
SEPTEMBER 2004 2057N A U W E T A L .

q 2004 American Meteorological Society

Frictionally Induced Asymmetries in Wind-Driven Flows

JANINE J. NAUW AND HENK A. DIJKSTRA*

Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

ERIC P. CHASSIGNET

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

(Manuscript received 14 June 2002, in final form 19 February 2004)

ABSTRACT

The effect of the parameterization of lateral friction on the separation of western boundary currents is addressed
in an idealized context. The study is motivated by a puzzling issue that arises from the nonlinear theory of the
wind-driven double-gyre circulation in shallow-water models. Subtle changes in the representation of the lateral
friction in these models have a substantial effect on both steady-state and transient flows. The aim of this paper
is to explain how lateral friction introduces a north–south asymmetry in the steady double-gyre flows and why
the degree of this asymmetry depends on the type of frictional parameterization. A more conceptual model of
a zonal jet in a channel turns out to be very useful to determine the dynamical processes behind the asymmetries.
It is also shown that the north–south asymmetries have an impact on the low-frequency variability of the time-
dependent flows. This is caused by changes in stability behavior of the steady-state flows.

1. Introduction

The theory of the wind-driven ocean circulation, as
initiated by Sverdrup, Stommel, and Munk, is one of
the cornerstones of dynamical oceanography (Sverdrup
1947; Stommel 1948; Munk 1950). These early linear
theories were aimed at explaining qualitative properties
of ocean flows, such as the east–west asymmetry and
the presence of boundary currents. In the following de-
cades, nonlinear aspects of these flows, such as the in-
troduction of north–south asymmetry through inertia
and the effect of instabilities, have been considered ex-
tensively (Pedlosky 1996). At the present time, many
numerical models of the ocean circulation have been
developed. Highly transient flows are simulated with
properties much like those of the observed circulation
using high-resolution ocean models (Smith et al., 2000;
Hurlburt and Hogan 2000; Chassignet and Garraffo
2001). However, there still appears to be quite a gap in
the understanding of these complex flows through a sys-
tematic extension of the theory of the wind-driven cir-
culation (McWilliams 1996; Pedlosky 1996).
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Recently, progress has been made in bridging this gap
by using dynamical systems methods. The approach is
to monitor the transitions, or successive bifurcations, of
wind-driven flows as parameters are changed from
weakly to strongly forced regimes. One of the systems
extensively studied is the double-gyre circulation in a
rectangular domain. The bifurcation structures of these
flows have been clarified now in both quasigeostrophic
and shallow-water models. When forcing is increased
(or friction decreased), there is a transition from a
unique steady state regime through a multiple steady-
state regime (Cessi and Ierley 1995; Dijkstra and Kats-
man 1997), local oscillatory instabilities (Simonnet and
Dijkstra 2002), and global bifurcations to very complex
transient behavior (Nadiga and Luce 2001).

In shallow-water models of the double-gyre circula-
tion, the flow within each layer is represented by the
horizontal velocity field u 5 (u, y) and the layer thick-
ness field h. Dissipation in the large-scale ocean cir-
culation occurs by turbulent processes over an enormous
range of scales, many of which cannot be represented
in these models. The effects of these unresolved scales
are usually represented by an eddy viscosity parame-
terization, which causes downgradient transport. How-
ever, there is a choice to parameterize the lateral (eddy)
momentum friction, which will be denoted by the two-
dimensional vector function F in the rest of this paper.
With AH indicating a constant eddy-diffusivity, the fol-
lowing forms have appeared in the literature:
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FIG. 1. Schematic figures of the typical bifurcation structure of the double-gyre wind-driven circulation. On the horizontal
axis is the amplitude of the wind stress forcing t0, and on the vertical axis is the northward displacement of the jet w.r.t. the
center of the basin. Solid (dashed) lines represent (un)stable steady states. Schematic bifurcation diagram (a) for quasigeo-
strophic models, (b) for shallow-water models with FM, and (c) for shallow-water models with FF.

1) The Laplacian form (Holland and Lin 1975), given
by

2F 5 A ¹ u,M H (1)

arises by assuming that the horizontal velocities are
constant over a layer (Dijkstra and Molemaker 1999;
Nauw and Dijkstra 2001).

2) Another form of the lateral friction is given by

AHF 5 = · (h=u). (2)E h

In Gent (1993) it is shown that, for this form of
momentum dissipation, it can be proven that the ba-
sin-integrated viscous dissipation is negative defi-
nite.

3) A third form is given by

AH 2F 5 = (uh). (3)F h

This is used when the shallow-water equations are
written in flux formulation (Speich et al. 1995; Jiang
et al. 1995).

One of the limits of the shallow-water theory is the
quasigeostrophic theory (Pedlosky 1987) in which the
two forms of lateral friction FE and FF reduce to FM.
For the double-gyre problem, the quasigeostrophic mod-
el is invariant to a north–south reflection with respect
to the midaxis of the basin. When the steady states of
this model are considered versus AH, a branch with an-
tisymmetric solutions is found. At some value of AH,
these solutions destabilize through a symmetry-breaking
pitchfork bifurcation (Fig. 1a). The latter introduces two
new branches with asymmetric steady states. One of
these is characterized by solutions with the jet separating
south of the zero wind stress curl line (ZWCL) and
having a southwestward direction (‘‘jet-down’’ solu-
tions); the other one is directly related by the reflection
through the midaxis and consists of ‘‘jet-up’’ solutions.

When the branches of steady states of the double-
gyre wind-driven circulation are considered versus the
strength of the forcing (or friction) in shallow-water
models, subtle qualitative differences arise in the bi-
furcation structure when using the different forms FM

and FF. For both cases, the reflection symmetry is absent

and consequently an imperfect pitchfork bifurcation re-
sults (Figs. 1b,c). For the form FM, the branch with jet-
down solutions is connected to the one with nearly an-
tisymmetric solutions (Fig. 1b). At high forcing, an iso-
lated branch is created that consists of asymmetric jet-
up and unstable nearly antisymmetric solutions [e.g.,
Fig. 5 in Dijkstra and Molemaker (1999) and Fig. 1 in
Nauw and Dijkstra (2001)]. A qualitatively different
bifurcation diagram is found for the form FF. The to-
pological structure (Fig. 1c) of the branches is the mirror
image of the one obtained for the form FM [see also Fig.
1 in Speich et al. (1995) and Fig. 3 in Jiang et al. (1995)].

At first, this may seem to be an unimportant detail.
However, the bifurcation diagrams computed for shal-
low-water models in basins with realistic continental
boundaries are similar to those for rectangular basins,
with the same imperfect pitchfork as in Figs. 1b and 1c.
In these more realistic basins, the stable jet-up and jet-
down solutions ‘‘deform’’ into two different separation
patterns of the Gulf Stream and of the Kuroshio (Dijk-
stra and Molemaker 1999; Schmeits and Dijkstra 2000,
2001). The effect of the parameterization of the friction
on the separation dynamics of the Gulf Stream is rec-
ognized in many ocean models (Böning and Budich
1992; Chassignet and Gent 1991; Hurlburt and Hogan
2000; Chassignet and Garraffo 2001), but it is not very
well understood. It is therefore of interest to further
investigate the impact of the representation of lateral
friction on separation dynamics in the idealized rect-
angular basin case.

Chassignet and Gent (1991) have shown that the sep-
aration behavior is different in level models and layer
models. The formulation of the wind stress forcing turns
out to be crucial since it acts as a body force on the
uppermost level or layer. In level models the acceler-
ation due to the wind stress forcing is equally strong in
the subtropical and subpolar gyre, while in layer models
it is layer-thickness dependent. In layer models the curl
of the wind stress is divided by the ‘‘actual’’ upper-layer
thickness h instead of by the constant upper-level thick-
ness H0, which is used in level models. Hence, in layer
models the Sverdrup solution becomes asymmetric with
respect to the ZWCL, with larger velocities in the sub-
polar than in the subtropical gyre. Chassignet and Gent
(1991) explain the preference for a jet-down solution in
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layer models by assuming that a surface intensified sub-
polar gyre is related to a southward overshoot of the
subpolar western boundary current and a midlatitude jet
separation south of the ZWCL. Moreover, in Cessi
(1991) it was demonstrated that two colliding boundary
currents with a larger transport in the northward-flowing
boundary current results in a separation south of the
ZWCL.

In this paper, we address the issue of asymmetry in
shallow-water models by investigating the role of the
different formulations of lateral friction. In addition to
the bifurcation diagrams computed for FF in Speich et
al. (1995) and for FM in Dijkstra and Molemaker (1999),
we will here show the one for FE. Next, we focus in
detail on the differences in the steady states and their
stability between the cases FM and FE. The bifurcation
diagrams reveal that differences between the steady-
state solutions occur already in the weak forcing limit,
just before the emergence of multiple equilibria. The
effect of the parameterization of the friction will be

discussed with help of a conceptual model of a zonal
jet in a channel. Additionally, the influence of inertia,
which is responsible for the presence of multiple equi-
libria, is investigated. Moreover, the impact of the dif-
ferent parameterization of the friction on the time-de-
pendent flows at higher forcing and in particular on their
low-frequency variability is addressed.

2. The 1.5-layer shallow-water model

The reduced-gravity, shallow-water model captures
the most relevant aspects of the wind-driven circulation
within one layer of fluid with constant density r over-
lying an infinitely deep (or motionless) layer with den-
sity r 1 Dr. The layer thickness is indicated by h(x, y,
t) with an equilibrium (no flow) value of H0. We con-
sider the flow in a rectangular basin with horizontal
dimensions of 1000 3 2000 km2 located on a b plane
centered at 458N. The flow is driven by a stationary
zonal wind stress pattern t 5 (t x, 0):

x]u ]u ]u ]h t
x1 u 1 y 2 ( f 1 b y)y 5 2g9 1 A F (u, h) 1 , (4a)0 0 H]t ]x ]y ]x r h0

]y ]y ]y ]h
y1u 1 y 1 ( f 1 b y)u 5 2g9 1 A F (y , h), and (4b)0 0 H]t ]x ]y ]y

]h ](uh) ](yh)
1 1 5 0, (4c)

]t ]x ]y

TABLE 1. Standard dimensional parameters.

f0

b0

g9
r0

1.0 3 1024 s21

2.0 3 10211 (m s)21

2.0 3 1022 m s22

1.0 3 103 kg m23

H0

AH

t 0

B

7.0 3 102 m
3.0 3 102 m2 s21

1.0 3 1021 Pa
2.0 3 106 m

where f 0 is the Coriolis parameter at 458N and b0 is
the local meridional derivative of the Coriolis parameter
f. The reduced gravity is defined by g9 5 Drg/r and,
as mentioned above, AH is the (constant) lateral friction
coefficient. The frictional terms F (u, h) in (4) are pa-
rameterized as shown in the introduction, with FM(u, h)
5 ¹2u, FE(u, h) 5 h21= · (h=u), and FF(u, h) 5
h21¹2(uh). On the lateral boundaries, no-slip conditions
are prescribed. In all computations discussed below, the
flow is forced by an idealized double-gyre wind stress
with amplitude t0 and pattern

2py
xt (y) 5 2t cos , (5)0 1 2B

where B 5 2000 km is the meridional extent of the
basin.

The governing equations and boundary conditions are
discretized on a staggered Arakawa-C grid using second-
order central differences, similar to the methodology in
Speich et al. (1995); the horizontal resolution in all of
the computations is 20 km. Bifurcation diagrams are com-
puted by solving directly for the steady-state equations
using continuation methods (Dijkstra 2000). For each
steady state, the linear stability is determined by solving

the corresponding generalized eigenvalue problem. Fur-
thermore, time-dependent flows are calculated by inte-
grating the equations forward in time. This is done with
the equivalent barotropic version of the numerical model,
described in Nauw and Dijkstra (2001), that uses also
central differences but has an explicit time-marching
scheme. The standard values of parameters used in the
computations are shown in Table 1.

3. Results

In section 3a, we compare the bifurcation behavior
of two different frictional representations by calculating
steady-state solutions and their stability. In section 3b,
it is shown that the differences in bifurcation structure
have consequences for the steady-state behavior at low
wind stress forcing. Furthermore, it is also shown that
these parameterizations have an influence on the low-
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FIG. 2. Bifurcation diagrams of the steady-state solutions of the
1.5-layer shallow-water model. To monitor the solutions the minimum
layer thickness hmin is plotted vs the wind stress strength t0. Solid
(dashed) lines indicate stable (unstable) steady states and the filled
triangles indicate Hopf bifurcations. The results of the model (a) with
FM and (b) with FE. (c) Both diagrams are repeated: the solutions
with FE (FM) are solid (dashed).

frequency variability of the flow at high wind stress
forcing (section 3c). In section 3d a simple conceptual
model is used to gain insight into the frictionally in-
duced asymmetries of the flows.

a. Bifurcation behavior

The bifurcation structure and the stability of the
steady states are calculated for the model with param-
eterizations FM and FE. The bifurcation behavior for FF

has already been calculated in Speich et al. (1995), al-
though for somewhat different values of the parameters.
However, they performed sensitivity analyses with sev-
eral different control parameters, which all gave qual-
itatively similar results.

The bifurcation diagram for the case FM is plotted in
Fig. 2a. The amplitude of the wind stress t0 is used as
a control parameter, while the minimum of the layer
thickness hmin is used as a norm of the solution. The
drawn curves represent linearly stable steady states,
whereas the steady states represented by the dashed
curves are unstable. The structure of this bifurcation
diagram is as in the sketch of Fig. 1b with the jet-down
branch at high forcing connected to the stable nearly
‘‘antisymmetric’’ branch at low forcing. Moreover, the
jet-up and unstable nearly antisymmetric branch form
an isolated branch. Note that the branches are named
after the structure of the steady-state solutions. For the
sake of brevity, the adverb ‘‘nearly,’’ when we refer to
the nearly antisymmetric steady states, will be sup-
pressed in the rest of the paper.

The steady-state branches are exactly the same as
those calculated for the two-layer shallow-water model
in a previous study [see Fig. 1 in Nauw and Dijkstra
(2001)]. This is because steady-state solutions in two-
layer models without interfacial friction have a motion-
less lower layer; the latter is not directly forced. Steady
states of such two-layer models therefore reduce to those
of a 1.5-layer model. However, there is a difference in
their stability behavior because the states in a two-layer
model are susceptible to baroclinic instabilities.

Although the solutions in the bifurcation diagram for
the parameterization FE (Fig. 2b) appear similar to those
of FM in the low and high forcing regime, there is a
different connection of the branches at intermediate val-
ues of the amplitude of the wind stress (between 6.0 3
1022 , t0 , 9.0 3 1022 Pa). Note that the intersection
between the jet-up branch and the unstable antisym-
metric branch at t0 5 7.5 3 1022 Pa is not a connection
between both branches but a consequence of the use of
hmin as the norm of the solution. If the northward dis-
placement of the jet with respect to the midaxis of the
basin has been used as a norm of the solution, the bi-
furcation structure would be similar to the sketch in
Fig. 1c.

By plotting the steady-state solutions for both cases
in one diagram (Fig. 2c), the subtle effect of the fric-
tional parameterization can be clearly seen. In the case

FE, the stable antisymmetric branch is connected to the
jet-up branch instead of the jet-down branch, as is the
case FM. Furthermore, the isolated branch is now formed
by the unstable antisymmetric and the jet-down branch.
The bifurcation diagram for the case FF, (Speich et al.
1995) is qualitatively similar to that of FE.
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TABLE 2. (a) Values of the amplitude of the wind stress t 0 (Pa),
at which modes destabilize the steady states in Fig. 2. (b) Oscillation
periods P (yr) of these modes at the Hopf bifurcations. Results are
shown for the parameterizations FM and FE.

Hopf
bifurcation FM FE

(a)
H1

H2

H3

6.7 3 1022

8.7 3 1022

1.3 3 1021

6.8 3 1022

8.9 3 1022

9.8 3 1022

(b)
H1

H2

H3

34.7
1.8
9.4

17.7
1.8

10.8

FIG. 3. (a) The layer thickness h of the steady state at Hopf bifurcation H1 at t0 5 6.8 3 1022 Pa in the model with
FE and the (b) imaginary and (c) real perturbation layer thickness of the mode, which destabilizes at this Hopf bifurcation.
The mode has a period of P1 5 17.7 yr.

The stability of the steady states has been calculated
for both parameterizations and at each Hopf bifurcation
(labeled with an H in Figs. 2a,b), a complex conjugate
pair of eigenvalues s 5 sr 6 isi crosses the imaginary
axis. The corresponding eigenvectors x 5 xR 6 ixI pro-
vide the spatial pattern of the mode which destabilizes
the steady state. The time-dependent behavior of this
mode P(t), locally near the Hopf bifurcation, is given by

s trP(t) 5 e [x cos(s t) 2 x sin(s t)],R i I i (6)

with angular frequency si and growth rate sr; the os-
cillation period is given by P 5 2p/si. The propagation
of these modes can be followed by looking at the pat-
terns P(2p/2si) 5 xI and then at P(0) 5 xR, which are
one-quarter of a period apart. The locations of the Hopf
bifurcations H1, H2, and H3 and the oscillations periods
are presented in Table 2 for both parameterizations FM

and FE.
The pattern of the steady-state layer thickness at the

Hopf bifurcation H1 for the case FE (Fig. 2b) corre-

sponds to an asymmetric jet-up solution (Fig. 3a). The
oscillation period of the mode destabilizing this state at
H1 has a period P1 5 17.7 yr. The imaginary and the
real part of the perturbation layer thickness of the os-
cillatory mode are shown in Figs. 3b and 3c, respec-
tively. They display the characteristic shifting of the jet
in one phase and the strengthening or weakening in the
other, which are characteristic for a gyre mode (Nauw
and Dijkstra 2001; Simonnet and Dijkstra 2002). For
values of t0 slightly above the Hopf bifurcation H1, a
periodic orbit associated with this gyre mode is ex-
pected.

For the case FM, the value of t0 of the Hopf bifur-
cation H1 is near that for FE, but it is now located on
the isolated branch (with jet-up solutions) near the sad-
dle-node bifurcation. The latter is the reason for the
longer period (34.7 yr) of the oscillatory mode which
destabilizes the jet-up state for FM. The pattern of this
mode is similar to that in Figs. 3b and 3c and hence is
not shown.

The Hopf bifurcations H2 occur at nearly the same
position for both parameterizations of the friction (Figs.
2a,b), and in both cases an oscillatory mode with a
period P 5 1.8 yr destabilizes the steady state. For the
case FM, the steady-state layer thickness at the second
Hopf bifurcation, H2, clearly shows a jet-down solution
(Fig. 4). The largest amplitudes of imaginary and real
part of the perturbation layer thickness of the neutral
mode (Figs. 4b,c) are located in the subpolar gyre. The
pattern of this mode deforms into basinwide westward-
propagating anomalies resembling inviscid Rossby ba-
sin modes (Pedlosky 1987), when it is continuously fol-
lowed from Hopf bifurcation, H2, along the jet-down
branch until the amplitude of the wind stress becomes
zero (not shown). Its interannual period, isP 5 1.8 yr2

larger than the semiannual periods of Rossby basin
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FIG. 4. As in Fig. 3 but for H2 at t0 5 8.7 3 1022 Pa in the model with FM. The mode has a period of P2 5 1.8 yr.

FIG. 5. As in Fig. 3 but for H3 at t0 5 1.3 3 1021 Pa in the model with FM. The mode has a period of P3 5 9.3 yr.

modes found in previous studies (Speich et al. 1995;
Dijkstra and Molemaker 1999). This can be attributed
to the different values used for the Coriolis parameter,
f 0. Here, we use f 0 5 1.0 3 1024 s21, which represents
a basin located at 458N, while they use a value of f 0 5
5.0 3 1025 s21, which shifts the basin to 218N. This
influences the internal Rossby radius of deformation and
thereby the Rossby wave speed.

The frictional parameterization has not only an effect
on the steady-state structure but also on the stability of
these states. This is clearly seen by the large difference
in the positions of the Hopf bifurcations H3 (Figs. 2a,b).
For FE, the jet-down state destabilizes at t0 5 9.8 3
1022 Pa while for FM a substantially larger forcing t0

5 1.3 3 1021 Pa is needed. The steady-state layer thick-
nesses at H3 are shown in Figs. 5a and 6a for the pa-
rameterization FM and FE, respectively. Both are jet-

down solutions, but the flow with FM, is somewhat stron-
ger because of the larger forcing.

The imaginary and real part of the perturbation layer
thickness of both neutral modes are shown in Figs. 5b
and 6b and Figs. 5c and 6c, respectively. The pattern
of the oscillatory mode for the case FE clearly shows
the characteristic strengthening of the jet during the
phase of Fig. 6b, while it shifts the jet southward during
the phase of Fig. 6c. Hence, this mode is an oscillatory
gyre mode, which is also confirmed by its decadal pe-
riod, P3 5 10.8 yr (Nauw and Dijkstra 2001).

The period of the third oscillatory mode for FM is P3

5 9.3 yr, which is in the same range as that of the gyre
mode. However, the oscillation pattern (Figs. 5b,c) only
has a small resemblance to that of the gyre mode. There
is only a small signature of the gyre mode in the imag-
inary part of the eigenvector (Fig. 5b) near the separated
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FIG. 6. As in Fig. 3 but for H3 at t0 5 9.8 3 1022 Pa in the model with FE. The mode has a period of P3 5 10.8 yr.

FIG. 7. (a) Schematic diagram of the path from the third Hopf bifurcation H3 in the case with FE to the third Hopf bifurcation in the case
with FM. (b) Period of the low-frequency oscillatory mode against its growth rate along the path indicated in (a). The triangular markers
indicate the Hopf bifurcations; the large dot indicates the change in continuation parameter from cf to t0, and the small dots indicate the
locations at which steady states and their stability have been computed.

jet, which would shift the jet northward (if this mode
was superposed on the underlying steady state). Gen-
erally, the largest amplitudes occur in the center of the
subpolar gyre, instead of near the separated jet.

To determine whether the modes destabilizing at H3 are
related, we introduce a ‘‘homotopy’’ parameter cf and write
the parameterization of the friction as follows:

cfF (u, h) 5 F (u, h) 1 =h · =u. (7)M h

When cf 5 0, the case FM is obtained, whereas for
cf 5 1 we obtain F 5 FE. Of course, cf can obtain any
value between one and zero, which allows us to make
a continuous transition from parameterization FE to FM.

Starting at cf 5 1, first the steady state, the period
and growth factor of the oscillatory mode are followed
in cf for constant t0 (Fig. 7a). The triangular markers
in Fig. 7a indicate H3 for both parameterizations of the

friction and the small dots show the positions where
steady states and their stability have been computed.
With decreasing cf the low-frequency oscillatory mode
smoothly becomes stable because sr , 0, while the
period hardly changes (Fig. 7b). Hence, changing the
parameterization of the friction from FE to FM stabilizes
the low-frequency gyre mode.

For cf 5 0, t0 is increased and, although the mode
first stabilizes, its growth rate increases suddenly in a
relatively small interval near t0 5 1.3 3 1021 Pa. This
can be seen by the relatively large amount of small dots
in Fig. 7a, which are well spread in Fig. 7b. The fact
that the same mode can be followed along a continuous
path between both parameterizations indicates that the
destabilizing mechanism is the same. However, the
properties of the steady states differ for both parame-
terizations and hence also the location of the Hopf bi-
furcation.
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FIG. 8. The markers show the minimum layer thickness of the time-
mean flow min at different values of the wind stress forcing t0; theh
bars indicate the range in the minimum layer thickness hmin of the
flow in statistical equilibrium. The results of the model (a) with FM,
(b) with FE, and (c) with FF. In the cases with FM and FE the bifurcation
structure of Fig. 2 is plotted as well.

b. Weakly nonlinear transient flows

In this section it will be demonstrated that the time-
mean states and variability of time-dependent solutions
in the weakly nonlinear parameter regime are consistent
with the results from the bifurcation analyses in the
previous section. Therefore, we have performed tran-
sient flow computations with all three of the parame-
terizations FM, FE, and FF at relatively low forcing. As
an initial state for these calculations, we have either used
the state of rest, a final solution of a previous integration
with a slightly different amplitude of the wind stress
forcing, or one of the steady-state solutions calculated
in the previous section.

The (time mean) minimum layer thickness min forh
the equilibrated solutions are shown as markers in Fig.
8. Squares indicate states in which the flows have
reached a steady state, while the circles indicate flows
that remain time dependent. Filled circles indicate reg-
ular states (e.g., periodic and quasiperiodic flows) and
open circles indicate irregular transient states. In the
latter case, min is calculated for the time-mean solutionh
and its (equilibrium) range is indicated by an ‘‘error
bar.’’ In Figs. 8a and 8b, the steady-state branches, cal-
culated in the previous section, have been added for
comparison.

In the case with FM (Fig. 8a), the steady solutions
calculated for the time-dependent flow are in close
agreement with that of the jet-down branch computed
with the steady-state solver. The first sign of time de-
pendence occurs at t0 5 8.5 3 1022 Pa, where a periodic
orbit appears with a period of P 5 1.8 yr. The value of
t0, the period, and pattern of the variability show that
this is the periodic orbit arising from H2 (Fig. 2a).

The time-mean minimum layer thicknesses min ofh
the transient flow calculations with FE also closely agree
with those of the underlying bifurcation diagram (Fig.
8b). The steady solutions that have been found corre-
spond to those on both the jet-down as well as on the
jet-up branch. The solutions near the jet-up branch be-
come time dependent at t0 5 6.8 3 1022 Pa, which
agrees nicely with the destabilization of the steady jet-
up solution by the gyre mode at the Hopf bifurcation
H1. Also the dominant period of P 5 18.5 yr corresponds
to the period of this internal oscillatory gyre mode. The
solutions that follow the jet-down branch first show
time-dependent behavior after the Hopf bifurcation H2.
It is not surprising that the dominant period is again P
5 1.8 yr, which clearly relates this behavior to the os-
cillatory mode that destabilizes at this Hopf bifurcation.
Hence, there is an overall agreement between the bi-
furcation diagrams calculated in the previous sections
and the transient flow computations presented here.

The bifurcation diagram for FF has not been recom-
puted in this study since it is documented in Speich et
al. (1995). However, it is clear from Fig. 8c that time-
dependent solutions at higher forcing are near the jet-
up branch, similar to the case FE. The solutions become

time dependent at t0 5 7.3 3 1022 Pa and the orbit has
a dominant period of P 5 10.5 yr.

We expect that the effect of the parameterization of
the lateral friction on the time-mean solutions is clearest
in the parameter range where the bifurcation diagrams
of FM and FE differ the most. This is for 6.0 3 1022 ,
t0 , 9.0 3 1022 Pa, which is a relatively weak forcing.
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FIG. 9. Pattern of the layer thicknesses (contour interval is 20 m) for the stationary solutions at t0 5 6.5 3 1022 Pa
for the cases with (a) FM, (b) FE, and (c) FF. Shown is a blowup of the area near the midaxis of the basin.

A blowup of the patterns of the steady layer thickness,
h, near the midaxis of the basin is shown in Fig. 9 at
t0 5 6.5 3 1022 Pa. After sufficient time integration,
an almost antisymmetric stationary solution, which re-
sembles a jet-down solution, is obtained for FM (Fig.
9a). This is in contrast with the more pronounced sta-
tionary asymmetric jet-up solutions, which have been
obtained in the other two cases (Figs. 9b,c). This clearly
demonstrates that, in this wind stress regime, the so-
lution is highly sensitive to the parameterization of the
lateral friction, as was also indicated by the underlying
bifurcation structure.

c. Low-frequency variability at large forcing

In order to investigate the impact of the different
frictional parameterizations FM, FE, and FF on the low-
frequency variability of the flow in the strongly nonlin-
ear regime, several 60-yr time integrations have been
performed at realistic values of the wind stress forcing
(although not at realistic viscosity). The time series of
the basin-integrated kinetic energy are plotted in Figs.
10a,c for the frictional forms FM and FE at t0 5 1.1 3
1021 Pa. The Fourier spectrum (Fig. 10b) of the FM time
series indicates that the flow is slightly irregular, but
has a pronounced low-frequency signal at a period of
P 5 8.9 yr. For the same value of t0, the time series of
the basin-averaged kinetic energy for the model with FE

(Fig. 10c) has much larger amplitudes (and also seems
to be even less regular) than the time series for FM (Fig.
10a). The Fourier spectrum for the FE case in Fig. 10d
shows an increase in energy at the low-frequency end.

The second peak in both cases, having a period of P
5 1.9 yr, can be related to the Rossby basin mode, which
has a positive growth rate at this value of the wind stress
forcing. The low-frequency gyre mode also has a pos-
itive growth rate in the case with FE and can therefore

explain the decadal peak in Fig. 10d. On the contrary,
in the case with FM this gyre mode is still slightly
damped. However, the steady state (in both cases) has
already been destabilized by the Rossby basin mode and
the flow has become time dependent, which will also
influence the stability. Apparently, the gyre mode has
destabilized prematurely in the presence of the Rossby
basin mode oscillation in the case with FM. This has
also been found in a two-layer shallow-water model
(Nauw and Dijkstra 2001) and in a barotropic quasi-
geostrophic model (Van der Vaart et al. 2002). In the
latter study, the mechanism of the destabilization of a
time-dependent solution, containing variability related
to the presence of Rossby basin modes, by the low-
frequency gyre mode is investigated. There, it is dem-
onstrated to be similar to the destabilization of a steady
state by the gyre mode. The difference in the linear
stability properties of the steady states hence very well
explains the much larger low-frequency power in the
case FE.

Differences in temporal behavior also exist between
the time-dependent solutions with FE and FF, even at
relatively small values of t0. In Fig. 11a, the time series
of the kinetic energy of the time-dependent flow at t0

5 8.0 3 1022 Pa with FE show large variations in hmin.
The signature of the excursions in this relaxation-type
oscillation can also be seen in the error bars in Fig. 8b.
The mean state has the jet displaced northward, since
hmin is located near the jet-up branch, and the period of
this oscillation is P 5 18.5 yr, comparable to the period
of P1 5 17.7 yr of the gyre mode, which destabilizes
at H1. For FF the same type of relaxation oscillation is
found at this value of t0 (Fig. 11b), but the period is
reduced to P 5 9.0 yr. The relation between the low-
frequency gyre modes, the limit cycles formed at slight-
ly supercritical conditions, and the evolution into large-
amplitude relaxation oscillations with a characteristic
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FIG. 10. Time series of the (left) kinetic energy and (right) their Fourier spectra at t0 5 1.1 3 1021 Pa (on the jet-
down branch). (top) The case with FM, and (bottom) the case with FE. The frequencies of the gyre mode and the Rossby
basin mode at criticality are indicated on the horizontal axis of the Fourier spectra in the panels on the right-hand side.

slow growth and quick destruction of the recirculation
gyres have been extensively studied in Chang et al.
(2001). The differences in stability properties and the
sensitivity of the period of the gyre mode must be re-
sponsible for the different behavior. The sensitivity of
the period of the gyre mode is related to its existence
through a merging of two stationary modes (Simonnet
and Dijkstra 2002). At the point of merging the two
modes have the same (negative) growth rate and zero
frequency and form an oscillatory pair. As the wind
stress forcing is increased, the asymmetry of the steady
state solution increases. Through the latter, the growth
rate and frequency will also increase, thereby decreasing
the period in a small range of parameters from infinity
to decadal.

As mentioned in the introduction, the form FE has
been introduced because one is able to prove rigorously
that the basin-integrated dissipation is a negative definite
quantity. However, that one cannot demonstrate this
property analytically for the other two frictional forms

does not mean that the dissipation is not consistently
negative. The kinetic energy density of the shallow-
water equations is (r0h/2)u · u, and so the kinetic energy
balance is obtained by adding the scalar product of r0hu
and (4a) to the scalar product of r0hy and (4b) and to
the scalar product of (r0/2)u · u and (4c). After inte-
grating this sum over the basin, one obtains

]
(^K & 1 ^P &) 5 ^D & 1 ^W &, (8a)

]t

where

1
2 2K 5 r h(u 1 y ), (8b)02

1
2P 5 r g9h , (8c)02

x yD 5 A r [uhF (u, h) 1 yhF (y , h)], (8d)H 0

xW 5 ut , (8e)
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and angle brackets indicate basin integration. In the
equation above, ^K & and ^P & represent the basin-inte-
grated kinetic and potential energy. The time derivative
of their sum balances the input of kinetic energy through
the wind stress ^W & and the dissipation ^D &.

The time series of the terms ]^K &/]t, ]^P &/]t, ^W &,
and 2^D & are plotted for the case at t0 5 1.1 3 1021

Pa for FM in Fig. 12a, and their time-averaged values
are given in the first row of Table 3. On the average,
the wind input, ^W & (heavy dashed), and the negative
of the dissipation, 2^D & (heavy solid), balance, and over
the whole integration time the dissipation ^D & is always
a consistently negative quantity. The changes in kinetic
(light dashed) and potential energy (light solid) are
much smaller, and tendencies in the potential energy are
correlated with the dissipation. This behavior is quali-
tatively the same for the case FE (see Fig. 12b and the
second column of Table 3). The results for the cases FE

(Fig. 12c) and FF (Fig. 12d) at t0 5 8.0 3 1022 Pa also
indicate that the dissipation is a consistently negative
quantity for FF. These relaxation oscillations also in-
dicate a similar correlation between tendencies in the
potential energy and dissipation as seen in Figs. 12a and
12b.

d. The physics of the frictional asymmetries

In sections 3b and 3c, it has been shown that the
different frictional forms lead to differences in the
steady-state solutions, stability properties, and subse-
quent temporal variability. However, it remains difficult
to trace the precise physics responsible for these dif-
ferences using only the results of the double-gyre 1.5-
layer shallow-water model. The bifurcation diagrams in
Fig. 2 show that the different connections of the im-
perfect pitchfork bifurcation already have their origins
in the low-forcing regime, just before the appearance of
multiple equilibria. Here, already differences occur be-
tween steady-state solutions and between the terms in
the momentum equations in (4a) and (4b). These dif-
ferences are primarily located in the area of the sepa-
rated jet, but also in area of the recirculation gyres (not
shown). Hence, as a first attempt to explain the effect
of the parameterization on the position of the separated
jet one may possibly neglect the inertial terms in the
1.5-layer shallow-water model. A priori, we know that
this will not provide the answer to the physics behind
the specific connection of the branches because the (im-
perfect) pitchfork bifurcations exist by the grace of the
nonlinear inertial terms. Moreover, the effect of ne-
glecting the inertial terms on the double-gyre circulation
and in particular the position of its separated jet will be
discussed at the end of this section.

Without the inertial terms, however, the problem re-
mains nonlinear and analytical solutions cannot easily
be obtained. These nonlinearities are associated with the
layer thickness field h, and therefore one can expect that
they will be greatest in the area of the midlatitude jet.

This suggests that the effect of the parameterization of
the friction may be understood by considering simple
parallel zonal flows in a channel. We define the channel’s
width as 2Lc, the velocity field as u 5 u(y) and y 5 0,
and the layer thickness field as h 5 h(y).

With these approximations, the 1.5-layer shallow-wa-
ter model equations in (4a) and (4b) reduce to

xt (y)
x0 5 A F (u, h) 1 and (9a)H r h0

dh
( f 1 b y)u 5 2g9 , (9b)0 0 dy

while (4c) is identically zero. The frictional terms be-
come

2d u
xF (u, h) 5 , (10a)M 2dy

1 d du
xF (u, h) 5 h , and (10b)E 1 2h dy dy

21 d (uh)
xF (u, h) 5 , (10c)F 2h dy

with no-slip boundary conditions at the channel walls

y 5 6 L : u 5 0.c (11)

To ensure overall mass conservation, an integral condi-
tion for the layer thickness must be enforced; that is,

Lc1
h(y) dy 5 H . (12)E 02Lc 2Lc

Steady states of these equations were determined for
an idealized pure easterly wind stress forcing t x(y) 5
t0 in a channel of width 2Lc 5 200 km by the software
package AUTO (Doedel 1981). In Fig. 13a, the bifur-
cation diagrams are shown for the three different fric-
tional forms. In this diagram, the maximum value of the
zonal velocity, umax, is plotted versus the wind stress
strength t0; the parameters b0, f 0, g9, r0 are the same
as in Table 1, while slightly different values are used
for H0 5 1.0 3 103 m and AH 5 5.0 3 102 m2 s21.
For t0 , 1.3 3 1021 Pa, the bifurcation diagrams are
very similar for each type of friction. For larger values
of t0, the curves for FM and FE undergo a saddle-node
bifurcation and, at the end point of the curve, the layer
thickness becomes zero. The curve for FM does not un-
dergo a saddle-node bifurcation, but also ends at a so-
lution with outcropping.

The solutions for the zonal velocity and layer thick-
ness at t0 5 1.0 3 1021 Pa (indicated by the marker in
Fig. 13a) are plotted in Fig. 13b for each form of the
friction. While all velocity profiles have the jet axis
slightly shifted northward with respect to the center of
the channel, this effect is weakest for the frictional form
FM. The maxima of the zonal velocity are positioned at
yM 5 0.7 3 104 m, yE 5 1.6 3 104 m, and yF 5 2.9
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FIG. 11. Time series of the kinetic energy of the time-dependent flows at t0 5 8.0 3 1022 Pa (on the jet-up branch).
(left) The case with FE and (right) the case with FF.

FIG. 12. Time series of terms in the energy equation (8). Plotted are the negative of the dissipation, 2^D & (heavy
solid), the energy input by the wind, ^W & (heavy dashed), and the time derivatives of the potential ^]P /]t& (light solid)
and kinetic energy ^]K /]t& (light dashed). The cases with (a) FM and (b) FE at t0 5 1.1 3 1021 Pa (on the jet-down
branch) and the cases with (c) FE and (d) FF for the time-dependent solutions at t0 5 8.0 3 1022 Pa (on the jet-up
branch).
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TABLE 3. Time-averaged values of the terms in (8) for the cases shown in Fig. 12.

2^D& ^W & ^]K /]t& ^]P/]t&

FM (t 0 5 1.1 3 1021 Pa)
FE (t 0 5 1.1 3 1021 Pa)
FE (t 0 5 8.0 3 1022 Pa)
FF (t 0 5 8.0 3 1022 Pa)

3.8 3 109

3.8 3 109

2.2 3 109

2.1 3 109

3.9 3 109

3.9 3 109

2.3 3 109

2.1 3 109

3.5 3 106

21.4 3 106

9.2 3 106

7.4 3 106

7.9 3 105

23.0 3 105

1.9 3 106

6.9 3 105

FIG. 13. (a) Bifurcation diagrams showing the maximum (zonal) velocity in a channel, umax, for each type of friction
vs the wind stress strength t0. (b) Zonal velocity u and layer thickness h for t0 5 1.0 3 1021 Pa for each type of
friction, with FM (solid), FE (dashed), and FF (dashed–dotted).

3 104 m. Correspondingly, the layer thickness structure
of FM is the least asymmetric and that of FF is the most
asymmetric. Hence, the solutions of this simple model
indeed show a stronger jet-up preference for the types
of friction FE and FF.

One can explain these results in a bit more detail by
going back to the interpretation of the components of
the stress tensor. In this simple model, only the flux of
zonal momentum in the meridional direction is relevant.
For the frictional form FM, we can rewrite (9a) as

xd du t (y)
A 5 2 , (13)H1 2dy dy r h0

whereas for FE, we can write (9a) as

x1 d du t (y)
h 3 A 5 2 , (14)H1 2H dy dy r H0 0 0

where the factor H0 has been included to have an identity
between two fluxes of zonal momentum. Because of
(9b), an eastward jet is always associated with a negative
gradient of the layer thickness and hence h is smaller
(larger) north (south) of the midaxis of the channel. For
a wind stress that is symmetrical around the midaxis of
the channel, t x(y) 5 t x(2y) [which is true for the spe-
cial case with a constant wind stress, t x(y) 5 t0], the
parameterizations can clearly be distinguished. In (13),
the mixing coefficient AH in the stress tensor is constant
and therefore symmetrical. The wind stress, however, is
acting on a thinner (thicker) layer in the north (south)
that causes the momentum input to be asymmetrical.
The opposite holds for (14), where the momentum input

is symmetrical while the mixing coefficient is layer de-
pendent, that is, stronger (weaker) in the south (north).
Stronger forcing or weaker mixing north of the midaxis
of the basin both cause the jet to be displaced northward.
However, the results in Fig. 13 show that a variable
mixing coefficient has a stronger asymmetric effect than
variable forcing.

One can also consider this in another way. Suppose
we prescribe a symmetric velocity profile and a purely
antisymmetric thermocline profile and ask: what wind
stress shape is needed to force this as a steady flow in
the channel? In the simplest case, neglecting the b ef-
fect, we choose

1 py
h(y) 5 H 1 2 sin and (15a)0 1 2[ ]4 2Lc

py
u(y) 5 U cos (15b)0 1 22Lc

with U0 5 pg9H0/(8 f 0Lc). For this flow field, the gen-
eral solution for the wind stress profile with each of the
frictional parameterizations is

py py
xt (y) 5 t cos 2 A sin , (16)0 as1 2 1 2[ ]2L Lc c

where t0 5 r0H0AHU0p2/(4 ) and Aas is a constant2Lc

that determines the degree of asymmetry in the wind
stress forcing. In quasigeostrophic theory, Aas 5 0, but
with FM, FE, and FF in shallow-water models, one finds
Aas 5 1/8, Aas 5 1/4, and Aas 5 1/2, respectively. Hence,
the asymmetry needed in the wind stress forcing to



2070 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 14. Contours of (a) the zonal velocity u and (b) the layer thickness h at t0 5 8.0 3 1022 Pa for the case with
FM without inertia. (c) Blowup in the separation area of the difference in zonal velocity, uM 2 uE, between the cases
with FM and FE.

maintain a symmetric flow is highly dependent on the
parameterization of the friction.

e. The effect of inertia

While the discussion of the flow in a channel provides
an explanation for the different northward displace-
ments of the jet for each of the frictional forms, with
FM having the smallest northward displacement, it does
not, however, explain the preference for solutions with
a southward displacement of the jet in the double-gyre
circulation, as found for FM (Fig. 9a). The displacement
is most likely accomplished by inertia, which may cause
an opposing effect to the asymmetries introduced by the
frictional forms. The effect of inertia is demonstrated
in the full model, where it has been neglected in a time
integration at t0 5 8.0 3 1022 Pa for the cases with FM

and FE. In the steady solution for FM the maximum zonal
velocity is found north of the midaxis of the basin (Fig.
14a). The pattern of the layer thickness now shows a
broad jet (Fig. 14b) because the recirculation gyres have
vanished (Fig. 14b). From a blowup of the difference
in zonal velocity between the two cases, uM 2 uE (Fig.
14c), one observes that the maximum zonal velocity in
the case with FE is even slightly more shifted to the
north compared to the case with FM. This confirms the
results of the simple model of a zonal flow in a channel.
Moreover, one can deduce that there exists a competition
between a northward displacement of the separated jet
by the friction and a southward displacement by the
nonlinear advection. The presence of nonlinear advec-
tion will introduce multiple equilibria, thereby intro-
ducing both a jet-up and a jet-down solution. However,
in the parametric regime with a single solution, where
advection only has a minor importance, the parameter-

ization of the friction will essentially determine the type
of solution.

4. Discussion

It has been known for some time that the separation
behavior of western boundary currents, such as the Gulf
Stream, in many ocean models is sensitive to the details
of parameterization of subgrid-scale mixing processes
of momentum (McWilliams 1996; Chassignet and Gar-
raffo 2001). The precise physics of this sensitivity has
so far been unclear due to the difficulty of the multiscale,
multiprocess representation in these ocean models. By
tackling a puzzling result in the bifurcation structure of
shallow-water models, one possible reason for this sen-
sitivity has been identified.

The qualitative differences between the imperfect
pitchfork bifurcation found in shallow-water models of
the double-gyre circulation (Jiang et al. 1995; Speich et
al. 1995; Dijkstra and Molemaker 1999; Nauw and Dijk-
stra 2001; and this study) have their origin in frictionally
induced asymmetries. Moreover, the parameterization of
the friction influences the stability of the internal os-
cillatory modes. In these models, the parameterization
of subgrid-scale mixing processes leads to differences
in the time-averaged north–south jet displacement, even
at weak wind stress forcing. The different stability prop-
erties of the internal modes is at the basis of differences
in low-frequency variability in time-dependent flows at
realistic forcing.

The reflection through the midaxis of the basin can
be represented as the transformation

u → u, y → 2y, y → B/2 2 y, and h → 2h. (17)

When the frictionless, unforced shallow-water equations
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are considered on the f plane without inertia, then they
are invariant with respect to this transformation (similar
to the quasigeostrophic limit). When inertia is added,
the reflection symmetry is broken in the momentum
equations, but the continuity equation remains invariant.
This is reflected in the different potential vorticity for
quasigeostrophic and shallow-water equations. The lat-
ter is given by

z 1 f
P 5 (18)

h

and is clearly asymmetric because of the dependence
on the layer thickness. Hence, the asymmetry arises
from the momentum equations and, as soon as the asym-
metries are present either through inertia, friction, or
forcing, these may be modified through the continuity
constraint.

With the help of an analytical model of the flow in
a zonal channel, the precise physics of the asymmetries
can be described. The solutions will differ between the
case with asymmetry in the forcing and constant mixing
coefficient and the case with a symmetric forcing and
a layer thickness dependent mixing coefficient. The re-
sults can be summarized as ‘‘asymmetric mixing induces
a stronger north–south asymmetry than asymmetric
forcing.’’ However, all of the parameterizations cause
the separated jet to be displaced northward. Moreover,
without the inertial terms, the double-gyre flow in both
cases with FM and FE shows a stronger circulation in
the subpolar gyre with the maximum zonal velocity in
the jet north of the midaxis of the basin, similar to the
Sverdrup regime solution in Chassignet and Gent
(1991). In the weak wind stress forcing limit, inertia is
not strong enough to oppose the effect of the friction
in the cases FE and FF, but it overcomes the effect of
the friction in the case with FM. In the latter case, inertia
causes a southward displacement of the jet. With stron-
ger inertia (at large wind stress forcing), eventually a
jet-down solution is also found for the frictional form
FE (Fig. 8b). Hence, the original assumption in Chas-
signet and Gent (1991), that asymmetry in the gyre
strength is the main cause for a southward displacement
once inertia and dissipation are included, is not justified.
When both are included, a competition arises between
the effect of friction and inertia, causing either a north-
ward or a southward displacement of the jet.

What do these results imply for separation dynamics
in ocean models? For very high resolution models the
effect of inertia, in particular through the high degree
of eddy activity, is probably so strong that the frictional
effects will be of minor importance. However, when
inertia is not that strong, for example during a spinup
of these models or in ocean models of intermediate res-
olution, such as are used in climate models, the sepa-
ration dynamics of western boundary currents will cer-
tainly be dependent on the parameterization of the fric-
tion. The results here suggest that one should be cautious

in choosing the parameterization of lateral friction in
layer models. While one is tempted to choose a priori
negative definite dissipation schemes, such as general-
izations of FE, the results here show that there will be
qualitative differences in separation between solutions
at intermediate and high resolution. Other schemes such
as FM, which turn out to also give a consistently negative
dissipation, will be less sensitive to the resolution and
probably lead to a better separation.
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