ice and model the 
process of melt pond formation and drainage. However, most of the sea ice components in 
models used for S2S applications are much simpler, with bare-minimum dynamics and 
thermodynamics (e.g., Merryfield et al., 2013b; Msadek et al., 2014; Wang et al., 2013a).  
                                                 
36 http://www.emc.ncep.noaa.gov/GFS/doc.php#seaice, accessed January 27, 2016. 
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The small scale features at the floe scale and below suggest that model resolution may be 
important to improving predictions. The frequency of grid cells with very low sea ice 
concentration and very high net heat flux to the atmosphere has been found to increase at higher 
resolution (Newsom et al., 2015). New sea ice dynamical schemes that account for anisotropy of 
sea ice properties (e.g., preferred orientation of fractures and faults within the horizontal plane) 
over 10s of kilometers, and much more while treating the sea ice as a continuum, may be a 
promising alternative to explicitly resolving fine scales (e.g., Tsamados et al., 2013). However, 
such methods are not yet well tested, and little research has been done to investigate their 
potential for S2S applications. 

Several potentially important processes are as yet missing or untested in nearly all Earth 
system models including (1) blowing snow and the redistribution of snow on sea ice, (2) floe size 
distribution influence on ice growth and deformation, (3) waves breaking floes, and (4) ice 
microstructure (i.e., porosity and/or defects) influence on compressive strength. Inclusion of 
these processes into S2S systems may offer opportunities to predict new sea ice properties with 
societal value. 

In summary, priorities for sea ice model improvements for S2S prediction include 
parameterizing the sub grid-scale distribution of sea ice thickness and floe sizes and treating the 
evolution of albedo, heat, and liquid water of melt ponds. These aspects of sea ice strongly 
influence the seasonal cycle of sea ice concentration and thickness. Modeling the anisotropy of 
deformation offers the potential of predicting the orientation of leads, which could be an 
advantage for planning shipping routes. The more advanced models have these capabilities 
already, but they are not routinely used nor have they been investigated for the purposes of S2S 
prediction. 

 
Finding 5.26: Sea ice models used for S2S often use bare-minimum thermodynamics and 
dynamics. However, sea ice models have been developed with sophisticated physics that 
account for phenomena such as the ice-thickness distribution, melt ponds, biogeochemistry, 
and divergence/convergence processes. New methods are being developed to account for wave-
floe interactions, blowing snow, and ice microstructure. 
 
Finding 5.27: The fidelity of sea ice simulations appears to improve with resolution. New 
promising sea ice dynamic parameterization schemes may preclude the need for high 
resolution in some situations, but little research has been done to investigate their potential for 
S2S applications. 
 
 

Land Surface and Biogeochemical Models 
 

The land-surface model (LSM) accounts for the land-atmosphere interactive processes, 
such as the exchange of heat, moisture, and momentum at the surface. As described in the 
Observations section of this chapter and in Chapter 4, such fluxes influence the likelihood of heat 
waves, droughts, storm formation, and monsoons, and may become increasingly important to 
climate and weather prediction as the global climate warms (e.g., Dirmeyer et al., 2013; 
Dirmeyer et al., 2014). Despite the ever-growing number of dynamic LSMs, a recent 
intercomparison has highlighted that the performance of dynamic LSMs is still in some cases 
inferior to much simpler statistical models for sensible heat flux (Best et al., 2015) 
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Another important purpose of LSMs is to model surface hydrology, where groundwater 
and streamflow are included to connect terrestrial water (e.g., soil moisture, surface water, and 
snowpack) with rivers, lakes, and oceans to complete the water cycle. LSMs are often deeply 
rooted in biogeochemical processes (e.g., carbon and nitrogen cycling and other ecosystem 
processes) due to the fundamental interactions of vegetation and soil systems with surface 
hydrology. Coupling between land-surface hydrology and the ocean can be important for 
determining near shore currents and salinity and for ocean biogeochemical cycles. Indeed, 
coastal ocean salinity can be strongly determined by river discharges, particularly during flood 
events and seasonal flooding (Milliman and Farnsworth, 2013).  

The LSMs in NWP systems typically focus on dynamically representing snow cover and 
soil moisture, while prescribing vegetation cover to vary seasonally based on satellite 
observations.37 LSMs in Earth system models today usually also predict vegetation at some level 
(Bonan, 2008 and see below), which permits a greater degree of interaction with the hydrologic 
cycle and biogeochemical cycling—both of which have significant societal impacts on S2S 
timescales (Chapter 3).  

Representation of surface hydrology is still often relatively simplistic in Earth system 
models used for S2S forecasting, with water runoff not collected and moved through rivers to 
coastal areas. Many more complex hydrologic modeling systems exist with river routing and 
drainage basin models layered atop land surface models, but they are typically run “off-line” and 
are driven by climate and weather forecasts from coupled models. These models incorporate the 
influence of human water management and use on surface and groundwater storage and river 
streamflow. Systems are being actively developed and used for operational hydrologic 
forecasting (for example within NOAA’s NWS and Office of Hydrologic Development, see also 
Yuan et al., 2015). While further research is needed to understand the extent to which inclusion 
of such hydrological models within coupled S2S forecast systems would benefit S2S forecasts 
across the system (for example, by explicitly informing coastal salinity and currents), such 
coupling would enable more direct, dynamical S2S predictions of stream and river flow as well 
as coastal flooding and hypoxia. Furthermore, the potential user base for such S2S hydrologic 
predictions is large (Chapter 3). Enabling and supporting the coupling of hydrologic and river 
routing models to climate and weather models is a strategic science goal of NOAA’s Office of 
Hydrologic Development (NOAA, 2010). 

Whether they include hydrologic processes such as river routing or not, LSMs in coupled 
S2S forecast systems need to continue to be improved through higher fidelity and increased 
complexity in order to represent important coupled processes in S2S forecast systems and also to 
meet increasing user needs for hydrologic, ecological, littoral, and coastal ocean S2S predictions. 
This includes (but is not limited to) improving the parameterization of surface energy 
partitioning into sensible, latent, soil, and outgoing longwave radiation through improved plant 
and soil processes, snow/soil-ice physics, and by including biogeochemical cycles. Land-
atmosphere interactions (see Figure 5.12) also need to be carefully evaluated and considered, in 
particular feedbacks with surface and boundary-layer physics, convection, and water and energy 
budgets (Chapter 4). This needed progress in land and hydrological model development is 
slowed by lack of reliable observations and climatology estimates. Process-level studies and  

                                                 
37 See for example, specifications associated with the LSM used in NOAA’s Global Forecast system: 
http://www.emc.ncep.noaa.gov/GFS/doc.php#lansurproc (accessed January 27, 2016). 
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and/or ecosystem response. A volcanic eruption is an unanticipated event with consequences on 
regional to global scales whose evolution and outcomes on S2S timescales are addressed as a key 
prediction need elsewhere in this report (Chapter 6). 

Coupling biogeochemical dynamics to other ESM components may also be important for 
S2S predictions of the atmosphere because biogeochemical dynamics can influence albedo, 
moisture availability, and temperature profiles on S2S timescales. For example, it is increasingly 
recognized that initializing and representing vegetation can also impact S2S predictability of the 
atmosphere (e.g., Koster and Walker, 2015). Whether physical and biogeochemical models 
should be coupled or uncoupled—with the biogeochemical model run “off line” and on demand 
due to the vast input data requirements of accurate biogeochemical modeling in a turbulent 
fluid—depends on the timescale on which land and ocean biota feedback to the physical models.  

Global climate models began to include a wide array of biogeochemical cycles in the last 
two decades, and model terminology has evolved to reflect this new capability. Today, a global 
climate model that includes biogeochemical cycles is often called an Earth system model. 
Carbon vegetation modeling usually involves predicting the leaf area and treating leaf processes 
that influence photosynthesis at a minimum, and may also allow vegetation growth and decay, 
competition, and soil carbon pools. The current capability in atmospheric components includes 
the formation of aerosols, aerosol-cloud interactions, and the evolution of atmospheric 
composition (greenhouse gases, ozone, and other pollutants). Biogeochemical modeling in the 
ocean involves both uptake and release of gases, chemical reactions, and biology from the single 
celled (algae and bacteria) to multicellular phytoplankton, zooplankton, and sometimes even 
seaweed and fish. ESMs have generally not yet incorporated biogeochemical cycling in sea ice. 
However, there is active development in a few models now to include sea ice algae, gas 
exchange, chemical cycling, and soot deposition on sea ice (e.g., Holland et al., 2012; 
Vancoppenolle et al., 2013). 

 
Finding 5.29: Incorporating biogeochemical cycles into S2S prediction systems has the 
potential to improve S2S forecasts because biogeochemical cycles often feedback to other 
components of the physical system, and because they influence societally important concerns 
such as ocean and large-lake hypoxia, fish stocks, marine productivity, harmful algae blooms, 
crop yields, disease epidemics, and fire occurrence. 

 
 

Coupling Between Model Components 
 

As highlighted above, S2S prediction is inherently a coupled problem. Information 
transfer between the atmosphere, ocean, ice, wave, and land provides fundamental sources of 
predictability on the S2S timescales. Meanwhile, model errors are also passed between different 
components and this error growth represents a consequential limitation to S2S prediction skill. 
The importance of air-sea coupling, land-air coupling, and sea ice coupling has been fully 
recognized, but representations of such coupling in models still need substantial improvement.  

Several types of coupling are priorities for implementation or improvement in S2S 
operational systems. Ocean surface waves are needed as a buffer between atmospheric 
momentum and ocean currents. Precipitation arriving at a catchment basin and delivered to the 
coastal ocean via an estuary through river routing requires hydrological and land surface models 
that are coupled to atmospheric and ocean models. Other examples include biogeochemistry 
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models coupled with ocean, and land and atmospheric models that include biogeochemical 
feedback on S2S timescales. Reliable couplers need to be designed based on advanced 
knowledge of coupled processes with an aim to matching observed fluxes where measurements 
are available. These processes are often not resolved explicitly in S2S models and need to be 
parameterized.  

Because changes in parameterization in one component can lead to increased model 
errors in another part of the coupled system, coordination and collaboration among different 
communities of researchers focused on different parts of the Earth system is important in this 
context. 

 
Finding5.30: Because of the coupled nature of S2S variability and prediction, 
parameterization for either interactive processes within individual components of the Earth 
system or coupled processes between them must be improved in a cohesive manner instead of 
in isolation.  
 

 
Process Studies for Model Advancement  

 
As discussed earlier, reducing model errors is among the highest priorities for advancing 

S2S forecast systems. Major sources of model errors are parameterization schemes for 
unresolved, poorly understood, or computationally burdensome processes across all model 
components (atmosphere, ocean, sea ice, and land surface). Developing and refining 
parameterization schemes can be achieved through three closely connected steps: observing 
physical processes in the real world, improving understanding of these physical processes, and 
translating that new knowledge into improved models.  

 
 

Field observations 
 

As model resolution continues to increase towards cloud and eddy permitting or resolving 
scales (similarly for resolving sea ice floes and fracture heterogeneity, watersheds, mesoscale 
and stand scales in hydrology and land ecosystem modeling), more detailed information of 
physical processes is needed to develop a new breed of parameterization. It is important to 
recognize that field observations for process studies are different from sustained observations for 
climate and applications monitoring (e.g., Observations section of this Chapter), though some 
data sets may meet both purposes. Observations for improving parameterizations are most often 
taken from special field experiments that include ground-based, seaborne, and airborne in situ, 
along with space-based remote measurements. 

In situ measurements are the most reliable sources of information for many physical 
processes central to model parameterization (e.g., cloud, precipitation, radiation, turbulence, 
aerosol, soil moisture, vegetation, surface waves, and surface fluxes of land, ocean, and ice) and 
the only sources of information for subsurface oceanic processes (e.g., mixing and currents). 
Modern observing technology affords observations of these processes with ever-increasing 
details and accuracy to meet the need of developing parameterization schemes. Moreover, in situ 
observations provide the most accurate descriptions of coupling or interaction among the 
multiple processes that must be adequately represented in models to advance S2S prediction. 
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Processes-level observations need to take the full advantage of the most advanced technology, 
including seaborne, airborne, and land-based autonomous devices. 

Space-based data provide global and routine coverage, augmenting the limits of temporal 
and spatial coverage inherent in field observations. Products with reliable vertical profiling of the 
atmosphere, information of ocean and land surfaces, and higher sampling rates by multiple 
sensors are the best complements to in situ observations for process studies. More specifically, 
there are key physical processes where experimental satellite observations are sorely needed to 
characterize processes critical to modeling S2S phenomena (e.g., deep convection, soil moisture, 
ocean mixed-layer depth). Key among these are information on vertical motion within storm 
systems, increased thermodynamic and wind information within the boundary layer, and 
simultaneous measurements of aerosol, clouds, and precipitation to better describe 
cloud/precipitation growth. In this regard, and with the expected increases in resolution of 
models in mind, it is essential that these types of space-based measurements are able to resolve 
mesoscale features of the atmosphere.  

Field experiments targeting a single process (e.g., cloud ice, ocean mixing) with single 
observing platform (e.g., an airplane, a ship) have effectively improved many individual 
parameterizations and need to continue. S2S prediction systems include coupled components of 
Earth, and their skill can be dramatically improved only when all model components and their 
coupling are advanced. Indeed global models have evolved to a stage that errors are unlikely due 
to deficiencies in representing a single process. Such coupled processes can be adequately 
observed through field experiments with sufficient breadth to cover multiple processes across 
more than one component of the Earth system. Past success stories of coupled experiments with 
lasting and broad impact all involved multiple observing platforms and international 
participations. Examples are the GARP (Global Atmosphere Research Program) Atlantic 
Tropical Experiment (GATE; Houze and Betts, 1981), the Tropical Ocean Global Atmosphere 
Coupled Ocean-Atmosphere Response Experiment (TOGA COARE; Webster and Lukas, 1992), 
Surface Heat Budget of the Arctic Ocean (SHEBA; Uttal et al., 2002), the African Monsoon 
Multidisciplinary Analysis (AMMA; Lebel et al., 2010), and the VAMOS (Variability of the 
American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment 
(VOCALS-REX; Wood et al., 2011) (see Appendix C for more details on past and current major 
coupled field campaigns). Common to these and other successful process studies is that they all 
address coupling or interaction between various processes within the same components of the 
Earth system and interactive processes between different components of the Earth system (land, 
ice, atmosphere, and ocean). Field experiments of that scale are expensive and logistically 
challenging but their data are singularly beneficial to model development (e.g., Fairall et al., 
2003; Park and Bretherton, 2009).  

 
Finding 5.31: Specialized and comprehensive field observations are necessary to inform and 
improve representations of unresolved processes, including coupled processes in and between 
various components of S2S prediction models. New observing technology, both remote sensing 
and in situ, and international collaboration/coordination could enhance the ability to meet the 
demand for more detailed information on interactive and coupled processes within S2S 
models. 
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Transforming understanding of physical processes to model improvement 
 

Field observations provide the foundation for new knowledge of interactive processes 
key to S2S prediction. However, the tremendous knowledge gained from many field 
observations has helped more to diagnose sources of model errors than to actually reduce these 
errors. One reason for this is the distance between what model developers need and what can be 
observed. For example, many cumulus parameterization schemes depend on vertical mass fluxes 
in clouds, and as mentioned above, these are very difficult to observe. In this case and in many 
others, advancing observing technology is critical to shorten the distance between what is needed 
and what is currently observable. Meanwhile, fully tapping the rich information from existing 
field observations for model development requires knowledge of observing technology by 
modelers and knowledge of modeling by observation experts. Thus transforming new knowledge 
from observations into model improvement requires collaborative and persistent efforts by teams 
that include observationalists, data analysts, and modelers. For the longer (climate) timescales, 
the NSF/NOAA Climate Process Teams have been highly successful in developing improved 
parameterizations. Further support for this and similar efforts, including staff and computing 
time, is critical for transferring knowledge gained through process studies into actual 
improvements in parameterizations (see also Chapters 6 and 7). 

Given the nature of field observations—namely limited coverage in space and time—it is 
naïve to expect a single field experiment would lead to a breakthrough in model development 
and S2S prediction. Each field experiment fills a gap in our in situ observational database, but it 
is the totality of all field experiments together that provides the needed information for overall 
improvement for S2S systems. Because it is impossible to have detailed process observations at 
all desired locations and time, an approach of integrating field observations and high-resolution 
modeling is essential to bridge the gap between field data and improvement of model 
parameterization. As discussed earlier, global and large-domain cloud-permitting and non-
hydrostatic ocean models that are well calibrated and validated by field observations serve as 
vital tools for transforming knowledge gained from field observations to model improvement. 
Large-eddy simulation (LES) models provide additional details, such as shallow clouds and 
ocean internal waves.  

 
Finding 5.32: Transforming field observations to model improvement requires persistent 
collaborations among experts with knowledge of observations, data analysis, and modeling 
who can effectively integrate field observations and modeling for model improvement.  
 
 

The Way Forward for Advancing S2S Models 
 

In current forecast systems, model errors are one of the most limiting factors in achieving 
the skill that might be afforded by S2S Earth system predictability. Many of the issues that lead 
to model errors are common across different modeling systems and a broad range of timescales 
covering days to centuries, i.e., across weather forecasts, S2S forecasts, and long-term climate 
simulations. These model errors are likely the result of multiple deficiencies in model 
representations of key processes that are currently parameterized. Investment in research aimed 
at understanding and reducing model errors is absolutely essential in improving S2S predictions. 
Because of the commonality across timescales of many Earth system model errors, a seamless  
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BOX 5.2—Seamless Prediction 
 

The goal of “seamless prediction” is to use the same prediction system software at all timescales 
(weather, subseasonal, seasonal, and climate) and also at all needed resolutions38. The motivations for this 
concept are that weather and climate prediction models are built upon the same physical principles, and 
cross-scale interactions in the Earth system provide predictive power and predictability limits across these 
scales and thus need to be adequately represented in all models (Hoskins, 2013). Indeed, although 
numerical weather prediction (NWP) and climate prediction sometimes have different requirements (e.g., 
model resolution and complexity, integration length), they share many commonalities. They are both 
based on the same set of equations of motion. They both need parameterization to represent unresolved 
processes, and many of their biases can be traced to the same deficiencies in parameterization of 
phenomena such as tropical convection. They both rely on observed states of the Earth system to initialize 
their integrations and to verify and calibrate their predictions.  

A seamless framework for weather and climate models has been advocated by many (Hurrell et 
al., 2009; Palmer et al., 2008; Shapiro et al., 2010; WMO, 2015a). Seamless prediction systems may offer 
numerous advantages for S2S forecasting and for related decision-making frameworks such as “ready-set-
go” (Brunet et al., 2010; Robertson et al., 2015; Chapter 3). As discussed elsewhere in this report, an 
adequate S2S prediction system needs to embrace aspects that are common in conventional NWP—
including high resolutions and adequate representation of complex, mesoscale storm systems—and those 
that are essential to climate prediction—complexity and coupling of Earth system components. For 
example, important sources of S2S predictability such as the MJO depend on (and feed back onto) climate 
modes like ENSO and also interact with higher-frequency weather perturbations. Other cross-timescale 
interactions may be important for developing so-called “forecasts of opportunity” (Chapter 4), and 
exploiting the conditional skill in such forecasts is especially important to S2S prediction. Seamless 
prediction systems also require common central elements including dynamic cores and parameterization 
systems, expanded computational infrastructure, dedicated manpower, and coordination between research 
communities to test developments such as new parameterization schemes on different timescales. These 
are many of the same issues that are advocated elsewhere in this report as ways to advance S2S 
forecasting. Thus S2S forecasting serves as both a motivation and an ideal testbed for seamless prediction 
systems.  

In operational settings, seamless prediction has the potential to reduce manpower costs of 
maintaining several models to produce operational forecasts with various lead times, and the practice and 
benefit of seamless prediction systems have been demonstrated by several successful efforts (Brown et 
al., 2012; Hazeleger et al., 2010; Vitart et al., 2008). The UK Met Office uses its main atmospheric model 
at all timescales, the Navy is developing NEPTUNE, a possible next generation unified global-regional 
prediction system, and NCEP has proposed a similar path with the selection of its next operational 
atmospheric model. Recent advancement in modeling has helped to meet some challenges to building 
seamless prediction systems (Brown et al., 2012). For example, the issue of scale dependence of 
parameterization is being tackled using new schemes that are scale aware or independent (see above). 
Across multiple U.S. agencies, the Earth System Prediction Suite (Theurich et al., 2015 ) is working to 
develop a common modeling infrastructure and component interface standards for a suite of national 
weather and climate models, which, while not providing seamless prediction, will facilitate greater use of 
common components and more rapid transition of new technology. 
 
framework for reducing such errors and developing new parameterizations may be useful (see 
Box 5.2 for a description of seamless prediction). 

                                                 
38 Note that “seamless forecasts” discussed in Chapter 3 refers to creating products that are consistent across short 
range, subseasonal, seasonal, and climate timescales.  
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More efficient computational schemes would benefit S2S forecasts as well as weather, 
ocean, and climate forecasts. Advances in S2S systems can benefit tremendously from the 
experience of weather, ocean, and climate model developers, and vice versa. New high-order 
computational schemes and implementations that minimize numerical diffusion on S2S 
timescales are needed for multi-resolution ocean and atmospheric modeling. Developing these 
computational schemes jointly with new uncertainty quantification and data assimilation 
capabilities would be an efficient path forward: It would directly integrate three critical 
components of S2S forecasting systems from the start.  

There are several crucial steps that need to be taken in parallel to reduce model errors. 
First, research to systematically quantify and understand the improvements that can be made 
through modest increases in resolution (horizontal, vertical, and multi-resolution, and across 
coupled components) is needed to help determine the optimal design of operational systems (e.g., 
trade-offs between costs and benefits of increased resolution, ensembles, parameterizations, and 
multimodels—see Recommendation J described in the next section). For ocean models in 
particular, there may be benefit for including robust, advanced, and highly conservative multi-
resolution approaches (adaptive mesh refinement, seamless two-way nesting, multi-dynamics, 
adaptive super-parameterizations, etc.) for operational global S2S forecasting over the next 
decade. Some emerging research further suggests that there may be important gains from 
concurrent increases in resolution up to the point of resolving mesoscale processes across the 
atmosphere, ocean, sea ice, and land surface. However, research into how increased resolution 
can reduce model biases, especially in coupled ESM models, is just beginning and needs further 
support (e.g., NOAA, 2015). Ideally, continued research on the topic of model resolution needs 
to be carried out with more than one S2S forecast system in order to be sure that the lessons 
learned are generic. 

Second and perhaps most importantly, it is clear that uncertainties in parameterizations of 
unresolved processes—both processes internal to a given Earth system component and in the 
representation of coupled processes between them—are and will continue to be major sources of 
model errors. Thus efforts to improve parameterization of many processes must be one of the 
highest priorities for improving S2S prediction systems. The difficulties in improving 
parameterization arise from both incomplete process understanding and failure to properly 
encapsulate process knowledge into parameterization schemes of operational S2S systems. 
Acceleration of both process understanding and the transfer of knowledge into model 
development are thus essential. 

New field observations are critical to improving process understanding and the 
development of subgrid scale parameterizations. Given the complexity of S2S models, which 
involve multiple, interacting components of the Earth system, it is critical to understand coupling 
processes between different components as well as interactive processes within components. 
Particular foci for new field campaigns and process studies should include tropical convection, 
ocean turbulence, sea ice, stratospheric and land surface processes, and coupling among different 
Earth system components (land, ice, ocean, and atmosphere). Observations of coupled processes 
between components are particularly useful for monitoring and initializing S2S prediction 
systems. They are also essential for model validation and the identification of bias/error sources 
in coupled Earth system models. Spatial coverage of this type of observation (e.g., tropical 
mooring arrays, land surface flux towers) remains inadequate and faces deterioration. To 
maximize impact, research and operation communities need as far as possible to collaborate in 
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the design of future field observations and to take full advantage of new observing technology 
and opportunities for international collaborations and coordination. 

Transforming new knowledge gained from field observations and process studies to 
model improvement requires close collaboration among experts on observations, data analysis, 
and modeling. Persistent and painstaking efforts among two generations of scientists has been 
necessary to advance ESMs and operational forecast systems to the point at which they are 
today, and it will take no less to reach our goals for S2S forecasting. Teams that allow scientists 
with diverse expertise to collaborate effectively are necessary to accelerate this transformation 
(such as NSF/NOAA Climate Process Teams), and it is crucial to further develop an enhanced, 
sustainable community of scientists spanning academic, research, and operational centers to 
develop, test, and optimize new parameterization schemes (see also Chapter 6). 

Finally, improving subgrid scale parameterization needs to be supported by research that 
explores the benefits of extremely fine resolutions (meters to a few kilometers), even though 
these are unlikely to be affordable or computationally feasible operationally in the next ten years. 
For atmosphere models, this would involve global or large-domain cloud-permitting grid spacing 
without the need of deep cumulus parameterization and regional large-eddy simulation (LES) 
models without the need of shallow cumulus parameterization. For ocean models, this would 
include explicitly representing submesocale features and possibly non-hydrostatic processes such 
as wave-induced circulation and mixing. The development and exploitation of such extremely 
high-resolution model systems should be encouraged, and they should be used to advance the 
study of S2S predictability (Chapter 4), generate high-resolution datasets for process studies, and 
provide testbeds to improve, develop, and evaluate parameterization schemes, as well as 
demonstrate possible future S2S prediction systems (see also Recommendation I). 

 
Recommendation H: Accelerate research to improve parameterization of unresolved (e.g., 
subgrid scale) processes, both within S2S system submodels and holistically across models, to 
better represent coupling in the Earth system.  
 
Specifically:  
 

 Foster long-term collaborations among scientists across academia and research and 
operational modeling centers, and across ocean, sea ice, land and atmospheric 
observation and modeling communities, to identify root causes of error in 
parameterization schemes, to correct these errors, and to develop, test, and optimize new 
(especially scale-aware or independent) parameterization schemes in a holistic manner. 

 Continue to investigate the potential for reducing model errors through increases in 
horizontal and vertical resolutions in the atmosphere and other model components, 
ideally in a coupled model framework (see also Recommendation L). 

 Encourage field observations targeted at increasing knowledge of poorly understood or 
poorly represented processes in S2S models, including tropical convection, ocean mixing, 
polar, sea ice and stratospheric processes, and coupling among different Earth system 
components (e.g., air-sea-ice-wave-land, troposphere-stratosphere, dynamics-
biogeochemistry). 

 Develop extremely high-resolution (or multi-resolution) modeling systems (e.g., that 
permit atmospheric deep convection and non-hydrostatic ocean processes) to advance 
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process understanding and to promote the development of high-resolution operational 
prototypes (see also Recommendation I). 

 
Representing oceans, sea ice, land surface and hydrology, and biogeochemical cycles 

(including aerosol and air quality) in coupled Earth system models is more important for S2S 
predictions than for traditional weather prediction because much of the predictability of the Earth 
system on these timescales arises from conditions outside the troposphere or from interactions 
between Earth system components. However, the representation of processes outside the 
troposphere has generally been less well developed in Earth system models used for making S2S 
forecasts. Thus improving model representation of land surface and terrestrial hydrology, ocean, 
sea ice, and upper atmosphere—including fluxes and feedbacks between these components and 
the troposphere—should be central to the S2S research agenda. For example, improving the 
representation of land surface processes such as soil moisture storage and snow may be 
important for predicting events such as heat waves, cold surges, storm formation, and predicting 
run-off may help to enable S2S forecasts of flooding and lake and coastal hypoxia. Similarly, 
connecting advances in cutting-edge sea ice models (including sophisticated physics 
representations of ice-thickness distribution, melt ponds, biogeochemistry, and 
divergence/convergence, as well as new methods to account for wave-floe interactions, blowing 
snow, and ice microstructure) with sea ice models used in S2S forecast system could advance 
S2S predictions of the atmosphere through improved representation of radiative and ocean 
feedbacks, as well as advancing S2S prediction of sea ice and polar ocean conditions. As demand 
grows for forecasts of phenomena that are predictable on S2S timescales but that do not feedback 
strongly to the atmosphere, improving the dynamical representation of many of these Earth 
system processes in S2S prediction systems may also become important in its own right. 

As coupled systems become increasingly complex and the linkages between variables 
expand, the uncertainty in coupled model output increases, particularly for downstream products. 
Understanding the nonlinear ways in which these uncertainties can interact should be a key area 
of focus. Utilizing recently developed reduced-order methods described above, which predict 
and quantify uncertainty across models directly using model equations themselves, would thus 
be useful (Smith et al., 2014). 

Beyond advancing the representation of the land surface, hydrology, stratosphere, sea ice, 
ocean, and biogeochemical models and translating these advancements to the Earth system 
models used for S2S forecasting, efforts are needed to pave the way towards global cloud/eddy-
resolving atmosphere-ocean-land-sea ice coupled models, which will one day become 
operational for S2S prediction. While this goal is unlikely to be reached in the next decade, 
revolutions in the computing industry may shorten the distance between now and the otherwise 
long way to go, and the S2S research community needs to be proactive and poised if/when that 
happens. Substantial research is needed in several specific areas to ready global cloud/eddy-
resolving models for operation. First, models’ dynamic cores need to be made more efficient to 
take the advantage of new computer technology (Chapter 7). Second, new parameterization 
schemes needed at cloud/eddy-resolving resolutions must be advanced. Third, probabilistic 
predictability on cloud/eddy-resolving scales would be different from that based on models of 
coarse resolutions, especially for some extreme events, which require additional studies. Finally, 
cloud/eddy-resolving (or permitting) models will not replace the need for multimodel ensembles 
(MME). Considering the huge demand on computing capability, cloud/eddy-resolving MME 
needs to be approached through international collaboration and coordination.  
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Recommendation I: Pursue next-generation ocean, sea ice, wave, biogeochemistry, and land 
surface/hydrologic as well as atmospheric model capability in fully coupled Earth system 
models used in S2S forecast systems. 
 
Specifically:  
 

 Build a robust research program to explore potential benefits to S2S predictive skill and 
to forecast users from adding more advanced Earth system components in forecast 
systems. 

 Initiate new efficient partnerships between academics and operational centers to create 
the next generation model components that can be easily integrated into coupled S2S 
Earth system models. 

 Support and expand model coupling frameworks to link ocean/atmosphere/land/wave/ice 
models inter-operably for rapidly and easily exchanging flux and variable information. 

 Develop a strategy to transition high resolution (cloud/eddy-resolving) atmosphere-
ocean-land-sea ice coupled models to operations, including strategies for new 
parameterization schemes, data assimilation procedures, and multi-model ensembles 
(MME). 

 
 

COMBINATION, CALIBRATION, VERIFICATION AND OPTIMIZATION OF S2S 
FORECAST SYSTEMS 

 
As discussed in previous sections, there will always be uncertainties in observations that 

are used to initialize S2S systems and in the parameters and equations used to represent 
processes. The net result is biases and errors in the forecast. Significant effort has gone into 
reducing systematic model errors and biases in Earth system prediction systems, and these efforts 
must continue in order for S2S forecasts to advance. However, uncertainties in initial conditions 
and model formulations are certain to remain for the foreseeable future. This necessitates the 
careful assessment of uncertainties and efforts to account for them (e.g., ensemble prediction and 
other methods of uncertainty quantification), and statistical post-processing to adjust forecasts so 
that systematic biases are reduced (calibration). Both are essential for improving the reliability 
and skill of S2S forecasts, and along with efforts to improve forecast verification, are critical to 
advance. 

This section highlights some recent advances and challenges in improving forecast skill 
through ensemble forecasting and calibration. It also covers technical aspects of forecast 
verification—the process of comparing forecasts with observations in order to test forecasts’ 
reliability, measure their skill, assess their value, and develop bias corrections. Given the range 
of possible methods and options for improving forecast skill through such techniques, this 
section also discusses the optimization of forecast systems through an exploration of costs and 
benefits of various forecast system configurations. 
 
 
  



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

150 Next Generation Earth System Prediction 
 

PREPUBLICATION COPY 

Accounting for Uncertainty to Improve Probabilistic S2S Forecast Reliability and Skill 
 

As briefly discussed in Chapter 2, a notable strategy for advancing the skill and utility of 
S2S forecasts in the past few decades, apart from efforts to reduce model errors, has been the 
inclusion of quantitative information regarding uncertainty (i.e., probabilistic prediction) (e.g., 
Dewitt, 2005; Doblas-Reyes et al., 2005; Goddard et al., 2001; Hagedorn et al., 2005; Kirtman, 
2003; Palmer et al., 2004; Palmer et al., 2000; Saha et al., 2006, among many others). This 
change in prediction strategy naturally follows from the fact that climate variability includes a 
chaotic or irregular component, and because of this, forecasts must include a quantitative 
assessment of this uncertainty. More importantly, the prediction community now understands 
that the potential utility of forecasts is based on end-user decision uptake and utilization 
(Challinor et al., 2005; Morse et al., 2005; Palmer et al., 2000), which requires probabilistic 
forecasts that include quantitative information regarding forecast uncertainty or reliability. 

Ensembles of perturbed initial observational values are now commonly used to represent 
uncertainty associated with model initial conditions; however, the number of ensembles and the 
method of ensemble creation vary widely across operational systems (Appendix B, Tables B.1 
and B.2). Little systematic work has been done to evaluate the costs and benefits of different 
ensemble sizes and methods in relation to other investments.  

In addition to uncertainty in initialization, uncertainty quantification is also necessary to 
account for uncertainty associated with model formulation. A number of methods exist or are 
under development to try and account for this type of uncertainty. Perturbed physics ensembles 
(currently in use at the Met Office for their operational system) or stochastic physics (e.g., 
Berner et al., 2008; Berner et al., 2011) appear to be quite promising for representing some 
aspects of model uncertainty (e.g., Weisheimer et al., 2011, and see section above on Data 
Assimilation).  

The multi-model ensemble (MME) approach, in which forecasts are made from an 
ensemble of separate models, has been the most widely tested and implemented of such methods. 
As also discussed in Chapter 2, a number of routine MME S2S forecasts are currently issued: 
The Canadian Meteorological Centre has been producing operational MME seasonal forecasts 
using two coupled models since 2011.39 Seasonal MME forecasts are also being produced at the 
APCC every month based on data collected from 17 operational centers and research institutions 
(see Box 2.1). The North American Multi-Model Ensemble (NMME) is approaching quasi-
operational status on the seasonal scale, and planning for subseasonal capabilities is at the 
beginning stages (see Box 2.2). Forecasts from these and other MMEs, which include multiple 
operational and/or research models, generally achieve a better skill and reliability than individual 
models (Kirtman, 2014; Kirtman et al., 2014; Min et al., 2014; Weigel et al., 2008; Doblas-Reyes 
et al., 2009; Kharin and Zwiers, 2002; Kirtman, 2014; Krishnamurti et al., 2000; Palmer et al., 
2004; Wang et al., 2009c; Weisheimer et al., 2009), although in some cases, only marginal skill 
improvement has been achieved when verifying the ensemble mean (e.g., Doblas-Reyes et al., 
2000; Doblas-Reyes et al., 2009; Weisheimer et al., 2009).  

The precise reasons for these improvements in skill are not totally clear, but when 
separate prediction systems are combined into a single prediction system of systems, model-and 
data-induced errors or uncertainty tend to cancel out, which improves the overall probabilistic 
distribution of likely outcomes (Doblas-Reyes et al., 2005; Hagedorn et al., 2005; Palmer et al., 
2004; Palmer et al., 2008). Different model configurations, along with different 
                                                 
39 http://weather.gc.ca/saisons/index_e.html, accessed January 27, 2016. 
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parameterizations and physics likely both play a role in this reduction of error: forecast models in 
different operational centers and institutions have different configurations (e.g., resolutions, 
physics parameterization schemes, strategies for initialization, ensemble, coupling, and 
retrospective forecasts). Multi-model ensemble (MME) forecasts likely cover a more complete 
probability distribution than a single model because of these different configurations and also 
because different models tend to have their own strengths in capturing different sources of 
predictability. Thus forecast skill improvement may also come from combination of different 
signals.  

Despite their current value and future promise for further improving S2S forecasts, there 
are a number of important gaps in our understanding of MMEs and how to assemble them 
strategically. Currently, MMEs are largely systems of opportunity, not systems made through 
careful design (Sandgathe et al., 2013). Furthermore, there are tradeoffs between developing 
independent multiple models and focusing resources on one system, including focusing on other 
methods of capturing uncertainty associated with model formulation. A further challenge for 
MMEs is how to combine models with unequal skill (Sandgathe et al., 2013). Different methods 
have been used to combine multi-model ensembles for deterministic and probabilistic forecasts, 
including simple averaged MMEs where the contribution of each model is equally weighted and 
empirically weighted MMEs using multiple linear regressions. The relative skill of forecast 
models can also be used to weight the contributions of each model to the multi-ensemble, either 
point-by-point or over larger regions. The choice of method may depend on parameters, 
locations, and applications. For example, Kharin and Ziwers (2003) found that for 500-hPa 
geopotential height forecasts, the simple ensemble mean produces the most skillful forecasts in 
the tropics, whereas the regression-improved ensemble mean performs best in the extratropics, 
and the MME forecast that is obtained by optimally weighting the individual ensemble members 
does not perform as well as either the simple ensemble mean or the regression-improved 
ensemble mean. In the case of the APCC MME (Box 2.1), products are generated using a 
number of methods, including simple equal weight for all members, empirically weighted 
coefficients, and probabilistic forecast. In this case, simple averaged MMEs generally 
outperform MMEs of other weighting methods over most latitudinal zones for all variables and 
seasons (Min et al., 2014).  

 
Finding 5.33: Although perturbed physics and other methods continue to be studied and 
implemented, given current modeling capabilities, a multi-model strategy is a practical and 
relatively simple approach for quantifying forecast uncertainty due to errors in model 
formulation, although optimal methods for combining models are not always clear, and 
MMEs will not fully account for forecast uncertainty. 
 
 

Calibration of S2S Probability Forecasts 
 

Calibration is a post-process that uses statistical methods based on discrepancies between 
past forecasts and observations to adjust ensemble forecasts and improve forecast skill. Today, 
all operational S2S models include a number of ensemble members whose individual forecasts 
can be arranged to estimate probability distributions for the predicted variables, point-by-point 
across the forecast grid. However, in their original form, the statistical characteristics of S2S 
forecasts often differ from those of the environmental features they attempt to predict. The aim 
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of calibration or post-processing of model output is to remove these systematic errors and to 
reshape the predicted probability distribution so that it resembles as closely as possible the 
distributions that will be found when the forecasts are verified.  

Calibration processes are developed by comparing forecasts made with the current 
prediction model to actual observations for as many cases as possible over a historical period 
(retrospective forecasts or “reforecasts”), usually ten to thirty years for S2S forecasts. The 
comparison produces statistical information that is used in calibration algorithms to ensure that 
the long-term statistical moments (mean, variance, spread, etc.) of the forecast at any given lead 
time match the long-term observed statistical variability. Some calibration methods are based on 
the Bayesian model averaging approach proposed by Raftery et al. (2005), including those 
described by Dutton et al. (2013). Other methods focus on more direct adjustment of variances, 
including those of Doblas-Reyes et al. (2005) and Johnson and Bowler (2009). S2S ensembles 
are often under-dispersive and the calibration methods usually amplify the variance to 
correspond more closely to the observed variance. 

Statistical-dynamical (S-D) techniques, e.g., model output statistics (MOS), can be very 
beneficial for improving model calibrations where the models cannot capture all the processes 
that are occurring. For example, the tropical cyclone forecast community has used S-D 
techniques for a number of years, where the dynamics involved in hurricane track and intensity 
are not completely understood. Analog techniques have shown fewer uses but may have value in 
helping to capture uncertainty, potentially reducing model retrospective forecast requirements 
and reducing or eliminating the need for additional models (Hamill et al., 2006). 

In practice, the calibration of S2S forecasts is not a well-organized process, and there is 
no single approach that works best for all applications. The forecast centers provide the forecasts 
and corresponding retrospective or historical forecast sets and frequently provide some 
calibration. Commercial providers or other users also often compute and apply their own 
calibrations in order to enhance skill or target specific applications.  

Looking forward, as more of the components of the Earth system are included in the 
models, the challenges of model calibration will intensify—not least due to the need for more 
comprehensive and long-record observations across components of the Earth system. The 
atmospheric, ocean, land, and ice models evolve towards their own model climate and do not 
necessarily combine and converge on the actual Earth system climate. For example, as 
mentioned in earlier in this chapter (Figure 5.7), SST errors in coupled model simulations with 
the UK Met Office model grow rapidly. Identifying model error and compensating for model 
tendencies will continue to be a key activity in S2S model development and operation. 

 
Finding 5.34: Calibration of S2S probability forecasts is a critical process in preparing the 
forecasts to serve users. Forecast centers, private sector users, and value-added providers use 
various calibration methods, but there has been no comprehensive effort to compare methods 
or to find optimum approaches for the variables of most interest. Ascertaining whether some 
methods offer clear advantage over others would be useful. 
 
 

Verification of Forecasts and Metrics of Model Skill  
 

Proper verification of forecasts is critical to all aspects of model improvement, system 
design, ensemble configuration, and the determination use and value by decision makers. A 
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variety of options exist for verifying and estimating the skill of S2S probability forecasts. Some 
are related to atmospheric or oceanic phenomena and some to quantities of interest to users such 
as the financial consequences of hedging when adverse conditions are predicted. A standard 
approach is to estimate model skill through anomaly correlations or root-mean-square errors of 
common meteorological variables such as temperature and precipitation (see Figure 2.4). 
Although such metrics have been used for decades, they provide only a limited view of forecast 
skill. They are traditionally carried out on a grid-point-by-grid-point, variable-by-variable basis, 
and often do not provide a comprehensive picture of model or forecast skill (Brown et al., 2004; 
Brown et al., 2002). 

Significant recent research has been devoted to improved verification techniques, 
targeted mainly at very high resolution mesoscale predictions and also at ensemble predictions 
(Gilleland et al., 2010), yet significant research opportunities exist for improving verification 
beneficial to S2S prediction. For S2S prediction, as in mesoscale prediction where predictability 
limits are an issue (e.g., thunderstorms or tornadoes), the opportunity exists for feature-based 
prediction in which skill is measured not on a grid-point by grid-point basis, but on the basis of 
predicting larger features (ENSO, MJO, NAO, warm SST pools, sea ice extent, etc.) within the 
Earth system (Cornuelle et al., 2014). Put another way, while model skill in predicting surface 
wind at a point one to three months in advance may be lacking, as discussed in Chapter 2, certain 
structures and indices are predictable at these timescales and have verifiable attributes using 
newer object-oriented, feature verification techniques (Gilleland et al., 2010). These techniques 
are just recently being extended to ensemble prediction (Gallus, 2010; Johnson et al., 2013) and 
potentially provide a means for credible verification of feature skill for S2S predictions.  

Successful prediction and verification of S2S “features” also leads to a two-step process 
of prediction and verification where successful prediction of a “feature” can be correlated to a 
likely environmental event for a user, e.g., strong ENSO leads to increased rainfall in California 
by shifting the location of the subtropical jet and tropical flow of moisture further east (WMO, 
2015a). However, location, areal extent and intensity of the SST anomaly determine the location 
and intensity of rainfall. Potentially, using feature-based verification as an example (Box 5.3), 
this could be refined to correlate intensity and location of ENSO anomalous SST to more refined 
watershed regions of rainfall. Clearly, predictability limits are a factor here; however, there is 
significant user value if, through proper verification, accurate probabilities can be assigned to 
user-critical events or thresholds.  

More challenging is the verification of forecasts of rare events at S2S timescales 
(Hitchens et al., 2013). Credible reanalysis or retrospective forecast history is limited to 
approximately forty years, providing a small sample for verification of long-range predictions of 
extreme or rare events. Techniques for verifying ensemble predictions of rare events are being 
explored (Gneiting and Ranjan, 2011); however, longer data records are required to provide 
credible validation and verification.  

 
Finding 5.35: Aggregating observations into features or indices provides added S2S 
predictability. Feature-based or object-oriented verification, especially ensemble feature-based 
verification, needs to be pursued for S2S to support Earth system model development and 
forecast calibration and validation. 
 
Finding 5.36: Two-step verification correlating a feature, index, or object to a user-valued 
event shows promise for extracting useful signal at the limits of predictability. 
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BOX 5.3—Feature-Based Verification 
 

Feature-based verification as proposed by Brown, et. al., 2002 has been heavily researched for mesoscale 
prediction over the past decade with several developed methodologies, including wavelet techniques, 
empirical orthogonal functions, and clustering (Gilleland et al 2010). A “feature” for mesoscale prediction 
can represent both temporal and spatial features that are recognizable and that have societally relevant 
consequences, such as a mesoscale cloud cluster, an area of heavy precipitation, or duration of extreme 
winds, or it may be a combination of these attributes. Conceptually, we understand a “hurricane” as a 
feature, but it can be defined as an area of cloud cover, rainfall, a radius of winds exceeding a threshold, 
or a moving point of maximum wind. For S2S, a “feature” might be an area of SST anomalies that exists 
in both time and space (e.g. ENSO), an area of severe drought defined by rainfall, temperature, area, and 
temporal extent, or an area of sea ice coverage. Many indices discussed in the preceding chapters such as 
ENSO, PDO, MJO, etc., are roughly based on features. Feature-based verification has the advantage that 
it can “recognize” and verify a feature that may occur slightly earlier or late, may cover a smaller or larger 
area, may be more or less intense, may be of shorter or longer duration, etc., than predicted. This enables 
more accurate quantitative evaluation of model performance in “near miss” situations and better 
refinement of model skill and reliability. Feature-based verification also has the advantage that is an 
aggregation of model variables in space and time and consequently has greater predictability that a single 
variable at a single grid-point (see also Chapter 2). 

 
Research to develop feature-based verification techniques will be important, but it is 

important not to lose track of the fact that verification metrics are a critical part of building trust 
in the use of forecasts, and the design of metrics that are effective for users can also help drive 
model development in directions that lead to enhancements in skill that are most beneficial to 
decision makers (Hartmann et al., 2002; Morss et al., 2008; Pagano et al., 2002). The need to 
develop verification metrics that are more closely associated with user needs and desired forecast 
products, such as quantities that may be more directly used by the energy, transportation, hazard, 
water, and agriculture sectors, among others, in combination with the need to develop common 
S2S-specific forecast skill metrics to target core physical characteristics of the forecast that are 
particularly relevant to S2S processes and timescales (e.g. SST, sea ice thickness, upper level 
atmospheric flow, soil moisture, upper ocean heat content, etc., in addition to indices of S2S 
relevant modes of variability), highlights the need for a community-wide effort to develop skill 
and verification metrics that will build user trust while also driving the development of S2S 
forecast systems in directions that most beneficial to society. An understanding of the different 
ways in which users interpret forecasts and what they consider to be skillful is clearly necessary 
to inform the types of evaluation metrics that will influence use of forecasts (see Chapter 3). In 
developing such common skill and verification metrics, attention is also needed to ensure that 
such metrics reflect appropriate and optimal combinations of spatial and temporal averaging as 
the lead time increases from weeks to seasons. Thus developing this range of verification 
metrics/diagnostics targeting S2S forecast skill improvements, dissemination, and monitoring 
will require input from, and dialogue among, the operational, research and stakeholder 
communities (see also Chapters 3 and 6). In some cases, there already exist forums where such a 
dialogue can begin. For subseasonal prediction, for example, the S2S Project has begun a process 
to develop common and community-accepted verification and process-oriented skill metrics for 
forecast systems. 

 
Finding 5.37: Meeting the objectives to increase the skill of S2S forecasts by improving and 
expanding the representation of the physical system and expanding their utility will require a 
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community-wide process with operational, research and stakeholder involvement, to develop 
common S2S forecast skill and verification metrics, as well as process-oriented diagnostics 
that target S2S processes and phenomena. 
 

Often decision makers simply want to know whether to have confidence in a particular 
forecast. Should I act on the basis of this forecast? What are the expected consequences if I do? 
In these cases, effective use of the forecast in decision making requires quantitative knowledge 
of historical performance of the forecast system in order to link predictions with expected 
outcomes, i.e., “If I act on this forecast, then I can expect…” In these cases, a quantitative 
business model or decision process model based on predicted probabilities will then dictate the 
appropriate measure of model skill. For example, a simple business model for characterizing the 
effect of warm or cold seasons on electric utilities demonstrates that the critical model 
performance statistics for analyzing the impact of forecasts (in order to mitigate such predicted 
adverse events) are the climatological and predicted frequencies of such events, along with the 
fraction of adverse forecasts that are correct (Dutton et al., 2015).  

Verification metrics are most useful when decision makers are involved in their design 
(see also Chapter 3 and Recommendation B), and for many users, the success of the S2S 
forecasts is directly proportional to the favorable results achieved by acting on the forecast at 
various predicted probabilities. Knowing whether to act on a forecast requires detailed and 
reliable statistics about forecast performance that must be obtained from retrospective forecasts. 
These retrospective forecasts, then, can be as important to effective user decisions as the 
forecasts themselves. 

In most current operational S2S systems, however, there is inconsistency between real-
time forecasts and retrospective forecasts in initialization as well as ensemble size (Appendix B, 
Tables B.1 and B.2). Furthermore, retrospective forecasts are usually initialized from reanalysis, 
which can be inconsistent with the state-of-art operational analysis used to initialize the real-time 
forecasts. This is particularly true for the land surface (e.g., soil moisture and snow). Such 
inconsistency, particularly the inconsistency in initialization and model configuration for real-
time forecasts and retrospective forecasts, can generate anomalies with amplitude as large as the 
signal we want to predict. 

Finally, the full probabilistic information contained in the ensemble forecast is essential 
to decision making, as emphasized by Dutton et al (2013; 2015). Anomaly correlations or root-
mean-square errors use only one or two statistical moments and may or may not be relevant to 
decisions to act. The critical question is the extent to which predicted probabilities model the 
frequencies of occurrence in the verification data. 

Thus in S2S forecasts, it is important to convey the associated forecast skill to users along 
with the forecast itself. In addition to providing data for calibration, retrospective forecasts are 
used to evaluate forecast skill of the S2S system. When retrospective forecasts are made with the 
same fixed version of model and same ensemble number as the forecast, forecast skill of the 
system can be more easily assessed with the retrospective forecast data. For those systems doing 
retrospective forecasts on the fly, the assessment of forecast skill can be more challenging. In 
these cases, conducting retrospective forecasts with a full set of ensemble members and 
evaluating the skill once a month could be beneficial. This is true for most of the current 
operational subseasonal forecast systems. 
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Finding 5.38: Retrospective forecasts using the current version of the forecast system and up 
to date reanalyses are important for advancing calibration and validation efforts of ensemble 
prediction. 
 
 
The Way Forward for Model Calibration, Combination, Verification, and Optimization of 

User-Focused Skill 
 

A key conclusion of this section is that the value of S2S forecasts is proportional to the 
success of the users in acting on the forecasts to take advantage of opportunity or to mitigate risk. 
Thus the two key components are the forecasts that look to the future and the retrospective 
forecasts, which inform users what to expect if they act on the forecast. The success of the 
forecasts also depends on the calibration processes that shape predicted probability distributions 
to improve the likelihood they will match the verification data. Underpinning this is a the need 
for a credible verification methodology that reflects the aggregating of observations to extend 
predictability, the spatial and temporal variability of predictability at S2S timescales, and the 
unique characteristics of multi-model ensembles. 

The opportunity exists for feature-based predictions with S2S lead times. The community 
is gaining the ability to predict certain features, structures, or indices (MJO, ENSO, sea ice 
extent, etc.) at S2S timescales and have verifiable attributes using newer object-oriented 
verification techniques, with extensions to ensemble prediction. There is the potential to provide 
credible verification of feature skill for S2S predictions, and the Committee believes that this is 
an important direction to be pursued.  
 
Recommendation J: Pursue feature-based verification techniques in order to more readily 
capture limited predictability at S2S timescales, as part of a larger effort to improve S2S 
forecast verification. 
 
Specifically: 
 

 Investigate methodologies for ensemble feature verification including two-step 
processes linking features to critical user criterion.  

 Pursue verification methodologies for rare and extreme events at S2S timescales, 
especially those related to multi-model ensemble predictions. 

 Consider the benefits of producing more frequent reanalyses using coupled S2S 
forecast systems in order for the initial conditions of retrospective forecasts to be 
more consistent with the real time forecasts, as well as for the purposes of 
predictability studies. 

 
 
Optimization of the Configurations of S2S Forecast Systems 
 

As is clear from the supporting paragraphs above, S2S forecast systems, including the 
coupled Earth system model, the reanalysis, and retrospective forecasts, can be configured in a 
wide variety of ways. Designing and implementing a S2S forecast system to operate within finite 
computing resources always requires trade-offs between spatial resolution, length of forecast 
lead times, coupled system complexity, the number of model forecast systems for MME 
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approaches, and the number of ensemble members in each forecast system. Thus, the 
specifications can vary widely over a configuration space of these parameters. 

Today the S2S community has little sense of how forecast performance depends on that 
configuration (Cornuelle et al., 2014; Sandgathe et al., 2013). In addition to research on reducing 
model errors through parameterizations, increases in model resolution, and adding complexity in 
coupled submodels, it would be enormously beneficial to ascertain which configurations can 
produce optimum forecast systems, as defined by reliable probability forecasts across a wide 
spectrum of climate variability and Earth system variables and by optimum levels of user-
focused skill. Although the focus of this report to this point has been on developing dynamical 
predictions, such an assessment should also consider the value of lower-order models and analog 
methods for reducing computational costs while maintaining prediction skill. 

This determination of how performance depends on configuration is a central key task in 
any S2S research agenda. Exploring the configuration space (or “trade space”) of S2S forecast 
systems will be a large, complicated, and expensive endeavor, expanding as computer and Earth 
system modeling capabilities expand over the next decade or more. Such an experiment would 
benefit tremendously from a central, coordinating authority, and preferably central funding as 
well (see discussion in Chapter 6).  

This work to optimize system configuration is essential to progress today, but it will also 
never be complete. New methods for representing physical processes (Recommendation H), new 
computer capabilities (Chapter 7), and new calibration strategies all will mandate a continued 
search for trajectories through the model and forecast system configuration space that are most 
advantageous to improving S2S forecast skill and use. 

Exploring the “trade-space” thus represents a major and long-term research effort, 
undoubtedly distributed through the modeling community, which will provide a foundation for 
the continuing development and improvement of the operational forecast systems to be 
considered in the next chapter. In summary, the Committee has defined users acting on forecasts 
as a key metric for measuring S2S success, and we recommend a continuing search for 
configurations of S2S forecast systems that will optimize the probabilistic information required 
by users.  

 
Recommendation K: Explore systematically the impact of various S2S forecast system design 
elements on S2S forecast skill. This includes examining the value of model diversity, as well as 
the impact of various selections and combinations of model resolution, number of ensemble 
perturbations, length of lead, averaging period, length of retrospective forecasts, and options 
for coupled sub-models. 
 
Specifically: 
 

 Design a coordinated program to assess the costs and benefits of including additional 
processes in S2S systems, and relate those to benefits from other investments, for 
example in higher resolution. In doing so, take advantage of the opportunity to leverage 
experience and codes from the climate modeling community.  

 Encourage systematic studies of the costs and benefits of increasing the vertical and 
horizontal resolution of S2S models. 
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 Evaluate calibration methods and ascertain whether some methods offer clear advantage 
for certain applications over others, as part of studies of the optimum configurations of 
S2S models. 

 Explore systematically how many unique models in a multi-model ensemble are required 
to predict useful S2S parameters, and whether those models require unique data 
assimilation, physical parameterizations, or atmosphere, ocean, land, and ice components 
(see also Recommendation L).
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Chapter 6: Interface Between Research and 
Operations 

 
The aim of research efforts to make subseasonal to seasonal (S2S) predictions is to 

operationalize forecasts on these timescales to provide consistent and timely forecast information 
that various sectors can rely upon for decision making. As described in Chapter 3, there is an 
increasing demand for easily accessible and comprehensible S2S forecasting information that is 
updated on a regular basis, which provides an increasing demand for operational S2S products. 
As described in Chapter 4, there is ongoing progress to identify and characterize sources of 
predictability for S2S forecasts. As described in Chapter 5, the models that have been developed 
as research tools to study scientific questions regarding the processes responsible for weather and 
ocean variability, climate change, and predictability are being improved at a rapid pace (e.g., 
Delworth et al., 2006; Gent et al., 2011; Kiehl et al., 1998). Any strategy to improve the 
provision of operational S2S products needs to incorporate the efficient migration of advances 
from the research community into operational forecasts (NRC, 2012b).  

A key part of the interface between research and operations will need to take into account 
the interaction between the research and operational communities. There is a natural tension 
between the academic research community and the operational forecasting community. 
Researchers within the academic community are generally rewarded for exploring new concepts, 
as scientific journals often favor publications that are viewed as making major advancements as 
opposed to incremental changes. Forecasters in the operational community are often under 
pressure to maintain a natural conservatism. Because numerous users depend on operational 
forecasts and invest in using specific outputs, there is pressure on the forecasters to maintain 
consistency in their forecast products. This tension can be healthy, but some of these cultural 
differences between the two communities can impede dialogue and collaboration. Facilitating 
work across this interface between research and operations needs to start by acknowledging these 
cultural differences.  

This chapter describes several ongoing efforts to promote collaboration across the 
research and operational communities both in the United States and elsewhere. The topic of 
forging better links between research and operations in climate modeling was covered 
comprehensively in a recent NRC report (NRC, 2012b), and the Committee builds upon rather 
than repeats the highly relevant but more general findings of that report here. Thus in this 
Chapter, the Committee makes the case for several recommendations that are more specific to 
the S2S context. In particular, because of their importance in reducing uncertainty and increasing 
the skill and reliability of S2S forecasts (Chapter 5), the Committee’s emphasis is on research to 
operations related to the development of Multi-model Ensemble forecast systems (MMEs). 
 
 

CURRENT ACTIVITIES AT THE INTERFACE OF S2S RESEARCH AND 
OPERATIONS 

 
There are a number of efforts, both nationally and internationally, that work at the 

interface of research and operations in S2S forecasting. Many of these efforts were introduced 
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previously in in Chapter 2. This section describes in greater detail several prominent efforts, 
highlighting their importance for bridging research and operations, particularly in the area of 
developing MME prediction systems; it is not intended as a comprehensive list. 
 
 

Demonstration MME S2S Forecast Systems 
 

As introduced and described in Chapter 2 there are a number of international efforts 
aimed at improving MMEs and issuing MME forecasts in demonstration mode. The North 
American Multi-Model Ensemble (NMME-40) (Box 2.2) is a demonstration project for S2S 
prediction involving universities and laboratories in the United States, NCEP, and the Canadian 
Meteorological Center. It is supported largely through research dollars from NOAA, NSF, 
NASA, and DOE. Participating modeling groups include both operational and research centers41, 
with forecasts from each provided to the NOAA Climate Prediction Center for evaluation and 
consolidation as an experimental multi-model ensemble S2S prediction system. 

Phase 2 of the project focuses on bridging research and operations, and requirements for 
operational S2S prediction are used to define the specifications of a rigorous retrospective 
forecast experiment and evaluation regime. Other more specific goals of the NMME-2 
experiment include (Kirtman, 2014): 

 
i. Build on existing state-of-the-art U.S. climate prediction models and data assimilation 

systems that are already in use in NMME-1 (as well as upgraded versions of these 
forecast systems), introduce a new forecast system, and ensure interoperability so as 
to easily incorporate future model developments. 

ii. Take into account operational forecast requirements (forecast frequency, lead time, 
duration, number of ensemble members, etc.) and regional/user-specific needs. A 
focus of this aspect of the experiment will be the hydrology of various regions in the 
United States and elsewhere in order to address drought and extreme event prediction. 
An additional focus of NMME-2 will be to develop and evaluate a protocol for 
intraseasonal or subseasonal multi-model prediction. 

iii. Utilize the NMME system experimentally in a near-operational mode to demonstrate 
the feasibility and advantages of running such a system as part of NOAA’s 
operations. 

iv. Enable rapid sharing of quality-controlled retrospective forecast data among the 
NMME team members and develop procedures for timely and open access to the 
data, including documentation of models and forecast procedures, by the broader 
climate research and applications community. 

 
The Asia-Pacific Climate Center (APCC [Box 2.1]) is a joint activity of Asia-Pacific 

Economic Cooperation involving 17 operational and research centers from nine APEC member 
countries. It collects dynamic ensemble seasonal prediction data from these centers, and 

                                                 
40 More information on the National Multi-Model Ensemble is available at 
http://www.cpc.ncep.noaa.gov/products/NMME/NMME_description.html and 
https://www.earthsystemcog.org/projects/nmme/ (both accessed January 27, 2016). 
41 Details of each of the participating models can be found at 
http://www.cpc.ncep.noaa.gov/products/NMME/Phase1models.png (accessed February 10, 2016). 
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produces seasonal forecasts and outlook that are disseminated to APEC members every month 
(see Box 2.1). Together with its aligned research institute —CliPAS—the APCC project has 
established protocols and databases for contributing model centers’ forecast data, which in turn 
supports research on predictability. As part of the project, APCC also conducts research on 
multi-model ensemble methods, which in turn feeds work to issue MME forecasts using the most 
beneficial methodology (Min et al. 2014). 

Through these and other MME research and demonstration efforts (e.g., ENSEMBLES, 
DEMETER —see Chapter 2), much has been learned about MME forecast systems. As also 
described in Chapter 5, a primary finding has been that MME forecasts in general show 
improved forecast skill and reliability when compared with the individual model forecasts. Thus 
first and foremost, these demonstration and aligned research-operational efforts have shown the 
potential for operational MMEs.  

 
Finding 6.1: Previous MME efforts have demonstrated MMEs as a viable mechanism for 
advancing S2S forecasts. 
 

Although it is not yet a forecast demonstration project as both NMME and APCC are, the 
WWRP/WCRP joint research project—the S2S Project—started in January 2013 with a primary 
goal to advance subseasonal forecasting by coordinating prediction and predictability research 
enabled by the establishment of a multi-model data base. The data base consists of ensembles of 
subseasonal (up to 60 days) forecasts and supplemented with an extensive set of reforecasts 
following TIGGE-the THORPEX Interactive Grand Global Ensemble-protocols (Box 2.3). Note 
that while this project leverages operational systems, the forecasts are currently disseminated 
with a three-week delay, thus emphasizing the use of operational forecast system data for use by 
both the research and operational communities.  

One advantage of the S2S Project database is the diversity of operational models. 
However, there is inconsistency among the models in forecast start date, frequency, lead time, 
and reforecast strategy, which makes it difficult for data exchange, performance inter-
comparison, and research. This also reflects the fact that the subseasonal forecast is still in its 
infancy stage.  

There are significant opportunities for leveraging the S2S Project, not only the database 
but also the associated subproject research and activities. Most of the subprojects already 
strongly link to entities and activities outside the S2S Project (e.g., the MJO Subproject links to 
the WCRP-WWRP’s Working Group on Numerical Experimentation (WGNE) MJO Task 
Force). During a recent workshop on Subseasonal Prediction hosted by ECMWF42, in concert 
with an S2S Project Steering Group meeting, for example, a working group discussed and 
recommended avenues for broader international collaboration that would more fully take 
advantage of the S2S Project and NMME. These included: 1) the establishment of a Task Team 
on S2S process-oriented diagnostics as well as forecast skill verification metrics—keeping in 
mind both model development and stakeholder interests, 2) more routine interaction between the 
leads of the subseasonal NMME Core Team, S2S project co-chairs, S2S Verification subproject 
leads, and WMO Commission for Basic Systems (CBS) leads, 3) joint workshops between 
NMME, S2S, CBS, etc., 4) coordinated research experimentation, with leadership in part 
provided by WGNE, etc. Additional recommendations and full details on the above will be given 
in the final report of the ECWMF workshop expected to be posted in early 2016. There is an 
                                                 
42http://www.ecmwf.int/en/learning/workshops-and-seminars/past-workshops/workshop-subseasonal-predictability. 
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opportunity for enhanced collaboration between the operational centers contributing to the S2S 
Project and the WMO Joint CBS/CCl Expert Team on Operational Predictions from Subseasonal 
to Longer-time Scales (ET-OPSLS), which operates through the WMO Lead Centre in Korea. 
Building on the existing mechanism whereby the LC has access the same S2S database, but 
without the three-week embargo, could enable a closer synergy between the research community 
and operational centers’ research efforts. 

 
Finding 6.2: The S2S Project has begun a process for archiving data from operational 
forecast systems and coordinating research using these databases to accelerate improvements 
in subseasonal prediction, as well as play key role in guiding the development of decision 
support projects.  
 
 

Example R2O Strategies and Arrangements 
 
ESPC  
 

The National Earth System Prediction Capability (ESPC) Inter-Agency program was 
established in 2010 “to improve coordination and collaboration across the federally sponsored 
environmental research and operational prediction communities for the scientific development 
and operational implementation of improved global prediction at the weather to climate 
interface.”43 ESPC advocates for a number of things at the interface of research and operations, 
including common coupled modeling architectures and standardization of data, archives, and 
forecast skill metrics. 

As part of ESPC, NOAA and the U.S. Navy use a number of mechanisms to improve the 
flow of technology into operational weather and ocean systems. These include focused 
workshops, visiting scientist programs, special sessions at professional conferences, testbeds and 
focused transition teams such as the Navy’s development- and operations-transition teams and 
NSF/NOAA’s Climate Process Teams. 

 
 
European Efforts 
 

The UK Met Office operates a single science program, covering both weather and climate 
and both research and transition to operations. This approach, with the same management 
responsible for all parts, means that R2O challenges are significantly lessened, in part as the 
whole program can be designed with R2O in mind. In addition, there is an active science 
partnerships program, which seeks to entrain developments and expertise from international 
partners and the academic community. The latter is facilitated by relationships with a number of 
key universities (including jointly funded positions and PhD studentships). There is also a crucial 
strategic relationship with the Natural Environment Research Council (who fund much of the 
academic research in the UK), which enables co-design and co-funding of major research 
programs such as those developing the next generation dynamical core and working on 
improvement of the representation of convection in weather and climate models. This integrated 

                                                 
43 http://espc.oar.noaa.gov/. 
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approach—both in the design of the programs and in having a mixture of academic and Met 
Office scientists carrying them out—is of great benefit for R2O. 

The European Centre for Medium-Range Weather Forecasting (ECMWF) also has a 
strongly focused research program, targeted at generating operational improvements. They also 
host a significant number of visiting scientists, and host numerous workshops (involving 
international experts), seminars, and training programs. 
 
Finding 6.3: The United States can learn from international efforts to connect research and 
operations more closely and can build upon current national efforts to coordinate research 
and operational activities.  
 

 
CHALLENGES IN RESEARCH TO OPERATIONS (R2O) AND OPERATIONS TO 

RESEARCH (O2R) 
 

Motivated by the growing expectation for governments to provide S2S services (e.g., Dr. 
Jane Lubchenco’s testimony before Congress during the hearings to confirm her as 
Undersecretary of Commerce for Oceans and Atmosphere and Administrator of NOAA 
[Lubchenco, 2009]), there is a desire within the research community to migrate experimental 
prediction models into operational use, e.g., the NOAA Climate Test Bed effort to build the 
NMME (described previously). There is also a desire to improve on operational models by 
transitioning model components and/or parameterization schemes from experimental models 
developed in the broader community. In theory, this migration of experimental model 
components and parameterizations into operational use has the potential to efficiently leverage 
the U.S. S2S research community and to provide more skillful and comprehensive operational 
predictions. 

However, there are gaps between research goals and operational imperatives, e.g., that 
changing an operational model requires a more careful and elaborate process than for a research 
model. There are also mismatches between resource requirements needed to maintain an 
operational model and the current distribution of resources between research, development, and 
operations. 

There is also a mismatch between the expectations of the operational NWP and seasonal 
prediction community and the model research and development community. The principal 
measure of success of work that is supported by a typical short-term (e.g., three-year) research 
grant is the number, quality, and impact of the research publications that result from any project. 
Researchers receive no reward for developments that become “operational,” so there is little 
incentive to do what is viewed as very substantial extra work to transform research results into 
operational methods or procedures. There is a view that the scholarly publications speak for 
themselves, which has been described as a “loading dock” approach—the research results are 
made available to the operational prediction community via peer reviewed publications (left on 
the loading dock), and it is up to users to figure out how to use the results (see Chapter 7 for 
more discussion of workforce issues). 

From the operational community point of view, there are a great many constraints 
imposed by operations that need to be taken into account by the researchers who seek to improve 
operational predictions. In order to effect a transition from research to operations, they argue, the 
research community needs to modify its developments to conform to the constraints of the 
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operational models and resources. However, in order for the research community to use 
operational models for research, operational centers need to provide infrastructure support for 
developments to be fully tested in the operational environment. The mismatch between the two 
communities’ expectations has been called the “valley of death,” that is, a communication and 
interaction gap (NRC, 2012b). There is a need to better align the two communities and provide 
adequate resources so that good ideas can be more rapidly and effectively transformed into 
operational practice. 

Operations-to-research is a similar issue. In order to make research relevant and focused 
on scientific issues exposed by operations, operational centers must provide access to their data 
and analysis, access to operational models, and access to multiyear reanalysis and retrospective 
forecasting runs. In addition, operational and agency development laboratories must provide 
access to key model developers and software engineers to facilitate use of code and data by the 
outside community. These activities are demanding for personnel, computational and storage 
resources, something operational centers have traditionally lacked (see also Chapter 7). 

At the core of the challenges within R2O for S2S is the question of how to expand 
participation in the development and improvement of the operational prediction systems in the 
operational centers. Currently, the major route for research results and successes to move into 
operations is by diffusion through the professional literature and meetings and some focused 
symposia, like those of ECMWF, for example, Seasonal Prediction in 2012 and Subseasonal 
Predictability in 2015. Continuation of these efforts is important to continue the transfer of 
information along the R2O pipeline. However, common access to operational systems and data is 
a requirement for improving the flow of technology and information. 

 
Finding 6.4: There is a clear need to provide the research community with greater access to 
operational systems or mirror systems to aid in transitioning component, and 
parameterizations from the research community into operational centers.  
 
 

WAY FORWARD FOR RESEARCH TO OPERATIONS 
 

Over the past two decades, substantial progress has been made understanding some of the 
phenomenological drivers for S2S prediction, and operational centers have made progress in 
improving S2S forecast skill (see Chapters 2 and 5). However, there is significant opportunity for 
increased operational skill from current levels in both seasonal and subseasonal forecasts 
(Chapter 4). Connecting the research and operational communities together more effectively is 
an important part of improving that operational skill, and advancing research and quasi-
operational prediction systems into operational mode. Operational centers need to carefully 
choose which updates to make because there are often trade-offs in which improving one type of 
forecast may come at the expense of another, and users who invest heavily in developing 
products based on the output from operational centers and rely on that output being in a specific 
form. Ensuring that the best research results get into operational use and allowing researchers to 
contribute and learn from the experiences of the operational centers is an ongoing challenge for 
the weather/climate community at large (NRC, 2012b). For S2S in particular, there are a few 
areas that need enhanced attention, including planning and work to develop operationalized 
multi-model S2S forecast systems, providing the S2S research community greater access to the 
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data and models from operational systems, and organizing the operational community to be 
ready to provide S2S forecasts on the consequences of large, unanticipated events.  
 
 

Operationalizing MMEs 
 

As described in Chapter 5, MMEs have demonstrated a potential for improving the skill 
and uncertainty quantification of S2S forecasts. Although there are many design considerations 
that must be addressed to develop the best operational S2S forecast systems (see 
Recommendation K), it has been established that a multi-model ensemble outperforms a single 
model ensemble at extended timescales (Kirtman, 2014; Chapter 5). The Committee believes that 
all evidence points to the necessity of multi-model ensembles for enabling more skillful S2S 
forecasts in the next decade. Thus a long term goal of the U.S. operational centers should be to 
develop an operational MME.  

An immediate question to ask is whether the existing North American Multi-Model 
Ensemble (NMME; see above) could be built upon to develop a fully operational MME. While 
the NMME-2 is being used in a quasi-operational mode and providing data that is incorporated 
into NCEP operational products, external users, and the research community on a near real-time 
basis, its existence is almost entirely dependent on research funding. The CFSv2 is the current 
NCEP operational seasonal prediction system and is supported as such. The Canadian 
Meteorological Center systems are being provided in a demonstration mode, complementary to 
the U.S. systems. However, all other systems in the NMME are supported through federal 
research funding activities including NOAA Office of Oceanic & Atmospheric Research (OAR), 
NASA, NSF, and DOE. There have been calls to operationalize the NMME; however, in the 
Committee’s view these are misguided. Participants such as universities or research laboratories 
have little motivation or funding to sustain the provision of 99.9% reliable, on-time data delivery 
of forecasts with adherence to rigorous software validation and verification or to scheduled 
software update cycles. Even the more applied laboratories such as NASA and NOAA’s 
Geophysical Fluid Dynamics Laboratory (GFDL) do not have the mission, funding, or 
infrastructure to meet the rigorous requirements imposed upon operational data providers. 
NMME is funded and intended to provide a—highly valuable—research vehicle for advancing 
seasonal prediction and especially for investigations into optimal multi-model ensemble 
configurations.  

It will be difficult to create a multi-model ensemble in a true operational environment. 
The value of the multi-model ensemble appears to be in the differing data assimilation, 
dynamics, and physical parameterizations of the contributing models, which leads to cancelation 
of model biases and a better assessment of predicted probability distributions. This implies that 
an operational system of systems should include distinctly different systems. However, each 
individual system requires an expensive host of scientists and software engineers, especially as 
computer systems become more complex (Chapter 5). Seasonal forecast systems are also very 
computationally expensive and would significantly impact a single operational center’s 
computing resources. 

A critical challenge for the next decade therefore will be the design and implementation 
of an operational multi-model S2S forecast system that operates within finite operational 
resources. Meeting this challenge will require exploring the entire trade space for S2S prediction 
systems including using common model components (ocean, wave, land, aerosol, ice), using 
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statistical-dynamical prediction such as analogs, or using stochastic parameterizations to achieve 
suitable skill with fewer or even a single system. Thus, the Committee’s related recommendation 
above (Recommendation K) is an important step in the process of deliberately designing an 
operational MME system (and not basing the MME design solely on expediency). Exploring the 
various options in this space with the goal of optimizing skill while ultimately reducing the 
number and uniqueness of system members should lead to a tremendous reduction in the cost of 
human resources to maintain a multi-model operational system.  

This exploration of strategies needs to take place within the context of the current 
NMME, WWRP/WWCRP S2S Project, and/or APCC S2S forecast efforts, but further 
demonstration of benefits in increased skill and reliability as part of this exploration will be a key 
component of the national research agenda for S2S prediction. However, it is critical that the 
broader research community be engaged in this effort. As described for climate models generally 
(NRC, 2012b), operational centers would best promote these advances by providing operational 
models, supporting data sets, and a user-friendly model testing environment that allows external 
researchers to test experimental parameterizations and/or model components in an operational 
setting. This requires a “collaborative framework where datasets and metrics/targets are 
standardized for careful intercomparison” (Sandgathe et al., 2013). The NOAA Climate Test Bed 
activity44 provides the potential for such a connection. In addition, the Next Generation Global 
Prediction System (NGGPS45) is an effort by the National Weather Service to accelerate R2O for 
weather forecasting. The current efforts would need significant enhancement to fully address the 
challenges of designing an operational MME.  

As described above and in Chapter 5, systematic design of a robust multi-model S2S 
system will be a large, complicated, and expensive experiment, which would benefit 
tremendously from a central, coordinating authority and preferably central funding as well. The 
various interagency efforts within the U.S. government, for example ESPC described above 
would be positioned to do this coordination and determine a plan forward with the long-term 
goal of establishing an operational MME. The plan for an operational MME could start with 
models from North American operational centers, but could be expanded to include models from 
other countries.  
 
Recommendation L: Accelerate efforts to carefully design and create robust operational multi-
model ensemble S2S forecast systems.  
 
Specifically: 
 

 Use test beds and interagency and international collaborations where feasible to 
systematically explore the impact of various S2S forecast system design elements on S2S 
forecast skill, in particular the question how many and what formulations of unique 
models are optimum in an operational multi-model ensemble (see also Recommendation 
K). 

 Assess realistically the available operational resources and centers that are able to 
contribute to an operational MME. 
 
 

                                                 
44 http://www.nws.noaa.gov/ost/CTB/, accessed January 27, 2016. 
45 http://www.nws.noaa.gov/ost/nggps/, accessed January 27, 2016. 
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Provide Research Community with Greater Access to Operational Systems 
 
There are a number of ongoing activities working at the interface of research and 

operations (described above). As such, rather than recommend a wholesale restructuring of the 
relationship between these communities, the Committee chooses to make several targeted 
recommendations to help continue progress in this area. That said, the Committee emphasizes 
that these recommendations will take significant time and effort to accomplish and that they 
should be viewed as part of a longer term challenge to address over the course of the next 
decade.  

As the S2S community looks to bridge S2S research into S2S operational predictions a 
new paradigm is needed for the U.S. research to operations (R2O) pipeline. At the center of the 
challenges within R2O for S2S is the participation by researchers with new ideas and tools in 
development and improvement of the prediction systems in the operational centers. Closing the 
gap between research and development and operational prediction will require the capability to 
establish workflow provenance and automate analysis where feasible and reasonable, for which 
research and development are needed. The major route for research results and successes to 
move into operations are by diffusion through the professional literature and meetings and some 
focused symposia, like those of ECMWF, for example, Seasonal Prediction in 2012 and on 
Subseasonal Prediction in 2015. Continuation of these efforts is important to further the transfer 
of information along the R2O pipeline. 

The section on current activities above describes efforts by the U.S. Government, 
ECMWF, and the UK Met Office to improve the flow of research to operations. Promoting and 
expanding these mechanisms would help to include more scientists in plowing the new ground of 
S2S.  

Beyond current activities, the Committee recommends two additional approaches. One is 
the use of a data archive of operational deterministic and ensemble forecasts and retrospective 
forecasts and their initialization data by the research community outside the operational centers. 
This would facilitate further analyses of sources of predictability; identify new sources of 
predictability, skill diagnostics, and more. Data storage will be a challenge for these types of 
request, but not an insurmountable one. These activities could focus on specific periods of time, 
for example, targeting a field campaign relevant to S2S or a special year of interest such as a 
given phase of the QBO, to help minimize the archiving effort required by operational modeling 
centers. Or, national data depositories could be established for this and other “big data” projects.  

The WWRP / WCRP S2S project and NMME described above have already begun 
working on making operational center data available to the research community, including both 
the reforecast and forecast data. Overall, there is a pragmatic and near-term opportunity for 
operational centers to help make such archived data more available—through the S2S Project or 
otherwise—for the research community to use. This could potentially be achieved via test 
centers. In addition, there is an opportunity for the research community to take more advantage 
of the operational center data that is now becoming available from the S2S project.  

A second approach of substantial benefit would be to provide researchers with the 
capability to request re-runs of operational models or conduct numerical experiments using 
operational models themselves. Some of the visiting scientists programs have enabled researcher 
the ability to insert their diagnostics into operational models, but the ability for researchers to 
request re-runs of operational models for specific time periods or even test their new 
parameterization will be difficult given the resource constraints of operational centers. The 
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ability for users to run operational models themselves will be a more difficult challenge, one that 
involves making the modeling code itself accessible to the research community as well as access 
to sufficient computing power to run the code. Some modeling centers have already released the 
codes of their previous versions of operational models. But making codes of current operational 
models available and accessible is a difficult endeavor that requires a significant effort on the 
part of the operational centers. To improve the flow of advances between research and 
operations, operational centers should work towards addressing these substantial challenges of 
meeting requests for re-runs and making model codes available for researchers over the course of 
the next couple of decades. 

Lastly, most decision makers are likely to acquire information via an intermediary. As 
described in Chapter 3, the Committee recommends an ongoing process that involves those that 
use forecast products to make decisions and those who produce forecasts to work iteratively to 
develop improved forecast products. The private sector will be a key part of that process. 
Transferring enhancements in private sector products or performance to improvements at the 
operational centers presents a significant challenge, but part of the iterative process of product 
development could include feedback from private industry for identifying and improving system 
performance. 

 
Recommendation M: Provide mechanisms for research and operational communities to 
collaborate, and aid in transitioning components and parameterizations from the research 
community into operational centers, by increasing researcher access to operational or 
operational mirror systems.  
 
Specifically: 
 

 Increase opportunities for S2S researchers to participate in operational centers. 
 Enhance interactions with the international community (e.g., the S2S Project and APCC) 

and with the WMO Lead Centers. 
 Provide better access in the near-term to archived data from operational systems, 

potentially via test centers.  
 Develop, in the longer term, the ability for researchers to request re-runs or do runs 

themselves of operational model forecasts.  
 Encourage effective partnerships with the private sector through ongoing engagement 

(see also Recommendation B).  
 
 

Establish Capability to Respond to Unanticipated Events 
 

Large, unanticipated events that may influence the weather/climate system may be 
natural, accidental, or deliberately caused by humans. Natural events of this scale within the last 
couple centuries have included major volcanic eruptions (such as Pinotubo, El Chichon, and 
Agung in the 20th century or Krakatoa and Tambora in the 19th century), but could also include 
meteoroid or comet impacts. Prominent recent accidental events that raised this level of public 
concern about their wide-spread impact on timescales of weeks and longer have included the 
Deepwater Horizon Oil spill (NRC, 2013) and the Fukushima Diachi nuclear accident—for its 
potential to spread radioactivity (NRC, 2014; also see Chapter 3). Deliberate events have 
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included the 1991 Kuwait oilfield fires, or more benignly the decision to substantially curtail 
Chinese industrial emissions to improve air quality during the 2008 Olympics. On geological 
timescales there is strong evidence of much larger volcanic eruptions and impacts by extra-
planetary bodies. Similarly, future human-induced climate forcing events could greatly exceed 
the magnitude of historical events. Of particular note, the 2015 NRC report on “Climate 
Intervention: Reflecting Sunlight to Cool Earth” finds that large-scale albedo modification to 
cool the climate system is technically feasible with a scope that could be done unilaterally by a 
single nation or even a wealthy non-state actor, but that the consequences of such actions would 
not be evenly distributed and could alter atmospheric circulation and precipitation patterns. 
These types of large unanticipated events have the potential to affect the weather/climate system 
(and potentially much of the Earth system depending on the event) over S2S timescales.  

The Committee recommends that the nation should develop and maintain a system for 
projecting the consequences of any unusual forcing events—in particular over S2S timescales—
in order to aid emergency response and disaster planning. This system should be able to be 
mobilized within one week (giving time to ascertain the details of the forcing and select the 
appropriate set of predicted quantities), and return preliminary results for timescales from the 
near-term to seasonal and out to a one year forecast horizon by the end of a second week. 
Components of this system should have their quality established before any such event via 
documentation of hypothetical test cases in the peer-reviewed literature. For longer timescales 
than one year, there is time to mobilize the broader scientific community to expand the 
recommended on-demand prediction system and develop new capabilities tailored to the 
specifics of the major event in question. This system should be initialized using the same datasets 
and systems as the operational S2S prediction, and have configurations that include a full range 
of physical and chemical atmospheric, oceanic, cryosphere, and ecosystem processes, drawing 
upon capabilities from the nation’s operational and research weather and climate forecasting 
systems. Other scientific disciplines should be engaged to prepare components for this system 
that may be appropriate for such events as volcanic eruptions, meteor impacts, a limited nuclear 
war, oil or other chemical spills in large water bodies, atmospheric or oceanic releases of 
radioactivity, or releases of biologically or radiatively active gases and aerosols. Although this 
system will draw upon the expertise of the nation’s research community, it will need to be 
considered an operational system, with the same robustness and reliability as is expected from 
other operational forecast systems. The development of this new capability for projecting the 
consequences of unusual forcing events will leverage off many existing research activities or 
efforts to develop longer-term Earth system projection capabilities, but it will still constitute a 
substantial new effort by the nation. As such, the fiscal and computational resources to support 
this new capability should not be drawn from the limited resources currently dedicated to 
improving existing S2S forecasts.  

By their very nature, it is not possible to statistically validate predictions of the 
consequences of unusual events by examining skill in simulating large numbers of observed 
events, or to do bias corrections in the same way as is done for operational predictions. Instead, 
bias control could be done analogously to how it is handled for centennial scale climate 
projections: predictions of consequences should be taken from the difference between an 
ensemble of simulations in which a forcing event occurs and an ensemble of identically 
initialized “control runs” in which the event does not occur. The credibility of the prediction 
system can be evaluated by examining its ability to simulate well-observed smaller analogous 
events (e.g., reasonable simulations of the 1991 Mt. Pinotubo eruptions are a necessary condition 
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for credibly simulating the consequences of a hypothetical Yellowstone Caldera mega-eruption 
of the magnitude that occurred 640,000 years ago; this is analogous to the use of 20th century 
simulations to establish the credibility of coupled climate models for 21st century projections of 
climate change). In addition, since there can be significant nonlinearities in the Earth System, the 
prediction systems should be used for a diverse series of hypothetical forcing event scenarios of 
sufficiently large magnitude to ascertain that they will work sensibly when called upon. 

Quality assurance and a critical evaluation of skill are essential for any official forecast 
product. For routinely generated products, this is usually done via making a large number of 
retrospective forecasts of well-observed previous situations. For unprecedented forcing events, 
this may not be possible. Publication of simulations of hypothetical or poorly observed historical 
events in the peer-reviewed scientific literature may provide one adequate path towards 
providing quality assurance. However, it is important that protocols for quality assurance be 
agreed upon and these steps towards quality assurance be taken for a wide range of potentially 
useful projection capabilities. This quality assurance must occur before an unanticipated forcing 
event, so that these capabilities are available to provide timely and useful guidance to decision 
makers and the public once such an event occurs. 

 
Recommendation N: Develop a national capability to forecast the consequences of 
unanticipated forcing events.  
 
Specifically: 
 

 Improve the coordination of government agencies and academics to be able to quickly 
respond to unanticipated events to provide S2S forecasts and associated responses using 
the unanticipated events as sources of predictability. 

 Utilize emerging applications of Earth system models for long-range transport and 
dispersion processes (e.g., of aerosols). 

 Increase research on the generation, validation, and verification of forecasts for the 
aftermath of unanticipated forcing events. 

 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

 

PREPUBLICATION COPY 
171 

Chapter 7: Cyberinfrastructure and Workforce 
Capacity Building 

 
Previous reports from the National Academies of Sciences, Engineering, and Medicine 

(NRC, 2010b, 2012a, b) have highlighted the central role that infrastructural, institutional, and 
workforce capabilities will play in advancing weather and climate modeling and forecasting 
capacity in the coming decades. Specifically, the reports recognized: 1) the importance of 
aligning modeling research and development with trends in computing; and 2) creating 
professional incentive structures and workforce pipelines to ensure investment in pivotal yet 
currently under-represented activities such as model development, moving research to 
operational systems, and meeting decision maker needs. 

Many of the barriers identified in these previous reports for weather forecasting and 
climate modeling are common to subseasonal to seasonal (S2S) prediction. Thus realizing the 
full potential of Earth system forecasts on S2S timescales will require overcoming many similar 
challenges to weather and climate modeling. This chapter describes two core capacity-building 
elements required for the success of an advanced S2S forecasting capability, building on, and 
sometimes reiterating, findings and recommendations issued in the previously mentioned reports 
(NRC, 2010b, 2012a, b): 

 
 Building S2S cyberinfrastructure capacity, and  
 Building the S2S workforce.  
 
 

BUILDING CAPACITY FOR S2S CYBERINFRASTRUCTURE 
 

This section reviews the risks and opportunities posed to the current S2S computational 
and data infrastructure by changes in technology as well as the growing cyberinfrastructure 
requirements to support S2S forecasting. Although the challenges posed by S2S prediction 
systems are similar to those faced by weather or climate modeling systems, the data and 
processing requirements for S2S prediction systems will likely test the current 
cyberinfrastructure capacity to at least as great an extent as those other systems, and an 
expansion of the cyberinfrastructure and human capital will be necessary to realize the potential 
of S2S forecasting.  

There are several factors driving the growing demand for cyberinfrastructure. Data 
assimilation, which integrates observational data with models, will be a major driver in growing 
computational and storage infrastructure needed to enable significant improvements in S2S 
forecasting. As detailed for climate models generally (NRC, 2012b), future S2S models will 
require increased computational capacity due to the scientific need for higher spatial and 
temporal resolutions (e.g., for resolving clouds, ocean eddies, and orographic processes—see 
Chapter 5).  

Typical data volumes from the output of S2S prediction models are discussed in Box 7.1. 
On the observing side, over one billion scalars will be typical input volumes into the data 
assimilation component (see Chapter 5, sections on routine observations and data assimilation).  
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BOX 7.1—Typical Data Volumes from Today’s S2S Prediction Forecasts 
 

Data characteristics for eleven operational forecast systems participating in the WCRP-WWRP 
Subseasonal Prediction Project (see Chapter 6) are shown in Table B.2. Forecast lead times range from 32 
to 60 days, spatial resolutions range from about 20 to 250 km, frequency ranges from monthly to daily, 
and ensemble sizes range from 4 to 51 members. A conservative estimate for what these variables would 
be expected to be in 10 years for a U.S.-based S2S forecast system would be 90-day lead times, 20km 
spatial resolution, a doubling of the number of vertical levels, 51 member ensemble size, and daily 
frequency for the forecasts. This would represent about a 300-fold increase in computational resources. 
This amounts to forecast data volumes on the order of more than 1 Terabyte per day including just the 
more typical and basic atmosphere, land, and near-surface ocean quantities. Similar considerations can be 
made for the retrospective forecast requirements, which essentially represent a multi-decade, ensemble 
retrospective forecast calculated daily for calibration and validation purposes, and can amount to 
hundreds of Terabytes per day.  
 
This will drive a greater than 1,000-times increase in data volume and transport from what is 
seen today by the S2S community. Finally, the analysis phase is multi-purpose and 
computationally significant; it needs to produce the first-guess fields for the next prediction run, 
and prepare numerous products for forecasting, decision making, and research. All these 
developments are seen as essential for more accurate, reliable, and useful S2S forecasts. Taking 
all these factors together in an example, improving model resolution from 100 km to 25 km and 
doubling the number of vertical levels as well as model complexity, while running on the order 
of 100 ensemble members, could easily result in a 1,000-fold increase in computational costs 
compared to today. Thus, the S2S modeling enterprise fundamentally relies on sustained, 
dramatic improvements in supercomputing capabilities and needs to strategically position itself 
to fully exploit them. 

 
Finding 7.1: Needed advances in S2S forecast models (higher resolutions, increased 
complexity, etc.), require dramatically increased computing capacities (perhaps 1,000x) and 
similar advances in related storage and data transport capacities. 
 
 

Computing Infrastructure 
 

The backdrop for this increase in computational requirements is a disruptive time in the 
broader landscape of computing systems and programming models. All indications are that 
increases in computing performance through the next decade will arrive not in the form of faster 
chips, but slightly slower chips with many more computational elements on them (ASCAC, 
2015; NRC, 2012b). Exploiting these new many-core chips will not only require refactoring 
existing parallelism to effectively take advantage of their architectures, but will also require 
finding additional parallelism throughout S2S applications. As highlighted previously in NRC 
2012a for climate modeling, there are three primary ways to do this: 1) add parallelism by 
scaling the problem out—increasing the horizontal resolution does this, but at the expense of 
shortening the model time-step; 2) exploit parallelism that is already there but has not been used 
before, for example by introducing task parallelism by overlapping certain physics calculations 
or by finding shared-memory parallelism (e.g., Open Multi-Processing [OpenMP]), or finally, 3) 
develop new algorithms with more inherent parallelism-an example of this is the effort to create 
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so-called parallel in time (PinT) algorithms (e.g. Cotter and Shipton, 2012). All three efforts will 
require much higher levels of collaboration between computer scientists, software engineers, 
applied mathematicians, and S2S scientists. 

 
Finding 7.2: The transition to new computing hardware and software through the next decade 
will not involve faster processing elements, but rather more of them with considerably more 
complex embodiments of concurrency; this transition will be highly disruptive. 
 
 

Storage Infrastructure 
 

As with computing infrastructure, the hierarchy of storage devices, including cache, 
memory, disk, and tape, as well as the virtual memory and file-system abstractions that overlay 
them, will also undergo a dramatic, transformative change in the coming years (NRC, 2012b). As 
with climate modeling, these changes will require an assessment of most data storage elements 
(both memory and disk) of S2S applications in order to fully leverage the storage and memory 
hierarchy of emerging computer architectures. The work of identifying the elements of the code 
that can or should be addressed is in itself a daunting task. Technologies like Solid State Devices 
(SSD), 3-D “stacked” memory, and non-volatile memory (NVM) have been, or will soon be 
introduced into planned compute and storage systems. These and other innovations will augment 
and blur the price points, sizes, and performance characteristics of the traditional storage 
hierarchy. Further out, hybrid devices like memristors and other processor in memory (PIM) 
technologies will begin to blur even the distinction between memory and computing itself. 
Adapting the modeling systems and managing and optimizing the utilization of this increasingly 
complex storage hierarchy will be fundamental to realizing the full potential of supercomputing 
investments. 

As with computing, a new breed of software engineers and modelers, and actual data 
scientists, will be needed to fully realize the potential of these new technologies. More training 
and workforce development will be required of new and existing software engineers, and 
universities will need to play a larger role in building the next generation of computational and 
data scientists (see section below on Building Capacity in the S2S Modeling and Prediction 
Workforce). 

 
Finding 7.3: Future storage technologies will be more complex and varied than today; 
leveraging these technological innovations will require numerous software changes and will 
likely be highly disruptive. 
 
 

S2S Application Challenges 
 

For climate models generally, increasing numbers of processing elements combined with 
deep and abstruse memory hierarchies will continue to push the limits of application code design 
and parallel programming standards and will make for a challenging environment for high-
performance-computing (HPC) application programmers (NRC, 2012b). S2S applications today 
are already challenged in taking advantage of modern supercomputing systems (with efficiencies 
typically below 5%) [Roe and Wilkie, 2015; Wilkie, 2015]. S2S applications possess several 
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special characteristics that make them particularly challenging relative to current and even more 
so future HPC architectural trends:  

 
 S2S applications require long simulations compared with traditional numerical weather 

prediction simulations. This in turn limits the resolution, the inherent number of parallel 
degrees of freedom, and therefore their scalability. Similar concerns accompany certain 
data assimilation algorithms, such as 4D variational methods, which have limited 
scalability relative to ensemble approaches (NRC, 2008). 

 S2S applications are large and complex with many component models. Both the 
Community Earth System Model (CESM) and the Climate Forecast System (CFS) for 
example, have over 1.5 million lines of source code. Characteristics typical of many 
algorithms in S2S applications—large numbers of variables (e.g., from increased model 
complexity) and/or irregular memory access patterns (e.g., unstructured grids and some 
advection schemes)—do not work well on memory systems with deep cache hierarchies, 
wide cache lines, and decreasing amounts of memory per processing element. The 
introduction of vector capabilities into many core processors creates challenges for the 
“branchy” physics codes46 typical of S2S applications. 

 S2S phenomena are representative of chaotic systems that are sensitive to initial 
conditions (see Chapters 4 and 5). For this reason, developers currently require bit-for-bit 
reproducibility (i.e., providing the same output when provided with the same input across 
different runs [Arteaga et al., 2014]) for testing and verification of model results. This 
restriction is a limiting factor in fully leveraging the optimization capabilities of 
compilers and elemental math libraries. In the future, this bit-for-bit requirement may 
become untenable when issues of fault resilience, and architectures with extreme levels 
of concurrency and complexity further erode reproducibility (NRC, 2012b; Palmer, 
2015). The possibility of irreproducible computation presents a fundamental challenge to 
the present methodology for the testing, verification, and validation of S2S model results. 
If architectural or software infrastructure changes, or compiler optimization nudges the 
answers, even by a minute amount, there is no other way to prove whether the change has 
or has not pushed the system into a different climate state other than computing the 
climatology of long control runs (usually 100-years-long to take into account slow 
climate processes). This requirement is restrictive and represents a considerable barrier to 
the development, testing, and optimization cycle. However, given the computation power 
that will be utilized for daily, multi-member, long-lead S2S forecasts, that in some cases 
may involve daily reforecasts as well, the computation of a 100-year climatological 
simulation does not seem formidable even in the development cycle. There is evolving 
research into the use of imprecise computing (in which irreproducibility is not elevated to 
the level of a requirement) to address some of these issues (Palmer, 2015). One 
alternative being explored to reduce this cost is to run statistical tests on single ensemble 
members for consistency with the parent distribution over much shorter periods (Baker et 
al., 2015). On the other hand, having a mode where S2S models are able to give bit-by-bit 
reproducibility on computers that are able to support this is essential for the efficient 
development and debugging of such models. The S2S modeling community may very 
well need to adapt to a world where reruns of experiments are only the same in a 

                                                 
46 “Branchy” refers to physics codes that include a lot of if-then statements, thus involving significantly more 
computing time.  
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statistical sense. Similar to climate models, such adaptation would entail profound 
changes in methodology and be an important research challenge for this decade (NRC, 
2012b). A possible resolution of this issue is a compromise in which exact reproducibility 
is available for model development and testing but abandoned for large-scale operational 
computations that involve many ensemble members and stochastic parameterization and 
forcing. 

 
Finding 7.4: S2S models are not taking full advantage of current computing architectures, 
and improving their performance will likely require new algorithms with better data locality, 
and significant refactoring of existing ones for more parallelism. 
 
 

Shared Software Infrastructure Components 
 

Similar to the climate modeling community (NRC, 2012a), a renewed and aggressive 
commitment to shared software infrastructure components across the S2S community could be 
an efficient way to navigate likely transitions in computing and storage infrastructure, and to 
overcome poor efficiencies from current applications. The transition will likely be more 
disruptive than the transition from shared memory vector to distributed memory parallel that 
started in the late 1990s. Indeed, conventional wisdom in the HPC community (see Zwieflhofer 
[2008] and Takahara and Parks [2008]) is that the next generation conversion will be 
significantly more complex and unpredictable than previous changes, given the absence of a 
clear technology path, programming model, performance analysis tools, etc. 

The S2S modeling community is seeing the natural evolution of software component 
adoption (regridding from Earth System Modeling Framework [ESMF] used by CESM, the 
National Centers for Atmospheric Research’s [NCAR’s] Parallel I/O [PIO] library used by 
others). The Committee believes that the community is now at the point where developing an 
integrative modeling environment (across models and organizations) outweighs the costs of 
developing the tools to enable an integrative environment (e.g., Common Infrastructure for 
Modeling the Environment [CIME] at NCAR, Earth System Modeling Framework [ESMF] at 
NOAA and Navy) and the cost of moving to them. With the experience, successes, and lessons 
learned in the past decade, the forecasting community is positioned to accelerate the 
development and adoption of an integrative modeling strategy. 

So far, not many software components have been broadly adopted as a standard, because 
modeling centers that initially invested in one solution have had insufficient funding and 
incentives to switch to another. The vector to parallel disruption led to widespread adoption of 
coupler technologies at the scale of individual institutions. The forecast modeling community 
can conceive of a common integrative modeling environment that includes a set of component 
elements that could be subscribed to by all major U.S. forecast modeling groups, supports a 
hierarchy of models with component-wise interchangeability, and also supports development of 
high-performance implementations that enable forecast models of unprecedented resolution and 
complexity to be efficiently adapted to new architectural platforms. The U.S. Global Change 
Research Program’s Interagency Group on Integrative Modeling (IGIM47) has begun work to 
better coordinate the country’s climate modeling efforts (USGCRP IGIM, 2015); such 
coordination would likely benefit S2S forecasting efforts as well. Concurrently, the National 
                                                 
47 http://www.globalchange.gov/about/iwgs/igim-resources, accessed January 27, 2016. 
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Earth System Prediction Capability (ESPC)—an agreement between NOAA, DOD, NASA, 
DOE, and NSF to work on weather to subseasonal timescales—has adopted a standardized 
version of ESMF and has proposed common standards for implementing physics 
parameterizations into atmospheric models48. ESPC and IGIM are exploring the potential for 
more commonality as their efforts go forward. Adopting joint standards between IGIM and 
ESPC will be especially important as the community moves towards seamless prediction as 
discussed in Box 5.2. 

 
Finding 7.5: An integrative modeling environment presents an appealing option for how to 
face some of the large uncertainty about the evolution of hardware and programming models 
over the next two decades. 
 
 

Data Storage, Transfer, and Workflow for S2S Prediction 
 

In addition to the supercomputer/storage infrastructure and the forecasting models, a key 
element of the forecasting workflow includes data cyberinfrastructure, including the storage, 
transfer, analysis, and visualization workflows associated with big data sets. The data 
cyberinfrastructure for the end-to-end forecasting workflows may ultimately be an even larger 
challenge than the compute challenges confronting S2S prediction. The data elements include 
several elements assimilating the large quantities of operational data with model simulation data 
and facilitating the data analysis, visualization, and overall workflow for all these elements.  

 
 

Observational Data 
 

Remote sensing systems (satellites, radars, instrumented aircraft, and drones) along with 
conventional and automated in situ measurements in both the atmosphere and ocean will produce 
over one billion scalars per forecast cycle (see Chapter 5). Transport and preparation of these 
data for model assimilation is a challenge. Networks need to have the necessary carrying 
capacity with minimal latency, and computing and storage need to be available for data 
processing into model ready quantities (e.g., sea surface temperature in degrees Kelvin).  

 
 

Model Simulation Data 
 

Fundamentally this effort needs to be operationalized and extended to provide these vital 
functions. The data sharing and management infrastructure benefits from a “network effect” 
(where value grows exponentially as more nodes are added; see, e.g., Church and Gandal, 1992; 
Katz and Shapiro, 1985). It involves developing operational infrastructure for petabyte-scale 
(and soon exabyte-scale; see Overpeck et al., 2011) distributed data stores. The S2S project 
(described in Chapter 6) has begun efforts to archive and share data from multiple operational 
S2S forecasting systems, but this effort is still growing and is underutilized by the research 
community (see Finding 6.2).  

                                                 
48 ftp://ftp.oar.noaa.gov/ESPC%5CNUOPC%20Douments%5CNUOPC%20%20CMA%20One%20Pager.pdf 
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Finding 7.6: Researchers do not currently have a good solution for processing and analyzing 
S2S data that is federated across many institutions. A dedicated and enhanced data-intensive 
cyberinfrastructure will be required to enable the distributed S2S community to access the 
enormous data sets generated from both simulation and observations.  
 
 
Data Analysis Workflow  
 

S2S data-intensive applications and workflows are likely to face data analysis challenges 
of similar scale and scope to those faced by the Coupled Model Intercomparison Projects 
(CMIP). The CMIPs have observed that because storage systems—as part of an integrated data-
intensive computing environment—have not kept up with advances in computing, they have 
become a bottleneck and as a result a ripe target for enhancements. These lessons from CMIP 
efforts are a bell-weather to what the S2S prediction community could expect. In addition, the 
demand for data storage, analysis, and distribution resources will grow as models move to finer 
resolutions, incorporate more complexity, and serve needs of an increasingly diverse and 
sophisticated set of users. In response, data-centric workflows, like the applications themselves, 
need to become more parallel, and use storage infrastructure more efficiently. In addition, the 
community needs to consider reductions of data volumes that can be achieved through both 
lossless and lossy compression of datasets, as well as a shift away from the paradigm of store-
now-analyze-later to mechanisms that allow model output to be analyzed on the fly and re-ran as 
needed. 

There is an increasing need to use, access, and manipulate large volumes of remotely 
stored data, and this places new demands on infrastructure and requires systematic planning and 
investment at the national level.  

 
Finding 7.7: New approaches to data-centric workflow software that incorporate parallelism, 
remote analysis, and data compression will be required to keep up with the demands of the 
S2S forecasting community.  
 
 

Moving Forward with Building Capacity for S2S Cyberinfrastructure 
 

As has been discussed in this section, advances in S2S forecast models will require 
dramatically increased computing capacities, but the transition to new computing hardware and 
software through the next decade will be highly disruptive with the increasing concurrency of 
new HPC systems. In addition, future storage technologies will be more complex and varied than 
today. S2S models are not taking full advantage of current computing architectures, and 
improving their performance to leverage the coming technology innovations will require 
numerous software changes and will likely be highly disruptive.  

At this time, the many emerging architectures do not adhere to a common programming 
model. While new ways to express parallelism may well hold the key to progress, from the point 
of view of the software developers of large and complex scientific applications, the transition 
path is not clear (NRC, 2012b). Assessments undertaken by the Defense Advanced Research 
Projects Agency (DARPA) and the Department of Energy (DOE) (e.g., DOE, 2008; Kogge et al., 
2008) indicate profound uncertainty about how one might program a future system that may 
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encompass many-core chips, coprocessors and accelerators, and unprecedented core counts 
requiring the management of tens of millions of concurrent threads on such hardware. The 
President’s Council of Advisors on Science and Technology (PCAST) has called for the nation 
to “undertake a substantial and sustained program of fundamental research on hardware, 
architectures, algorithms and software with the potential for enabling game-changing advances in 
high-performance computing” (PCAST, 2010). This challenge will grow to a billion threads by 
the end of this decade. The prevalent programming model for parallel systems today is based on 
MPI (Lusk and Yelick, 2007), shared-memory directives (e.g., OpenMP [Chandra et al., 2001]), 
or a hybrid of both. The adaptation of the Message Passing Interface (MPI)/OpenMP paradigm 
to exascale architectures is an area of active research investigation.  

The weather and climate forecasting community has never retreated from experimenting 
with leading-edge systems and programming approaches to achieve required levels of 
performance. The current high-performance computing (HPC) architectural landscape, however, 
is particularly challenging because it is not clear what direction future hardware and software 
paradigms may follow. The collaborative nature of system co-design involves end-
user/developer community and private sector involvement (e.g., the Coral system49). 

It is clear that more resources are needed to make the progress necessary to prepare S2S 
applications for next generation supercomputers. In light of these challenges, the Committee 
recommends a national plan and investment strategy be developed to take better advantage of 
current hardware and software and to meet the challenges in the evolution of new hardware and 
software for all components of the prediction process.  

 
Recommendation O: Develop a national plan and investment strategy for S2S prediction to 
take better advantage of current hardware and software and to meet the challenges in the 
evolution of new hardware and software for all stages of the prediction process, including data 
assimilation, operation of high-resolution coupled Earth system models, and storage and 
management of results.  
 
Specifically:  
 

 Redesign and recode S2S models and data assimilation systems so they will be capable of 
exploiting current and future massively parallel computational capabilities; this will 
require a significant and long-term investment in computer scientists, software engineers, 
applied mathematicians, and statistics researchers in partnership with the S2S researchers. 

 Increase efforts to achieve an integrated modeling environment using the opportunity of 
S2S and seamless prediction to bring operational agency (ESPC) efforts and IGIM efforts 
together to create common software infrastructure and standards for component 
interfaces. 

 Provide larger and dedicated supercomputing and storage resources. 
 Resolve the emerging challenges around S2S big data, including development and 

deployment of integrated data-intensive cyberinfrastructure, utilization of efficient data-
centric workflows, reduction of stored data volumes, and deployment of data serving and 
analysis capabilities for users outside the research/operational community. 

                                                 
49 http://energy.gov/articles/department-energy-awards-425-million-next-generation-supercomputing-technologies, 
accessed January 27, 2016. 
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 Further develop techniques for high volume data processing and in-line data volume 
reduction. 

 Continue to develop dynamic model cores that take the advantage of new computer 
technology. 

 
 
BUILDING CAPACITY IN THE S2S MODELING AND PREDICTION WORKFORCE 

 
The current workforce of S2S model developers is insufficient to meet the growing need 

for S2S model development work (Jakob, 2010). Most modeling centers have only a small 
number of people directly involved in model development. It is difficult to quantify the number 
of S2S model developers in the United States, because a systematic study on the modeling 
workforce has never been done. Many of the challenges faced in maintaining a robust S2S model 
development workforce are similar to those faced in climate model development. As such, much 
of the work in this section draws heavily on previous work on climate modeling (NRC, 2012b).  
 
 

Current Challenges in the S2S Model Development Workforce  
 

The development and use of comprehensive S2S models in the United States requires a 
large number of talented individuals in a diverse set of disciplines. The critical point is that 
development of atmospheric and environmental prediction models, for S2S and other ranges, 
needs to become an interdisciplinary effort involving scientists, software engineers, and applied 
mathematicians (NRC, 2008). As described for climate models, these areas of expertise include 
(NRC, 2012b): 

 
● scientists engaged in understanding the S2S prediction system, leading to the 

development of new parameterizations and other model improvements (distinct cadres of 
scientists are often needed for various model components, such as the ocean or terrestrial 
ecosystem models); 

● scientists engaged in using the models for well-designed numerical experiments and 
conducting extensive diagnostics of the models to better understand their behavior, 
ultimately leading both to model products and to scientific insights that provide the 
impetus and context for model improvements; 

● scientists studying the regional details provided by the archived results from global model 
simulations and related downscaling efforts, and how these vary across various models; 

● support scientists and programmers to conduct extensive sets of numerical simulations in 
support of various scientific programs and to ensure their scientific integrity; 

● software engineers, applied mathematicians and scientists that straddle these areas to 
explore fundamental new algorithms and approaches that can fully utilize new 
generations of computing and storage architectures; 

● software engineers to create efficient, parallelizable and portable underlying codes, 
including the development and use of common software components; 

● data scientists to understand and manage complex workflows and to facilitate easy and 
open access to model output through modern technologies; 
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● hardware and software engineers to maintain the high-end computing facilities that 
underpin the modeling enterprise; and 

● interpreters to translate model output for decision makers. 
 

From the limited data available (NRC, 2012b), it appears that the level of human 
resources available for S2S modeling has not kept pace with the demands for increasing realism 
and comprehensiveness of the models. Data on the numbers of students involved in S2S model 
development do not exist, and any proxy data and anecdotal evidence (NRC, 2012b) suggest that 
the pipeline for S2S model developers is not growing in a robust fashion. 

These considerations suggest that the development of S2S and other predictive models 
needs to increasingly be a community endeavor involving the operational centers and the 
academic community. And to be effective, there must be mechanisms to encourage interchange 
of personnel and talent, either as long-term collaborators or as shorter-term visitors. For example, 
students might well perform their dissertation research in an operational center under the 
collaborative supervision of center scientists and faculty members in their academic institution. 

In addition to not having sufficient human resources, many of the skills needed by the 
S2S workforce are yet to be developed (e.g., new algorithms, tight coupling between the 
understanding of the science and the software requirements), which places an even greater 
imperative on maintaining a robust pipeline of early-career scientists who are involved in model 
development. This will become more critical with the next generation of supercomputers (see 
section above on Building Capacity for S2S Cyberinfrastructure), and serious efforts will be 
needed to bridge the gap between scientists and the software engineering and numerical 
algorithms skills needed to utilize this new hardware. These gaps in the necessary workforce 
skills need significant attention and could be significant impediments to progress in S2S 
forecasting.  

 
Finding 7.8: From the limited data available, it seems that the cadre of S2S modelers being 
trained is not growing robustly in the United States and is not keeping pace with the needs of 
this rapidly evolving field. 
 
 

Current Challenges in the S2S Applications Workforce 
 

There are some programs that train students to work at the interface of climate science 
and society (e.g., Columbia University’s Master’s program in Climate and Society50), which 
could be a valuable resource to the S2S enterprise. However, as demands for S2S products 
continue to grow, there is also likely to be a shortage of interdisciplinary researchers needed to 
improve connectivity between S2S forecasts and use. This includes interdisciplinary researchers 
in boundary organizations and other interdisciplinary research centers, product development 
specialists in the private sector, and agency operations personnel with training or expertise in 
S2S predictability. This also includes social and behavioral researchers capable of examining 
decision processes to identify barriers to use and improve the flow of information between 
physical scientists and users. 

The challenges of connecting information production to use are discussed in Chapter 3. 
Here, the focus is on the skills needed to enable those connections. The potential scale of use 
                                                 
50 http://climatesociety.ei.columbia.edu/, accessed January 27, 2016.  
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dwarfs the current production of people trained in interdisciplinary research or research in the 
social and behavioral sciences focused on using weather or climate information in decision 
making. Weather and climate information is not well integrated into traditional academic 
disciplines that produce many of the agency personnel who may use S2S information, such as 
staff at water management agencies or large agricultural businesses. In addition, relatively few 
academic institutions offer interdisciplinary degrees that include physical, social, and behavioral 
sciences focused on issues related to weather or climate. 

 
Finding 7.9: Interdisciplinary academic programs and centers lack the capacity to meet 
growing needs for research and applications necessary to maximize the use of S2S 
information. Few academic programs include weather or climate as a component of training 
the future workforce. 
 
 

Building a More Robust S2S Workforce 
 

S2S model development is a challenging job. It involves synthesizing deep and broad 
knowledge, working across the interface between science and computing, and working well in a 
team. Thus it is important to attempt to hire, train, and retain the most talented, available people 
in this field. There are often insufficient incentives to compel promising young people to work 
on S2S model development; this applies to both early-career computer programmers who may 
have other more lucrative career opportunities, and to early-career scientists who may choose to 
work with S2S model output to examine scientific questions or other strategies that allow them 
to publish more journal articles, rather than work on model development. A suggested method 
for combatting this bias would be an enhanced recognition and reward system for S2S model 
computer code writing and for the production of modeling data sets, including the recognition of 
such effort through stronger requirements for citation and co-authorship, both within modeling 
institutions and by academic users and collaborators; this is a non-trivial challenge as discussed 
in a previous report (NRC, 2012b). S2S modeling groups could also compete by marketing 
relatively stable career tracks and the opportunity for stimulating cross-disciplinary interactions 
with a variety of scientists. 

Modeling centers outside of the United States, such as the European Centre for Medium-
Range Weather Forecasts (ECMWF), have attempted to attract and retain more people in S2S 
model development work by appointing model developers to 5-year terms, which is longer than 
typical research grant cycles in the United States (3 years). ECMWF offers strong incentives to 
bring top scientists to model development, such as access to excellent facilities, excellent tools 
(e.g., what some regard as the most advanced numerical weather prediction model in the world), 
and high, tax-free salaries. Further, the inclusion of highly reputed scientists within the limited 
staff (150 staff members and 80 consultants) encourages a stimulating environment where 
delivering end-use forecasting products and doing cutting-edge scientific research are valued and 
are directly coupled. 

Beyond the specific model developer needs of the S2S enterprise, there is an additional 
need for people who work at the component interfaces. As examined in this report, many of the 
challenges in the S2S realm arise from the linkages of the model components. Therefore the 
overall S2S forecasting endeavor would benefit from paying particular attention to recruiting and 
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rewarding scientists who can work across specific disciplines of earth science to improve our 
ability to forecast the behavior of the Earth system as a whole. 

Attention to workforce development is also needed to help ensure that forecasts are as 
useful as possible to decision makers. Chapter 3 discussed that, as with weather forecasts and 
climate projections, most decision makers are likely to acquire S2S information via an 
intermediary. There are a number of existing avenues for decision makers to interact with experts 
working on S2S forecasting, through so-called “boundary organizations” and other 
interdisciplinary entities. Boundary organizations exist within the public sector (for example 
NOAA’s Regional Integrated Sciences and Assessments program actively engages decision 
makers through tailored products, educational programs, and efforts to co-produce climate 
products and services), within academia (for example, Colombia University’s International 
Research Institute for Climate and Society), and within the private sector. Looking forward, 
continued growth of both the private sector and the array of products and services in the public 
sector are required to meet the growing demand for services on S2S timescales. In light of 
similar trends related to information on climate timescales, a recent NRC report (NRC, 2012b) 
recommended the formation of training programs for climate model interpreters—people who 
are trained in both physical and social sciences related to climate, weather and decision making, 
and who can facilitate two-way co-production of knowledge. There is a similar need at S2S 
timescales for such training programs.  

A possible concrete step forward would be a series of workshops to explore how to 
feature S2S in more undergraduate and graduate curriculums, how to identify and connect with 
organizations that can help this (e.g., the National Science Teachers Association), and how to 
interact with the private sector to help understand what skills are needed. Other entities such as 
the American Meteorological Society (AMS) or NSF may play a role with some of this 
coordination. 

Forecasting work at all of these timescales—weather, S2S, and climate—involves the 
prediction of outcomes which people use to make important decisions, and is therefore judged in 
very public ways. Predicted outcomes are validated (or not) on a continuous basis. The fact that 
S2S connects very strongly to managing environmental risks could be drawn upon more heavily 
to entrain talented and mission-driven young people into the field. 

In looking across the numerous challenges facing the S2S workforce, the Committee 
recommends that the Nation pursue a collection of actions to examine the S2S workforce, 
remove barriers that exist across the entire workforce pipeline, and develop mechanisms to 
improve and sustain the workforce.  

 
Recommendation P: Pursue a collection of actions to address workforce development that 
removes barriers that exist across the entire workforce pipeline and in the diversity of 
scientists and engineers involved in advancing S2S forecasting and the component and 
coupled systems. 
 
Specifically:  
 

 Gather quantitative information about workforce requirements and expertise base to 
support S2S modeling in order to more fully develop such a training program and 
workforce pipeline. 
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 Improve incentives and funding to support existing professionals and to attract new 
professionals to the S2S research community, especially in model development and 
improvement, and for those who bridge scientific disciplines and/or work at component 
interfaces. 

 Expand interdisciplinary programs to train a more robust workforce to be employed in 
boundary organizations that work in between S2S model developers and those who use 
forecasts. 

 Integrate basic meteorology and climatology into academic disciplines, such as business 
and engineering, to improve the capacity within operational agencies and businesses to 
create new opportunities for use of S2S information. 

 Provide more graduate and postgraduate training opportunities, enhanced professional 
recognition and career advancement, and adequate incentives to encourage top students in 
relevant scientific and computer programming disciplines to choose S2S model 
development and research as a career. 
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Chapter 8: Vision and Way Forward for S2S 
Earth System Prediction 

 
Previous chapters in this report identified the societal value of predictions of the Earth 

system in the subseasonal to seasonal time range; pointed out emerging science and technical 
capabilities that make advances in forecasts at these timescales possible; and identified areas that 
need substantial improvement. This chapter draws from the text, findings, and recommendations 
presented in previous chapters to develop a vision to serve as an inspirational yet possible target 
for a desired future state of subseasonal to seasonal (S2S) prediction in the next 10 years, and a 
set of research strategies to guide actions that are necessary to move towards that vision. All of 
the recommendations from previous chapters are organized within these strategies and together 
serve as the Committee’s comprehensive research agenda for S2S forecasting over the next 
decade. Implementing the research agenda for improving S2S predictions will require 
collaboration between researchers and users to develop more useful forecast products, basic 
research to advance understanding of the processes governing predictability in the Earth system, 
exploiting these new discoveries in models, and melding existing with new modeling and 
computing capabilities. Thus the S2S research agenda should simultaneously foster work in areas 
that are nearing maturity with more ambitious objectives that may take a decade or more to fully 
realize. 

 
 

VISION FOR THE NEXT DECADE 
 

For the past several decades, weather forecasts on the scale of a few days have yielded 
invaluable information to improve decision making across all sectors of society. Determining the 
total economic value of this forecasting information is an area of active research (Letson et al., 
2007; Morss et al., 2008), but previous research indicates that a significant portion of annual U.S. 
gross domestic product (tens of billions or even trillions of dollars) is sensitive to fluctuations in 
weather (Dutton, 2002; Lazo et al., 2011; U.S. Department of Commerce, 2014). Certainly short-
term forecasts play a vital role in helping society manage this economic exposure and the 
associated social risk. However, many critical decisions must be made several weeks to months 
in advance of potentially favorable or disruptive environmental conditions. As demonstrated by 
case studies and other information presented in Chapter 3, S2S forecasts have great potential to 
inform such decisions across a wide variety of sectors. For example, it can take weeks or months 
to move emergency and disaster-relief supplies. Pre-staging resources to areas that are likely to 
experience extreme weather or an infectious disease outbreak could save lives and stretch the 
efficacy of limited resources. Similarly, emergency managers responding to unanticipated events 
such as nuclear power plant accidents or large oil spills are faced with the task of communicating 
the ramifications of such events on timescales that stretch well beyond a few days. There are 
many more such examples: naval and commercial shipping planners designate shipping routes 
weeks in advance, seeking to stage assets strategically, avoid hazards, and/or take advantage of 
favorable conditions; with improved knowledge of the likelihood of precipitation or drought, 
farmers can purchase seed varieties that are most likely to increase yields and reduce costs; and 
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depending on the year, water resource managers can face a multitude of decisions about reservoir 
levels in the weeks, months, and seasons ahead of eventual water consumption (Table 3.1 lists 
additional examples). 

S2S forecasts are already proving to be of value in making such decisions in sectors such 
as agriculture, energy, water resources management, and public health. However, there are many 
sectors that have yet to exploit even the S2S information that is currently available. The 
Committee believes that the benefits of S2S forecasts to society will only increase as the quality 
of S2S forecasts improves, as more variables are represented in forecast products, and as social 
and computer science research and boundary institutions accelerate awareness of, access to, and 
use of S2S information. This potential of S2S forecasts to benefit society is only likely to grow 
due to the increased exposure to risk and increased severity and frequency of hazards expected 
with climate change and continued globalization. 

Working iteratively with water resources professionals, emergency managers, military 
planners, and a myriad of other potential users to co-design new S2S forecast products and 
related decision-making tools has the potential to further expand use and enable stakeholders to 
derive much more value from S2S forecasts. Along with an enhanced focus on developing 
predictions of extreme and other disruptive events, such iterative engagement with forecast users 
has the potential to foster a stronger culture of planning across S2S and longer timescales, 
including adaptation and resilience to climate change. This could provide social and economic 
benefits that amplify and transcend the direct benefits of S2S forecasts themselves.  

This evidence influenced the Committee’s finding that more skillful and useful S2S 
forecasts—developed through sustained engagement with users and advances in basic knowledge 
and technological capabilities—could radically improve the basis for decision making on S2S 
timescales. There are also emerging science and technical capabilities that make rapid advances 
in S2S forecasts more likely than envisioned even 5 years ago. Advances both in technology—
satellites, computing, etc.—and in science—model parameterizations, data assimilation 
techniques, etc.—are now on the horizon that make advances in S2S forecasting more feasible. 
Further, the Committee’s recommendations are targeted at areas where efforts are most needed 
and therefore investments are most likely to lead to advances.  

Such advances now have the potential to increase the flow of benefits from S2S forecasts 
so that, in the Committee’s view, they have high potential to outweigh the costs and effort 
associated with improving S2S forecasts. Thus the Committee developed a vision to serve as a 
target for S2S predictions over the next decade: S2S forecasts will be as widely used a decade 
from now as weather forecasts are today. This is admittedly a bold vision because overcoming 
the challenges to developing S2S forecasting will take sustained effort and investment. However, 
the Committee believes that realizing this vision is now possible within the next decade.  

Achieving the Committee’s vision in this report is not incompatible with other visions for 
Earth system prediction systems (such as for the creation of a Virtual Earth System (VES)—see 
Box 8.1), but it has the potential to become reality within a much shorter timeframe. The 
Committee’s strategies and research agenda, which are presented next in this chapter, provide 
describe priority actions for moving towards this desired future state. 
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Box 8.1—Long-Term Visions 
 

In 2008, the NRC Committee on The Potential Impact of High-End Capability 
Computing on Illustrative Fields of Science and Engineering foresaw a Virtual Earth System 
(VES) that would maintain “a continuous and dynamically consistent portrait of the atmosphere, 
oceans, and land…a digital mirror reflecting events all over the planet.” The VES would operate 
in the cloud on linked petascale machines, assimilating data from tens of satellites and myriad 
other observations. (NRC, 2008). The VES would serve as the foundation for a companion Future 
Earth System that would offer a probabilistic portrait of events and Earth states expected over 
ranges of leads much wider than those available today (e.g., Dutton, 2010). Indeed in the 
conclusion to the 2008 report, the NRC stated: 

“The new dynamic record of Earth and the predictions of the VES model would bring 
forth an era of enlightened management of weather and climate risk, contributing to 
national economic vitality and stimulating a strong commitment to environmental 
stewardship. The creation and operation of an accurate and reliable VES would be a 
stunning and commanding national achievement—a dramatic demonstration of the 
benefits that can be realized for society by linking Earth and atmospheric science with the 
most advanced computers.” 

The VES described in the 2008 NRC report thus presented a visionary consideration of 
the future of environmental forecasting and its impacts on decision making. However, it also 
identified the incredible demands and resources that would be required to develop and maintain 
such a system. Along with the 2010 NRC Report on Intraseasonal to Interannaual climate and 
weather prediction (NRC, 2010b), this report presents a vision and research agenda that takes 
society a step towards grand visions for environmental prediction systems such as a VES—
specifically by targeting the development of Earth system predictions on S2S lead times, where 
there is good potential for gains to be made in the coming years (NRC, 2010a, the present report). 
These advances include improved accuracies, extended lead times, and prediction of other 
components of the environment beyond the traditional weather variables. 
 

 
S2S RESEARCH STRATEGIES AND RECOMMENDATIONS 

 
Maximizing benefits of S2S forecasts while minimizing the associated costs will be 

important for rapidly improving S2S forecasting. The Committee drew on findings in Chapters 3 
through 7 to develop four overarching research strategies to help prioritize activities in S2S 
forecasting and to organize activities so that they most directly support the vision to substantially 
expand the use of S2S forecast information in the next decade: 

 
1. Engage Users in the Process of Developing S2S Forecast Products 
2. Increase S2S Forecast Skill 
3. Improve Prediction of Extreme and Disruptive Events and Consequences of 

Unanticipated Forcing Events 
4. Include More Components of the Earth System in S2S Forecast Models  
 
Fourteen associated recommendations derived from Chapters 3 through 6 describe 

research and aligned activities in the physical and social sciences that the Committee has 
determined to have the greatest potential for advancing in each of the four strategic directions. In 
addition, the Committee proposes a set of supporting recommendations, derived from findings in 
Chapter 7, related to cyberinfrastructure and workforce. These are necessary for advancing the 
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Research Strategy 1: Engage Users in the Process of Developing S2S Forecast Products 
 

As highlighted in Chapter 3, providing useable, valuable forecast information involves 
developing S2S forecast products that are more readily integrated into user decision making. Ten 
years hence, the Committee envisions an S2S prediction system that is much more interactive 
with decision makers from a wide array of sectors. In order to achieve this level of interaction, 
the user community must be brought into the research and development process sooner rather 
than later. In fact, a key finding of the Committee is that the S2S research and operational 
prediction community would benefit from engaging in an iterative dialogue with the user 
community, beginning as soon as possible. Such a process can help further prioritize the 
development of specific forecast variables and metrics, and ensure that data and resource-
intensive retrospective forecasts, as well as the operational forecasts themselves, retain and 
exploit parameters that are most critical to user decision making.  

In order to maximize benefits of investments into improving S2S forecasts over time, 
there should be an ongoing effort to co-design forecast products on S2S timescales that match 
what is scientifically feasible with what users can make actionable. In many cases, this might 
involve a relatively straightforward extension of existing applications that have skill at shorter 
timescales and for which sophisticated users already exist. In other cases, there may be novel, 
actionable prediction products that can be identified through more extensive discussions between 
potential users and the developers of prediction systems and forecast products. Such discussions 
will be required to identify what operational S2S forecasts will look like, including how the skill 
of such forecasts will be verified. Public and academic-sector boundary institutions, such as the 
National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences and 
Assessments Program (RISA) programs, the International Research Institute for Climate and 
Society (IRI) at Columbia University, and several private sector companies, have already started 
these discussions. Leveraging the entire weather and climate enterprise will be necessary for 
further developing effective S2S products and services that maximize benefit to society.  
 
 
Recommendations 

 
Research into the use of S2S forecasts thus far indicates that users desire finer temporal 

and spatial resolutions, more actionable forecast variables (e.g., extreme, disruptive and other 
important events as well as mean conditions), as well as a better understanding of how 
probabilistic S2S forecast information at varying levels of skill can be integrated directly into 
decision making. However, user needs, how these match with current forecast capabilities, and 
barriers to use of forecasts, have not been thoroughly investigated across sectors. An important 
first step in providing more actionable S2S forecast information is to develop a body of social 
and behavioral science research that leads to a more comprehensive understanding of the current 
use and barriers to use of S2S predictions. This includes a better understanding of specific 
aspects of products—forecast variables, spatial and temporal resolutions, necessary levels of 
skill, formats, etc.—that would make S2S predictions more useful to different communities. This 
research is necessary in order to develop a high-level view of how S2S forecast systems and 
outputs might be designed to meet the basic needs of the broadest number of potential users.  

While all weather and climate forecasts are inherently probabilistic, this probabilistic 
nature gets more difficult to disregard for forecasts at S2S and longer timescales than at shorter 
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lead times. Probabilistic predictions in particular represent a significant hurdle for some forecast 
users, as there often are substantial differences between the large-scale probabilistic forecasts 
that are possible at S2S timescales and the specific information that decision makers might 
currently find actionable. Research on the use of probabilistic forecast information is thus also 
necessary. 
 
Recommendation A: Develop a body of social science research that leads to more 
comprehensive understanding of the use and barriers to use of seasonal and subseasonal 
Earth system predictions. 
 
Specifically: 
 

 Characterize current and potential users of S2S forecasts and their decision making 
contexts, and identify key commonalities and differences in needs (e.g., variables, 
temporal and spatial scale, lead times, and forecast skill) across multiple sectors. 

 Promote social and behavioral science research on the use of probabilistic forecast 
information. 

 Create opportunities to share knowledge and practices among researchers working to 
improve the use of predictions across weather, subseasonal, and seasonal timescales. 

 
Beyond the research recommended above, engaging the S2S research and operational 

prediction communities in an iterative dialogue with users is necessary to help ensure that 
forecasts systems, forecast products, other model output, and other decision making tools 
maximize their benefit to society. This includes effective probabilistic forecasts products, 
verification metrics, and communication strategies. Ongoing efforts will be needed to match 
what is scientifically predictable and technologically feasible at S2S timescales with what users 
can make actionable, as scientific skill, user needs, and user perspectives continually evolve. 
Such iterative efforts can also help stakeholders develop and implement decision making 
strategies, such as ‘ready-set-go’ scenarios, that utilize S2S forecasts together with shorter and 
longer-lead information. These scenarios help organizations utilize a suite of forecasts with 
different lead times, promoting advance preparation for potential hazards even while forecast 
uncertainty is relatively high, and then adjusting actions as forecast lead times shorten and 
forecast uncertainty decreases. As mentioned above, private industry and ‘boundary 
organizations’ within academia and the public sector (NOAA’s RISA program, the IRI at 
Columbia University, and many others) have already started such discussions. Efforts to further 
engage users in the iterative process of making S2S forecasts more actionable and used more in 
decision making should build on the experience of this boundary workforce (see also section on 
Supporting the S2S Forecasting Enterprise below).  
 
Recommendation B: Establish an ongoing and iterative process in which stakeholders, social 
and behavioral scientists, and physical scientists co-design S2S forecast products, verification 
metrics, and decision making tools. 
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Specifically: 
 

 Engage users with physical, social, and behavioral scientists to develop requirements for 
new products as advances are made in modeling technology and forecast skill, including 
forecasts for additional environmental variables. 

 In direct collaboration with users, develop ready-set-go scenarios that incorporate S2S 
predictions and weather forecasts to enable advance preparation for potential hazards as 
timelines shorten and uncertainty decreases. 

 Support boundary organizations and private sector enterprises that act as interfaces 
between forecast producers and users. 

 
 

Research Strategy 2: Increase S2S Forecast Skill  
 

Operational weather and ocean forecasts have steadily increased in accuracy and lead 
time over the past few decades. However, there is still significant room for improving the skill of 
many S2S forecasts. An important prerequisite for achieving the vision of widely used S2S 
forecasts is to significantly improve the skill of forecasts so that users’ confidence in such 
predictions increases, and so that S2S forecasts can be applied to a range of decisions that 
requires higher forecast skill in order to act. Analogous to routine weather forecasting, there 
should be an emphasis on skillful, routine forecasts of Earth system components 2 weeks to 12 
months in advance. Prediction at these timescales will necessarily be more probabilistic and less 
precise as to timing and spatial location than shorter-term weather forecasts, but there is strong 
evidence for predictability for many Earth system variables on S2S timescales. As discussed in 
Chapter 4, important sources of predictability on S2S timescales originate from: 1) modes of 
variability (e.g., the El Niño Southern Oscillation [ENSO], the Madden-Julian Oscillation 
[MJO], the Quasi-Biennial Oscillation [QBO]), 2) from slowly varying processes in the ocean on 
the land surface (e.g., soil moisture, surface water, snow-pack, ocean heat content, ocean 
currents, eddy positions, and sea ice conditions), and 3) elements of external forcing (e.g., 
aerosols, greenhouse gasses). 

Exploiting these sources of predictability to increase forecast skill will require developing 
better physical understanding of sources of S2S predictability, as well as improving all aspects of 
S2S forecast systems. This includes sustaining and improving the network of observations used 
to study predictability and to initialize models, developing improved techniques for data 
assimilation and uncertainty quantification in coupled Earth system models, and importantly, the 
reduction of Earth system model errors through a combination of increases in model resolution 
and the development of better model parameterizations to represent subgrid processes. Research 
to spur the development of new methods for probabilistic forecasting and probabilistic skill 
verification and calibration are also necessary. 

With many possible avenues available for improving the skill of S2S forecasts, efforts to 
optimize the design of S2S forecast systems are also essential. S2S forecast systems can be 
configured in a wide variety of ways, and there are numerous possible selections and 
combinations of the design elements (“trade space”) in any forecast system. For example, what is 
the cost-benefit to the skill of S2S forecasts of adding more dynamical representation of different 
Earth system components and increasing the complexity of their coupling, versus increasing 
model resolution, extending retrospective forecast length or averaging period, increasing 
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ensemble runs, and/or increasing the number of models in a multi model ensemble system? 
While all may improve forecast skill, finite computing and human resources implies trade-offs in 
the design and implementation of any system. Thus a key part of improving and maximizing the 
cost-benefit relationship for producing probabilistic information 2 weeks to 12 months into the 
future will be to undertake a systematic exploration of the optimal use of available resources to 
support the development of more skillful forecast systems. The development of a cost effective 
and skillful operational multi-model ensemble forecast system is important, will require 
particular care and attention, and will involve the use of current operational models along with 
support for the research community to actively engage in the development and validation of new 
or updated members of these ensemble systems (see discussion below). Similar methods for 
probabilistic skill verification and calibration also need to be employed and developed for the 
evaluation of the forecasts of probabilities. Such probabilistic skill metrics would characterize, 
and ultimately improve, the capability of forecasting common but also rare S2S events (Research 
Strategy 3). 
 
 
Recommendations 
 

Making S2S predictions relies on the identification and understanding of sources of Earth 
system predictability in the S2S time range. The 2010 NRC report (NRC, 2010b) identified a 
number of sources of predictability, including inertia in various slow-varying components of the 
Earth system, modes of variability in the coupled ocean-atmospheric system (e.g., ENSO, MJO), 
and external forcing (from either human or natural sources). Chapter 4 further explores current 
understanding of these sources of S2S predictability, and emphasizes that much remains to be 
learned about these sources, especially their interactions and teleconnections. Research to 
advance understanding of sources and limits of predictability for specific Earth system 
phenomena will be critical to improving the fidelity of S2S Earth system models, as well as to 
improving the ability to forecast extreme or other disruptive events with longer lead times 
(Research Strategy 3). 
 
Recommendation C: Identify and characterize sources of S2S predictability, including natural 
modes of variability (e.g., ENSO, MJO, QBO), slowly varying processes (e.g., sea ice, soil 
moisture, and ocean eddies), and external forcing (e.g., aerosol emissions), and correctly 
represent these sources of predictability, including their interactions, in S2S forecast systems. 
 
Specifically:  
 

 Use long-record and process-level observations and a hierarchy of models (theory, 
idealized models, high-resolution models, global earth system models, etc.) to explore 
and characterize the physical nature of sources of predictability and their 
interdependencies and dependencies on the background environment and external 
forcing. 

  Conduct comparable predictability and skill estimation studies and assess the relative 
importance of different sources of predictability and their interactions, using long-term 
observations and multi-model approaches (such as the World Meteorological 
Organization-lead S2S Project’s database of retrospective forecast data). 
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Chapter 5 emphasizes the importance of improving routine observations, developing 
more sophisticated data assimilation and uncertainty quantification techniques, reducing 
individual model errors through increased resolution and better parameterizations, and 
developing advanced calibration techniques and model combinations in order to develop more 
skillful S2S forecast systems. Routine observations are essential for initializing models to more 
accurately reflect the state of the Earth system and for validating model output; they can also 
contribute to improved understanding of the physical system and its predictability on S2S 
timescales (Chapter 4). Current observing networks for the atmosphere are more capable and 
robust than those for the other components of the Earth system. However, sustaining atmospheric 
observations is critical for S2S as well as weather forecasting; research to increase the use of 
currently available atmospheric observations, such as assimilation of satellite radiances in cloudy 
and precipitating areas, could unlock a wealth of new information related to representing 
convection and precipitation in models.  

Relative to the atmosphere, the ocean, land surface, and cryosphere remain significantly 
under-observed, despite being major sources of S2S predictability. For the oceans, more routine 
and targeted observations are essential for S2S applications. In particular, sustaining and 
enhancing the capability to provide remotely sensed sea surface height (SSH), sea surface 
temperature (SST), and near-surface winds is critical, as is expanding the use of measurement 
arrays such as Argo floats and moored buoys to better measure key ocean properties below the 
surface (temperature, salinity and current velocity). In addition to improving classic observing 
capabilities for the ocean, smart utilization of novel autonomous platforms could have an 
important impact. 

Reliable and accurate year-round sea ice thickness measurements are the greatest need for 
improving the understanding and modeling of sea ice and its influence on the coupled system. 
Current (CryoSat2) and planned (ICESat2) satellite missions will help to meet this key objective. 
Because these satellites measure freeboard (the height of sea ice and snow above the sea level), 
accurate and simultaneous measurements of snow depths are also needed to solve for sea ice 
thickness. The procedure for solving for sea ice thickness needs to be efficient enough to be 
ready in about a day, so such measurements can contribute to initialization of S2S forecasts. 

Land observations are critical for modeling large-scale land surface-atmosphere 
feedbacks and for predictions of the terrestrial water cycle. Several new satellite missions (Soil 
Moisture Active Passive [SMAP] and Surface Water and Ocean Topography [SWOT]) are 
focused on observing near-surface soil moisture and other aspects of surface hydrology that will 
be useful for improving S2S predictions. However, a number of critical gaps remain. Lack of 
adequate precipitation measurements currently hinder S2S prediction, and measurements of soil 
moisture in the root zone, as well as measurements of evapotranspiration, are needed globally to 
better constrain hydrology and surface fluxes. Measurements of snow depth or snow water 
equivalent (SWE) are also critical. SWE can be estimated from existing satellite platforms, 
however retrieval algorithms must be improved in order to take full advantage of these 
observations. Because of gaps in the satellite observing network, in situ measurements of 
variables such as precipitation, snow depth and land-surface atmosphere fluxes are likely to 
remain important and should be expanded to improve their spatial coverage.  

In summary, observations of the atmosphere, ocean, land surface, and cryosphere play a 
critical role in building, calibrating, initializing, and evaluating the coupled Earth system models 
that are used to generate S2S forecasts. Better representing slow-varying processes in the Earth 
system—such as the ocean, cryosphere, and land surface hydrology—and their coupling to the 
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atmosphere, as well as developing observations to inform deep convection and storm formation, 
are important to capturing S2S predictability, but they represent the largest gaps in the current 
observing network. Improved observations are also critical for improving the ability to forecast 
important and/or extreme events (Research Strategy 3). Including observations of phenomena 
that remain insufficiently observed, such as the properties of oceans or sea ice, can also facilitate 
the inclusion of more and more complex components of the Earth system in S2S prediction 
systems (Research Strategy 4). 
 
Recommendation E: Maintain continuity of critical observations, and expand the temporal 
and spatial coverage of in situ and remotely sensed observations for Earth system variables 
that are beneficial for operational S2S prediction and for discovering and modeling new 
sources of S2S predictability. 
 
Specifically: 
 

 Maintain continuous satellite measurement records of vertical profiles of atmospheric 
temperature and humidity without gaps in the data collection and with increasing vertical 
resolution and accuracy. 

 Optimize and advance observations of clouds, precipitation, wind profiles, and mesoscale 
storm and boundary layer structure and evolution. In particular, higher-resolution 
observations of these quantities are needed for developing and advancing cloud-
permitting components of future S2S forecast systems. 

 Maintain and advance satellite and other observational capabilities (e.g., radars, drifters, 
and gliders) to provide continuity and better spatial coverage, resolution, and quality of 
key surface ocean observations (SSH, SST, and winds), particularly near the coasts, 
where predictions of oceanic conditions are of the greatest societal importance in their 
own right. 

 Maintain and expand the network of in situ instruments providing routine real-time 
measurements of sub-surface ocean properties, such as temperature, salinity, and 
currents, with increasing resolutions and accuracy. Appropriate platforms for these 
instruments will include arrays of moored buoys (especially in the tropics), AUVs, 
marine mammals, and profiling floats.  

 Develop accurate and timely year-round sea ice thickness measurements; if from remote 
sensing of sea ice freeboard, simultaneous snow depth measurements are needed to 
translate the observation of freeboard into sea ice thickness. 

 Expand in situ measurements of precipitation, snow depth, soil moisture, and land-
surface fluxes, and improve and/or better exploit remotely sensed soil moisture, snow 
water equivalent, and evapotranspiration measurements. 

 Continue to invest in observations (both in situ and remotely sensed) that are important 
for informing fluxes between the component interfaces, including but not limited to land 
surface observations of temperature, moisture, and snow depth; marine surface 
observations from tropical moored buoys; and ocean observations of near-surface 
currents, temperature, salinity, ocean heat content, mixed-layer depth, and sea ice 
conditions. 
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 Apply autonomous and other new observing technologies to expand the spatial and 
temporal coverage of observation networks, and support the continued development of 
these observational methodologies. 

 
As the scope of S2S models evolves to include and resolve more physical processes and 

components of the Earth system, there will be an increasing need for observations of new 
variables (Research Strategy 4). Furthermore, and as detailed above, current routine observations 
may not have sufficient resolution or coverage for S2S applications. Although it would be 
beneficial to expand the geographic coverage and resolution of many types of observations, cost 
and logistics will continue to demand that priorities are determined, and it is not always clear a-
priori what measurements will be most beneficial to support S2S prediction systems. Thus 
careful study of the improvements anticipated in S2S forecasting systems will be needed to 
quantify the cost-benefit ratio for various types of additional observations. Such study requires 
integrating ocean, land, atmosphere and sea ice modeling in the planning of observing networks. 
Observing system simulation experiments (OSSEs) and other sensitivity studies are powerful 
tools for exploring the importance of specific observations on state estimation and overall model 
performance, and could be better used to prioritize improvements to observation networks (as 
well as model parameterizations) for S2S prediction systems.  
 
Recommendation F: Determine priorities for observational systems and networks by 
developing and implementing OSSEs, OSEs, and other sensitivity studies using S2S forecast 
systems.  
 
 There are many challenges associated with integrating tens of millions of observations 
into the different components of an Earth system model, including ensuring that initializations 
are dynamically consistent and minimize the growth of errors. Given that coupling between the 
multiple, dynamic components of the Earth system (e.g., atmosphere, ocean, ice, land) is central 
to the S2S prediction problem, developing and implementing coupled data assimilation methods 
is at the forefront of S2S model development.  

The implementation of “weakly coupled” assimilation, in which an independently 
coupled Earth system model is integrated forward in time as part of the assimilation process, 
represents an important and ongoing step in improving both weather and S2S forecast systems. 
“Strongly coupled” data assimilation, in which observations within one media are allowed to 
impact the state estimate in other components (with constraints), may allow for another 
important leap forward, especially for S2S systems in which the representation of the interaction 
between Earth system components is essential for capturing inherent predictability. However, 
research into the use of strongly coupled data assimilation algorithms is in its infancy, has not yet 
been tested on complex S2S coupled prediction models, and presently faces several barriers to 
implementation. Fundamental research is needed to explore and realize the potential benefits to 
more advanced but expensive strongly coupled data assimilation, while continuing to pursue and 
implement weakly coupled methods in current systems. 

Efforts to improve the skill of S2S predictions will also benefit from more realistic 
representation of the uncertainty and statistical properties of observations and model output. 
Research on Bayesian data assimilation and uncertainty quantification has grown substantially in 
atmospheric and oceanic sciences and also in disciplines such as applied mathematics and 
engineering. These methods, which allow the optimal prediction and utilization of the full 
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probabilistic information and utilize rigorous reduced-order differential equations, are strong 
candidates for implementation in the components of S2S prediction systems, but require more 
development to be implemented into operational settings.  
 
Recommendation G: Invest in research that advances the development of strongly coupled 
data assimilation and quantifies the impact of such advances on operational S2S forecast 
systems.  
 
Specifically:  
 

 Continue to test and develop weakly coupled systems as operationally viable systems and 
as benchmarks for strongly coupled implementations. 

 Further develop and evaluate hybrid assimilation methods, multiscale- and coupled-
covariance update algorithms, non-Gaussian nonlinear assimilation, and rigorous reduced-
order stochastic modeling. 

 Optimize the use of observations collected for the ocean, land surface, and sea ice 
components, in part through coupled-covariances and mutual information algorithms, and 
through autonomous adaptive sampling and observation targeting schemes. 

 Further develop the joint estimation of coupled states and parameters, as well as 
quantitative methods that discriminate among, and learn, parameterizations. 

 Develop methods and systems to fully utilize relevant satellite and in situ atmospheric 
information, especially for cloudy and precipitating conditions. 

 Foster interactions among the growing number of science and engineering communities 
involved in data assimilation, Bayesian inference, and uncertainty quantification. 

 
Systematic errors are numerous within the Earth system models used for S2S forecasting. 

For example, many global models produce an unrealistically strong Pacific equatorial cold 
tongue, a spurious double Inter Tropical Convergence Zone (ITCZ), erroneously high Indian 
Ocean and tropical South Atlantic SSTs, low SSTs in the tropical North Atlantic, wet or dry 
biases in rainfall in many parts of the world, and a bias in MJO variance. These model errors can 
be large compared to the predictable signals targeted by S2S forecasts. 

Reducing such model errors represents one of the most important ways to improve the 
skill of S2S predictions (Chapter 5, models subsection). There is evidence that increasing the 
resolution of modeling systems (while still at resolutions that need deep convection 
parameterization) can reduce model errors. However, resolution is far from a panacea. Improving 
physical parameterizations of unresolved processes remains essential to reducing errors, even as 
the capability to resolve more and more processes expands. One important barrier to improving 
parameterizations is incomplete understanding of actual physical processes and the challenges 
associated with encapsulating new knowledge of these processes in (multiple, interacting) 
parameterizations. Coordinated, coupled field campaigns, as well as process-targeted satellite 
missions and other observations, are essential for developing the understanding required to 
improve parameterizations. To maximize impact, field campaigns should, as far as possible, be 
co-designed by academics and operational centers and take full advantage of opportunities for 
national and international coordination. 

Continuing to develop high-resolution research models will also be important for 
developing better parameterizations that reduce model errors. We note that model resolution 
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encompasses time and space resolution, but also a balance between the order of the numerical 
computation and the refinement of the discretization. Further development of high resolution 
models will also be extremely beneficial for examining predictability on S2S timescales, and will 
help pave the way for future operational use of global cloud and eddy-permitting models or 
cloud and eddy-permitting meshes in critical areas. This approach is becoming more feasible as 
scale-aware cumulus parameterization schemes are being developed. Finally, in parallel to 
spatiotemporal model resolution and parameterizations, incorporating new stochastic statistical 
methods is also important to advance S2S forecasting. In particular, as described in Chapter 5, 
there are now several promising stochastic methods and reduced-order partial differential 
equations that could provide improved probabilistic forecasts for the same cost as running the 
present number of ensemble members. Furthermore, including efficient stochastic components in 
S2S modeling systems has the potential to increase the skill of S2S probabilistic forecasts and 
benefit decision making. For example, stochastic computing and stochastic parameterizations of 
unresolved processes (Palmer, 2014) can be used to better represent rare but significant S2S 
events. 

To summarize, investment in research aimed at physical understanding and reducing 
model errors is seen by this Committee as a top priority in improving the skill of S2S predictions. 
In addition to contributing to Research Strategy 2, reducing model errors also contributes to 
Strategies 3 and 4. 
 
Recommendation H: Accelerate research to improve parameterization of unresolved (e.g., 
subgrid scale) processes, both within S2S system submodels and holistically across models, to 
better represent coupling in the Earth system. 
 
Specifically:  
 

 Foster long-term collaborations among scientists across academia and research and 
operational modeling centers, and across ocean, sea ice, land and atmospheric 
observation and modeling communities, to identify root causes of error in 
parameterization schemes, to correct these errors, and to develop, test, and optimize new 
(especially scale-aware or independent) parameterization schemes in a holistic manner. 

 Continue to investigate the potential for reducing model errors through increases in 
horizontal and vertical resolutions in the atmosphere and other model components, 
ideally in a coupled model framework (see also Recommendation L).  

 Encourage field campaigns targeted at increasing knowledge of processes that are poorly 
understood or poorly represented in S2S models, including tropical convection, ocean 
mixing, polar, sea ice and stratospheric processes, and coupling among different Earth 
system components (e.g., air-sea-ice-wave-land; troposphere-stratosphere; dynamics-
biogeochemistry). 

 Develop high-resolution (or multi-resolution) modeling systems (e.g., that permit 
atmospheric deep convection and non-hydrostatic ocean processes) to advance process 
understanding and promote the development of high-resolution operational prototypes 
(see also Recommendation I). 

 
Verification metrics are important for tracking and comparing model improvements, and 

are also a critical part of enabling use and building trust in S2S forecasts. Understanding the 
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different ways users interpret forecasts and what they consider to be skillful is necessary to 
inform the development of better verification metrics (Recommendation B). Improving 
verification should also involve continued research on feature-based and two-step verification 
methods, along with consideration of how the design of retrospective forecasts and reanalyses 
can influence the ability of some users to directly evaluate the consequences of acting on 
forecasts at various predicted probabilities. 
 
Recommendation J: Pursue feature-based verification techniques in order to more readily 
capture limited predictability at S2S timescales, as part of a larger effort to improve S2S 
forecast verification. 
 
Specifically: 
 

 Investigate methodologies for ensemble feature verification including two-step processes 
linking features to critical user criterion. 

 Pursue verification methodologies for rare and extreme events at S2S timescales, 
especially those related to multi-model ensemble predictions. 

 Consider the benefits of producing more frequent reanalyses using coupled S2S forecast 
systems in order for the initial conditions of retrospective forecasts to be more consistent 
with the real time forecasts, as well as for the purposes of predictability studies. 

 
Multi-model ensembles (MMEs) are one of the most promising ways to account for errors 

associated with Earth system model formulation, and the use of MMEs is likely to remain critical 
for S2S prediction. However, current MMEs are largely systems of opportunity, and research is 
required to develop more intentional MME forecast systems. S2S forecast systems, including the 
coupled Earth system model, the reanalysis, and retrospective forecasts, can be configured in a 
wide variety of ways. Careful optimizing of the configurations of a multi-model prediction 
system will include systematic exploration of the benefits and costs of adding unique models to 
an MME.  

Today, little information is available about optimum configurations for individual or 
multi-model S2S ensemble forecast systems. It is likely that much can be gained in both skill and 
resource utilization by ascertaining which configurations produce optimum forecast systems, as 
defined by reliable probability forecasts and optimum levels of user-focused skill. 

Forecast centers, private sector users, and value-added providers use various calibration 
methods, but there has not been a comprehensive effort to compare methods or to find optimum 
approaches for the variables of most interest. Studies of the optimum configurations of S2S 
probability models (mentioned below) should include an attempt to evaluate calibration methods 
and ascertain whether some methods offer clear advantage over others, recognizing that some of 
these methods will likely be application-specific. 

Exploring the “trade space,” i.e., the configuration of S2S forecast systems, will be a 
large, complicated, and expensive endeavor, expanding as computer and Earth system modeling 
capabilities expand over the next decade or more, but determining how performance depends on 
configuration is a key task in any S2S research agenda. As such, this exploration would benefit 
tremendously from a central, coordinating authority and central funding, as well. Exploring the 
“trade space” will be important for increasing forecast skill, advancing the prediction of events 
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(Research Strategy 3) and helping decide how to expand and design new S2S systems to include 
more complexity in S2S Earth system models (Research Strategy 4). 
 
Recommendation K: Explore systematically the impact of various S2S forecast system design 
elements on S2S forecast skill. This includes examining the value of model diversity, as well as 
the impact of various selections and combinations of model resolution, number of ensemble 
perturbations, length of lead, averaging period, length of retrospective forecasts, and options 
for coupled sub-models. 
 
Specifically: 
 

 Design a coordinated program to assess the costs and benefits of including additional 
processes in S2S systems, and relate those to benefits from other investments, for 
example in higher resolution. In doing so, take advantage of the opportunity to leverage 
experience and codes from the climate modeling community. 

 Encourage systematic studies of the costs and benefits of increasing the vertical and 
horizontal resolution of S2S models. 

 Evaluate calibration methods and ascertain whether some methods offer clear advantage 
for certain applications over others, as part of studies of the optimum configurations of 
S2S models. 

 Explore systematically how many unique models in a multi-model ensemble are required 
to predict useful S2S parameters, and whether those models require unique data 
assimilation, physical parameterizations, or atmosphere, ocean, land, and ice components 
(see also Recommendation L). 

 
Transitioning new ideas, tools, and other technology between the S2S research 

community and operational centers is challenging but essential to translating research discoveries 
into informed decision making. In the S2S context, one key element of this transfer will be to 
bring the best research to bear on developing an operational MME S2S forecast system. The use 
of multi-model ensembles (MMEs) in non-operational, research settings has demonstrated the 
potential for advancing S2S forecasts, for example the North American Multimodel Ensemble 
program (NMME) (see Chapter 6). An operational NMME relying on research institutions for 
funding and operations is not a viable long-term option, but there would be great value in the 
development of an operational MME forecast system that includes the operational centers of the 
United States.  

Developing an operational MME forecasting system will require careful optimizing of 
the configurations of a multi-model prediction system (Recommendation K). Test beds, such as 
the National Oceanic and Atmospheric Administration (NOAA) Climate Test Bed activity, 
provide the potential for such coordinating activities; however, the Test Bed would need 
significant enhancement if it were to be relied on as the primary mechanism for the development 
of a MME forecasting system. Where feasible, interagency and international collaborations could 
accelerate efforts to create an operational MME. Realistic assessment of available operational 
resources and centers that are able to contribute operationally rigorous prediction systems would 
be a useful starting point for determining the best path forward. 
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Recommendation L: Accelerate efforts to carefully design and create robust operational multi-
model ensemble S2S forecast systems.  
 
Specifically: 
 

 Use test beds and interagency and international collaborations where feasible to 
systematically explore the impact of various S2S forecast system design elements on S2S 
forecast skill, in particular the question how many unique models in a multi-model 
ensemble are required to predict operationally useful S2S parameters (see also 
Recommendation K). 

 Assess realistically the available operational resources and centers that are able to 
contribute operationally rigorous prediction systems. 

 
To make the kind of rapid improvements to operational S2S prediction systems that are 

envisioned by the Committee, it will be more generally important to speed the flow of 
information between scientists with research and operational foci. There are a number of 
mechanisms to improve the flow of technology into operational weather and ocean systems, 
including focused workshops, visiting scientist programs, special sessions at professional 
conferences, testbeds and focused transition teams such as the Navy’s development-and-
operations transition teams and NSF/NOAA’s Climate Process Teams. These mechanisms 
should be promoted and expanded to include more scientist involvement for plowing the new 
ground of S2S. 

New mechanisms should also be developed especially to enhance researcher access to 
operational forecast data, including access to archives of ensemble forecasts themselves, 
retrospective forecasts, and initialization data. There are data storage challenges with such an 
endeavor, but it would facilitate further analyses of sources of S2S predictability and efforts to 
diagnose skill, among other benefits. The WWRP/WCRP S2S Project described in Chapters 4 
and 6 is already making some operational center data available to the research community to 
study subseasonal processes, but S2S Project data is just beginning to be explored by the 
research community. 

In the longer term, allowing researchers to conduct or request specific experiments on 
operational systems would provide an additional boost to the flow of discoveries and technical 
advances between research and operational communities. Allowing researchers to run 
operational models will be a difficult challenge, one that involves making the modeling code 
itself accessible to the research community as well as ensuring access to sufficient computing 
power to run the code. All of these actions will require a significant effort on the part of the 
operational centers. To improve the flow of advances between research and operations, 
operational centers should work towards addressing these challenges over the next couple of 
decades. 
 
Recommendation M: Provide mechanisms for research and operational communities to 
collaborate, and aid in transitioning components and parameterizations from the research 
community into operational centers, by increasing researcher access to operational or 
operational mirror systems. 
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Specifically: 
 

 Increase opportunities for S2S researchers to participate in operational centers. 
 Enhance interactions with the international community (e.g., the S2S Project and APCC) 

and with the WMO Lead Centers. 
 Provide better access in the near-term to archived data from operational systems, 

potentially via test centers.  
 Develop, in the longer term, the ability for researchers to request re-runs or do runs 

themselves of operational model forecasts.  
 Encourage effective partnerships with the private sector through ongoing engagement 

(see also Recommendation B).  
 

 
Research Strategy 3: Improve Prediction of Extreme and Disruptive Events and 

Consequences of Unanticipated Forcing Events 
 

Within the efforts to improve the overall skill of S2S forecasts and to provide more 
actionable information to users, there are two areas that the Committee believes deserve special 
attention (Research Strategies 3 and 4). Research Strategy 3 involves an increased focus on 
discrete events, and the Committee made two recommendations to address this focus. The first is 
to emphasize the prediction of weather, climate and other Earth system events that disrupt 
society’s normal functioning. Weather extremes and other relatively infrequent events can 
greatly disrupt society’s normal functioning and are therefore of significant concern to many 
users: drought and flood, strong storms with excessive precipitation, heat waves, and major wind 
events are all examples. A coordinated effort to improve the forecasting of these events could 
provide the huge benefits achieved by allowing communities more time to plan for, and mitigate 
the damages from these events. Thus it is important to explore the possibilities of using model 
output to suggest the likelihood of such disruptive events. For some of these events, a 
quantitative estimate of probability would provide the opportunity to consider whether specific 
mitigation actions are cost effective. But whether action is justified would depend on the skill of 
the forecasts for extreme events as determined by a history of such forecasts. 

Improved forecasting of extreme or disruptive events may entail an emphasis on forecasts 
of opportunity—windows in time when expected skill for predicting specific events is high 
because of the presence of certain features in the Earth system—rather than simply predicting 
average conditions for given time periods, as is done today. Skillful extended-range prediction of 
such events may only be possible for certain phases of large-scale climate patterns, such as the 
seasonal cycle, ENSO, or MJO, or NAO, or may be contingent on interactions between these 
modes and other slowly varying processes. Moreover, skillful prediction of the probabilities of 
some types of disruptive events will be possible at these timescales, whereas others may not. 
Examples of events for which there is good evidence for predictive skill at S2S timescales 
include: regional drought; watershed-scale melt-driven flooding; and significant shifts in 
hurricane tracks or land-falling events in various ocean basins (Vecchi et al., 2011). More 
research is needed to investigate the potential skill for forecasts of different types of disruptive 
events, with a focus on discovering the potential for so-called forecasts of opportunity. 

In addition to the improved prediction of events within the Earth system, there are events 
driven by outside forces that have major—and potentially predictable—consequences on the 
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Earth system. Such outside forces include volcanoes, meteor impacts, and human actions (e.g., 
aerosol emissions, widespread fires, large oil spills, certain acts of war, or climate intervention). 
Over the past 25 years, there have been a number of these unusual natural or human-caused 
events that have had, or were initially feared to have, the possibility of large-scale consequences 
to the Earth system (Chapters 3 and 6) and accompanying adverse impacts to a wide range of 
human activities. 

Some consequences of high-impact events are predictable on timescales of weeks to a 
year. These events are unusual because they are of a nature or magnitude not represented within 
the recent past (for instance since the start of observational satellite climate records in about 
1979), and hence do not have well-observed analogs that can be used to validate prediction 
systems. Moreover, depending on the nature of the event, the operational forecast systems may 
not be suited for predicting the event’s consequences. While some of these events, such as the 
1991 eruption of Mt. Pinatubo, had clear consequences for the global system for a year and 
beyond (0.3 °C global-mean cooling averaged over the 3 years following the Pinatubo eruption), 
many other events had much smaller impacts than originally projected. However, these were 
notable in raising significant public concern that might have required action by decision makers. 

 
 
Recommendations 
 

The improved prediction of extreme or disruptive events on S2S timescales is an 
extension of improvements in S2S forecasting skill (Research Strategy 2). But given the 
importance of having actionable information about these events for users and decision makers 
(Research Strategy 1), the Committee believes it is important to highlight the prediction of 
events as a separate strategy. Improving the prediction of such events will involve improved 
understanding of sources of predictability of extreme and disruptive events in the S2S time 
range. It will also involve ensuring that all relevant sources of predictability and their 
interactions are represented in Earth system models (Chapter 4). 
 
Recommendation D: Focus predictability studies, process exploration, model development and 
forecast skill advancements on high impact S2S “forecasts of opportunity” that in particular 
target disruptive and extreme events (e.g. tropical cyclones, mesoscale convection, topographic 
forcing, coastal surge). 
 
Specifically:  
 

 Determine how predictability sources (e.g. natural modes of variability, slowly varying 
processes, external forcing) and their multi-scale interactions can influence the 
occurrence, evolution and amplitude of extreme and disruptive events using long-record 
and process-level observations. 

 Ensure the relationships between disruptive and extreme weather/environmental events—
or their proxies—and sources of S2S predictability (e.g. modes of natural variability and 
slowly varying processes) are represented in S2S forecast systems. 

 Investigate and estimate the predictability and prediction skill of disruptive and extreme 
events through utilization and further development of forecast and retrospective forecast 
databases, such as those from the S2S Project and the NMME. 
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The second part of this research strategy involves using S2S forecast systems to predict 

the consequences of disruptive events caused by an unusual Earth system event, like a volcanic 
eruption or a major oil spill. Such an outside event generates an immediate demand for scientific 
guidance for the public and policy-makers about potential consequences. A flexible system for 
estimating Earth system consequences of such unusual forcing events would address a national 
need that has become evident several times over the past few decades. 

The nation should develop a capability for estimating the range of possible impacts and 
consequences of unexpected but critical events such as volcanic eruptions, nuclear detonations, 
widespread fires, or large spills of toxic materials (Chapters 3 and 6). Such a capability would 
need to be mobilized within one week and return preliminary results for S2S timescales and 
beyond as appropriate.  

Performing regular full-scale exercises in collaboration with the response community in 
the spirit of war games would help improve this capability and maintain it for any new event. 
This could serve as a focal point and help to improve the connections of advances in the 
academic sector in modeling unexpected events with operational model development. 
 
Recommendation N: Develop a national capability to forecast the consequences of 
unanticipated forcing events.  
 
Specifically: 
 

 Improve the coordination of government agencies and academics to be able to quickly 
respond to unanticipated events to provide S2S forecasts and associated responses using 
the unanticipated events as sources of predictability. 

 Utilize emerging applications of Earth system models for long-range transport and 
dispersion processes (e.g., of aerosols). 

 Increase research on the generation, validation, and verification of forecasts for the 
aftermath of unanticipated forcing events. 

 
 

Research Strategy 4: Include More Components of the Earth System in S2S Forecast 
Models  

 
The other area that the Committee feels needs more focused attention is accelerating the 

development of Earth system model components outside the troposphere—Research Strategy 4. 
As mentioned above, representing oceans, sea ice, land surface and hydrology, and 
biogeochemical cycles (including aerosol and air quality) in coupled Earth system models is 
more important for S2S predictions than for traditional weather prediction, because much of the 
predictability of the Earth system on these timescales arises from conditions outside the 
troposphere or from interactions between Earth system components. Operational S2S forecast 
systems increasingly utilize coupled Earth system models that include major Earth system 
components (e.g., ocean, atmosphere, ice, land) (Brassington et al., 2015; Brunet et al., 2010). 
However, the representation of processes outside the troposphere has generally been less well 
developed. Improving model representation of land surface and terrestrial hydrology, ocean, sea 
ice, and upper atmosphere—including fluxes and feedbacks between these components—will be 
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important for increasing the skill of S2S forecasts. This includes advancing the observations, 
modeling, data assimilation, and integrated prediction capabilities in those components. Those 
components that have significant interactions with the weather and climate system as a whole 
will need to be dynamically integrated into the operational forecasting systems. Other fields that 
do not contribute substantially to the evolution of the rest of the system could be predicted by 
post-processing operations or by independent activities after the primary forecasts have been 
carried out. However, as demand grows for forecasts of phenomena that are predictable on S2S 
timescales but that do not feedback strongly to the atmosphere, improving the dynamical 
representation of many of these Earth system processes in S2S prediction systems may also 
become important in its own right. 
 Representing interactions between the various Earth system components has become 
increasingly important for climate projections. Comprehensive Earth system models (ESMs), 
which include composition, aerosols, vegetation, snow and glaciers, etc., are increasingly being 
used to provide projections on decadal to centennial timescales (e.g., Coupled Model 
Intercomparison Project Phase 5 [CMIP5]; IPCC, 2013; Taylor et al., 2012). The extension of 
operational S2S forecasts towards dynamic predictions of more of the Earth system will be 
carried out most effectively by leveraging these existing efforts. 

 
 

Recommendations 
 
Improving the representation of more components and variables of the Earth system in 

S2S forecasts, including the ocean, sea ice, biogeochemistry, and land surface, will produce 
information applicable to a new and wider range of decisions. Iterative interaction with forecast 
users (Research Strategy 1) can help determine what processes and variables are most important 
to include in coupled S2S systems as these systems evolve. Expanding the comprehensiveness of 
such component models and advancing their coupling in Earth system models will also help 
improve the overall skill of forecasts (Research Strategy 2). 

Priorities for improving ocean models include both fundamental numerical capabilities 
and improved depictions of important oceanic phenomena that are currently omitted from most 
S2S forecasting systems, for example tides and their interactions with storm surges, and oceanic 
mixing of nutrients. The dynamics of the near surface ocean are of particular importance for the 
coupled ocean at S2S timescales, so the representation of ocean boundary layer turbulence and 
its interactions with waves and sea ice are a promising subject of study for improving S2S 
forecasts. But the most important limitation on oceanic S2S forecasts arises from the global 
influence of the ocean at these timescales, along with the need to accurately represent many 
important oceanic phenomena at relatively small scales to capture this influence. Implementing a 
regionally eddy-resolving ocean component along with additional research on parameterizing the 
effects of unresolved baroclinic and sub-mesoscale oceanic eddies would thus help improve S2S 
coupled prediction models. 

Sea ice models used for S2S often contain only rudimentary thermodynamics and 
dynamics. Connecting advances in cutting-edge sea ice models (including more sophisticated 
physics representations of ice-thickness distribution, melt ponds, biogeochemistry, and 
divergence/convergence, as well as new methods to account for wave-floe interactions, blowing 
snow, and ice microstructure) with sea ice models used in S2S forecast system could advance 
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S2S predictions of the atmosphere through improved representation of radiative and ocean 
feedbacks, as well as advancing S2S prediction of sea ice and polar ocean conditions. 

Similarly, land-surface models used for S2S prediction need to improve treatment of the 
hydrological cycle and aspects of the land surface that are coupled to hydrology, such as 
vegetation. Effort is needed to incorporate surface and underground water storage and river 
routing in models, including the role of human water management and use. These important 
aspects of the land system have been implemented in “off-line” hydrologic forecast systems, but 
they are usually over-simplified or neglected altogether in fully coupled S2S forecast systems. 
Improving the representation of land surface processes such as soil moisture storage and snow 
may in such fully coupled systems will be important for predicting events such as heat waves, 
cold surges, storm formation, and predicting run-off may also help to enable S2S forecasts of 
flooding and lake and coastal hypoxia. 

Additional strong candidates for improvements to existing practice for operational S2S 
forecasting systems include advancing the observations, modeling, data assimilation, and 
integrated prediction capabilities of aerosols and air quality, and aquatic and marine ecosystems. 

Beyond advancing the representation of the land surface, hydrology, stratosphere, sea ice, 
ocean, and biogeochemical models and translating these advancements to the coupled Earth 
system models used for S2S forecasting, efforts are needed to pave the way towards global 
cloud/eddy-resolving atmosphere-ocean-land-sea ice coupled models, which will one day 
become operational for S2S prediction. While this goal is unlikely to be reached in the next 
decade, revolutions in the computing industry may shorten the distance between now and the 
otherwise long way to go, and the S2S research community needs to be proactive and poised 
if/when that happens. 

 
 

Recommendation I: Pursue next-generation ocean, sea ice, wave, biogeochemistry, and land 
surface/hydrologic, as well as atmospheric model capability in fully coupled Earth system 
models used in S2S forecast systems. 
 
Specifically:  
 

 Build a robust research program to explore potential benefits to S2S predictive skill and 
to forecast users from adding more advanced Earth system components in forecast 
systems. 

 Initiate new efficient partnerships between academics and operational centers to create 
the next generation model components that can be easily integrated into coupled S2S 
Earth system models. 

 Support and expand model coupling frameworks to link ocean/atmosphere/land/wave/ice 
models inter-operably for rapidly and easily exchanging flux and variable information. 

 Develop a strategy to transition high resolution (cloud/eddy-resolving) atmosphere-
ocean-land-sea ice coupled models to operations, including strategies for new 
parameterization schemes, data assimilation procedures, and multi-model ensembles 
(MME). 

 
Supporting the S2S Forecasting Enterprise 
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It is essential to highlight two specific cross-cutting challenges that must be met in order 
to support the four research strategies for reaching the Committee’s vision for S2S prediction. 
These are ensuring that the computational infrastructure is sufficient to support the S2S 
forecasting enterprise; and developing and maintaining the workforce that will be needed realize 
potential advances in S2S forecasting. These challenges are not necessarily unique to the S2S 
enterprise—they are also faced by the numerical weather prediction and climate modeling 
communities, and indeed, across many other technical enterprises.  
 
 
Recommendations 
 

The volume of observational data, data assimilation steps, model outputs, and reanalysis 
and retrospective forecasts involved in S2S forecasting means that the S2S modeling process is 
extremely data intensive. S2S prediction systems test the limits of current cyber-infrastructure, as 
do weather forecasting and climate modeling. Advances in S2S forecast models (higher 
resolutions, increased complexity, the generation and retention of long retrospective forecasts, 
etc.), will require dramatically increased computing capacities (perhaps 1,000 times), and similar 
expansion of related storage and data transport capacities. 

That said, today’s Earth system models are not taking full advantage of current 
computing architectures and improving their performance will likely require new algorithms that 
do more to work on data locally before transporting it to those analyzing it, as well as significant 
refactoring of existing algorithms to exploit more parallelism. To compound these challenges, 
the transition to new computing hardware and software through the next decade will be highly 
disruptive. This transition will not involve faster processing elements, but rather more processors 
with considerably more complex embodiments of concurrency. In addition, future storage 
technology will be more complex and varied than it is today, and leveraging these innovations 
will require fundamental software changes. 

An integrative modeling environment presents an appealing future option for facing some 
of the large uncertainty about the evolution of hardware and programming models over the next 
two decades. New approaches to data-centric workflow software that incorporates parallelism, 
remote analysis, and data compression will be required to keep up with the demands of the S2S 
forecasting community. 

 
Recommendation O: Develop a national plan and investment strategy for S2S prediction to 
take better advantage of current hardware and software and to meet the challenges in the 
evolution of new hardware and software for all stages of the prediction process, including data 
assimilation, operation of high-resolution coupled Earth system models, and storage and 
management of results.  
 
Specifically:  
 

 Redesign and recode S2S models and data assimilation systems so they will be capable of 
exploiting current and future massively parallel computational capabilities; this will 
require a significant and long-term investment in computer scientists, software engineers, 
applied mathematicians, and statistics researchers in partnership with the S2S researchers. 
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 Increase efforts to achieve an integrated modeling environment using the opportunity of 
S2S and seamless prediction to bring operational agency (ESPC) efforts and IGIM efforts 
together to create common software infrastructure and standards for component 
interfaces. 

 Provide larger and dedicated supercomputing and storage resources. 
 Resolve the emerging challenges around S2S big data, including development and 

deployment of integrated data-intensive cyberinfrastructure, utilization of efficient data-
centric workflows, reduction of stored data volumes, and deployment of data serving and 
analysis capabilities for users outside the research/operational community. 

 Further develop techniques for high volume data processing and in-line data volume 
reduction. 

 Continue to develop dynamic model cores that take the advantage of new computer 
technology. 

 
As highlighted in Chapters 3 and 6, the Committee believes there are significant 

challenges in maintaining a pipeline of talented workers in the S2S enterprise. S2S is complex 
and involves working across computing-Earth science boundaries to develop and improve S2S 
models and working across science-user decision boundaries to better design and communicate 
forecast products and decision tools.  

From the limited data available, it appears that the pipeline of S2S modelers being trained 
is not growing robustly in the United States, and is not keeping pace with this rapidly evolving 
field (Chapter 7). Given the importance of S2S predictions to the nation, a concerted effort is 
needed to entrain, develop, and retain a robust S2S workforce.  

Similar to weather forecasting, S2S forecasts are used or have the potential to be used by 
many people to make important decisions. Because S2S connects in a very public way to risk 
management, there will be many opportunities within the S2S enterprise to help society better 
manage risks. These factors can be exploited to entrain more talented and mission-driven people 
into the field. 

One possible concrete step forward would be a series of workshops to explore how to 
feature S2S in more undergraduate and graduate curriculums, how to identify and connect with 
organizations that can help with this (e.g., the National Science Teachers Association), and how 
to interact with the private sector to help understand what skills are needed. Other entities such 
as American Meteorological Society (AMS) or the National Science Foundation (NSF) could 
also play an important role in coordinating the entrainment of talented young people. 

 
Recommendation P: Pursue a collection of actions to address workforce development that 
removes barriers that exist across the entire workforce pipeline and in the diversity of 
scientists and engineers involved in advancing S2S forecasting and the component and 
coupled systems. 
 
Specifically:  
 

 Gather quantitative information about workforce requirements and expertise base to 
support S2S modeling in order to more fully develop such a training program and 
workforce pipeline. 
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 Improve incentives and funding to support existing professionals and to attract new 
professionals to the S2S research community, especially in model development and 
improvement, and for those who bridge scientific disciplines and/or work at component 
interfaces.  

 Expand interdisciplinary programs to train a more robust workforce to be employed in 
boundary organizations that work in between S2S model developers and those who use 
forecasts. 

 Integrate basic meteorology and climatology into academic disciplines, such as business 
and engineering, to improve the capacity within operational agencies and businesses to 
create new opportunities for use of S2S information. 

 Provide more graduate and postgraduate training opportunities, enhanced professional 
recognition and career advancement, and adequate incentives to encourage top students in 
relevant scientific and computer programming disciplines to choose S2S model 
development and research as a career. 

 
 

CONCLUSION 
 

This report envisions a substantial improvement in S2S prediction capability and expects 
valuable benefits to flow from these improvements to a wide range of public and private 
activities. It sets forth a research agenda that describes what must be done—with observations, 
data management, computer modeling, and interactions with users—to advance prediction 
capability and improve societal benefits.  

Despite the specificity of the report in recommending what should be done, it does not 
address the challenging issues of how the agenda should actually be pursued—who will do what 
and how the work will be supported financially. Given that this research agenda significantly 
expands the scope of the current S2S efforts, the Committee believes that some progress can be 
made with current levels of support and within current organizational structures, but fully 
achieving the S2S vision will likely require additional resources for basic and applied research, 
observations, and forecast operations. The scope of the research agenda will also require closer 
collaboration between federal agencies and international partners, better flow of ideas and data 
between the research and operational forecasting communities, and engagement of the entire 
weather and climate enterprise.  

The four research strategies provide broad guidance for how to focus effort, and the 
recommendations under each strategy in and of themselves represent the Committee’s view of 
the most important actions to advance S2S forecasting, presented without any prioritization or 
sequencing. The technological, political, and financial environment in which the research agenda 
will be implemented is constantly changing and will continue to be fluid, and multiple pathways 
to success exist. As such, the Committee believes it was more important to provide a list of the 
most important areas where progress can be made towards improving S2S forecasts without 
overly prescribing the sequence or priority in which they should be addressed. All of these 
actions can improve S2S forecasting and the more that is done to implement these 
recommendations, the more advances can be made.  

To help agencies and other actors within the weather/climate enterprise select specific 
parts of the research agenda to pursue, Table 8.1 provides additional details about both the main 
recommendations and more specific or related activities the Committee envisions to be part of 



Copyright © National Academy of Sciences. All rights reserved.

Next Generation Earth System Prediction:  Strategies for Subseasonal to Seasonal Forecasts

Chapter 8: Vision and Way Forward for S2S Earth System Prediction 209 
 

PREPUBLICATION COPY 

implementing each main recommendation: whether they involve basic or applied research; which 
are expected to have short-term benefits; which might require a new initiative; and which have a 
scope that calls for international collaboration that can help leverage U.S. effort. While 
recognizing that it might not be possible to pursue all of these actions simultaneously, the 
Committee hopes that these strategies, recommendations, and designations can help guide 
progress across the span of recommended S2S research and forecasting activities. 

The vision for the future of S2S forecasting can be achieved with a national will to pursue 
this research agenda and to convert the results into daily operations. The more that can be 
pursued within this research agenda, the closer the nation can be towards realizing the full 
potential of S2S forecasting and the more benefits that can be produced for a wide range of users 
and the nation as a whole. 

 
TABLE 8.1 The Committee’s 16 main recommendations—lettered in the order they appear in 
the report—are shown in bold typeface along with information to help guide their 
implementation. The Committee sometimes recommends more specific or related activities that 
they envision to be part of implementing each main recommendation. These are listed in plain 
text under each main recommendation. The second column indicates the research strategy that 
each recommendation and associated activity primarily supports (colors are the same as in Figure 
8.1). Additional research strategies (1-4) supported by each recommendation are indicated by 
numbers. The final columns contain the Committee’s opinion on whether each recommendation 
will involve mainly basic or applied research/operational activities, or both; whether a short-term 
return-on-investment is likely (≤ 5 years); and whether a new initiative or program, or a 
significant expansion of a program, may be necessary to implement each recommendation. The 
last column indicates recommendations for which the Committee believes that international 
collaboration and coordination is particularly important. 
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Acronym List  
 
4DEnVar  four-dimensional ensemble-variational 
ABL atmospheric boundary layer 
ABOM  Australian Bureau of Meteorology 
AFWA Air Force Weather Agency 
AIRS  Atmospheric Infrared Sounder 
AMDAR Aircraft Meteorological Data Relay 
AMS American Meteorological Society 
AMSR-E  advanced microwave scanning radiometer 
AMSU  Advanced Microwave Sounding Unit  
AMV atmospheric motion vector 
AMY Asian Monsoon Year 
ANOVA analysis of variance  
AO Atlantic Oscillation 
APCC APEC (Asia-Pacific Economic Cooperation) Climate Center 
ASCAT Advanced Scatterometer 
AUV autonomous underwater vehicle 
CESM Community Earth System Model 
CFS Climate Forecast System 
CFSR  Climate Forecast System Reanalysis 
CFSv2 Climate Forecast System version 2 
CIME Common Infrastructure for Modeling the Environment 
CliPAS Climate Prediction and its Application to Society 
CMC  Canadian Meteorological Centre 
CMIP Coupled Model Intercomparison Project 
COAMPS  Coupled Ocean/Atmosphere Mesoscale Prediction System 
CODAR Coastal ocean dynamics applications radar 
CPC Climate Prediction Center  
CPT Climate Process Team 
CPTEC  Brazil Center for Weather Forecasting and Climate Studies 
CrIS Crosstrack Infrared Sounder 
CYGNSS Cyclone Global Navigation Satellite System 
DA data assimilation 
DARPA  Defense Advanced Research Projects Agency 
DEMETER Development of a European Multi-model Ensemble system for seasonal to 

inTERannual predictions 
DHS U.S. Department of Homeland Security 
DO Dynamically Orthogonal 
DOD U.S. Department of Defense 
DOE U.S. Department of Energy 
DTRA Defense Threat Reduction Agency 
DWH Deepwater Horizon 
DYNAMO Dynamics of the Madden-Julian Oscillation 
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ECMWF European Centre for Medium-Range Weather Forecasting 
ECOSTRESS  ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 
EnKF Ensemble Kalman Filter 
ENSEMBLES European Commission FP7 project 
ENSO El Niño-Southern Oscillation 
ERA Interim ECMWF Interim Reanalysis 
ESM Earth system model 
ESMF Earth System Modeling Framework 
ESPC Earth System Modeling Capability 
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 
FNMOC Fleet Numerical Meteorology and Oceanography Center 
GATE  GARP (Global Atmosphere Research Program) Atlantic Tropical Experiment 
GDP  Global Drifter Program 
GEFS global ensemble forecast system 
GFDL Geophysical Fluid Dynamics Laboratory 
GHG Greenhouse Gas 
GMM Gaussian Mixture Model 
GOES Geostationary Operational Environmental Satellite 
GPM Global Precipitation Mission  
GPS  Global Positioning System 
GPS-RO Global Positioning System Radio Occulation  
GTH  Global Tropics Hazards and Benefits Assessment  
HadGEM3 Hadley Centre Global Environment Model version 3 
HPC high-performance computing 
IASI  Infrared Atmospheric Sounding Interferometer 
ICESat2 Second generation Ice Cloud and Land Elevation Satellite 
IGIM Interagency Group on Integrative Modeling  
IMAAC Interagency Modeling and Atmospheric Assessment Center 
IMD  India Meteorology Department 
IOD Indian Ocean Dipole  
IOOS Integrated Ocean Observing System 
IOP intensive observing period 
IRI International Research Institute for Climate and Society  
ISI Intraseasonal to Interannual  
ISS International Space Station 
ITCZ Inter Tropical Convergence Zone 
JAXA Japan Aerospace Exploration Agency 
JMA  Japan Meteorological Agency 
KL  Karhunen-Loève 
LANL Los Alamos National Laboratory 
LDAS Land Data Assimilation System 
LES Large-eddy simulation 
LSM land-surface model 
MCMC  Markov chain Monte Carlo  
MERIT Meningitis Environmental Research Information Technologies 
MIZ Marginal Ice Zone 
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MJO Madden-Julian Oscillation 
MME multi-model ensemble 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOS model output statistics 
MOSAiC Multidisciplinary drifting Observatory for the Study of Arctic Climate 
MPI Message Passing Interface  
NAM Northern Annular Mode 
NAO North Atlantic Oscillation 
NARAC National Atmospheric Release Advisory Center 
NASA National Aeronautics and Space Administration 
NASCar Northern Arabian Sea Circulation—autonomous research 
NAVGEM  NAVy Global Environmental Model 
NAVO Naval Oceanographic Office 
NCAR National Center for Atmospheric Research 
NCEP  National Centers for Environmental Prediction 
NEMO  Nucleus for European Modelling of the Ocean 
NISAC  National Infrastructure Simulation and Analysis Center  
NMME North American Multi-Model Ensemble 
NOAA National Oceanic and Atmospheric Administration 
NRL Naval Research Laboratory 
NSF National Science Foundation 
NVM  non-volatile memory 
NWP Numerical Weather Prediction 
NWS U.S. National Weather Service 
OAR Office of Oceanic & Atmospheric Research 
OLR outgoing longwave radiation 
ONR Office of Naval Research 
OpenMP Open Multi-Processing  
OSSE  observing system simulation experiment 
PCAST  President’s Council of Advisors on Science and Technology 
PDE partial differential equation 
PIM processor in memory 
PinT  parallel in time  
PIO Parallel I/O 
PNA Pacific/North American teleconnection pattern 
QBO Quasi-Biennial Oscillation 
R2O research to operations 
RISA Regional Integrated Sciences and Assessments Program 
RMM Real-time Multivariate MJO index 
RMSE  root mean square error 
S2S subseasonal to seasonal  
SAON Sustaining Arctic Observing Network 
SBIR  Small Business Innovation Research 
SHEBA  Surface Heat Budget of the Arctic Ocean  
SMAP  Soil Moisture Active Passive 
SMOS Soil Moisture and Ocean Salinity 
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SNOTEL Snowpack Telemetry 
SOCRATES Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study 
SPERR  Scientific Partnerships Enabling Rapid Response 
SSD Solid State Devices 
SSH sea surface height 
SSM/I special sensor microwave imager 
SST Sea Surface Temperature 
SSW sudden stratospheric warning 
SWE snow water equivalent 
SWOT Surface Water and Ocean Topography 
TAMDAR Tropospheric Airborne Meteorological Data Reporting 
TCWB  Taiwan Central Weather Bureau 
TIROS Television Infrared Observation Satellite 
TOGA COARE  Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere 

Response Experiment 
TRMM Tropical Rainfall Measuring Mission 
UKMO  United Kingdom Met Office 
USGCRP U.S. Global Change Research Program  
VAD Velocity Azimuth Display 
VES Virtual Earth System 
VOCALS-Rex VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-

Atmosphere-Land Study Regional Experiment 
WCRP World Climate Research Programme  
WCS  World Climate Service 
WERA WavE RAdar 
WHO World Health Organization  
WMO  World Meteorological Organization 
WWRP World Weather Research Programme 
XBT  Expendable Bathythermograph 
YMC Years of the Maritime Continent 
YOPP The Year of Polar Prediction 
YOTC Year of Tropical Convection 
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Appendix A: Committee’s Statement of Task 
 
 

An ad hoc committee will conduct a study that will identify opportunities to increase 
forecasting skill on subseasonal to seasonal (S2S) timescales based on the 2010 NRC report 
Assessment of Intraseasonal to Interannual Climate Prediction and Predictability and progress 
since. The report will describe a strategy to increase the nation’s scientific capability for research 
on S2S forecasting. The committee will develop a 10 year scientific research agenda to 
accelerate progress on extending prediction skill for weather and ocean forecasts from currently 
operational meso/synoptic scales to higher spatial and longer temporal resolutions to aid in 
decision making at medium and extended lead times. The committee’s report will cover: 

 Identification of potential sources of predictability and assessment of their relative 
value for advancing predictive skill;  

 Identification of process studies for incorporating new sources of predictability into 
models; 

 Application and advancement of ocean-atmosphere-ice-land coupled models;  
 Key observations needed for model initialization and verification of S2S forecasts;  
 Uncertainty quantification and verification of probabilistic products;  
 Approaches to communicating this type of prediction in a way that is useful to and 

understandable by decision makers; and  
 Computational and data storage and visualization infrastructure requirements. 
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Appendix B: Details of Seasonal and 
Subseasonal Forecast Systems 

 
EXAMPLES OF MODELS USED BY OPERATIONAL CENTERS FOR SUBSEASONAL 

AND SEASONAL FORECASTING 
 

At the National Centers for Environmental Prediction (NCEP), the Climate Forecasting 
System version 2 (CFSv2) is currently used for both the subseasonal and seasonal predictions. 
CFSv2 is a fully coupled model representing the interaction between the Earth’s atmosphere, 
oceans, land, and sea ice (Saha et al., 2014). It became operational at NCEP in March 2011. The 
atmospheric model has a horizontal resolution of T126 (about 100 km) and 64 vertical levels. 
The ocean component is the Modular Ocean Model developed by the Geophysical Fluid 
Dynamics Laboratory (GFDL) with 0.5 to 0.25 degree resolution and 40 vertical levels, with 
interactive sea ice model. For the subseasonal forecast (defined by NCEP as days 0-45), 16 
members are run every day (4 members run four times a day at 00Z, 06Z, 12Z and 18Z). The 
retrospective forecasts are done from 1999 to 2010, four members a day. For the seasonal 
forecast (defined by NCEP as months 0-9), four runs per day are performed. The retrospective 
forecasts are constructed with four members run every fifth day for the past 29 years (1982-
2010). 

The European Centre for Medium-Range Weather Forecasting (ECMWF) utilizes two 
different systems for the subseasonal and seasonal predictions. The operational seasonal 
forecasting system, known as System 4, was implemented in 2011. The atmospheric model is the 
ECMWF Integrated Forecast System (IFS) model frozen version 36r4. It has a horizontal 
resolution of TL255 (~60km) and 91 vertical levels. The ocean component is from the Nucleus 
for European Modeling of the Ocean (NEMO), with the ORCA1 configuration, which has a 1x1 
degree resolution in mid-latitudes and enhanced meridional resolution near the equator. The 
retrospective forecast is done from 1981 to 2010 for 15 members for 7 months initialized with 
ECMWF Interim Reanalysis (ERA Interim) on the 1st day of each month. The seasonal forecasts 
consist of a 51-member ensemble. The ensemble is constructed by combining the 5-member 
ensemble ocean analysis with SST perturbations and the activation of stochastic physics. The 
forecasts have an initial date of the 1st of each month, and run for 7 months. For the subseasonal 
prediction, ECMWF’s monthly forecasting system is used. The atmospheric model is the same 
version as ECMWF’s deterministic forecast. The atmospheric model is run at TL639 resolution 
from day 0 to day 10 and at T319 from day 10 to 32 with 62 vertical levels. The ocean 
component is also NEMO with the ORCA1 configuration. 51 members run to 46 days twice a 
week (Monday and Thursday at 00Z). The ocean and atmosphere models are fully coupled, and 
the retrospective forecasts are constructed with 11 members run at the same day and month as 
the Thursday real time forecast over the past 20 years. 

Additional details about these and other operational seasonal forecast systems are shown 
in Table B.1, and Table B.2 provides similar information for subseasonal systems.  
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TABLE B.1 Forecast and retrospective forecast system characteristics of the 12 Global Prediction 
Centers (GPC) of the WMO. SOURCE: Adapted from the S2S Research Implementation Plan and 
http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php (accessed January 27, 2016). 

 
Time 
range Model Resolution Coupled 

Ensemble 
Size Frequency 

Reforecast 
length 

Reforecast 
frequency 

Reforecast 
size 

BoM m 0-9 POAMA 
 

T47L17 
 

yes 33 2/week 1981-2010 6/month 33 

CMA m 0-3 BCC-CM1 T63L16 yes 48 1/month 1982-now 1/month 6 

EC m 0-12 CanSIPS T63L35 
 

yes 20 1/month 1981-2010 1/month 20 

ECMWF m 0-
7/12 

System4 T255L91 
 

yes 51 1/month 1981-2010 1/month 15 

HMCR m 0-4 SL-AV 1.1x1.4L28 
 

no 20 1/month 1981-2010 1/month 10 

JMA m 0-3/6 JMA/MRI-
CPS2 

TL150L60 
 

yes 51 1/month 
 

1979-2010 2/month 5 

KMA m 0-3/6 GDAPS T106L21 
 

no 20 1/month 
 

1979-2010 1/month 20 

Météo-
France 

m 0-7 ARPEGE T63L31 yes 41 1/month 1993-2003 1/month 5 

NCEP m 0-9 CFSv2 T126L64 yes 40 1/month 1982-2010 1/month 24 

UKMO m 0-6 GloSea5 N216L85 yes 42 1/week 1996-2009 4/month 12 

CPTEC m 0-7 CPTEC 
AGCM 

T62L28 no 15 1/month 1979-2001 1/month 10 

SAWS m 0-5 ECHAM4.5 T42L19 no 6 1/month 1981-2001 1/month 6 
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TABLE B.2 Forecast and retrospective forecast system characteristics for subseasonal forecasting 
systems from operational centers participating in the WCRP-WWRP Subseasonal to Seasonal Prediction 
Project. SOURCE: Adapted from s2sprediction.net and 
https://software.ecmwf.int/wiki/display/S2S/Models, both accessed January 27, 2016. 

Time 
range Resolution 

Ensemble 
Size Frequency Reforecasts 

Reforecast  
length 

Reforecast  
frequency 

Reforecast  
size 

BoM 
(ammc) 

d 0-60 T47L17 33 2/week fix 1981-2013 6/month 33 

CMA 
(babj) 

d 0-60 T106L40 4 daily fix 1994-2014 daily 4 

EC 
(cwao) 

d 0-32 0.6x0.6 L40 21 weekly on the fly 1995-2012  weekly 4 

ECMWF 
(ecmf) 

d 0-46 T639/319 
L62 

51 2/week on the fly past 20 
years 

2/week 11 

HMCR 
(rums) 

d 0-63 1.1x1.4 L28 20 weekly fix 1985-2010 weekly 10 

ISAC-
CNR 
(isac) 

d 0-32 0.75x0.56 
L54 

40 weekly fix 1981-2010 6/month 1 

JMA 
(rjtd) 

d 0-34 T319L60 25 2/week fix 1981-2010 3/month 5 

KMA 
(rksl) 

d 0-60 N216L85 4 daily on the fly 1996-2009 4/month 3 

Météo-
France 
(lfpw) 

d 0-61 T255L91 51 monthly fix 1993-2014 2/monthly 15 

NCEP 
(kwbc) 

d 0-44 T126L64 16 daily fix 1999-2010 day 4 

UKMO 
(egrr) 

d 0-60 N216L85 4 daily on the fly 1996-2009 4/month 3 
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Appendix C: Past, Current and Planned Major 
International Process Studies 

 
PAST PROCESS STUDIES 

 
GATE (GARP51 Atlantic Tropical Experiment)—GATE was the first major 

international field experiment in the tropics with the purpose to understand the tropical 
atmosphere and its role in the global circulation of the atmosphere and the predictability of the 
atmosphere in the time range of daily weather forecasts to over two weeks. It took place in the 
summer of 1974 over the tropical Atlantic Ocean from Africa to South America. Twenty 
countries participated in GATE with 40 research ships, 12 research aircraft, and numerous buoys. 
These data are still being used today in research. Over a thousand papers have been published 
based on the GATE data. A major breakthrough of GATE is the recognition of organized 
mesoscale convective systems as the main sources of precipitation and convective energy in the 
tropics. Among others, the GATE soundings have been used as a golden standard in the 
development of cumulus parameterization in weather and climate models.  

TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere 
Response Experiment) — TOGA COARE was the second major international field campaign in 
the tropics. Its goal was to describe and understand the principal processes responsible for the 
coupling and multi-scale variability of the ocean and atmosphere in the western Pacific and their 
interaction with other regions. The field experiment took place over the western Pacific during 
November 1992 through February 1993. Eighteen countries participated in TOGA CAORE with 
12 ships 7 airplanes, and more than 40 moorings. Close to a thousand papers have been 
published that are related to TOGA COARE. Among many of its outcomes, the one that 
contribute most significantly to model improvement is the COARE flux algorithm that is 
recognized as the best flux scheme that can be used in models and observational diagnostics.  

VOCAL-REx (The VAMOS52 Ocean-Cloud-Atmosphere-Land Study Regional 
Experiment) — VOCAL-REx is another example of multi-nation collaboration to address 
interactive processes of different components of the Earth system. It objectives are to understand 
links between aerosols, clouds and precipitation and their impacts on marine stratocumulus 
radiative properties, and physical and chemical couplings between the upper ocean and the lower 
atmosphere, including the role of mesoscale ocean eddies. It took place during October and 
November 2008 on and off shore of Chile. Eight countries participated in the field experiment 
with 5 research aircraft, 2 ships and 2 surface sites in northern Chile. A major breakthrough of 
VOCAL-REx is the understanding of the strong role aerosol-cloud-precipitation coupling plays 
in marine low clouds, which had previously been thought as controlled mainly by dynamics. 
Data collected by VOCAL-REx have played crucial roles in developing and refining new 
parameterization schemes that are used in regional and global models.  

SHEBA (The Surface Heat Budget of the Arctic Ocean)-SHEBA is an international 
research program designed to document, understand, and predict the physical processes that 

                                                 
51 Global Atmosphere Research Program 
52 Variability of the American Monsoon Systems 
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determine the surface energy budget and the sea-ice mass balance in the Arctic. Its overall goal is 
to acquire the measurements needed to improve the parameterizations of key processes and to 
integrate new and improved parameterizations into general circulation and climate models. 
Scientists from 7 countries participated in SHEBA. The SHEBA field experiment was a yearlong 
(2 October 1997-12 October 1998) measurement on a drifting station in the pack ice of the Arctic 
Ocean. The drift station made measurement of the vertical column of the ocean, sea ice, and the 
atmosphere. It was augmented by a buoy array, research aircraft, helicopter surveys, and 
submarine transects on a larger scale. SHEBA data provide up to date the first and only annual 
cycle of the surface energy budget for multi-year Artic ice. They helped improve understanding 
of many processes critical to the surface energy balance and variability, including supercooled 
liquid water and advective events from lower latitudes. Knowledge gained from SHEBA data 
have led to new and improved parameterization of melt ponds, cloud microphysics, and 
turbulence.  

AMMA (The African Monsoon Multidisciplinary Analysis) — AMMA is an 
international project with an objective of improving our knowledge and understanding of the 
West African monsoon, as well as the environmental and socio-economic impacts of its 
variability. It is the biggest program of research on environment and climate issues in Africa. 
AMMA involved a comprehensive field experiment including ocean, land and atmospheric 
measurements in many West African nations and their adjacent seas, on hourly, daily and up to 
seasonal timescales over a number of years. The field campaign consisted of a long-term 
monitoring program (2001-2009) based on the existing infrastructure, an Enhanced Observing 
Period (2005-2007) with specific land-based and sea-based instruments, and four Special 
Observing Periods in 2006 with intensive measurements from the surface (continent-based and 
ocean-based) and from the air (research aircraft and balloons) that monitored the pre-monsoon 
dry season, as well as the onset, peak, and decay of the monsoon. Data collected by the AMMA 
field campaign have greatly advanced our knowledge on coupling between the atmosphere, land 
and ocean, and between dynamics, physics, chemistry, biology, and hydrology. These data have 
also been used in validation and development of global and regional climate and weather models 
and specific process models (Lebel et al., 2010).  

AMY (Asian Monsoon Year)-AMY was a cross-cutting coordinated observation and 
modeling initiative participated by more than twenty countries. The objectives of AMY are to 
enhance understanding of ocean-land-atmosphere-biosphere interactions, multiple timescale 
(from diurnal to intra-seasonal) interaction, and the aerosol-water cycle interaction in the Asian 
monsoon system, in order to improve their physical representations in coupled climate models, 
and to develop data assimilation for the ocean-atmosphere-land system in the Asian monsoon 
region. Its majority of field observations took place during 2008-2010, with 23 field campaigns 
throughout the Asian monsoon region in four targeted periods: the pre-monsoon period in 
March-May, the monsoon onset phase in May-June; the monsoon mature phase in July-August; 
and the winter monsoon from December to February. Among many results, AMY data have 
revealed how the diurnal cycle, intraseasonal oscillation, and monsoon flow interact to general 
extreme rainfall that led to flood events with tremendous socioeconomic impacts.  

DYNAMO (Dynamics of the Madden-Julian Oscillation) — DYNAMO was the most 
recent international field campaign aiming at the tropical atmosphere-ocean system. Its overall 
goal was to improve understanding the processes key to MJO initiation. Based on its three main 
hypotheses on the roles of convection-environment interaction, evolution of cloud population, 
and air-sea interaction, DYNAMO’s intensive sounding and radar arrays over the central 
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equatorial Indian Ocean collected data from October 2011 to February 2012 and its broad 
sounding network continued data collection until March 2012. Sixteen countries participated in 
DYNAMO with four research vessels, 2 airplanes, 5 special ground stations, and several sites of 
enhanced radiosondes. While DYNAMO data are still being analyzed, initial results have 
revealed new findings in regime change of aerosol and evolution of cloud microphysics through 
the MJO life cycle, interaction between the MJO and ITCZ, and ocean memory of MJO forcing 
through mixing related to prolonged vertical current shear, among others. DYNAMO data have 
been used in testing parameterization of cloud microphysics and convective cold pools and in 
helping validate numerical models of the atmosphere and ocean of different configurations and 
complexities.  

 
 

CURRENT AND FUTURE PROCESS STUDIES 
 

YOPP (The Year of Polar Prediction) — YOPP (mid-2017 to mid-2019) is an 
international program that coordinates a period of intensive observing, modeling, verification, 
user-engagement and education activities for the purpose of enabling a significant improvement 
in environmental prediction capabilities for the polar regions and beyond on a wide range of 
timescales. The observational component of YOPP is built upon several elements. A major one is 
MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate), which will 
deploy a polar research vessel starting in newly formed Arctic sea ice around September 2018, 
and drifting with the ice over the course of a year, to study a full annual cycle of coupled 
atmosphere-ice-ocean-biogeochemical system processes. Other observational activities will 
include intensive observing periods (IOPs) during which aircraft flights and other research 
vessels will be deployed. In addition, land-based stations as part of the Sustaining Arctic 
Observing Network (SAON) provide numerous observations of Arctic system through staffed 
observatories and autonomous instruments. Many model experiments on a hierarchy of scales 
will be conducted, aimed at understanding and improving model predictability. Many countries 
will participate in the YOPP field observations.  

SOCRATES (Southern Ocean Clouds, Radiation, Aerosol Transport Experimental 
Study)-SOCRATES is another on-going international field experiment, which will take place in 
2016 -2019 in a region where numerical models perform particularly poorly. Its primary 
objective is to collect a data set suitable to study interactions between microphysics dynamics 
and radiation in mixed-phase and supercooled clouds. It includes four themes: Synoptically 
varying vertical structure of boundary layers and clouds, Seasonal and synoptic variability in 
cloud condensation and ice nucleus concentration and the role of local biogenic sources, 
Supercooled liquid and mixed‐phase clouds, and Satellite retrievals related to clouds, 
precipitation, and aerosols. Five countries participate will in its field observations aboard ships 
(July -September 2017 and January -March 2018), airplanes and pilotless aircraft (January -
March 2018), ground stations (several IOPs during 2016 -2019), and moorings (January 2016 -
December 2019). SOCRATES observations will be used to advance our understanding of the 
variability of Southern Ocean cloud systems on a broad scale and their underpinning processes, 
such as aerosol physicochemical properties, aerosol‐cloud‐precipitation interactions, and to 
reduce model biases in this region.  

YMC (Years of the Maritime Continent) — YMC is a two-year (planned for mid-2017 
-mid-2019) international project with its goal of “observing the weather-climate system of the 
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Earth’s largest archipelago to improve understanding and prediction of its local variability and 
global impact”. There are five YMC science themes: Atmospheric Convection, Upper-Ocean 
Processes and Air-Sea Interaction, Stratosphere-Troposphere Interaction, Aerosol, and Prediction 
Improvement. YMC will engage in five main activities: Data Sharing, Field Campaigns, 
Modeling, Prediction and Applications, and Outreach and Capacity Building. Scientists from 13 
countries are participating in the planning of YMC. The platform for the YMC field experiment 
will include numerous research vessels, airplanes, suites of ground facilities, mobile radars, and 
oceanic autonomous devices and moorings. These special instruments will be augmented by the 
regional observing networks of radars, radiosondes, surface meteorological and climatological 
observations, and marine stations. Cloud-permitting data assimilation products will be made to 
synthesize data to be collected by the field experiment and the observing networks. YMC data 
will be used to test and evaluate parameterization schemes in climate models, which have 
suffered from several severe biases in the Maritime Continent region.  

Process Study for the Marginal Ice Zone (MIZ)-The MIZ refers to the region near the 
sea ice edge where sea ice concentrations are low and floes are small enough to permit the influx 
of ocean waves. The MIZ is widest in late summer, and the summertime width in the Arctic has 
broadened significantly in recent decades (Strong and Rigor, 2013). The Office of Naval 
Research (ONR) is already conducting a five-year study of the Arctic MIZ that began in 2012, 
with project web site53 and science and experimental plan (Lee et al., 2012). The project has an 
extensive observational component that extensively utilizes autonomous sampling with sea 
gliders and acoustically tracked floats, both of which can measure under sea ice. An array of 
buoys measures wave heights and ice mass balance. A goal of the project is to improve estimates 
of wave-floe interactions and develop methods of modeling the sea ice floe size distributions. 
Three models are taking part in the project. All three are Arctic regional models, and only one 
has an atmosphere component (the other two are ocean-sea ice only). One of the ocean-sea ice 
only modeling groups is undertaking the development of floe size distribution capability (Zhang 
et al., 2015). The other two are specializing in fine resolution (up to 1/12 degree).  

 

                                                 
53 http://www.apl.washington.edu/project/project.php?id=miz, accessed January 27, 2016. 
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Appendix D: Committee Bios 
 
Mr. Raymond J. Ban (Chair) is retired Executive Vice President of Programming, Operations 
and Meteorology at The Weather Channel, Inc. (TWC). Currently, he serves as Consultant for 
Weather Industry and Government Partnerships, responsible for growing TWC relationships 
with the atmospheric science community across the entire weather and climate enterprise. He is 
currently President of Ban and Associates, LLC, providing consultative services to the weather 
media industry and also a guest lecturer in the Meteorology Department at Penn State University 
where he teaches one month each semester in the Weather Communications Program. He has 
served on the Board on Atmospheric Sciences and Climate of the National Academy of Sciences, 
and was Chair of the Academy Committee on Effective Communication of Uncertainty in 
Weather and Climate Forecasts and most recently as Chair of the NOAA Science Advisory 
Board. Currently, he is active on several Boards and Committees including Co-Chair of the 
Weather Coalition, a member of the Board of Directors of the National Environmental Education 
Foundation and a member of the Advisory Council to The National Center for Atmospheric 
Research. He earned his B.S. in Meteorology from The Pennsylvania State University in 1973.  
 
Dr. Cecilia Bitz is a Professor in the Atmospheric Sciences Department at the University of 
Washington. Her research interests include climate dynamics, polar climate predictability, 
climate change, paleoclimate, the role of sea ice in the climate system, and sea ice model 
development. The primary tools for her research are a variety of models, from simple reduced 
models to sophisticated climate system models. Dr. Bitz is co-lead of the new Polar Climate 
Predictability Initiative of the World Climate Research Program and co-PI on the Sea Ice 
Prediction Network. Dr Bitz is an active participant in the Community Earth System Model 
project,, which is sponsored by the National Science Foundation and Department of Energy. She 
received her Ph.D. in Atmospheric Sciences from the University of Washington in 1997.  
 
Dr. Andy Brown is the Director of Science at the UK Met Office. He works with the Chief 
Scientist on the development and implementation of the Science Strategy. He has particular 
responsibilities for the Foundation Science area, which provides the underpinning science and 
modelling capabilities that support Met Office weather and climate services. Dr. Brown joined 
the Met Office in 1990 and has worked in a number of roles in science aimed at improving our 
understanding of the atmosphere and improving its representation in the Unified Model used for 
weather and climate prediction. Additionally he has undertaken a secondment to the European 
Centre for Medium-Range Weather Forecasts (ECMWF). He has been active in international 
science coordination through involvement with the World Meteorological Organization and for 5 
years was co-chair of the World Climate Research Programme / Commission for Atmospheric 
Sciences Working Group on Numerical Experimentation (WGNE). 
 
Dr. Eric Chassignet is a Professor and Director of the Center for Ocean-Atmospheric Prediction 
Studies at Florida State University. His current area of research interest is on the role of the 
ocean in climate variability from the complementary perspectives of coupled ocean-atmosphere 
modeling and observations. Dr. Chassignet’s emphasis is on the study of the thermohaline 
circulation, western boundary currents, associated eddies and their impact on the world ocean 
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circulation. Dr. Chassignet earned his Ph.D. in Physical Oceanography from the University of 
Miami.  
 
Dr. John A. Dutton is President of Prescient Weather, Ltd., a firm providing information and 
strategies for managing weather and climate risk, and is chief executive of the World Climate 
Service, a commercial seasonal forecasting enterprise. He is professor emeritus of meteorology 
and dean emeritus of the College of Earth and Mineral Sciences at The Pennsylvania State 
University. Dr. Dutton holds B.S., M.S. and Ph.D. degrees from the University of Wisconsin—
Madison and served for three years as an officer in the Air Weather Service of the U.S. Air 
Force. He is a fellow of the American Meteorological Society (AMS) and the American 
Association for the Advancement of Science and is the author of a variety of articles on the 
dynamics of atmospheric motion as well as two text books: Dynamics of Atmospheric Motion 
(Dover, originally The Ceaseless Wind) and Atmospheric Turbulence (with Hans Panofsky). Dr. 
Dutton has been active in the AMS, the University Corporation for Atmospheric Research, and 
in National Academy of Science studies related to atmospheric science, space science, and 
aviation. He chaired the National Research Council (NRC) Board on Atmospheric Sciences and 
Climate while it produced The Atmospheric Sciences Entering the Twenty-First Century and 
most recently chaired an NRC committee that produced a report For Greener Skies—Reducing 
the Environmental Impacts of Aviation. Dr. Dutton also served on an NRC committee that 
examined the potential of high-end computing for the atmospheric and other sciences. Earlier, he 
was the principal author of an award-winning NRC report Weather for Those Who Fly. He is a 
recent member of the Climate Working Group of the Science Advisory Board of the U.S. 
National Oceanographic and Atmospheric Administration (NOAA) and co-chaired a task force 
that produced a recent report, A Vision and a Model for NOAA and Private Sector Collaboration 
in a National Climate Services Enterprise. In recent years, he has been a member of the 
community-based committee reviewing and advising on the operations of the National Centers 
for Environmental Prediction (NCEP) of the U.S. National Weather Service. Dr. Dutton and his 
wife Elizabeth reside in Boalsburg, PA. Dr. Dutton is a licensed commercial pilot with multi-
engine and instrument ratings.  
 
Dr. Robert Hallberg is an Oceanographer and the Head of the Oceans and Ice-sheet Processes 
and Climate Group at NOAA’s Geophysical Fluid Dynamics Laboratory, and a Lecturer on the 
faculty of Princeton University. He has a 1995 Ph.D. in Oceanography from the University of 
Washington and a 1990 B.A. in Physics from the University of Chicago. He has spent many 
years developing isopycnal (density) coordinate ocean models to the point where they now are 
valuable tools for coupled climate studies, including extensive work on the robustness of the 
models’ numerical techniques, and on the development or incorporation of parameterizations of 
a wide range of physical processes. The isopycnal coordinate ocean model that Dr. Hallberg 
developed provides the physical ocean component of GFDL’s ESM2G comprehensive Earth 
System Model, which was used in the IPCC 5th Assessment Report, and its dynamic core is the 
basis for version 6 of the Modular Ocean Model (MOM6). Dr. Hallberg has used global-scale 
numerical ocean simulations to study topics as varied as the dynamics of Southern Ocean eddies 
and their role in the ocean’s response to climate, sources of steric sea level rise, and the fate of 
the deep plumes of methane and oil from the Deepwater Horizon oil spill. Dr. Hallberg has been 
actively involved in three ocean Climate Process Teams, studying Gravity Current Entrainment, 
Eddy-Mixed Layer Interactions, and Internal Wave Driven Mixing. These teams aim to improve 
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the representation of these processes in climate-scale models, based on the best understanding 
that can be obtained from observations, process studies, and theory. He is currently working on 
coupling a dynamic ice-sheet and ice-shelf model with high resolution versions of GFDL’s 
coupled climate models for improved prediction of sea-level rise, and is leading the effort to 
modernize GFDL’s sea ice model.  
 
Ms. Anke Kamrath is director of Computing Operations and Services in NCAR’s 
Computational and Information Systems Laboratory. She came to NCAR in 2009 after 22 years 
at the San Diego Supercomputer Center at the University of California, San Diego. Ms. Kamrath 
has over 27 years of experience in supporting, operating, deploying and managing world-class 
supercomputing resources in support of scientific research. She has oversight responsibilities for 
the NCAR-Wyoming Supercomputing Center, all supercomputing operations and for all 
computing systems, operational and services staff. Prior to her experience in supercomputing, 
she worked as a rocket scientist at the Aerospace Corporation in El Segundo, California and has 
a M.S. in Mechanical Engineering from U.C. Berkeley.  
 
Dr. Daryl T. Kleist is an Assistant Professor at the University of Maryland. His research 
interests include data assimilation, numerical weather prediction, atmospheric predictability, 
targeted observing, data thinning and forecast sensitivity. His data assimilation research has 
primarily focused on improving initial conditions through algorithm development for operational 
numerical weather prediction for short- and medium-range timescales. Most recently, he has 
worked on developing and testing a hybrid ensemble-variational (EnVar) algorithm with an 
extension to four dimensions that does not require the use of an adjoint model. Before joining the 
faculty at Maryland, Dr. Kleist spent more than ten years working at the National Centers for 
Environmental Prediction (NCEP) Environmental Modeling Center as a member of the data 
assimilation team and within the global climate and weather modeling branch. There, he worked 
on various aspects of the operational data assimilation system for the global forecast system. 
Prior to leaving NCEP, he was leading the effort on the testing and development of the 4D 
EnVar algorithm for operational implementation in the global data assimilation system. Dr. 
Kleist earned his Ph.D. in Atmospheric and Oceanic Science from the University of Maryland.  
 
Dr. Pierre F.J. Lermusiaux is an Associate Professor of Mechanical Engineering and Ocean 
Science and Engineering at Massachusetts Institute of Technology (MIT). He has made 
outstanding contributions in the fields of data assimilation, ocean modeling, and uncertainty 
predictions. His research thrusts include understanding and modeling complex physical and 
interdisciplinary oceanic dynamics and processes. With his group, he creates, develops, and 
utilizes new mathematical models and computational methods for ocean predictions and 
dynamical diagnostics, for optimization and control of autonomous ocean systems, for 
uncertainty quantification and prediction, and for data assimilation and data-model comparisons. 
He has participated in many national and international sea exercises. He received a Fulbright 
Foundation Fellowship, the Wallace Prize at Harvard (1993), and the Ogilvie Young Investigator 
Lecture in Ocean Engineering at MIT (1998). He was awarded the MIT Doherty Chair in Ocean 
Utilization (2009-2011) and the 2010 Ruth and Joel Spira Award for Distinguished Teaching by 
the School of Eng. at MIT.  
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Dr. Hai Lin is a Senior Research Scientist at Environment and Climate Change Canada. He is 
also an adjunct professor at McGill University, and Editor-in-Chief of Atmosphere-Ocean. His 
research interests include climate dynamics and numerical weather prediction. He was the 
recipient of the 2010 President’s Prize of the Canadian Meteorological and Oceanographic 
Society. He is a member of the Steering Group for Subseasonal to Seasonal Prediction of the 
World Weather Research Programme (WWRP) and World Climate Research Programme 
(WCRP) of the World Meteorological Organization (WMO). He earned his Ph.D. in 
Atmospheric and Oceanic Sciences at McGill University. 
 
Dr. Laura Myers is a Senior Research Social Scientist and Deputy Director, Center for 
Advanced Public Safety, at The University of Alabama. Her research, publication and training 
areas include disaster management and planning, weather enterprise application research, 
criminal justice education, criminal courts, criminal justice ethics, and criminal justice 
administration. Dr. Myers has received over $600,000 in Department of Homeland Security 
grants to develop and create a model for regional emergency planning, with emphasis on the 
social science aspects of partnership planning between the National Weather Service and their 
weather enterprise partners including emergency management, broadcast meteorology, and end 
users of their products. Through these grants, Dr. Myers works with the National Weather 
Service providing social science research for severe weather warning improvement and risk 
communication projects. Dr. Myers earned her Ph.D. in Criminology from Florida State 
University.  
 
Dr. Julie Pullen is an Associate Professor in Ocean Engineering at Stevens Institute of 
Technology. She uses high-resolution coupled ocean-atmosphere modeling in order to 
understand and forecast the dynamics of coastal urban regions throughout the world. Her 
research interests encompass the ocean response to atmospheric flows around island topography, 
as well as sea breeze interactions with city morphology during heat waves. Applications include 
predicting chemical, biological, radiological and nuclear (CBRN) dispersion in coastal cities in 
the event of a terrorist or accidental release. She has served on the steering team for field studies 
in urban air dispersion (DHS/DTRA NYC Urban Dispersion Program) and archipelago 
oceanography (ONR Philippines Straits Dynamics Experiment). She is a member of the 
international GODAE Coastal Ocean and Shelf Seas Task Team and is the physical 
oceanography councilor for The Oceanography Society. Dr. Pullen earned her Ph.D. in Physical 
Oceanography at Oregon State University and did postdoctoral work at the Naval Research 
Laboratory’s Marine Meteorology Division. She is an Adjunct Research Scientist at Columbia’s 
Lamont Doherty Earth Observatory. 
 
Dr. Scott Sandgathe is a Senior Principal Meteorologist in the Applied Physics Laboratory at 
the University of Washington and an Adjunct Research Scientist at Oregon State University. He 
has extensive experience in operational oceanography and meteorology including tropical 
meteorology, synoptic analysis and forecasting, and numerical weather prediction. He is a retired 
Navy Commander and has served as the Deputy Director of the Joint Typhoon Warning Center 
and onboard the USS Carl Vinson supporting battle group operations including meteorological 
and oceanographic support. In addition, he has held a number of positions in research policy and 
planning in the Navy. Prior to joining the Applied Physics Laboratory at the University of 
Washington, he was the Team Leader for the Office of Naval Research Marine Meteorology and 
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Atmospheric Effects Program where he supported research and technology development. He 
served as the DoD working group member on the Federal Coordinating Committee on Science, 
Engineering and Technology Subcommittee on U.S. Global Climate Change Research Program 
and the Climate Modeling working group and chaired the working group to develop the joint 
DoD-DoE-EPA Strategic Environmental Research and Development Program research agenda. 
He is currently a technical advisor to National Earth System Prediction Capability and the 
National Unified Operational Prediction Capability, two multi-agency programs focused on 
improving operational numerical weather and climate prediction through multi-agency 
collaboration. His current research is in developing automated forecast verification techniques 
for mesoscale numerical weather prediction and developing parameter optimization techniques 
for numerical modeling. Dr. Sandgathe is a Fellow of the American Meteorological Society and 
currently holds a top-secret security clearance. Dr. Sandgathe received a BS in Physics from 
Oregon State University and a PhD in Meteorology from the Naval Postgraduate School.  
 
Dr. Mark Shafer is Associate State Climatologist at the Oklahoma Climatological Survey and 
established and leads the Southern Climate Impacts Planning Program (SCIPP), a NOAA 
Regional Integrated Sciences and Assessments (RISA) Program based at The University of 
Oklahoma and Louisiana State University. SCIPP focuses on place-based applications of climate 
and weather information to improve community preparedness to a range of natural hazards. His 
research interests focus upon communication between the scientific community and policy 
makers, particularly in managing societal response to extreme events and climate change. 
Primary areas of research include the influence of scientific and technical information on policy 
outcomes and institutional factors that can affect the flow of information. Dr. Shafer earned a 
M.S. in Meteorology and a Ph.D. in Political Science from the University of Oklahoma and was 
a coordinating lead author on the Great Plains chapter in the 2014 National Climate Assessment.  
 
Dr. Duane Waliser is Chief Scientist of the Earth Science and Technology Directorate at the Jet 
Propulsion Laboratory in Pasadena, CA, which formulates, develops and operates of a wide 
range of Earth Science remote sensing instruments for NASA’s airborne and satellite program. 
His principle research interests lie in climate dynamics and in global atmosphere-ocean 
modeling, prediction and predictability, with emphasis on the Tropics and the Earth’s water 
cycle. His recent research foci at JPL involves utilizing new and emerging satellite data sets to 
study weather and climate as well as advance our model simulation and forecast capabilities, 
particularly for long-range weather and short-term climate applications. He received a B.S. in 
Physics and a B.S. in Computer Science from Oregon State University in 1985, a M.S. in Physics 
from U.C. San Diego in 1987, and his Ph.D. in Physical Oceanography from the Scripps 
Institution of Oceanography at U.C. San Diego in 1992. He is presently a member of the WCRP-
WWRP Subseasonal to Seasonal (S2S) Project Steering Committee and Co-Chair of the WCRP 
Data Advisory Council’s obs4MIPs Task Team. Dr. Waliser is also a Visiting Associate in the 
Geological and Planetary Sciences Division at Caltech and an Adjunct Professor in the 
Atmospheric and Oceanic Sciences Department at UCLA.  
 
Dr. Chidong Zhang is a Professor of at the University of Miami. His research interests include 
large-scale air-sea interaction and atmospheric dynamics in the tropics. He was the Chief 
Scientist of the 2011-12 Indian Ocean field campaign of DYNAMO (Dynamics of the Madden-
Julian Oscillation). He served as a member of the American Meteorological Society Council, 
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WWRP/WCRP YOTC MJO Task Force, International CLIVAR’s Atlantic Implementation 
Panel, and International Science Working Group of North American Monsoon Experiment., He 
is currently an Editor of Journal of Geophysical Research — Atmosphere, Co-Chair of the 
Science Steering Committee of Years of the Maritime Continent (YMC), member of the US 
Steering Committee of International Indian Ocean Expedition 2 (IIOP-2), the Steering 
Committee of Salinity Processes in the Upper Ocean Regional Study 2 (SPURS-2), and Tropical 
Pacific Observing System (TPOS) Planetary Boundary Layer Task Team. Dr. Zhang earned his 
Ph.D. in Meteorology from The Pennsylvania State University in 1989. 
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