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Abstract
Nambu proposed a generalization of Hamiltonian dynamics in the form
dF/dt = {F, H, Z}, which conserves H and Z because the Nambu bracket
{F, H, Z} is completely antisymmetric. The equations of fluid dynamics fit
Nambu’s form with H the energy and Z a quantity related to potential vorticity.
This formulation makes it easy, in principle, to construct numerical fluid-
models that conserve analogues of H and Z; one need only discretize the
Nambu bracket in such a way that the antisymmetry property is preserved. In
practice, the bracket may contain apparent singularities that are cancelled by
the functional derivatives of Z. Then the discretization must be carried out
in such a way that the cancellation is maintained. Following this strategy, we
derive numerical models of the shallow-water equations and the equations for
incompressible flow in two and three dimensions. The models conserve the
energy and an arbitrary moment of the potential vorticity. The conservation of
potential enstrophy—the second moment of potential vorticity—is thought to
be especially important because it prevents the spurious cascade of energy into
high wavenumbers.

Mathematics Subject Classification: 65P10

1. Introduction

The equations of fluid dynamics fit the Hamiltonian form
dF

dt
= {F, H }, (1.1)

where F is an arbitrary functional of the fields representing the state of the fluid; H is
the Hamiltonian functional; and { , } is the Poisson bracket, an antisymmetric, bilinear
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operator that obeys the Jacobi identity (5.3). For example, the equations for two-dimensional,
incompressible flow may be written in the form

∂ζ

∂t
= J (ζ, ψ), (1.2)

where

ζ = ∇2ψ (1.3)

is the vorticity of the fluid; ψ(x, y, t) is the stream function; (u, v) = (−ψy, ψx) is the velocity
in the (x, y) direction; and

J (A, B) ≡ ∂(A, B)

∂(x, y)
(1.4)

is the Jacobian operator in two dimensions. For simplicity, we consider only periodic boundary
conditions. The dynamics (1.2) and (1.3) fits the form (1.1) with

{F, H } ≡
∫∫

dx ζJ (Fζ , Hζ ), (1.5)

where Fζ ≡ δF/δζ denotes the functional derivative,

H [ζ(x, y)] = 1

2

∫∫
dx ∇ψ · ∇ψ (1.6)

and ψ and ζ are related by (1.3) and the periodic boundary conditions. We note that
δH/δζ = −ψ and δH/δψ = −ζ .

Nambu (1973) proposed a generalization of Hamiltonian dynamics in the form

dF

dt
= {F, H, Z}, (1.7)

where {F, H, Z} is a trilinear antisymmetric bracket, and H and Z are a pair of Hamiltonians.
Since {F, H } represents the contraction of {F, H, Z} with Z, the second Hamiltonian Z is
always a Casimir of the original Poisson bracket. That is, {F, Z} = 0 for any F . Nambu noted
that the Euler equations for a rigid rotator fit the form of (1.7) with Hamiltonians equal to the
kinetic energy and to the square of the angular momentum.

Nevir and Blender (1993; see also Guha (2004)) found that two-dimensional Euler
dynamics (1.2) and (1.3) fits the form of (1.7) with H given by (1.6),

Z[ζ ] = 1

2

∫∫
dx ζ 2 (1.8)

and

{F, H, Z} ≡
∫∫

dx J (Fζ , Hζ )Zζ . (1.9)

The antisymmetry of (1.9) follows from the antisymmetry of (1.4) and the periodic boundary
conditions. Thus the dynamics (1.2) and (1.3) takes the Nambu form with the second
Hamiltonian equal to the enstrophy (1.8).

The formulation (1.7)–(1.9) has practical consequences for the construction of numerical
algorithms. By the antisymmetry property of (1.9) we may rewrite it as

{F, H, Z} = 1

3

∫∫
dx[J (Fζ , Hζ )Zζ + J (Hζ , Zζ )Fζ + J (Zζ , Fζ )Hζ ]

≡ 1

3

∫∫
dx[J (Fζ , Hζ )Zζ + cyc (F, H, Z)], (1.10)

where cyc denotes cyclic permutations of the three functionals F, H and Z. Imagine that
the three integrals in (1.10) are replaced by discrete (e.g. finite-difference) approximations
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in precisely the same way, and in such a way that the discrete approximation to J ( , ) is
antisymmetric. Then the resulting discrete approximation to (1.9) retains the antisymmetry
property of the exact bracket and therefore vanishes whenever two of its arguments are equal.
Consequently, the discrete dynamics obtained by replacing the right-hand side (rhs) of (1.7) by
this discrete bracket, and by introducing arbitrary discrete approximations to the energy (1.6)
and enstrophy (1.8), automatically conserves that energy and enstrophy. Thus, the existence
of an exact, antisymmetric bracket (1.9) involving H and Z leads to a general method for
constructing discrete numerical approximations that exactly conserve discrete analogues of
H and Z.

In claiming ‘exact conservation’ of H and Z,we ignore the effects of replacing the time
derivative in (1.7) by a discrete approximation. That is, our claim actually only applies to
the system of coupled ordinary differential equations obtained by discretizing the rhs of (1.7)
in the manner described above. However, experience shows that the errors introduced by
discretizing the time step have a negligible effect on conservation properties. On the other
hand, the destruction of conservation laws by discrete approximations to the spatial derivatives
has a well known and very deleterious effect on numerical calculations. In particular, numerical
analogues of (1.2) and (1.3) that do not conserve an analogue of the enstrophy (1.8) typically
allow too much energy to reach the smallest resolved spatial scales, where it must inevitably
be removed by sub-grid-scale dissipation. That is, models that, in the inviscid limit, conserve
energy but not enstrophy must dissipate spuriously large amounts of energy when an eddy
viscosity is added to the model, as is always necessary in practice. This connection between
the conservation of enstrophy (or potential enstrophy) and the dissipation of energy has been
understood for at least 30 years; see, for example, Sadourny (1975). However, virtually none
of the models now used to compute large-scale flow in the atmosphere or ocean conserve a
form of potential enstrophy in the inviscid limit. The need for models with such a conservation
property was a primary practical motivation for this work.

We stress that the method by which (1.10) is discretized—whether by finite differences,
finite elements, spectral representations or any combination of these—is completely arbitrary.
This gives the method great flexibility. The accuracy too is arbitrary; more accurate
approximations to the integral in (1.10) correspond to more accurate discrete analogues of
(1.2) and (1.3). It only matters that the discrete triple bracket retain the antisymmetry property
of its continuous counterpart, and this is assured if the discretization of (1.10) maintains
the antisymmetry of J ( , ). In fact, even this trivial restriction can be avoided. Let FHZ
denote a completely arbitrary discrete approximation to (1.9). In particular, FHZ need not be
antisymmetric. However, the discrete bracket defined by

{F, H, Z} = 1
6 (FHZ + HZF + ZFH − HFZ − FZH − ZHF) (1.11)

has the same accuracy as FHZ and is, moreover, completely antisymmetric. The
‘antisymmetrization’ (1.11) takes all even permutations with positive sign, and all odd
permutations with negative sign, in the manner familiar from quantum mechanics.

Arakawa’s (1966) second-order Jacobian corresponds to the approximation∫∫
dx J

(
Fζ , Hζ

)
Zζ →

∑
gridboxes

1

8

(
∂Z

∂ζ1
+

∂Z

∂ζ2
+

∂Z

∂ζ3
+

∂Z

∂ζ4

)

×
[(

∂F

∂ζ3
− ∂F

∂ζ1

) (
∂H

∂ζ4
− ∂H

∂ζ2

)
−

(
∂H

∂ζ3
− ∂H

∂ζ1

) (
∂F

∂ζ4
− ∂F

∂ζ2

)]
(1.12)

in which the sum runs over square gridboxes, and the integer subscripts refer to the corners of
each gridbox, as shown in figure 1. The resulting finite-difference analogue of (1.2) is

dζij

dt
= �−2{ζij , H, Z}, (1.13)
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Figure 1. A single gridbox with the corners numbered as in (1.12), (2.4) and (2.5).

where ζij is ζ at the ijth gridpoint, � is the grid spacing, { , , } is the discrete bracket formed
from (1.10) by use of (1.12) and H and Z are arbitrary finite-difference analogues of (1.6)
and (1.8). The discrete form of (1.3) is determined by the discrete form of H and by the
definition

ψij = − ∂H

∂ζij

. (1.14)

The approximation (1.12) is very closely related to the method of Salmon and
Talley (1989), who did not make the connection with Nambu brackets. However, it is this
connection that raises the possibility that the method underlying Arakawa’s Jacobian might
be generalized to arbitrary fluid systems. As the preceding discussion shows, all that is really
required is the exact form of a Nambu bracket corresponding to the desired dynamics. If the
appropriate Nambu bracket can be found, the problem of constructing conservative numerical
algorithms seems largely solved.

Nevir and Blender (1993) give a second, stunning example that greatly encourages the hope
that useful Nambu brackets abound. They note that the equations for the three-dimensional
incompressible flow are equivalent to

dF

dt
= {F, H, �}, (1.15)

where

H [ω] = 1

2

∫∫∫
dx u · u (1.16)

is the energy of the fluid with velocity u and vorticity ω = ∇ × u;

�[ω] = 1

2

∫∫∫
dx u · ω (1.17)
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is the helicity; and

{F, H, �} =
∫∫∫

dx(∇ × Fω) × (∇ × Hω) · (∇ × �ω), (1.18)

where Fω = δF/δω = (δF/δωx, δF/δωy, δF/δωz). The existence of the antisymmetric
triple-bracket formulation (1.18) means that the same trick used to construct the Arakawa
Jacobian can be extended to the three-dimensional flow. That is, by handling (1.18) in the same
way as (1.9), we easily construct discrete approximations—of arbitrarily high accuracy—to
the three-dimensional Euler equations that exactly conserve discrete analogues of the energy
and helicity.

In this paper we show that the method based on (1.9) and (1.18) appears to be a general one.
Although we offer no completely general method for obtaining Nambu brackets, we present
numerous examples to support the conjecture that every Hamiltonian fluid system possessing
Casimirs—that is, quantities like helicity or potential enstrophy that correspond to null vectors
of the Poisson bracket—has a family of Nambu-bracket formulations in which each Casimir
plays the role of the second Hamiltonian. In fact, our examples show that the Nambu-bracket
formulation corresponding to a particular Casimir is not unique. Thus, it seems generally
possible to find exact Nambu brackets corresponding to any Casimir whose conservation is
desired. However, the step of discretizing the exact Nambu bracket frequently encounters a
significant challenge: the exact Nambu bracket may contain apparent singularities that are
cancelled by the functional derivatives of the Casimir. Unless the corresponding discrete
bracket maintains an analogue of this cancellation property, the discrete dynamics will contain
an unphysical singularity. We begin our series of examples.

2. Generalizations of Arakawa’s Jacobian

The two-dimensional incompressible flow governed by (1.2) and (1.3) conserves every moment

Zn = 1

(2 + n)

∫∫
dx ζ 2+n (2.1)

of the vorticity ζ . The enstrophy (1.8) corresponds to n = 0. The two-dimensional Euler
dynamics (1.2) and (1.3) is equivalent to

dF

dt
= {F, H, Zn}n, (2.2)

where

{F, H, Zn}n ≡ 1

(3 + 2n)

∫∫
dx ζ−n[J (Fζ , Hζ )(Zn)ζ + cyc(F, H, Zn)]. (2.3)

When n = 0 (2.3) reduces to (1.9). However, the more general formulation (2.2) and (2.3)
allows us to construct numerical analogues of (1.2) and (1.3) that exactly conserve analogues
of the energy (1.6) and any single moment of the vorticity. As an example, we generalize
Arakawa’s (1966) classic algorithm.

The Arakawa algorithm corresponding to (1.7), (1.10) and (1.12) is

dF

dt
= 1

12�2

∑
gridboxes

[
∂(F, H, Z)

∂(ζ1, ζ2, ζ3)
+

∂(F, H, Z)

∂(ζ1, ζ2, ζ4)
+

∂(F, H, Z)

∂(ζ1, ζ3, ζ4)
+

∂(F, H, Z)

∂(ζ2, ζ3, ζ4)

]
, (2.4)

where � is the grid spacing, and the subscripts refer to the local numbering system in figure 1.
Setting F = ζij in (2.4), where ζij is the vorticity at gridpoint ij, we obtain Arakawa’s evolution
equation for vorticity. However, the form (2.4) displays the conservation properties at a glance.
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Figure 2. Four neighbouring gridboxes with the corners numbered as in (2.6).

To obtain a numerical algorithm that conserves energy and Zn, we use (2.3) instead of
(1.9), obtaining the generalization
dF

dt
= 1

4(3 + 2n)�2

×
∑

gridboxes

ζ−n
1234

[
∂(F, H, Zn)

∂(ζ1, ζ2, ζ3)
+

∂(F, H, Zn)

∂(ζ1, ζ2, ζ4)
+

∂(F, H, Zn)

∂(ζ1, ζ3, ζ4)
+

∂(F, H, Zn)

∂(ζ2, ζ3, ζ4)

]

(2.5)

of (2.4), where ζ−n
1234 is an arbitrary approximation to ζ−n on the gridbox with corners numbered

1, 2, 3, 4. Once again, the conservation properties are manifest in the form (2.5). Let the
gridpoint corresponding to ij be labelled 0; then the contributions to the rhs of (2.5) arise from
the surrounding four gridboxes as shown in figure 2. Setting F = ζ0 and carrying out the sum
in (2.5), we obtain the discrete vorticity equation

4(3 + 2n)�2 dζ0

dt
= ζ−n

0123

[
∂(H, Zn)

∂(ζ1, ζ2)
+

∂(H, Zn)

∂(ζ1, ζ3)
+

∂(H, Zn)

∂(ζ2, ζ3)

]

+ζ−n
0345

[
∂(H, Zn)

∂(ζ3, ζ4)
+

∂(H, Zn)

∂(ζ3, ζ5)
+

∂(H, Zn)

∂(ζ4, ζ5)

]

+ζ−n
0567

[
∂(H, Zn)

∂(ζ5, ζ6)
+

∂(H, Zn)

∂(ζ5, ζ7)
+

∂(H, Zn)

∂(ζ6, ζ7)

]

+ζ−n
0781

[
∂(H, Zn)

∂(ζ7, ζ8)
+

∂(H, Zn)

∂(ζ7, ζ1)
+

∂(H, Zn)

∂(ζ8, ζ1)

]
, (2.6)

where the subscripts correspond to figure 2. The four terms on the rhs of (2.6) correspond to
the contributions of the four gridboxes surrounding gridpoint 0 in figure 2. Only H , Zn and
ζ−n
abcd , as functions of the gridpoint values of vorticity, remain to be defined.
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We are primarily interested in cases in which n is a positive integer1. For such cases
the terms ζ−n

abcd represent apparent singularities in (2.6). In the exact bracket (2.3), these
singularities are cancelled by the functional derivative Zζ . In the discrete case, the terms ζ−n

abcd

must be carefully chosen to ensure the cancellation. Suppose that

Zn = 1

(2 + n)

∑
ij

ζ 2+n
ij . (2.7)

Then ∂Zn/∂ζij = ζ 1+n
ij , and, defining

ψij = − ∂H

∂ζij

, (2.8)

we find that the first term on the rhs of (2.6) takes the form

ζ−n
0123[(ψ2 + ψ3)ζ

1+n
1 + (ψ3 − ψ1)ζ

1+n
2 − (ψ1 + ψ2)ζ

1+n
3 ]. (2.9)

If n is a positive even integer, then the choice

ζ−n
0123 = 4

(ζ n
0 + ζ n

1 + ζ n
2 + ζ n

3 )
(2.10)

avoids the singularity, because (2.10) blows up only if all of ζ0, ζ1, ζ2, ζ3 vanish, in which case
the square-bracket term in (2.9) also vanishes. If n is a positive odd integer, we let n = m− 1;
then the choice

ζ−n
0123 = (ζ0 + ζ1 + ζ2 + ζ3)

(ζm
0 + ζm

1 + ζm
2 + ζm

3 )
(2.11)

yields a well-behaved result. We encounter the problem of apparent singularities again in
the next section, but there the problem is more serious because the singularities involve the
derivatives of the dependent variables.

3. Shallow-water equations

The shallow-water equations may be written in the form

∂u

∂t
= qhv − �x,

∂v

∂t
= −qhu − �y,

∂h

∂t
= −(hu)x − (hv)y, (3.1)

where q = (vx − uy)/h is the potential vorticity, and � = 1
2u2 + 1

2v2 +gh. The dynamics (3.1)
takes the Hamiltonian form (1.1) with

{F, H } =
∫∫

dx(q(FuHv − HuFv) − Fu · ∇Hh + Hu · ∇Fh) (3.2)

and

H [u, v, h] = 1

2

∫∫
dx(hu2 + hv2 + gh2). (3.3)

In (3.2), Fu = δF/δu and Fu = δF/δu = (Fu, Fv). For present purposes, it seems
advantageous to abandon (u, v, h) in favour of the new dependent variables (ζ, µ, h), where

ζ = vx − uy (3.4)

is the relative vorticity, and

µ = ux + vy (3.5)

1 Negative and fractional powers of ζ correspond to pathological integrals of the form (2.1) if the vorticity vanishes
over a finite area. The case n = −1 is uninteresting because Z−1 is conserved by the dynamics corresponding to
n = 0, namely (2.4).
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is the divergence. Invoking the chain rule for functional derivatives, we have

Fu = ∂yFζ − ∂xFµ,

Fv = −∂xFζ − ∂yFµ, (3.6)

Fh = Fh,

where F [u, v, h] = F [ζ, µ, h] is an arbitrary functional. Then substituting (3.6) into (3.2) we
obtain the shallow-water Poisson bracket in the form

{F, H } = {F, H }µµ + {F, H }ζ ζ + {F, H }ζµh, (3.7)

where

{F, H }µµ =
∫∫

dx qJ (Fµ, Hµ), (3.8)

{F, H }ζ ζ =
∫∫

dx qJ (Fζ , Hζ ) (3.9)

and

{F, H }ζµh =
∫∫

dx (q(∇Fµ · ∇Hζ − ∇Hµ · ∇Fζ ) + (∇Fµ · ∇Hh − ∇Hµ · ∇Fh)). (3.10)

To close the dynamics based on (3.7)–(3.10), we must express the Hamiltonian (3.3) as a
functional, H [ζ, µ, h], of the new variables. This requires the definitions (3.4) and (3.5), and
the use of the periodic boundary conditions.

Each of the three brackets (3.8)–(3.10) is antisymmetric in its two arguments, and each
bracket has the same general Casimir functional∫∫

dx hG(q) (3.11)

as (3.2), where G(q) is an arbitrary function. Once again, we are primarily interested in the
moments

Zn = 1

(2 + n)

∫∫
dx hq2+n = 1

(2 + n)

∫∫
dx

ζ 2+n

h1+n
. (3.12)

As in section 2, potential enstrophy corresponds to the case n = 0. Each of (3.8)–(3.10)
vanishes when F or H is replaced by Zn. For (3.8) this is trivial, because (Zn)µ = 0. For (3.9)
it follows from the property

(Zn)ζ = q1+n (3.13)

in exactly the same way as for the two-dimensional incompressible flow. For (3.10) it follows
from (3.13) and

(Zn)h = − (1 + n)

(2 + n)
q2+n. (3.14)

We seek a discrete analogue of the shallow-water equations that conserves discrete
analogues of H and Zn. First we note that any discretization of the µµ-bracket (3.8)
conserves H and Zn provided that the discrete analogue of Zn does not depend on µ. We choose

Zn = 1

(2 + n)

∑
ij

hij q
2+n
ij = 1

(2 + n)

∑
ij

ζ 2+n
ij

h1+n
ij

, (3.15)

where hij , qij , ζij denote the values at gridpoint ij.
Next, the ζ ζ -bracket (3.9) may be written in a form

{F, H }ζ ζ = {F, H, Zn}ζ ζ ζ = 1

(3 + 2n)

∫∫
dx q−n[J (Fζ , Hζ )(Zn)ζ + cyc(F, H, Zn)]

(3.16)

that is virtually identical to the Nambu bracket (2.3) for the two-dimensional Euler flow; the
q−n in (3.16) replaces ζ−n in (2.3). To obtain a conservative dynamics that avoids the apparent
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singularity in (3.16), we proceed as in section 2, obtaining a formula analogous to (2.6) but
with q replacing ζ in (2.10) or (2.11).

Only (3.10) remains to be considered. The ζµh-bracket (3.10) takes the Nambu form

{F, H }ζµh = {F, H, Zn}ζµh

= −
∫∫

dx
q−n

(1 + n)qx

[(∂xFµ∂xHζ − ∂xHµ∂xFζ )∂x(Zn)h + cyc(F, H, Zn)]

−
∫∫

dx
q−n

(1 + n)qy

[(∂yFµ∂yHζ − ∂yHµ∂yFζ )∂y(Zn)h + cyc(F, H, Zn)].

(3.17)

Note that each of the two integrals in (3.17) involves derivatives in only one direction. This
greatly simplifies the problem of finding discretizations that avoid the apparent singularities
in (3.17). For example, the finite-difference approximation

1

(2�)2

1

(1 + n)

∑
i

1

qi−1 − qi+1

2

(qn
i−1 + qn

i+1)

[(
∂F

∂µi+1
− ∂F

∂µi−1

) (
∂H

∂ζi+1
− ∂H

∂ζi−1

)

−
(

∂H

∂µi+1
− ∂H

∂µi−1

) (
∂F

∂ζi+1
− ∂F

∂ζi−1

)] (
∂Zn

∂hi+1
− ∂Zn

∂hi−1

)
+ cyc(F, H, Zn)

(3.18)

applied to each of the integrals in (3.17) yields a finite-difference approximation to (3.10) that
is free of singularities after substitution of (3.15). Suppose, for example, that n = 2. Then
substituting (3.15) into (3.18), and making use of

q4
i+1 − q4

i−1 = (qi+1 − qi−1)(qi+1 + qi−1)(q
2
i+1 + q2

i−1) (3.19)

and

q3
i+1 − q3

i−1 = (qi+1 − qi−1)(q
2
i+1 + qi+1qi−1 + q2

i−1) (3.20)

we obtain the finite-difference approximation

1

(2�)2

∑
i

{
1

2
(qi−1 + qi+1)

[(
∂F

∂µi+1
− ∂F

∂µi−1

) (
∂H

∂ζi+1
− ∂H

∂ζi−1

)

−
(

∂H

∂µi+1
− ∂H

∂µi−1

) (
∂F

∂ζi+1
− ∂F

∂ζi−1

)]

+
2

3

(q2
i−1 + qi−1qi+1 + q2

i+1)

(q2
i−1 + q2

i+1)

[(
∂F

∂µi+1
− ∂F

∂µi−1

) (
∂H

∂hi+1
− ∂H

∂hi−1

)

−
(

∂H

∂µi+1
− ∂H

∂µi−1

) (
∂F

∂hi+1
− ∂F

∂hi−1

)]}
(3.21)

to (3.10) (in each direction). The approximation (3.21) conserves energy by its manifest
antisymmetry with respect to F and H . It conserves Z2, the fourth moment of potential
vorticity, by the fact that (3.21) vanishes when either F or H is replaced by Z2. This latter
property is not immediately obvious from the form of (3.21), but it is manifest from (3.18),
which is antisymmetric with respect to F, H and Z2. These results easily extend to arbitrary n

by the generalization

qn
i+1 − qn

i−1 = (qi+1 − qi−1)(qi+1 + qi−1)(q
n/2−1
i+1 + q

n/2−2
i+1 qi−1 + q

n/2−3
i+1 q2

i−1+q
n/2−4
i+1 q3

i−1 + · · ·)
× (q

n/2−1
i+1 − q

n/2−2
i+1 qi−1 + q

n/2−3
i+1 q2

i−1 − q
n/2−4
i+1 q3

i−1 + · · ·) (3.22)

of (3.19) and by the corresponding generalization of (3.20).
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The complete Nambu bracket for shallow-water dynamics comprises the triple brackets
(3.16) and (3.17) corresponding to (3.9) and (3.10), respectively, plus a third triple bracket
corresponding to (3.8). Since Zn does not depend on the divergence µ, the latter may be
taken as

{F, H, Zn}µµζ =
∫∫

dx qJ (Fµ, Hµ) q−1−n(Zn)ζ + cyc(F, H, Zn). (3.23)

Recall (3.13). However, one could take instead

{F, H, Zn}µµζ =
∫∫

dx qJ (Fµ, Hµ)∂x(Zn)ζ ((1 + n)qnqx)
−1 + cyc(F, H, Zn) (3.24)

as one of the many alternatives. This example demonstrates, in an admittedly trivial way,
the general non-uniqueness of Nambu brackets. That is, although the Poisson bracket is
unique up to a transformation of the variables, each Poisson bracket corresponds to an infinite
number of distinct Nambu brackets. (Although the brackets (3.23) and (3.24) yield the same
Poisson bracket upon substitution of (3.13), they are distinct in the sense that they yield
non-identical values upon substitution of three arbitrary functional arguments.) This non-
uniqueness extends, not surprisingly, to the discrete case as well; discrete Poisson brackets
generally correspond to more than one distinct, discrete Nambu bracket. The non-uniqueness
of Nambu brackets adds scope, but also complexity, to the search for conservative numerical
schemes.

Once again, the Nambu-bracket formulation based on (3.8)–(3.10) requires the functional
derivatives of H with respect to the variables ζ , µ and h. However, H is most naturally
expressed in the form (3.3) as a functional of u, v and h. The functional derivative Hh is the
same in both systems because holding (u, v) fixed is the same as holding (ζ, µ) fixed. To
compute Hζ and Hµ, we set hu = (−χy + γx, +χx + γy). Then Hζ = −χ and Hµ = −γ . The
fields χ and γ can be determined from ζ, µ, h by solving

∇ · (h−1∇χ) + J (h−1, γ ) = ζ, (3.25a)

∇ · (h−1∇γ ) + J (χ, h−1) = µ. (3.25b)

The precise manner in which this process is discretized does not affect the conservation
properties of the resulting algorithm. The conservation properties depend only on the
antisymmetry property of the Nambu bracket.

Of course, it is distasteful to pose shallow-water dynamics in a form that requires
the solution of elliptic equations because the basic equations (3.1) are entirely prognostic.
Moreover, Arakawa and Lamb (1981)—hereafter AL—discovered a finite-difference
analogue of (3.1) that conserves discrete analogues of the energy and potential enstrophy.
Salmon (2004)—hereafter S04—showed that the AL algorithm corresponds to the discrete
Poisson bracket

{F, H } =
∑
ij

1

24
(qi−1,j−1 + 2qi−1,j+1 + 2qi+1,j−1 + qi+1,j+1)

∂(F, H)

∂(ui−1,j , vi,j−1)

+
1

24
(2qi−1,j−1 + qi−1,j+1 + qi+1,j−1 + 2qi+1,j+1)

∂(F, H)

∂(ui+1,j , vi,j−1)

+
1

24
(2qi−1,j−1 + qi−1,j+1 + qi+1,j−1 + 2qi+1,j+1)

∂(F, H)

∂(ui−1,j , vi,j+1)

+
1

24
(qi−1,j−1 + 2qi−1,j+1 + 2qi+1,j−1 + qi+1,j+1)

∂(F, H)

∂(ui+1,j , vi,j+1)

+
1

24
(qi−1,j−1 − qi−1,j+1 + qi+1,j−1 − qi+1,j+1)

∂(F, H)

∂(ui−1,j , ui+1,j )
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+
1

24
(−qi−1,j−1 − qi−1,j+1 + qi+1,j−1 + qi+1,j+1)

∂(F, H)

∂(vi,j−1, vi,j+1)

+
1

2�

(
∂(F, H)

∂(hij , ui−1,j )
− ∂(F, H)

∂(hij , ui+1,j )
+

∂(F, H)

∂(hij , vi,j−1)
− ∂(F, H)

∂(hij , vi,j+1)

)
(3.26)

and that (3.26) is the simplest member of a large family of discrete Poisson brackets that
conserve arbitrary energy H and potential enstrophy in the form

Z = 1

2

∑
ij

1

4
(hi+1,j+1 + hi+1,j−1 + hi−1,j+1 + hi−1,j−1) q2

ij , (3.27)

where

qij ≡ (vi+1,j − vi−1,j + ui,j−1 − ui,j+1)/2�
1
4 (hi+1,j+1 + hi+1,j−1 + hi−1,j+1 + hi−1,j−1)

. (3.28)

The AL bracket (3.26) vanishes when either F or H is replaced by (3.27).
The basic shallow-water dynamics (3.1) has the exact Nambu-bracket formulation

{F, H, Z} =
∫∫

dx
{

δ(F, H)

δ(u, v)

[
− 1

2qx

∂xZh − 1

2qy

∂yZh

]
− 1

3q2
J

(
q3/2

qy

Fu,
q3/2

qy

Hu

)
Zh

− 1

3q2
J

(
q3/2

qx

Fv,
q3/2

qx

Hv

)
Zh + cyc(F, H, Z)

}
, (3.29)

where Z = Z0 is the potential enstrophy, and all the functional derivatives are taken with
respect to the basic variables u, v and h. The fractional powers in (3.29) disappear upon
expansion of the terms. The Nambu bracket (3.29) is not unique, and in fact is not equivalent
to the Nambu bracket constructed from (3.7). This is obvious from the fact that every triplet in
(3.29) involves one functional derivative with respect to h, whereas (3.16) and (3.23) contain
no h-derivatives. The bracket (3.29) can be generalized to arbitrary moments Zn of the
potential enstrophy, and in fact all the exact Nambu brackets presented here can be further
generalized to cover the general shallow-water Casimir (3.11). However, the discrete form
(3.29) seems very closely related to the AL bracket (3.26), and the conjecture is offered that
a finite-difference approximation to (3.29) yields (3.26) after substitution of (3.27). This
conjecture has been proved for the case of one space dimension, but, despite very persistent
effort, no two-dimensional discretization of (3.29) corresponding to (3.26) has been found.
More generally, it seems very difficult to defeat the problem of apparent singularities that
arises in the discretization of (3.29). Thus, despite the examples provided by AL and S04, and
despite the burden of solving elliptic problems, the Nambu formulation in terms of ζ , µ

and h seems to be the most convenient vehicle for constructing conservative shallow-water
algorithms. The analogous statement seems especially true of the primitive equations, where
elliptic problems are anyway unavoidable.

4. Primitive equations

The shallow-water equations are closely analogous to the hydrostatic primitive equations in
isentropic coordinates; see, for example, Salmon (1998, pp 105–7). Because of this analogy,
all the results of the preceding section apply at once to the hydrostatic primitive equations,
provided that one is willing to accommodate the outcrop of isentropes at boundaries by a device
related to the concept of ‘massless layers’. See, for example, Hsu and Arakawa (1990).
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In this section we consider the non-hydrostatic primitive equations in the form

Dv
Dt

= −∇φ + θk, (4.1a)

∇ · v = 0, (4.1b)

Dθ

Dt
= 0, (4.1c)

where v = (u, v, w) is the three-dimensional velocity, θ is the buoyancy and all variables are
considered functions of (x, y, z). The dynamics (4.1) is equivalent to

Dω

Dt
= ω · ∇v + (θy, −θx, 0), (4.2a)

Dθ

Dt
= 0 (4.2b)

with

ω = ∇ × v (4.3)

and v determined from ω by (4.3), (4.1b) and the periodic boundary conditions; see, for
example, Batchelor (1970, pp 84–7). The dynamics (4.2) takes the Hamiltonian form (1.1) with

{F, H } =
∫∫∫

dx{ω · [(∇ × Fω) × (∇ × Hω)] + ∇θ · [(∇ × Fω)Hθ − (∇ × Hω)Fθ ]}
(4.4)

and

H =
∫∫∫

dx
(

1

2
v · v − zθ

)
. (4.5)

As in section 2, the connection between v and ω is required only to compute the functional
derivatives of H . The conservation laws depend only on the Poisson bracket (4.4), which has
the general Casimir

ZG =
∫∫∫

dx G(q, θ), (4.6)

where q = ω · ∇θ is the potential vorticity and G is an arbitrary function of two variables.
We seek a Nambu bracket corresponding to (4.4) that will serve as the basis for an

energy- and potential-enstrophy-conserving model of the non-hydrostatic primitive equations.
Following the same general strategy as in section 2, we switch from ω and θ to new variables
q, θ , and

s = ω × ∇θ. (4.7)

We note that s has no component in the direction of ∇θ , and that the mapping from (ω, θ) to
(q, θ, s) is one-to-one. By the chain rule for functional derivatives, we have

Fω = Fq∇θ + ∇θ × Fs (4.8)

and

Fθ |ω = Fθ |s,q − ω · ∇Fq + ∇ · (ω × Fs). (4.9)

Substituting (4.8) and (4.9) into (4.4), invoking vector identities and making use of the periodic
boundary conditions, we obtain the Poisson bracket in the form

{F, H } = {F, H }qq + {F, H }qs + {F, H }θs + {F, H }ss, (4.10)
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where

{F, H }qq = −
∫∫∫

dx θ(∇Fq × ∇Hq) · ∇q, (4.11)

{F, H }qs =
∫∫∫

dx[(∇q × ∇Fq) · (∇θ × Hs) − (∇q × ∇Hq) · (∇θ × Fs)], (4.12)

{F, H }θs =
∫∫∫

dx[(∇θ × ∇Fθ) · (∇θ × Hs) − (∇θ × ∇Hθ) · (∇θ × Fs)] (4.13)

and

{F, H }ss =
∫∫∫

dx [ω · (∇ × (∇θ × Fs)) × (∇ × (∇θ × Hs))

+ ∇θ · (∇ × (∇θ × Fs))∇ · (ω × Hs) − ∇θ · (∇ × (∇θ × Hs))∇ · (ω × Fs)].

(4.14)

As in previous sections, we focus on the moments

Zn = 1

2 + n

∫∫∫
dx q2+n. (4.15)

Once again, potential enstrophy corresponds to n = 0. Since Zn depends only on q, it follows
that {F, Zn}ss = {F, Zn}θs = 0 for arbitrary F . Thus (4.13) and (4.14) are analogous to (3.8);
arbitrary discretizations of (4.13) and (4.14) conserve arbitrary discrete H and

Zn = 1

2 + n

∑
ij

q2+n
ij . (4.16)

To maintain the properties {F, Zn}qq = {F, Zn}qs = 0 for arbitrary F , we express (4.11) and
(4.12) as Nambu brackets. We find that

{F, H }qq = {F, H, Zn}qqq ≡ −
∫∫∫

dx
θ

(1 + n)qn
(∇Fq × ∇Hq) · ∇(Zn)q (4.17)

and

{F, H }qs = {F, H, Zn}qqs ≡
∫∫∫

dx[(∇q × ∇Fq) · (∇θ × Hs)

− (∇q × ∇Hq) · (∇θ × Fs)]
(Zn)q

q1+n
+ cyc(F, H, Zn). (4.18)

Discretizations that maintain the antisymmetry properties of (4.17) and (4.18) automatically
conserve discrete analogues of H and Zn. Both (4.17) and (4.18) contain apparent singularities
at q = 0. However, these apparent singularities are very mild and are easily handled by the
methods in sections 2 and 3.

Besides Zn, we may wish to conserve an additional Casimir of the form

R =
∫∫∫

dx W(θ). (4.19)

Since Rs = Rq = 0, R is also a Casimir of (4.17), (4.18) and (4.14). R is a Casimir of (4.13)
because ∇θ × ∇Rθ = 0. Noting that

{F, H }θs = {F, H, R}θθs ≡
∫∫∫

dx[(∇θ × ∇Fθ) · (∇θ × Hs)

− (∇θ × ∇Hθ) · (∇θ × Fs)]
Rθ

W ′(θ)
+ cyc(F, H, R) (4.20)



R14 Invited Article

we pose the primitive-equation dynamics in the form

dF

dt
= {F, H, Zn}qqq + {F, H, Zn}qqs + {F, H, R}θθs + {F, H }ss, (4.21)

where the three triple brackets are defined by (4.17)–(4.19), and the double bracket may be
written as a triple bracket in an infinite number of ways, because neither Zn nor R depends
on s. By maintaining the antisymmetry properties of all the brackets in (4.21)—a very easy
task—we construct numerical models of the primitive equations that automatically conserve
Zn and R. The rhs of (4.21) is not, strictly speaking, a Nambu bracket, because it involves the
two distinct triplets (F, H, Zn) and (F, H, R). In important work, Nevir (1998) gives many
more examples of such ‘generalized’ Nambu brackets.

5. Discussion

Although no general proof has been found, the foregoing examples strongly suggest that
any Hamiltonian system with Casimirs can be written in a Nambu-bracket form in which an
arbitrary Casimir plays the role of the ‘second Hamiltonian’, and, moreover, that the Nambu
bracket is not unique. Many more examples could be given. For instance, a Nambu bracket
for general (compressible) homentropic flow—the most general case for which helicity is
conserved—is given by

{F, H, �} =
∫∫∫

dx[ρ−1(Fv × Hv) · �v − (α · ω)−1(Fρ∇ · Hv − Hρ∇ · Fv)α · Ωv

+ cyc(F, H, �)], (5.1)

where

H = 1

2

∫∫∫
dx ρv · v (5.2)

is the energy, � is the helicity (1.17) and α is an arbitrary vector. Natural choices are α = ω

and α = v.
The manifest antisymmetry of Nambu brackets makes it easy, in principle, to construct

numerical algorithms that exactly conserve discrete analogues of the energy and Casimir; one
need only preserve the antisymmetry property of the exact bracket. In practice, apparent
singularities like those encountered in sections 2 and 3 may pose a significant challenge, but
here again the examples offer encouragement. Although I have not yet found a singularity-
free, discrete analogue of (3.29), the discrete Poisson brackets discovered by AL and S04
suggest that one exists, whereas the alternative formulations (3.16) and (3.17) show that it is
also unnecessary.

Poisson brackets obey the Jacobi identity

{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0 (5.3)

for any three functionals A, B, C, so it is natural to ask whether Nambu brackets obey an
identity analogous to (5.3). Takhtajan (1994) proposes a generalized Jacobi identity which
implies that arbitrary contractions of the Nambu bracket obey (5.3). However, the contraction
of (1.9) with H yields

{F, Z} =
∫∫

dx ψJ(Fζ , Zζ ), (5.4)

which does not obey (5.3), as was apparently first realized by Benjamin (1984). Thus, to insist
on the generalized Jacobi property for Nambu brackets would be to disallow our prototypical
example. In any case, our applications require only that the Nambu bracket be antisymmetric.
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All the explicit examples given in this paper have only second-order accuracy in the grid-
spacing, but the state of the art probably requires algorithms that are at least fourth-order
accurate. However, the results of sections 2 and 3 may be easily extended to fourth-order
accuracy. The critical factor allowing this extension is that the discrete Casimirs (2.7) and
(3.15) do not involve finite differences. The same cannot be said of (3.28), and in fact no
completely fourth-order-accurate counterpart to (3.26) is known.

Throughout this paper, we have assumed, to great computational advantage, that the
boundary conditions are periodic. This condition must certainly be relaxed. However, all
of our discrete brackets correspond to local operations. This guarantees that the discrete
dynamical equations for energy and the conserved Casimir involve the divergence of a flux.
From this we may infer the form of the fluxes, and the boundary conditions must be such
that these discrete fluxes vanish. That is, the boundaries must not be artificial sources of
energy or potential enstrophy. Except for this, the boundary conditions are as arbitrary as the
Hamiltonian itself.

Is it ever possible to conserve two Casimirs by generalizing (1.7) to the form

dF

dt
= {F, H, Z, X}, (5.5)

in which X is the additional Casimir? If so, then X is itself a Casimir of (1.7). The single
Casimir of (2.3) is

X =
∫∫

dx ζ 1+n/3 ∝ Zn/3−1. (5.6)

This suggests that the dynamics (1.2) and (1.3) can be written in the form

dF

dt
= {F, H, Zn, Zn/3−1}n, (5.7)

but (except for the easy case n = 0) no such quadruple bracket has been found.
The extensive literature on Nambu brackets is unconcerned with numerical applications.

However, McLachlan (2003) advocates an antisymmetric-tensor approach to deriving
conservative numerical algorithms. He notes that any system of coupled ordinary differential
equations,

dui

dt
= fi(u) (5.8)

in the dynamical variables {u1(t), u2(t), . . . , un(t)} that conserves the quantities
{H1(u), H2(u), . . . , Hm(u)} can be written in the form

dui0

dt
=

∑
i1,...,im

Ji0,...,im

∂H1

∂ui1

· · · ∂Hm

∂uim

≡ {ui0 , H1, H2, . . . , Hm}, (5.9)

where the tensor J (u) is antisymmetric in all of its indices. The system (5.9) corresponds to
numerical algorithms in which all the spatial derivatives (but, again, not the time derivative)
have been replaced by discrete approximations. Thus, any numerical algorithm—obtained by
any method whatsoever—that conserves the m Hi , must take the form (5.9). The strategy of
seeking a completely antisymmetric bracket of the form (5.9) is, therefore, a general starting
point for obtaining conservative numerical algorithms. In this view, the challenge is to find
the antisymmetric J that makes (5.9) a sufficiently accurate approximation to the set of partial
differential equations governing the fluid. Although he gives no completely satisfactory general
method, McLachlan shows how group theoretic ideas aid the search for J , and he recovers
Arakawa’s Jacobian as one of many interesting examples.
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In this paper we proceed from somewhat the opposite direction. Like McLachlan,
we use antisymmetry to construct conservative numerical algorithms, but rather than beginning
at (5.9), we first seek Nambu-bracket formulations of the partial differential equations
governing the fluid. However, we also fail to find a general, cookbook method for deriving
exact Nambu brackets and their discrete, singularity-free counterparts. In fact, virtually all our
results have been obtained by various tricks and guesses that would be pointless to elaborate.
The deduction of (3.29) was particularly painful.

Bialynicki-Birula and Morrison (1991)—hereafter BM—offer a general method of
constructing a Nambu bracket corresponding to a Hamiltonian system of ordinary differential
equations in which the Poisson bracket takes the form of a Lie–Poisson bracket. Since
virtually all the equations of fluid mechanics may be written in Lie–Poisson form—see
Shepherd (1990)—and may be posed as an infinite system of ordinary differential equations by
(e.g.) changing the variables to the Fourier coefficients of the fields, the BM method appears
to apply. However, in every example that I have tried, the method leads to divergent integrals.
For shallow-water dynamics this is not surprising, since the BM method predicts a Casimir
that is quadratic in the dependent variables, and no such Casimir exists. But for the dynamics
(1.2) and (1.3) the BM method fails even to capture the Nambu bracket (1.9) in which the
Casimir (1.8) is quadratic. We evidently require a still more general method.
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