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ABSTRACT

Layered models of stratified flow are favored by theoreticians because of their conceptual simplicity but have
only seen limited use in numerical modeling due to difficulties related to layer outcropping ( vanishing layer
depth). Two mass transport schemes capable of handling outcropping are tested against analytic solutions
describing wind- and buoyancy-forced flow in a two- and three-layer ocean. In both cases, the model is found
to closely reproduce the available analytic solutions. This result helps alleviate longstanding reservations about

the severity of the outcrop problem in layer models.

1. Introduction

The practical use of a buoyancy-related variable—
potential density in water or potential temperature in
air—as vertical coordinate in describing motion in
stratified geophysical fluids dates back to Rossby et al.
(1937) and Montgomery (1937). The dynamic equa-
tions resulting from this change in vertical coordinate
have formed the basis of numerous theoretical inves-
tigations. Geometric height, on the other hand, became
the vertical coordinate of choice in early numerical
ocean models. As a result, a significant gap has devel-
oped in the past two decades between numerical and
analytic models. To close this gap, the real and per-
ceived obstacles that have impeded model design along
the lines favored by theoreticians should be reconsid-
ered.

Perhaps the most elegant way to construct a three-
dimensional density-coordinate numerical model (the
word “density” stands here for any variable expressing
the buoyancy of a fluid parcel) is to form a stack of
two-dimensional shallow water models, arranged such
that lighter fluid layers rest on top of denser layers. The
resulting discrete-layer structure is a valid finite-differ-
ence approximation to the continuous equations
transformed to density coordinates, giving rise, of
course, to vertical truncation errors, which can be sup-
pressed by increasing the number of layers. The fact
that a density-coordinate /ayer model has an exact
physical analog (at least as far as vertical discretization
is concerned ) makes this a very attractive concept in
model building,.
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One of the numerical difficulties associated with such
layer models is readily apparent. Since horizontal den-
sity gradients along the top or bottom of the fluid play
an essential role in baroclinic instability and thus in
the oceanic and atmospheric general circulation, den-
sity-coordinate layer models will be of limited utility
as long as they do not permit coordinate layers to “out-
crop,” that is, intersect the upper or lower boundary.
To be fully general, outcrop locations furthermore must
be allowed to vary with time. Mathematically, this is
equivalent to allowing individual layers to vanish or
“dry up” wherever and whenever this is called for by
the underlying dynamic processes. In other words, the
algorithm for solving the shallow water continuity
equation in a layer model must be equipped to handle
the transition in time and space between zero and non-
zero layer thickness. This turns out to be a nontrivial
matter.

The problem just described has been sidestepped in
many previous ocean modeling studies by choosing a
sufficiently thick upper layer (Holland and Lin 1975;
Hurlburt and Thompson 1980; Luther and O’Brien
1985; Woodberry et al. 1989; Thompson and Schmitz
1989) or by the use of hybrid coordinates (Bleck and
Boudra 1981). Only in the last decade have geophysical
fluid modelers acquired the know-how to model ocean
circulation regimes that include outcropping layers.
Today we have a number of algorithms at our disposal
that maintain positive-definiteness in the layer-
thickness field without being excessively diffusive, that
is, without sacrificing numerical accuracy to a great
extent. Early papers dealing successfully with the out-
cropping issue include those of Bogue et al. (1986),
Bleck and Boudra (1986), and Huang (1986, 1987).
They all used the flux-corrected transport (FCT) al-
gorithm (Boris and Book 1973; Zalesak 1979) to solve
the shallow water continuity equation.

Even today, outcropping remains the Achilles heel
of density-coordinate layer models. It therefore seems
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prudent to continue, as Bogue et al. (1986) did, to
search for nontrivial analytic solutions of circulation
problems that can be used to test the numerical model’s
accuracy. With more than one positive-definite trans-
port scheme at our disposal today, such experiments
can be made even more rewarding by including an
intercomparison of several numerical algorithms.

In this note, the capabilities of two numerical
schemes designed to handle zero layer thickness in
shallow water models are discussed by comparing
model-generated simulations to analytic solutions. The
two algorithms considered are the aforementioned FCT
algorithm and the multidimensional positive-definite
advection transport algorithm (MPDATA) scheme
(Smolarkiewicz 1984; Smolarkiewicz and Clark 1986;
Smolarkiewicz and Grabowski 1990). We use as a
framework the isopycnic-coordinate primitive equation
model of Bleck and Boudra (1986) configured on a 8
plane in a rectangular, flat-bottom ocean basin and
forced by either wind stress or buoyancy fluxes.

2. The numerical schemes

The shallow-water continuity equation, which is
solved in each coordinate layer together with the hor-
izontal momentum equations, may be written as

oh

o +V.(hv) =0,
where £ is the layer thickness and v = (u, v) is the
horizontal velocity vector. [ For a discussion of the pre-
cise meaning of the word ‘“horizontal,” see Bleck
(1978).] If one replaces Av in (1) by a conventional
second- or higher-order finite-difference expression
(‘“order” refers here to the power of the mesh size in
the leading term of the truncation error), 4 can change
sign during integration of (1) over a finite time step
At if V- (hv) is large and 4 is already near zero at the
beginning of Az. This is, of course, most likely to hap-
pen in the outcropping region.

The use in (1) of the diffusive, first-order forward-

upstream scheme

(1)

+1 _
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(the other three flux expressions formulated analo-
gously) is known to keep 4 positive definite. Thus, the
primary reason for using more elaborate schemes like
FCT and MPDATA is to reduce numerical diffusion.
In fact, both schemes mentioned advance the £ field
over At by first doing a forward-upstream transport
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step, followed by an elaborate “antidiffusive” correction
step. Computing the antidiffusive fluxes used in the
second step is itself a two-step process. First, provisional
antidiffusive fluxes are defined which, if used unaltered,
would remove from the /4 field the essential part of the
low-order truncation error introduced by (2). The
provisional fluxes are subsequently altered to some ex-
tent to prevent them from introducing additional rip-
ples, including sign changes, in the / field.

In the FCT scheme, the provisional antidiffusive
fluxes are given by the difference between high-order
and low-order finite-difference expressions for Av:

(hv)ami — (kv)high _ (hv)low' (4)

In the present study, second-order, space-centered
expressions of the form

iyt hl
2

serve as high-order fluxes, while the low-order fluxes
are those given in (3). Note that the FCT algorithm
leaves aside the temporal part of the truncation error
of the low-order scheme.

In the MPDATA scheme, provisional antidiffusive
velocities and fluxes are given by the leading term of
the temporal / spatial truncation error of (2). Removal
of this part of the truncation error elevates the scheme
as a whole to third-order accuracy in space and time,
in contrast to the FCT scheme where the user is able
to specify the desired spatial (but only the spatial ) order
of the high-order transport process.

Specifically, the provisional antidiffusive fluxes in
the MPDATA scheme are given by

— n
Uihi2,; = Ui-172,j
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The extent to which the above antidiffusive fluxes
must be reduced to prevent over- and undershooting
is determined as follows. Consider the four antidiffusive
fluxes that flow through the four sides of a given grid
box. Let u;y < 1 be the factor by which the inward-
directed fluxes acting in concert would have to be mul-
tiplied to prevent / in the box from exceeding a given
upper bound. (The effect of outgoing fluxes, if any, is
disregarded in calculating u;,.) Likewise, let gy < 1
be the factor by which the outgoing fluxes would have
to be multiplied to prevent /4 from falling below a pre-
scribed lower bound. The upper and lower bounds are
usually set to the largest and smallest of the four sur-
rounding A values, respectively, resulting from the pre-
ceding forward-upstream transport step.

Consider now an individual antidiffusive flux di-
rected from, say, grid box 1 to grid box 2. This flux is
subject to two requirements—no undershooting al-
lowed in box 1 and no overshooting allowed in box 2.
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Both requirements can be satisfied if the given flux
value is multiplied by a factor y, which is the lesser of
Hou fOr box 1 and u;, for box 2.

An additional step is required in numerical models
that use a modified rigid-lid approximation (a time-
invariant bottom pressure condition, to be precise) to
filter out barotropic gravity waves, such as the one of
Bleck and Boudra (1986). Suppose the high-order
fluxes used in the FCT scheme are formulated so as to
yield zero barotropic mass flux divergence, that is,
maintain bottom pressure. Clipping of antidiffusive
fluxes (multiplication by u) will then lead to bottom
pressure changes in grid boxes affected by the clipped
fluxes. To force the total mass flux field to preserve
bottom pressure, the fluxes (1 — x)(Av)®™™ discarded
in the clipping process must be accounted for. This is
done, as described by Bleck and Boudra (1986), by
vertically summing up the discarded flux portions and
adding them as barotropic corrections to the antidif-
fusive mass fluxes. By prorating the corrective flux
among individual layers according to the / distribution
in the upstream column, this final modification of the
mass field will not violate the requirement A = 0.

As outlined earlier, antidiffusive fluxes in the original
MPDATA scheme are not formulated on the basis of
a specific high-order flux expression. However, high-
order fluxes that by design conserve bottom pressure
do come into play in the MPDATA scheme as bottom
pressure is being restored. The particulars of this process
are as follows. As in the FCT case, fluxes that represent
the difference between the actual and the bottom pres-
sure—preserving high-order fluxes are being summed
up vertically. In the MPDATA case these fluxes have
the form

(hv)high _ ﬂ( hv)ami’

where, as before, u = min(u;,, pow). Prorating the
fluxes among individual coordinate layers is done as
described above.

3. The numerical experiments
a. Huang’s solution

Huang (1984, 1986) and Huang and Flierl (1987)
show that essential aspects of the circulation in a two-
layer, two-gyre wind-forced ocean basin (one aspect
being the size of the outcrop region) are controlled by
a single nondimensional number A\ = 7,L/g'H3,
where 7, is the maximum wind stress; L the basin
width; g’ = gAp/p the buoyancy difference between
the two layers; and H, the mean upper-layer thickness.
The nonlinearity associated with layer depth changes
is included in these studies, but the inertial terms in
the momentum equations are omitted.

One of Huang’s (1984) analytic solutions for a finite-
depth lower layer (Fig. 1a,b) has been reproduced nu-
merically. The analytic development of Huang (1984)
requires a small ratio § = H,/H,; the two-layer nu-
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merical experiment therefore possesses a relatively thin
upper layer (H; = 150 m) and thick lower layer (H;
= 4850 m), which correspond to é = 1/30. The other
parameters 7,,, L, and g’ were chosen such that A
= 0.30 yields an outcrop region that spans virtually the
entire cyclonically forced region and extends into the
anticyclonically forced region (Fig. 1a,b). Dissipation
is achieved by a vertical diffusion term with a constant
eddy viscosity 4 whose strength is characterized by the
dimenstionless number ¢ = (24/f)/2/H, [see Huang
(1984) for more details]. The analytic solution in Fig.
la,b was obtained with ¢ = 0.03.

After approximately five years of integration, the
model reaches a steady state characterized by upper-
and lower-layer mass transport streamfunctions shown
in Fig. 1. Model results based on FCT are displayed in
Fig. 1c,d; model results based on MPDATA in Fig.
le,f. As in the analytic solution (Fig. 1a,b), the out-
crop area in both figures is observed to extend south
of the latitude of maximum wind stress (the zero wind
stress curl line, ZWCL). The upper- and lower-layer
flow combine to reduce the total mass flux across the
ZWCL to zero, satisfying the Sverdrup balance.

The two numerical solutions are in fair agreement
with the analytic results of Fig. 1a,b. The major differ-
ence is found in the southwest corner of the outcrop
area where the layer thickness gradient is weaker in
the two numerical solutions. Total agreement between
numerical and analytic solutions cannot be expected
here since the analytic solution is obtained by patching
up solutions obtained independently for the basin in-
terior and the boundary current region (Huang 1984).
The boundary-layer width associated with ¢ = 0.03 is
quite large (75 km) and is double that value at the
point where the western boundary current separates.
This aspect is not taken into account in the analytic
solution. As shown in Fig. 1g,h and Fig. 1i,j, a reduc-
tion of € by a factor 3 and 6, respectively, leads to a
narrower jet and the elimination of the weak layer
thickness gradient in Fig. 1c,d. A similar result is ob-
tained when the dissipation term is formulated with a
horizontal eddy viscosity (Chassignet and Bleck 1993)
(Fig. 1k,1).

Two differences between the two numerical solutions
are apparent: 1) the outcrop area in the MPDATA
case (Fig. le) is slightly smaller than in the FCT case
(Fig. 1¢) and 2) the front associated with the outcrop
is narrower in the FCT solution. This translates into a
stronger layer-thickness gradient and consequently
stronger flows. Overall, the MPDATA solution appears
to be slightly more diffusive, resulting in a smaller out-
crop area, a broader frontal zone, and a weaker cir-
culation. The FCT solution appears to be more able
to reproduce steep gradients at the outcropping line.

b. Dewar’s solution

Dewar (1991) obtained analytic solutions describing
steady-state, buoyancy-driven flow in the interior of a
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contour. -.52 to 1.8, int. .232 contour. -1,16 to .998, int. .240
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FIG. 1. Mass transport streamfunction in upper layer (left) and lower layer (right) for (a) and
(b) analytic solution, ¢ = 0.03 (Huang 1984; nondimensional units correspond to ~12 X 106
m? s™); (¢) and (d) FCT solution, ¢ = 0.03; (e) and (f) MPDATA solution, ¢ = 0.03; (g) and

three-layer ocean bounded to the east. His necessarily layer (outcropping) in the cooled part of the basin and
simplified parameterization of buoyancy-induced in- “pinches off ” of the second layer (incropping) in the
terfacial mass fluxes leads to surfacing of the second heated part of the basin.
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Layer 2 Strmf. / CI= 2.0 Sv
1

T

——
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Layer 2 Stmf. / Cl= 2.0 Sv
T T

and (1) FCT solution, horizontal eddy viscosity 200 m?s

As stated, Dewar’s analytic solutions are valid in an
open ocean basin bounded only on one side, while our
numerical model describes flow in a closed basin. A
meaningful comparison between the analytic and the

i
FIG. 1. (Continued) (h) FCT solution, ¢ = 0.01; (i) and (j) FCT solution, ¢ = 0.005; and (k)

-1

numerical solution can therefore be made only in the
basin interior. By choosing a realistic amplitude for the
buoyancy forcing function, Dewar (1991) is able to
obtain a physically meaningful solution in a square
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domain measuring 5000 km on the side. We have
added to this a buffer zone 1250-km wide to the north,
south, and west to accommodate the return flow,
thereby arriving at a rectangular basin measuring 7500
km in meridional and 6250 km in zonal direction.
Figures 2a,b,c,d show the top layer thickness of the
analytic solution and of the numerical solution ob-
tained with the FCT, MPDATA, and the forward-up-
stream scheme, respectively. It appears that the flow
in the northern part of the basin is less zonal in the
MPDATA solution than in the FCT solution and as
such is closer to the analytic solution. The pressure
gradient near the outcropping region is weaker in the
MPDATA solution than in the FCT solution, suggest-
ing that the former is more diffusive than the latter.
As seen in Fig. 2d, the forward-upstream solution
(zero antidiffusive fluxes) does not show upper-layer
outcropping. Thus, the low-order scheme does not
correctly represent the character of the buoyancy-
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driven circulation, further evidence for the need to in-
clude an antidiffusive step.

Vertical sections indicating the layer structure are
shown in Fig. 2. The extent of both the outcropping
and the incropping area in the analytic solution is
matched more closely by the MPDATA than the FCT
solution. The average slope of the first interface, as
measured by the distance between the outcropping and
incropping zone, is larger in the FCT case.

In Dewar’s (1991) solution, the bottom layer is mo-
tionless except in regions where the three layers are
reduced to two. Thus, the velocity field in the third
layer is discontinuous across the perimeter of both the
first-layer outcropping zone and the second-layer in-
cropping zone. Since the model momentum equations
include a viscous term while the analytic solution does
not, this discontinuity and the accompanying sharp
reversal of lower interface slope (see Fig. 3a) is not
captured in the numerical model.

Layer 1 Thkns/ Year: 80
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FIG. 2. Upper-layer thickness (m). (a) Analytic solution (Dewar 1991), (b) FCT solution,
(c) MPDATA solution, and (d) forward-upstream solution.
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FIG. 3. Interface depth (m) vs latitude (N at left) for (a) analytic solution (Dewar 1991),
(b) FCT solution, (¢) MPDATA solution, and (d) forward-upstream solution.

Judging from a time trace of kinetic energy, the
model using the forward-upstream scheme reaches an
approximate steady state after roughly 45 years,
whereas the models employing MPDATA and FCT
take 65 and 75 years, respectively. The fact that the
FCT-based solution takes longest to come to an equi-
librium is consistent with the previously expressed no-
tion that the FCT scheme is the least diffusive of the
three schemes.

4. Summary and concluding remarks

The credibility and general utility of primitive
equation layer models depends to some extent on their
ability to reproduce isopycnic layer outcropping at the
surface or the ocean bottom. Our goal in this note has
been to shed light on the question of how closely nu-
merical transport schemes come to reproducing ana-
lytic solutions describing stratified flow on a § plane
that include layer outcropping. An ancillary question

is whether a time-dependent, externally forced model
would approach the state described by the analytic so-
lutions, or whether it would converge toward some
other final state, Our contribution may be viewed as
an extension of the work by Bogue et al. (1986) to
analytic solutions found only in recent years. We are
also in a position today to choose from, and compare,
more than one positive-definite mass transport scheme.

The present note deals with basin-scale circulation
characterized by sluggish interior flow and swift western
boundary currents. The analytic simulations available
to us either deal with the interior flow alone or represent
a subjectively stitched-together composite of separate
solutions for the interior and the boundary region. The
numerical solutions, on the other hand, are obtained
for flows in a closed basin and are therefore “contam-
inated” to some extent by interactions between the two
subdomains. In light of this, we refrain in this note
from expressing the proximity of analytic and numer-
ical solutions in quantitative terms. Had we found sig-
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nificant deviations between the two, we would have
been forced to advise against further use of layer models
in situations where outcropping plays a major role—
in the context of the presently available numerical
techniques, that is. Given that both transport schemes
tested reproduce the analytic solutions rather closely,
we feel justified in stating that accuracy problems in
transport schemes allowing layer outcropping no longer
appear to overshadow the customary errors associated
with substituting algebraic equations for partial differ-
ential ones. This is to say that reservations about the
outcrop problem in layer models should no longer be
given first consideration in selecting or rejecting a
model.
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