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ABSTRACT

Since the pioneering work of Nof, the determination of the westward drift of mesoscale eddies under the
planetary (beta) effect has been a recurrent theme in mesoscale oceanography, and several different formulae
have been proposed in the literature. Here, recapitulation is sought, and, within the confines of a single-layer
model, a generalized formula is derived. Although it is similar to Nof"’s, the present formula is established from
a modified definition and with fewer assumptions. It also recapitulates all other formulae for the one-layer
model and applies to a wide variety of situations, including cases when the vortex develops a wake of Rossby

waves or undergoes axisymmetrization.

Following the derivation of the formula, a physical interpretation clarifies the migration mechanism, which
can be divided between a self-induced propulsion and a reaction from the displaced ambient fluid. Numerical
simulations with primitive and geostrophic equations validate the formula for a variety of length scales and
amplitudes. The work concludes with an attempt to extend the result to systems with two moving layers.

1. Introduction

Since the dawn of dynamical meteorology, investi-
gators have been concerned with the variation of the
Coriolis parameter with latitude ( nowadays called the
beta effect) on extratropical cyclones and anticyclones.
Considering only the particles swirling within the vortex
formation, thus ignoring the effect of the surrounding
fluid, Bjerknes and Holmboe (1944) were the first to
note that this planetary gradient produces a mass im-
balance in a circular vortex causing it to move west-
ward, irrespective of polarity. Yet, instead of evaluating
a rate of westward translation, they discussed how a
distortion from the circular state could counteract the
westward tendency. Their strictly kinematic argument
does not, however, offer proof that such an arrested
state can persist for a finite period of time.

Returning to this analysis with consideration of the
balance of forces, Rossby (1948) concluded that the
planetary gradient of the Coriolis parameter exerts a
net meridional force on cyclones and anticyclones, re-
spectively directed poleward and equatorward. Rossby
then invoked energy dissipation and discussed how the
resulting acceleration can lead to a finite meridional
displacement of the vortex.
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Since the energy of synoptic motions can only be
slowly dissipated, one is led to revise Rossby’s conclu-
sion by reasoning that the equatorward force on an
anticyclone would accelerate the latter during a fraction
of an inertial period until the Coriolis effect takes over
and causes the anticyclone to veer and migrate west-
ward, all this occurring before energy dissipation can
take hold. This is precisely what Nof (1981) deduced
with a one-layer, lens-like model for oceanic anticy-
clones. He then derived a formula for the westward
translation speed of such vortices. Killworth (1983)
extended that analysis somewhat.

Because the net force on cyclonic formations is di-
rected in the opposite direction, one is tempted to con-
clude that cyclones ought to translate eastward. As Nof
(1983) demonstrated, this conclusion is erroneous, and
both cyclones and anticyclones migrate westward. The
reason for this behavior is the non-negligible influence
of the displaced surrounding fluid on the vortex. This
issue will be made clear later in the present article.

The applicability of Nof’s formula is restricted by
the double assumption of steady circular eddies and of
constant drift velocities. In other words, the eddies
considered by Nof must remain unchanged with time,
except for their westward migration, which itself must
proceed at an unchanging rate. These restrictions ex-
clude a number of realistic situations such as cases when
the migrating eddies generate a wake of Rossby waves
or undergo their own evolution (merging, axisymme-
trization, pulsation, nutation, etc.). Yet Nof’s formula
has been verified in several instances (Bowman 1985;
Cornillon et al. 1989; our numerical experiments de-
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scribed below) and one may wonder whether the range
of applicability of the formula may not extend beyond
the limited conditions under which it was derived. A
first aim of the present study is to address this question
and to delimit more general conditions for the validity
of Nof’s formula.

A second purpose is to show that Nof’s and other
formulae proposed over the years and under different
assumptions can all be grouped into one generalized
derivation. Indeed, in the framework of geostrophic
formalisms, a number of investigators have derived
various expressions predicting the westward drift of
isolated vortices. Using a numerical quasi-geostrophic
model (weak amplitudes, any length scale), Mc-
Williams and Flierl (1979) showed that the center of
mass of a vortex in an infinite domain moves westward
at the greatest linear Rossby-wave speed, irrespectively
of the vortex polarity. Matsuura and Yamagata (1982),
Malanotte-Rizzoli (1982) and Williams and Yamagata
(1984) showed that, under certain conditions (weak
amplitudes and long length scales), mesoscale for-
mations obey the classic Korteweg-deVries equation,
of which the soliton solutions translate westward at a
rate known as a function of amplitude and length scale.
The frontal geostrophic formalism of Cushman-Roisin
(1986) and Shapiro (1986) (finite amplitudes, long
length scales) yields a constant rate of westward prop-
agation, proportional to the ratio of potential energy
to volume of the eddy. All these results will be shown
to be asymptotic expressions of a single expression.

To derive a unified formalism for the westward mi-
gration of oceanic mesoscale eddies, it has been found
convenient to follow the lead of McWilliams and Flierl
(1979) and Killworth (1983) by defining, from the
start, a center of mass. The problem is then reduced
to finding the evolution in time of the coordinates of
this center of mass. Because all results mentioned above
were established in the context of a single-moving layer,
the following study will also be restricted to the one-
layer model. Extension to systems with multiple mov-
ing layers will be sought toward the end of the article.

2. The formula
a. Derivation

The primitive equations of the one-layer, reduced-
gravity model on the beta plane are

w+-Vyu+fkXu=—-gVh
h,+V-(hu) =0,

where u is the velocity vector, V is the gradient operator,
f = fo + Boy is the varying Coriolis parameter, g’ is
the reduced gravity, and 4 is the local layer thickness.
Writing 4 = H + 5, i.e., the sum of a mean layer thick-
ness and an interfacial displacement, one can define
the radius of deformation, R; = (g'H)'/?/f,. With a
length scale L (not necessarily equal to Ry), a vertical
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displacement scale 6H (not necessarily much less than
H), and a time scale 7 (not necessarily the advective
time scale), the equations can be scaled to become

o, +e(u-V)Iu+kXu+ykXu=-Vy (1)
wn, + sVeu+ V- (qu) =0, (2)

where the dimensionless numbers have the following
interpretations: w = 1/foT compares the time scale
with the inertial period, e = g'6 H/ fo* L? is the Rossby
number, 8 = BoL/f, measures the importance of the
beta effect, and s = g'H/fo*L* = (R4/L)?* is a strat-
ification or Burger number. [The Froude number
is €2/5.]

Mesoscale eddies in the ocean tend to fall in one of
two categories, namely the quasi-geostrophic mesoscale
eddies of the open ocean (L ~ Ry, 6H < H; Kamen-
kovich et al. 1986) and the frontal-geostrophic rings
in the vicinity of western boundary currents (L > 3R,
0H ~ H; Olson et al. 1985; Chassignet et al. 1989).
Although much smaller, the intrathermoclinic lenses
have frontal characters (6H ~ H; McWilliams 1985)
and can be grouped in the category of rings. Generally,
the Rossby number and the beta number are small,
and the eddies are primarily in geostrophic balance.
With ¢ and 8 small, it is expected that w, too, is small.
It is thus assumed at this stage that w < 1, which will
be verified a posteriori. Exploiting the smaliness of w,
¢, 8, the leading approximation to Eq. (1) is the fplane
geostrophic balance,

u=k X Vy+ O(6), (3)
where the order of magnitude of the error is
& = max(w, ¢, 3). (4)

Substitution of this expression for u in the small terms
of Eq. (1) provides, at the next level of approximation,

u=kXVyp—awVy —¢eJ(n Vn)
— Bk X Vg + 0(8%). (5)

Replacement of u by (5) in Eq. (2) yields a single
equation for n (Cushman-Roisin and Tang 1989,
1990), which is not of interest here, except to note that
its leading or potentially leading terms have the fol-
lowing orders of magnitude w, $6, and €d. The rule to
determine the time scale, T, is that the largest term
containing w must be on the same order as the largest
term not containing w. Since € < s (a consequence of
6H < H), the result is

_ max(se, sB)
" max(l,s)

(6)

From this expression, it is easily verified that w is
bounded by max(e, §). Hence, w is always much
smaller than unity, as it was anticipated, and the
expression for é reduces to
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0 = max(e, 8). (7
Integration of the continuity equation (2) over an

infinite domain yields
V= f f ndxdy,

Lo
as long as the feature (7 distribution) is sufficiently
well isolated (» decays toward zero sufficiently rapidly
at large distances ). Although the initial distribution of
n is left unspecified for generality, it is restricted to
being non-compensating, i.e., V # 0. If V is positive,
the vertical displacement is mostly downward, and one
would speak of an anticyclonic formation; if ¥ is neg-
ative, the feature is mostly an upwelled interface and
is referred to as a cyclonic formation.
With the notation {(+ - <)y = V™' [[ (- - -)dxdy,
the coordinates of the center of mass of the feature are
naturally defined by

X={xny, Y=, yn). (8)
In addition to following its own evolution (pulsation,
axisymmetrization, etc.), the feature may drift and this
drift is provided by the velocity of its center of mass,
which can be evaluated with the use of Eq. (2) (Kill-
worth 1983):

X €
=Gy =2+ tmy O

=y =2y +my, (10)

where (u, v) are the components of the velocity vector
u. A second differentiation yields (Killworth 1983)

dZX dy sB

8
CTar T a +:<y”>+;<ynv>, (11)
d*y dx
“’dz2+"217”"_ ”>—“<ynu> (12)

Note that in the absence of a beta effect (8 = 0), these
equations imply inertial oscillations of the center of
mass (Ball 1963). With the addition of the beta effect,
a net drift will likely be superimposed, and in the limit
of geostrophic regimes (w small), this drift will over-
come the inertial oscillations.

The geostrophic approximation is now used as a
simplification by replacing u and v in the previous
expressions by their geostrophic values given in (3).
The result is

de dy sB8\
Car T ar 0(—) (13)
dZY dX sB6
T <">__ 2>+O( )

(14)
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The former equation implies dY/dt = O(s88/w, w),
and the use of this result in the latter equation provides
dX 2
_ - — O 2 .
G o w2 as)

A return to the dimensional variables then provides
the final expression for the drift velocity

I (o )

ax
o= . (16)
0 ff ndxdy
day
o 0. (17)
The error on the zonal drift speed is on the order of
w3
BoR S} max(é,ﬁ). (18)

Typical orders of magnitude for open-ocean meso-
scale eddies are g’ = 0.02 ms™2, H =400 m, 6H = 100
m and L = 50 km, which yield R; ~ 28 km, § ~ 0.3,
e =~ 0.08, 8 =~ 0.01. The westward drift of a Gaussian-
shaped eddy is estimated to be about 1.6 cm s™! with
an error of about 8%. Gulf Stream rings are character-
izedby g’ =0.02m s, H=6H = 500 m and L = 100
km, or R; = 32 km, s =~ 0.1, ¢ = 0.10, 8 =~ 0.02,
westward drift of about 2.0 cm s™! within an error of
10%. Finally, intrathermoclinic eddies have g’ = 0.02
ms 2, H=6H=50mand L =30km, or R; ~ 10
km, s =~ 0.11; ¢ = 0.11, 8 =~ 0.006, westward drift of
about 0.2 cm s™! with an error of 11%.

b. Discussion

When the eddy leaves a trail of Rossby waves in its
wake, it is evident that the center of mass defined in
(8) does not coincide with the vortex center. But this
situation is not particularly irksome because either the
interfacial displacements in the Rossby-wave wake are
small compared to that of the main eddy and the dis-
crepancy is small, or they are large in which case the
eddy loses its significance and finding the path of its
center becomes a futile exercise.

Since # = H + 5 = 0, the integral in the numerator
of dX/dt always has the same sign as that in the de-
nominator, and expression ( 16) indicates that vortices
in near-geostrophic balance all migrate westward. Since
dY/dt vanishes at first order according to (17), there
is no appreciable meridional drift. For weak, quasi-
geostrophic (7 < H) eddies, the term 72%/2 can be ne-
glected compared to Hp, leaving

@ _ (19)
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In other words, quasi-geostrophic vortices propagate
at a constant speed, none other than that of the long,
nondispersive Rossby waves. There is no dependency
upon the amplitude, and, consequently, there is no
distinction between cyclonic and anticyclonic forma-
tions. Note that the long Rossby wave speed is evalu-
ated based on the interfacial depth outside of the eddy,
not on the eddy central depth.

For finite-amplitude eddies such as Gulf Stream rings
and intrathermoclinic lenses, 7 is a substantial fraction
of H, and expression (16) can no longer be simplified.
For anticyclonic vortices, 7 is positive, the terms in the
numerator of Eq. (16) add to each other, and the west-
ward drift speed is larger than the long-Rossby-wave

speed. For cyclonic vortices, it is the opposite, and the

drift speed cannot exceed the long-Rossby-wave speed.
The rule is: the larger the amplitude, the faster the an-
ticyclones, the slower the cyclones. There are, however,
upper and lower bounds to the westward drift speeds.
For anticyclones, 0 < 9 < Ayl — H where Ay, is the
maximum interfacial depth at the eddy’s center, and
it follows that Hy + 52/2 < (H + hmax)n/2 and that
the zonal drift speed cannot exceed Bog'(H + hmax)/
2fo. This upper bound is the average between two
values of BoR?, evaluated with the interfacial depths
taken first outside and then at the center of the eddy.
For cyclones, a rise of the interface cannot reach beyond
the surface, and — H < 7 < 0. It follows that Hn + 12/
2 < Hy/2 <0, and the magnitude of the drift velocity
cannot be less than half the long-Rossby-wave speed.

A physical interpretation of expression (16) is now
proposed. Two processes are analyzed individually: the
imbalance of the Coriolis force on the particles swirling
within the eddy, which induces a first component of
zonal motion, and the reaction onto the eddy by dis-
placed particles of the surrounding fluid, which gen-
erates an additional zonal propagation. The net zonal
speed is the sum of the two components.

Consider a circular eddy with azimuthal velocity U,
pressure anomaly g'8H and radius L (Fig. 1a). In the
absence of zonal drift, the geostrophic balance (fu
= —dp/dy) on the north and south sides yields:
f(—Un=~(—g'6H)/L and fsUs = —g'6H/L. Since
the same waters circulate around the eddy without loss
of mass, Uy = Us = U and the two requirements are
incompatible as long as fy differs from f5. This dis-
crepancy is that at the base of the arguments of Bjerknes
and Holmboe (1944 ) and of Rossby (1948). With the
addition of a bulk zonal velocity ¢ (positive eastward ),
the momentum balances become
— IBH !

8, g+ v =4
on the north and south flanks, respectively. Again, with
Un = Us = U, elimination of g’'6 H/ L yields ¢ = (fx
__g‘S)IJU/(fN + fé)9 or, since fN =f0 + BOL’ fé =f0
- PoL-,

Me—Uy)=—
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FIG. 1. Physical interpretation for the westward drift of eddies. (a)
The imbalance of Coriolis force within the eddy causes zonal trans-
lation, to the east for cyclones and to the west for anticyclones. (b)
As a result of this translation, surrounding particles are displaced
meridionally, acquiring relative vorticity and inducing a westward
translation on the eddy. The net zonal drift is the sum of both com-
ponents, and since the latter is always greater than the former, all
eddies propagate westward.

¢ = BoLU
fo

For cyclones, U as defined is positive and c is directed
eastward, while for anticyclones U is negative and c is
directed westward.

Now, this first zonal motion will cause displacements
in the surrounding fluid, some parcels being moved
around the northern edge of the eddy and some others
around its southern edge, irrespective of the zonal di-
rection along which the eddy propagates. The Coriolis
parameter of the former particles changes approxi-
mately from fy to fu = fo + BoL, while for the latter
particles, it decreases from f; to fs = fo — BoL (Fig.
1b). If vertical stretching does not dominate the
makeup of the potential vorticity, changes in relative
vorticity will be equally important, if not dominant,
and changes in relative vorticity on the order of (yL
must be expected, anticyclonic to the north and cy-
clonic to the south. Over a length scale on the order
of the radius of deformation, R, the induced circu-
lation (integrated vorticity)is I' = 8o LR = Bog’ HL/
fo%, and the center of the eddy at a distance L from
these vorticity patches is subjected to an entraining
velocity I'/ L = Bog' H/ fo*. With anticyclonic vorticity
to the north and cyclonic vorticity to the south (Fig.
1b), this entrainment velocity is directed westward.

The sum of both contributions to the zonal drift of
the eddy is

(20)
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fo? Jo 1o ft
where the second expression is obtained after approx-
imation of the azimuthal velocity by its geostrophic
value.

The parallel between expressions (16) and (21) is
evident. Always dominant, the first term makes both
cyclones and anticyclones drift westward. The previous
physical interpretation indicates that the reason for this
component is the reaction onto the eddy by the particles
it displaces. This important effect was overlooked by
Bjerknes and Holmboe (1944) and Rossby (1948).
The second term, which can be of either sign, results
from the self-induced drift of the particles within the
eddy; it decelerates cyclones (8H < 0) and accelerates
anticyclones (6H > 0). For weak, quasi-geostrophic
eddies (6H < H), this self induction is negligible com-
pared to the entrainment by the displaced fluid in the
surroundings. Finally, it should be noted that the en-
trainment by the outside fluid is the contribution
coined “planetary lift” by Nof (1983, 1985).

(21)

3. Comparison with previous formulae

Several expressions predicting the speed of westward
migration of eddies have been proposed in the literature
for various asymptotic dynamics. The purpose of this
section is to show that all can be derived from the gen-
eral formula (16).

McWilliams and Flierl (1979) established a formula
providing the velocity of the center of mass for the
one-layer version of a classic, quasi-geostrophic model.
The result [Eq. (3.3) in their article] can be derived
here again in just a few lines. The single-layer quasi-
geostrophic equation in a dimensional form and with
the present notation is:

e

Multiplying this equation successively by x and y and
integrating over the infinite domain, one obtains

1 d
- R—dg 7 ff xndxdy — Bo ff ndxdy = 0,

1 d J‘ J‘ _
RPdi yndxdy = 0.

Invoking definition (8) of the center of mass then yields
the expected result

1 ?
(VZ ~ Rz n) + £ J(n, V) + Bony = 0.
i J, Jo

dX _ o p2 4Y
- PoRi, —-=0,

which is the result of McWilliams and Flier]l (1979)
and the asymptotic expression of (16)-(17) in the
quasi-geostrophic context [n < H, see (19)].
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Nof (1981) investigated the westward drift of anti-
cyclonic lenses and, later (Nof 1983), generalized the
result to non-lens-like anticyclones as well as to cy-
clones. His most general formula, expressed in the
present notation, is

L L
f drf (H + p)vr'dr’
0 r

T
f nrdr
0

where r is the radial coordinate, L the eddy radius (out
to a certain streamline ), and v the azimuthal velocity.
To order 82 in his analysis, Nof made the following
assumptions: the eddy’s shape and structure are un-
changing (i.e., w = 0), the eddy is approximately cir-
cular, the beta effect is small (8 < 1), the balance of
forces in the eddy may include the centrifugal force (e
not necessarily much smaller than unity), and, finally,
the drift speed is assumed to be constant in time.

When the geostrophic approximation (e < 1)is used
to eliminate v in terms of 5 (fov = —g'n,), Nof’s
expression (22 ) becomes identical to the present result
(16). One consequence of retaining the centrifugal
force as a potentially important advective effect is to
modify the upper and lower bounds for the drift speed,
from Bog'(H + hmax)/ 2 f0? 10 208 hmax/ 3 fo” for lens-
like anticyclones (Nof 1981) and from 8yg'H/2 fo? to
2B80g'H /3 f,* for cyclones (Nof 1983).

Unlike Nof’s formula, the present result was derived
without the assumptions of an unchanging eddy (w
# 0) and of a constant drift speed. There is therefore
a trade-off between both theories, but, when one notes
(1) that oceanic eddies are not perfectly circular and
are subject to time-dependent behavior such as pul-
sation, axisymmetrization and, even, merging, (ii) that
the presence of important ageostrophic effects leads to
circular inertial oscillations of the center of mass (Ball
1963), (iii) that cyclonic eddies with important ageos-
trophic effects are unstable (Cushman-Roisin and Tang
1990), and finally (iv) that most oceanic eddies are
in nearly geostrophic balance, serious doubts can bé
entertained about the significance of the one ageos-
trophic effect (centrifugal force) that Nof chose to retain
among all other possible candidates. Without that term,
both theories provide identical results, but the present
one has the advantage of showing that the assumptions
of an unchanging eddy and of a constant drift rate are
not necessary to derive the formula predicting the drift
velocity. In other words, it has been demonstrated that
Nof’s formula happens to be valid under conditions
far more general than those under which it was initially
derived. )

In the context of frontal geostrophic dynamics (one
layer, sH = H, L?> > R,*), Cushman-Roisin (1986)
derived the following expression for the westward drift
of any isolated feature

[
1

(22)

>
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ff h3dxdy

ax _ _BgvY
2 b

a2/ ” hdsxdy

where the integrals cover the finite domain within
which fluid is in motion (/2 > 0) and extending to a
deformable front (4 = 0). The same formula was de-
rived by Shapiro (1986 ) in the more restrictive context
of a single, circular vortex with presupposed constant
drift speed.

With H = 0, i.e., no upper layer beyond the front,
h = n and expression (23) is found to be identical to
(16). It is worth noting that, in frontal geostrophic
dynamics, potential energy is far greater than kinetic
energy and is thus conserved in first approximation;
consequently, the numerator of (23) is an invariant,
and the drift rate assumes, for this regime, a constant
value, irrespective of eventual distortions of the eddy
or eddies within the frontal line (Pavia and Cushman-
Roisin 1988).

Intermediate geostrophic dynamics (Matsuura and
Yamagata 1982; Malanotte-Rizzoli 1982; Williams and
Yamagata 1984) are characterized by both small ver-
tical displacements (6H < H) and long length scales
(L?> R?). The governing equation can be obtained
by substituting (5) in (2) and setting w to s8. For me-
ridional bands (no y derivative), it reduces to

(23)

€
My — M+ nx+;m1x= O(B, ¢). (24)

Since the vertical displacements are small (e < s) and
the length scale is large (s < 1), the middle two terms
dominate, the eddy formation translates westward
without deformation, and, on a longer time scale, the
evolution is governed by a KdV equation (Matsuura
and Yamagata 1982; Malanotte-Rizzoli 1982). The
expansion need not be reproduced here, for it suffices
to note that if the eddy feature translates at a uniform
speed ¢ (n function of x — ct), a double integration of
(24) yields:

(1+c)£ ndx+2isf_ n2dx=0. (25)

After a return to dimensional variables and with ¢
= dX/dt, this latter result is found to be identical to
(16). An axisymmetric eddy would be governed by the
modified equation

1 €
S(nrr'*';nr) _nt+nx+§7’nx=0(3a e) (26)
t

where r? = (x — ct)? + y?, and the expression for ¢ is
again identical to (16).
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4. Numerical verification

The generality of the context within which expres-
sion (16) for the drift speed was established invites
testing against a variety of numerical experiments. Such
experiments permit variation of the radius and ampli-
tude of the eddy and examination of the distinction
between center of mass and center of eddy. Also, it is
desirable to investigate numerically whether the error
estimation ( 18) is reliable and under which conditions
it is sufficiently small for formula (16) to give a drift-
speed value of practical use. Finally, having two nu-
merical models at our disposal, a primitive-equation
model (Bleck and Boudra 1986; Chassignet et al. 1989)
and a generalized geostrophic model (Cushman-Roisin
and Tang 1989), we wish to evaluate the performance
of the latter against the former insofar as the westward
eddy migration speed is concerned.

In the first series of numerical experiments, the two-
layer, primitive-equations, isopycnic-coordinate model
of Bleck and Boudra (1986) was run with the second
layer virtually infinitely deep (H,/H, = 1000) in order
to behave as a reduced-gravity model (Chassignet and
Cushman-Roisin 1990). Simulations were initialized
with a circular anticyclonic vortex of Gaussian profile.
The fixed parameters were fo = 10 ™#s™!, 8o =2 X 107"
m~'s Tand g’ = 2 X 1072 m s 72, while the undisturbed
upper-layer depth H (and, consequently, the defor-
mation radius Lg), the maximum interfacial displace-
ment at the eddy center 6H, and the distance from
center to maximum azimuthal velocity L were varied
from run to run, in order to span realistic mid-latitude
oceanic eddy conditions. v

Table 1 lists the parameters of each numerical ex-
periment, while Table 2 presents the theoretical values
of the drift speed, the allowed absolute errors, and the
numerical results. The theoretical predictions using the
initial Gaussian profile agree with the numerical find-
ings within 10% to 20%, and, more often than not, this
discrepancy does not lie within the expected error.
Close examination of the eddy evolution reveals, how-
ever, that the eddies undergo a rapid adjustment fol-
lowing the initial conditions and, consequently, drift
westward while maintaining a structure somewhat dif-
ferent from the Gaussian profile. Hence, we found it
more appropriate to compare the observed drift speeds
with the theoretical prediction ( 16) using not the initial
Gaussian profile but the actual adjusted structure. Ab-
solute errors were calculated from (18) using the pa-
rameter values listed in Table 1. Table 2 shows excellent
agreement, and it can therefore be concluded that the
theory performs according to its anticipated perfor-
mance.

Inrun 2 (6H = 0.25H, L = R;), the predicted error
is very large (in excess of 100% ) while the theoretical
estimate is extremely close to the numerical realization
(within 3.3%). Tracking the source of the predicted
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TABLE |. Parameters of the numerical experiments.
Run H oH Ry L oH L

number (m) (m) (km) (km) H Ry s € 8 ®
1 1000 100 45 45 0.1 1 1 0.1 0.009 0.1
2 1000 250 45 45 0.25 1 1 0.25 0.009 0.25
3 1000 250 45 90 0.25 2 0.25 0.06 0.018 0.016
4 1000 500 45 90 0.5 2 0.25 0.13 0.018 0.031
5 500 250 32 95 0.5 3 0.11 0.06 0.019 0.006
6 500 500 32 60 1.0 2 0.25 0.25 0.012 0.063
7 500 500 32 95 1.0 3 0.11 0.11 0.019 0.012
8 250 500 22 65 2.0 3 0.11 0.22 0.013 0.025

error shows that the higher-order time derivatives in
Egs. (13)-(14) (the w terms on the left-hand sides)
are not small (w = 0.25). Equation (15) is thus a poor
approximation in this case. However, these higher-or-
der time derivatives are responsible for circular inertial
oscillations of the center of mass (Ball 1963), which
can merely be superimposed on the zonal translation.
The particular initialization used here, i.e. a single cir-
cular eddy, imparts no net momentum to the flow and,
hence, does not trigger any inertial oscillation. This
explains the good agreement between theory and nu-
merical experiment despite a generous allowance for
error.

Aside from run 2, the rule for the prediction of the
error in all other cases is

goH _3H R}
f02L2 H LZ 4

relative error = ¢ = (27)
since w?/sB < 6 and B < ¢ for those runs. Because the
theory yields a better prediction when the error is
smaller, it can be seen for (27) that the smaller the
eddy amplitude (6H/H) and/or the larger the radius
(L/Ry), the more accurate the theory.

A second series of numerical experiments was per-
formed with a generalized geostrophic equation solved
by a spectral method (Cushman-Roisin and Tang

1989). Identical parameters were selected for all eight
runs, and the results are reported in the last columns
of Table 2 for comparison. The drift rates agree with
both the theoretical predictions using the initial Gaus-
sian profile

dt i

and the findings of the more complete primitive-equa-
tion model, within the allotted error interval. In fact,
for the last six runs, the generalized-geostrophic model
yields values extremely close to the theoretical predic-
tions, but this is not surprising because the model and
the theory are based on the same assumption of a small
Rossby number, which is indeed small for those runs.

With both the primitive-equation and the general-
ized-geostrophic models, we compared the drift rates
of both the center of mass and the eddy center (point
of maximum interfacial depth). For most runs, the
difference is small. There is one exception: in run 1
when the eddy is quasi-geostrophic (small amplitude
and radius), ample Rossby waves are radiated, and the
two centers are propagating at significantly different
rates (difference of about 1 cm s™'). Although the dif-
ference appears significant, such quasi-geostrophic ed-
dies propagate slowly relative to their swirl velocities,

1
4 H

TABLE 2. Results of the numerical experiments using a primitive-equation (PE) model and a generalized geostrophic (GG) model, and
comparison with the theoretical predictions. Values in parentheses denote the percentage of deviation from the corresponding theoretical
predictions, based on the actual adjusted eddy structure (PE model) or the initial Gaussian profile (GG model).

PE model GG model
Run Prediction Numerical Prediction Numerical
number (using adjusted profile) finding (using Gaussian profile) finding

1 4.63 + 0.44 4.65 (.05%) 4.10 = 0.44 3.11 (24%)
2 476 +£ 6.92 492 (3.3%) 425+ 6.92 3.26 (23%)
3 4.80 + 0.25 4.75 (1%) 4.25+0.25 4.08 (4%)
4 5.07 £0.50 5.08 (.1%) 4.50 + 0.50 4.37 (3%)
5 2.54 £ 0.11 2.65 (4.2%) 225 +0.11 2.23 (.9%)
6 2.76 = 0.50 3.03 (9%) 2.50 = 0.50 2.42 (3%)
7 2.81 £0.22 2.98 (6%) 2.50 £0.22 2.48 (.8%)
8 1.65 +£0.22 1.82 (9%) 1.50 +£0.22 1.48 (1.3%)

.
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and the difference becomes a moot point. For the pres-
ent run-1 eddy, for example, the turnaround time for
the particle at the radius of maximum velocity (45 km)
is 7.4 days, and during such time the difference between
the displacement of the center of mass and that of the
eddy center is only 3.9 km, i.e., less than a tenth of the
eddy radius.

Finally, one additional run was performed with the
generalized-geostophic model to test the theory in the
case of significant eddy evolution. The initialization
consisted of two slightly overlapped anticyclonic for-
mations which underwent merging concurrently with
westward translation. With the parameters 6H = 0.5
and L = 2 R, the drift speed of the center of mass was
found to be 9% larger than the theoretical rate before
merging and 5.3% larger after merging, while the pre-
dicted error on the theoretical estimate is 11%. The
theory is thus verified to be correct in at least this in-
stance of transient behavior.

5. Extension to two-layer systems

The formulae proposed over the years as well as the
preceding generalization to predict the westward drift
speed of oceanic eddies were restricted to systems with
a single moving layer. The principal reason for this
systematic limitation is the complication brought by
baroclinic processes arising when several layers are in
motion. An attempt is made here to remedy this short-
coming and to discuss the modifications resulting from
the additional physics.

The theory starts with the equations for every layer,
which, without lack of generality, can be written as

w4+ (u-VYu+fkXu=-Vp (29)

h+V-(ha)=0 (30)
where a subscript indicating the layer number is un-
derstood. The requirement of hydrostaticity provides
relations between the pressures, p, and thicknesses, #,
of the layers, and these close the system of equations.
In a two-layer system over a flat bottom and under a
nigid lid, these relations can be expressed via the inter-
facial displacement n and the bottom-layer pressure 7:

m=H+n p==m+gh
h,=H,—n, p,=m.

In analogy with the developments in section 1, variables
are scaled (adding g'é H as the pressure scale), and the
momentum equations are expanded about geostrophy,

u=k XVp—wVp, — eJ(p, Vp)

- Byk X Vp + O(8%). (31)
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FIG. 2. Impact of the westward migration of an upper-layer eddy
on the lower layer and the reaction of the induced lower-layer relative
vorticity on the eddy drift: squeezing and stretching under (a) an
anticyclone and (b) a cyclone.

Then, multiplication of each continuity equation suc-
cessively by x and y, integration over the infinite do-
main, and replacement of the velocity components by
(31) provide the results. For two layers, one obtains

Upper layer:
dx 518 B
S U B ORI
(32a)
dY e
= o (32b)
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Lower layer:
aX Szﬁ

o= (= =y

2L ),

where s; = g'H,;/ fozL2 and X and Y are still defined as
in (8). Note that (33b) repeats (32b), while (32a) and
(33a) can be solved for dX/dt and {x). In terms of
dimensional variables, the relationships are

ff (Hin + 3n*)dxdy

f f ndxdy

: ff nmydxdy
Jo f f ndxdy
| f f . dxdy

_:+______
dt Jo ffndxdy

1

E(Hl + H,) ff wdxdy + H, ff ndxdy

+%ff n2dxdy = 0. (36)

The diagnostic relationship (36) is akin to the require-
ment of compensated angular momentum discussed
by Flierl et al. (1983 ) and will not be discussed further
here. The other expressions, (34) and (35), are the
two-layer extensions of (16) and (17). Two differences
are noteworthy. First and foremost, a twisting term
proportional to the barotropic signal 7 has emerged in
each equation, modifying the westward drift velocity
and introducing a meridional drift. A second modifi-
cation is the multiplication of the former integral
expression by the factor H,/(H, + H,), thus reducing
this component of the drift. The second modification
is unimportant while the first is of primary importance.

Although crucial, the new twisting terms correlating
n with the derivatives of = cannot be discussed in all
generality. The difficulty arises from the seeming im-
possibility to derive, from the original equations, other
integral constraints involving the same twisting terms,
so that eliminations could be performed. If it is true
that no other useful integral constraint can be found,
the only way to determine the signs and amplitudes of
these twisting terms is by solving the equations them-
selves.

In light of this difficulty, one can now appreciate
why the previous studies were mostly limited to one-

(33a)

(33b)

dX _ ﬁog H,

d fo H +H,

(34)

(35)
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layer systems. Three exceptions stand out, but these
provide little assistance. Flier]l (1984) considered the
limit of a very deep but finite lower layer [H,/(H,
+ H,) < 8 <€ 1], although he acknowledged that actual
oceanic parameters [8 < H,/(H, + H,) < 1] hardly
justify this approximation. Assuming in addition that
the eddy is almost circular and steadily translating, that
the potential vorticity in the lower layer has no closed
contours, and that the Rossby wake has reached a
steady state, Flierl could then show that the meridional
drift of the eddy is directed southward and, surprisingly,
increases with decreasing 3.

The second analysis involving multiple layers is due
to Nof (1985). However, it was assumed there that the
vortex formations in every layer are, at the leading or-
der, vertically aligned so that the pressure contours are
identical from layer to layer and the twisting terms
identically vanish. The last analysis, due to Killworth
(1986), ignores the presence of a barotropic compo-
nent. In this case, the sum of equations similar to (32)-
(33) over all moving layers yields complete cancella-
tion of the twisting terms, therefore sidestepping an
important process.

The view of the present authors is that little can be
said about the effect of baroclinicity on the migration
of eddies beyond the writing of the twisting terms [ Egs.
(34) and (35)]. Indeed, as we shall attempt to show
here, the signs and magnitudes of these terms are apt
to depend strongly on the initial conditions. Typically,
numerical simulations are initialized with a moving
upper layer and a resting lower layer. Although this
choice is well justified from the point of view of wanting
to minimize the number of free parameters, it imposes
a very specific potential-vorticity (PV') distribution in
the lower layer, namely one that reflects the initial in-
terfacial topography.

For example, an initial anticyclonic eddy in the sur-
face layer implies a deepening of the interface and,
hence, a bottom layer with shorter water columns
(higher PV) below the eddy than elsewhere (lower PV).
While the eddy begins its westward migration under
the beta effect, the fluid below the eddy is being partially
flushed, and, consequently, some surrounding, lower
PV fluid is being squeezed below the eddy and some
higher PV fluid is being stretched as it begins to trail
behind the eddy (Fig. 2a). This generates a nonuniform
distribution of relative vorticity in the lower layer, an-
ticyclonic under the eddy and cyclonic behind the eddy
(to the east), which induces a southward advection.
Vice versa, an initial cyclonic eddy implies a raised
interface, whose westward displacement generates
stretching underneath and squeezing behind the eddy
(Fig. 2b). The resulting relative-vorticity pattern now
advects the eddy northward. Mathematically, the
squeezing of the lower layer beneath a moving anti-
cyclone (n > 0) generates a high pressure (= > 0),
while the stretching behind it (larger x) sets a low pres-
sure (w < 0); the product nd= /dx is negative, and Eq.
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FI1G. 3. Impact of the westward migration of an upper-layer eddy
on the lower layer and the reaction of the induced lower-layer relative
vorticity on the eddy drift: meridional displacements caused by (a)
divergence around an anticyclone and (b) convergence under a cy-
clone.

(35) yields a negative dY/dt, viz. a southward migra-
tion. In the case of the cyclonic eddy (y < 0), expansion
below the eddy (v < 0) and squeezing behind it («
> () leads to a positive d= /3 x; since 7 is negative, both
numerator and denominator of (35) are negative, dY/
dt is now positive, and the eddy moves northward.

Although the scenario described above seems to
match numerical simulations (McWilliams and Flierl
1979), it should now be evident to the reader that the
conclusions are intimately related to the initial poten-
tial-vorticity distribution in the lower layer. Other
choices of initialization might well yield different, if
not opposite, behaviors.

Perhaps less dependent upon the initial conditions
is the effect of the baroclinic term on the zonal migra-
tion speed [last term of Eq. (34)]. This process is il-
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lustrated on Fig. 3a~b. Owing to its penetration in the
lower layer, an anticyclone can be viewed as an obsta-
cle, which, as it moves, forces surrounding fluid to go
around it. Because the migration is primarily westward,
the lower-layer parcels are displaced northward and
southward (Fig. 3a), and the argument developed for
the upper-layer surrounding fluid (Fig. 1b) applies here,
leading to an acceleration of the westward drift. Math-
ematically, n and the pressure gradient d= /9y are both
positive, forming a negative contribution to (34)and,
hence, a westward migration adding to the original beta
effect. On the contrary, a cyclone behaves as a gulf of
lower-layer fluid, which, as it moves, forces surrounding
fluid to converge laterally to accommodate vertical
stretching (Fig. 3b). The resulting meridional dis-
placements generate cyclonic and anticyclonic relative
vorticity on the northern and southern flanks, respec-
tively. The net effect is an eastward induction. Math-
ematically, 7 and dx/dy are both negative, forming a
positive contribution to (34) and, hence, a retardation
of the westward migration.

6. Conclusions

In the framework of a single-layer, reduced-gravity
model, a simple formula has been proposed to estimate
the westward drift of the center of mass of a mesoscale
eddy formation. Although similar formulae have pre-
viously been proposed in the literature, the present one
has two advantages. First, it is applicable to a wide
variety of conditions; there is no restriction of axisym-
metry or of steadiness, i.e., multiple eddies can be in-
teracting, and wakes of Rossby wakes are not excluded
(as long as they do not extend to infinity). Second, an
estimate of the error on the formula is provided. The
only restrictions are that the reduced-gravity model be
applicable and that the Rossby number of the flow field
be small.

If the Rossby number is not small, the formula is
not applicable, and its failure will be indicated by a
large relative error. If, however, the Rossby number is
not small because of a large centrifugal force (as in
some Gulf Stream rings) while the shape of the eddy
remains close to a circle, the formula of Nof (1983) is
still applicable. The latter formula involves the radial
profile of the azimuthal velocity, which typically is not
directly measured but inferred from the isopycnal
slopes. In this estimation, the centrifugal correction to
geostrophy is essential while observational uncertain-
ties, stemming mostly from differentiating in the radial
direction a profile that has been averaged azimuthally,
may lead to an error level capable of jeopardizing the
estimation of this ageostrophic correction. Hence, it is
not clear whether Nof’s (1983) formula can adequately
supplement the present formula when the latter fails.

When the reduced-gravity model is not applicable,
new terms must be added to the formula. Section 5
mostly dealt with the two-layer system, but the results
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[Eqgs. (34) and (35)] still hold if the additional pressure
field [#] is merely that in the layer immediately below
the surface layer, irrespective of the number of moving
layers. Contrary to the terms obtained for the single-
layer system, the additional terms cannot be discussed
with a satisfying degree of generality. In particular, it
does not seem possible to demonstrate that anticyclones
will always migrate equatorward and cyclones pole-
ward. However, it is not excluded that in certain re-
alistic oceanic circumstances data will permit an esti-
mation of these terms.

The restriction to small Rossby numbers is not too
severe, Indeed, for the Rossby number to be on the
order of unity, and thus for the flow to be fully ageos-
trophic, the eddy size must be comparable to the de-
formation radius, and the amplitude must simulta-
neously be finite. This only occurs for small eddies,
which are quite insensitive to the beta effect. The center
of mass of such eddies describes inertial circles, ac-
cording to formulas first derived by Ball (1963) and
corrected here for the beta effect [Eqs. (11) and (12)].
In his formulas, Nof (1981, 1983) has retained one
ageostrophic effect, the centrifugal force. Although this
component is important in fully ageostrophic vortices,
it is not the sole ageostrophic effect that should be re-
tained when the vortex departs from a steady, circular
state. In the spirit of Nof, one could have retained here
an additional term in the expansion of the velocity
field, namely the term —eJ(n, V1) of (5) before sub-
stituting the velocity components in (11) and (12).
The result includes new terms of the form —(B¢/w)
((s + en)ny’)y and —(Be/w) {(s + en)nym,) in the
expressions for dX/dt and dY/dt, respectively. Like
the presence of the azimuthal velocity in Nof’s formula
[Eq. (22) here], the presence of derivatives in these
last terms requires a more detailed knowledge of the
eddy formation before applying the formula than if
only the leading terms are retained.

The formula constructed here includes, as asymp-
totic cases, previous formulae obtained for quasi-geo-
strophic, frontal-geostrophic and intermediate-geo-
strophic dynamics. Finally, new numerical simulations
verify the applicability of the formula and indicate that

the theoretical error estimate is generally appropriate. -
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