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ABSTRACT

In light of previous numerical studies demonstrating a strong sensitivity of the strength of thermohaline
circulation to the representation of overflows in ocean general circulation models, the dynamics of bottom gravity
currents are investigated using a two-dimensional, nonhydrostatic numerical model. The model explicitly resolves
the Kelvin–Helmholtz instability, the main mechanism of mixing in nonrotating bottom gravity currents.

A series of experiments were conducted to explore the impact of density difference and slope angle on the
dynamics of bottom gravity currents in a nonrotating and homogeneous environment. The features of the simulated
currents; that is, a characteristic head at the leading edge and lumped vortices in the trailing fluid, agree
qualitatively well with those observed in laboratory experiments. Quantitative comparisons of speed of descent
indicate that laboratory results remain valid at geophysical scales.

Two distinct regimes of entrainment of ambient fluid into bottom gravity currents are identified: (i) the laminar
entrainment regime is associated with the initial growth of the characteristic head due to the drag exerted by
the fresh fluid in front and (ii) the turbulent entrainment is associated with the Kelvin–Helmholtz instabilities.
The turbulent entrainment is found to be much stronger than the laminar entrainment, and entrainment in the
turbulent regime is less sensitive to the slope angle than that in the laminar regime. The entrainment is quantified
as a function of basic parameters of the system, the buoyancy flux and the slope angle, for the purpose of
parameterizing the mixing induced by bottom gravity currents.

1. Introduction

The thermohaline circulation in the ocean is strongly
influenced by dense water formation that takes place
mainly in high latitude oceans (e.g., Denmark Strait and
Faroe Bank Channel: see for a review Dickson et al.
1990; and Borenäs and Lundberg 1988) and in marginal
seas (e.g., Mediterranean Sea: Baringer and Price
1997a). Such dense water masses are released into the
large-scale circulation in the form of overflows, which
are bottom gravity or ‘‘density’’ currents. A recent sys-
tematic intercomparison between three realistic, eddy-
resolving ocean models for the North Atlantic circula-
tion using three different vertical coordinates (depth,
isopycnic, or sigma) showed that the modeled large-
scale thermohaline circulation was strongly controlled
by the details of mixing of the overflows across the
Greenland–Scotland region (DYNAMO Group 1997;
Willebrand et al. 2001).

Intense evaporation in the Mediterranean Sea pro-
duces salty water that flows over the sill in the Strait
of Gibraltar (Bryden and Kinder 1991) and forms a
bottom density current that descends along the conti-
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nental slope. If it did not mix with the overlying Atlantic
water (Price et al. 1993), the Mediterranean Water would
sink to the bottom of the Atlantic Ocean due to its high
density. The Mediterranean salinity tongue spreads
across the North Atlantic basin at middepths (Lozier et
al. 1995). Recent numerical studies (Jia 2000; Özgök-
men et al. 2001) indicate that this mixing process may
actually play a role in the dynamics of the Azores Cur-
rent and Countercurrent.

The primary difficulty associated with the represen-
tation of bottom density currents in ocean general cir-
culation models (OGCMs) is their small vertical scale,
which is typically 100–200 m (Price and Yang 1998).
It is also generally accepted from laboratory experi-
ments (Simpson 1969) and observations (e.g., Baringer
and Price 1997b) that mixing between density currents
and the ambient fluid takes place primarily via the
Kelvin–Helmholtz instability. An explicit representation
of bottom density currents in numerical models there-
fore requires not only a small vertical grid scale, but
also a horizontal grid scale that is small enough to cap-
ture the billows forming near the density interface. Oce-
anic observations indicate that the typical height-to-
length ratio of Kelvin–Helmholtz billows is about 0.1
(e.g., Marmorino 1987). For 10 grid points/billow, the
resolution requirements are 10–20 m in the vertical di-
rection and 100–200 m (or approximately 1⁄10008–1⁄5008)
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in the horizontal direction. Such resolution is compu-
tationally prohibitive at the present time in ocean gen-
eral circulation models, implying that parameterizations
are needed to represent the mixing of bottom density
currents with the ambient water masses.

A prerequisite to the development of such parame-
terizations is a good understanding of the dynamics of
bottom gravity currents. The present level of our un-
derstanding is primarily derived from laboratory tank
experiments (Ellison and Turner 1959; Simpson 1969;
Britter and Linden 1980; Hallworth et al. 1996; Mon-
aghan et al. 1999; Simpson 1982; Turner 1986; Simpson
1987). However, when configured for the small slopes
of observed overflows [O(18)], the dense source fluid
cannot accelerate within the bounds of typical labora-
tory tanks [O(1 m)] so that it exhibits a turbulent be-
havior. For turbulence to occur, laboratory experiments
are configured with higher slopes and it is therefore
uncertain as to whether the quantitative results derived
from laboratory experiments remain valid for geophys-
ical parameters and scales.

The present study therefore has two objectives: (i) to
determine whether results based on laboratory experi-
ments of bottom gravity currents remain valid for geo-
physical scales and parameters and (ii) to gain a detailed
understanding of the dynamics of bottom gravity cur-
rents and quantify the details of the mixing with the
ambient fluid. This paper reports on the use of a non-
hydrostatic two-dimensional numerical model to inves-
tigate the startup phase of bottom gravity currents in a
nonrotating, homogeneous environment. The primary
characteristic of these simulations is that the Kelvin–
Helmholtz instability, the main mechanism of mixing
in bottom gravity currents, is explicitly captured due to
the high model horizontal and vertical resolution. The
impact of the bottom slope angle and density difference
between the gravity current and the environment on the
descent speed and the mixing are quantified.

It is found that the simulated bottom gravity currents
exhibit similar features to those observed in laboratory
experiments, such as a characteristic head at the leading
edge and lumped vortices in the trailing fluid. Quanti-
tative comparisons of speed of descent also indicate that
the laboratory results remain valid at geophysical scales.
The simulated gravity currents exhibit two distinct re-
gimes of entrainment during their descent along the
sloping bottom. The first regime of entrainment is as-
sociated with the initial growth of the characteristic head
due to drag exerted by the fresh fluid in front. Then,
there is a sharp transition to a second regime, which is
associated with the onset of shear instability in the head
and trailing fluid and is characterized by enhanced mix-
ing between gravity currents and ambient fluid. The
entrainment in both regimes is quantified and found to
be a function of the main parameters of the system, that
is, the buoyancy flux at the input location (the strait)
and the bottom slope angle.

The paper is organized as follows: In section 2, the

method is outlined and the numerical model introduced.
The experimental setup and parameters are outlined in
section 3. Qualitative and quantitative comparisons of
the model results to those from laboratory experiments
are presented in section 4. Entrainment characteristics
in simulated gravity currents are quantified in section
5. Finally, the principal results are summarized in sec-
tion 6.

2. Approach

The limitations associated with laboratory experi-
ments in representing oceanic gravity currents raise the
question as to whether laboratory results are applicable
to oceanic scales and parameters. It is difficult and
expensive to set up the geometry of the laboratory tank
to represent oceanic scales. It is also difficult to main-
tain a complex ambient stratification in these tanks.
Density currents can be supplied into laboratory tanks
by using either a ‘‘constant buoyancy flux’’ or a ‘‘con-
stant volume’’ approach (e.g., Hallworth et al. 1996).
In the latter, a constant volume of dense fluid is released
and the volume of the head decreases monotonically
with downstream distance, whereas in the former, there
is a continual replenishment of the fluid in the head
by the constant input of undiluted fluid from the tail.
The entrainment characteristics are markedly different
between these two cases. Oceanic bottom gravity cur-
rents are better represented using the constant-buoy-
ancy flux condition. However, to conduct such con-
stant-buoyancy flux experiments in laboratory tanks
with a size O(1 m), slope angles typically greater than
108 are usually required to accelerate the source fluid
and generate a turbulent regime. Continental shelves,
on the other hand, have much smaller slopes [O(18)].
Finally, there is the additional difficulty of accurately
measuring the mixing between gravity currents and
ambient fluid in these laboratory experiments (e.g.,
Hallworth et al. 1996).

These above limitations can be overcome by using a
numerical model. Numerical models, however, intro-
duce other limitations, which are discussed in some de-
tail in the following section.

a. Model philosophy

Bottom density currents have been traditionally in-
vestigated using so-called streamtube models. These an-
alytical models have been useful in examining the path
and bulk properties of density currents, such as the Med-
iterranean and Denmark Strait overflows (e.g., Smith
1975; Killworth 1977; Baringer and Price 1997b). Var-
ious simplifications are required in these models, such
as steady state, motionless ambient fluid and simple
topography. In recent years, there have been a number
of studies employing more complex models. Jungclaus
and Backhaus (1994) used a primitive equation, two-
dimensional (x, y) shallow water model with reduced
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gravity approximation in the vertical. They conducted
idealized experiments to investigate the effects of bot-
tom friction and topography, and also applied their mod-
el to the Denmark Strait overflow. Gawarkiewicz and
Chapman (1995) used a three-dimensional hydrostatic
model to explore the development of a plume with neg-
ative buoyancy. They found that the leading edge of the
plume forms eddies in the horizontal plane and con-
cluded that instabilities and eddy fluxes are important
mechanisms for the transport of dense waters, in contrast
to the quasi-steady behavior implied from streamtube
models. This conclusion is also supported by numerical
studies by Jiang and Garwood (1995, 1996), who used
a different three-dimensional, hydrostatic, sigma-coor-
dinate model. Recently, Jiang and Garwood (1998) ex-
plored the impact of topographic features, such as cross-
slope canyon, cross-slope ridge, and seamount, and also
the impact of ambient stratification. They concluded that
these factors induce significant changes in the mixing
and entrainment between density currents and ambient
fluid. Recent observations (Baringer and Price 1997b)
of the Mediterranean overflow plume illustrate the im-
portance of the Kelvin–Helmholtz instability in the ver-
tical mixing of bottom gravity currents.

These modeling studies have led to a significant un-
derstanding of bottom density currents in the ocean.
However, none of the aforementioned studies explicitly
resolve the Kelvin–Helmholtz instability, the main
mechanism in the vertical mixing and entrainment of
density plumes. This is either due to the fact that the
chosen model was not able to handle such an instability
(e.g., hydrostatic approximation) and/or that the hori-
zontal and vertical grid scale, typically on the O(few
kilometers), was not sufficiently small to resolve the
instability.

In this paper, we use a two-dimensional (x, z) non-
hydrostatic numerical model with high horizontal and
vertical resolution. A similar configuration was used by
Kao et al. (1978) for laminar surface density currents.
The two-dimensional approach is supported by the lab-
oratory experiments of Huppert (1982), Britter and
Simpson (1978), Simpson and Britter (1979), and Hack-
er et al. (1996), which show that the Kelvin–Helmholtz
billows in nonrotating laboratory gravity currents have
a predominantly two-dimensional structure. In the ab-
sence of rotation, the mixing characteristics due to shear
instability are similar in two- and three-dimensions (e.g.,
Lesieur 1997).

b. The numerical model

The governing equations of motion for an incom-
pressible, Boussinesq fluid in two dimensions are non-
dimensionalized as

c 5 n c*, (x, z) 5 h(x*, z*), S 5 DSS*x (1)

where c is the streamfunction in the (x, z) plane, nx is
the horizontal viscosity, h is the thickness of the gravity

current, and DS is the salinity difference in the system,
equivalent to a density difference Dr 5 r0bDS. Drop-
ping the asterisk, the model equations become

2 2]z ]S ] z ] z
1 J(c, z) 5 2Ra 1 1 r (2)

2 2]t ]x ]x ]z
2z 5 ¹ c (3)

2 2]S ] S ] S
21 F1 J(c, S) 5 Pr 1 r 2 k (S 2 S ), (4)

2 21 2]t ]x ]z

where Ra [ (gh3bDS)/ is the Rayleigh number, the2nx

ratio of the strengths of saline-driven convective forcing
to viscous drag; g 5 9.81 m s22 is the gravitational
acceleration; b 5 7.5 3 1024 psu21 is the salinity con-
traction coefficient for seawater in the linear equation
of state r 5 r0[1 1 bDS]; r [ nz/nx 5 Kz/Kx is the
ratio of vertical to horizontal diffusivities; Pr [ nx/Kx

is the Prandtl number; and k [ kh2/nx with k being the
relaxation frequency for salinity and SF is the forced
salinity value of the bottom density current. Here

]a ]b ]b ]a
J(a, b) 5 2

]x ]z ]x ]z

is the Jacobian and

2 2] ]
2¹ 5 1

2 2]x ]z

is the Laplacian.
The prognostic equations (2) and (4) are advanced

in time using a predictor–corrector type leapfrog meth-
od (Gazdag 1976). The Jacobian operator is computed
using the formulation proposed by Arakawa (1966) that
conserves kinetic energy and enstrophy, while accu-
rately maintaining the property J(a, b) 5 2J(b, a). All
other differential operators are approximated by central
differences. The diagnostic equation (3) is inverted us-
ing a fast Fourier transform solver (Swarztrauber
1977).

The numerical model is based on code previously
employed in microscale double-diffusive convection
studies (Özgökmen et al. 1998; Özgökmen and Esen-
kov 1998). The numerics of the code have been ex-
tensively tested for conservation properties, and the
general numerical implementation has been also used
in previous modeling studies (Özgökmen et al. 1997;
Özgökmen and Chassignet 1998; Özgökmen et al.
2001). The computational efficiency is increased by
recognizing that the downstream evolution of bottom
gravity currents resembles that of a shock wave; that
is, perturbations are not felt downstream of the head.
By tracking the position of the head of the density
current and its area of influence, and by constraining
the calculations to that portion of the domain, sub-
stantial computational gain is obtained during the ini-
tial phase of the integrations.



MAY 2002 1463Ö Z G Ö K M E N A N D C H A S S I G N E T

TABLE 1. Parameters of the numerical experiments.

Basin size (x, z)
Bottom slope angle
Salinity difference
Viscosity (x, z)
Diffusivity (x, z)
Input relaxation coeffi-

cient
Resolution (x, z)
Time step

20 km 3 1 km
18 # u # 58, see Table 2
0.5 psu # DS # 3 psu, see Table 2
nx 5 7 m2 s21, nz 5 7 3 1025 m2 s21

Kx 5 1 m2 s21, Kz 5 1 3 1025 m2 s21

k 5 21 60021 s21

Dx 5 Dz 5 5 m
Varies with CFL criterion, typically

O(0.1 s)
Rayleigh number
Prandtl number
Diffusivity ratio

253 # Ra # 1520
Pr 5 7
r 5 1025

TABLE 2. List of the expts 1–9.

Expt

1 2 3 4 5 6 7 8 9

DS (psu)
Slope angle u (deg)

3.0
1.0

3.0
2.5

3.0
5.0

1.5
1.0

1.5
2.5

1.5
5.0

0.5
1.0

0.5
2.5

0.5
5.0

3. Experimental setup and parameters

The majority of the published theoretical and labo-
ratory studies has focused on two controlling factors:
the density difference between the gravity current and
the ambient fluid and the bottom slope angle. Results
from nine numerical experiments with geophysical
scales and parameters are presented: three slope angles,
u 5 18, 2.58, and 58, on the order of continental slope
values, and three densities controlled by the salinity
difference from the ambient fluid, DS 5 0.5, 1.5, and
3.0 psu, in the density range of oceanic overflows (Price
and Baringer 1994). These experiments are conducted
in the absence of ambient stratification and the system
is driven purely by the excess salinity (density) of the
gravity current.

The parameters and characteristics of these experi-
ments are tabulated in Tables 1 and 2. The domain is
20 km wide and 1 km deep, discretized by a grid of
4001 3 201 points (or a constant grid spacing of 5 m).
This grid spacing is small enough not only to resolve
the Kelvin–Helmholtz billows (the scales of which were
discussed earlier), but to also make the mixing induced
by the step topography negligible. The horizontal res-
olution is ‘‘slope resolving’’ since it satisfies the cri-
terion Dx , Dz tanu (Winton et al. 1998). For the max-
imum slope angle of u 5 58, the criterion gives Dx ,
57 m, which is clearly satisfied by the 5-m horizontal
grid scale used in this study. In addition, the volume/
depth of light fluid at the corner of each topographic
step must be much less than the volume/depth of the
descending dense gravity current. In our simulations,
the ratio of the area of ‘‘step water’’ to the area of the
overlying bottom density current is typically O(1022).
In terms of convergence, the results remain the same
with a grid spacing of 10 m. Significant differences
become apparent with a grid spacing of 50 m.

Since one of the objectives of the paper is to deter-
mine whether results based on laboratory experiments
remain valid for geophysical scales, we neglect rotation
since the great majority of laboratory experiments were
conducted in the absence of rotation. The scale at which
the Coriolis force becomes comparable to buoyancy
force is a complex function of the slope angle, strati-
fication, and friction (e.g., Griffiths 1986). A simple
scaling is given by the radius of deformation / f ,Ïg9h
which varies at midlatitudes between 8 km (for DS 5
0.5 psu) and 20 km (for DS 5 3.0 psu). Rotation is
therefore not important at the scale at which the ex-
periments are conducted in this study.

The ratio of the vertical and horizontal diffusivities
is set to r 5 1025, not only to take into account that
vertical diffusion in the ocean is small (Ledwell et al.
1993), but also to ensure that vertical mixing between
gravity currents and the ambient fluid takes place by
eddy-induced mixing and entrainment and not by dif-
fusion. As long as r is less than 1023, the results are
quite insensitive to its value. The horizontal eddy vis-
cosity nx is controlled by the model resolution and by
the fastest signal in the system, the speed of the gravity
current. A constant viscosity nx 5 7 m2 s21 and dif-
fusivity Kx 5 1 m2 s21 are used in the experiments,
leading to a Prandtl number Pr 5 7.

The boundary conditions applied to the system of
equations (2)–(4) are as follows. At the surface, c 5
]S/]z 5 0 and free slip; at the bottom, c 5 ]S/]z 5 0
and no slip; at the left and right boundaries, ]c/]x 5
]S/]x 5 0. The specification of c 5 0 at the surface
and bottom imposes zero net transport, thus creating a
return surface flow in response to the descending gravity
current. This is justified by the fact that strong return
flows are observed above oceanic overflows (Baringer
and Price 1997b). Sensitivity studies were conducted by
increasing the total fluid depth from 1000 to 1200 m,
and then to 1600 m (or, equivalently, the ratio of the
thickness of the inflow to the overlying fluid is decreased
from 1/2 to 1/8). This effectively reduces the speed of
the surface current. The results were found to be quite
insensitive to these changes.

While some of the observed overflows exhibit sig-
nificant seasonal variability, or are even shut off com-
pletely at times (e.g., the Red Sea overflow, Murray and
Johns 1997), the time scale of such variability (seasonal
time scale) is much longer than the time that it takes
for gravity currents to develop and reach a quasi equi-
librium (typically on the order of hours). Therefore, the
constant-buoyancy representation is applicable at least
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FIG. 1. Evolution of the simulated bottom density current as a function of time in expt 5 (DS 5 1.5 psu and u 5 2.58).
Salinity distribution at (a) t 5 0, (b) t 5 0.2 h, (c) t 5 1.5 h, (d) t 5 3.0 h, and (e) t 5 4.2 h.
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FIG. 2. Snapshots of the salinity distribution in (a) expt 3 (DS 5 3.0 psu and u 5 58) and (b) expt 4 (DS 5 1.5 psu and u 5 18).

over a timescale of days to weeks. In the model, the
constant-buoyancy condition is provided by a small
amount of fluid initially placed at the right upper corner
of the domain (a simple representation of the ‘‘strait’’;
Fig. 1a), such that the salinity (density) input via the
relaxation term on the rhs of (4) provides a constant
buoyancy flux over a timescale much shorter than the
time that it takes the density current to travel across the
domain. The relaxation coefficient k has a value of (6
h)21 in the plateau of the strait and k 5 0 elsewhere.
The results were found to be insensitive to the relaxation
frequency. The relaxation salinity value is SF 5 DS.

4. Effects of the bottom slope angle and input
buoyancy flux

In this section, we determine the speed of advance of
gravity currents as a function of buoyancy flux and bot-
tom slope and then compare our results to those obtained
from theory and laboratory experiments.

a. Qualitative comparison with laboratory
experiments

The typical evolution of the modeled bottom density
currents is depicted in Fig. 1 for experiment 5 (DS 5
1.5 psu, u 5 2.58). When the small amount of dense
fluid is released at the strait (Fig. 1a), the initial de-
velopment of the system is that of the so-called lock-
exchange flow (e.g., Keulegan 1958; Simpson 1987) in
which the lighter fluid remains on top and exits the
domain through the open boundary and the denser fluid

sinks to the bottom and propagates downslope (Fig. 1b).
The dense gravity current quickly reaches a constant
rate of supply at the strait and develops a characteristic
‘‘head’’ at the leading edge of the current (Fig. 1c). The
head is half of a dipolar vortex, which is a generic flow
pattern that tends to form in two-dimensional systems
via the self-organization of the flow (e.g., Flierl et al.
1981; Nielsen and Rasmussen 1996) and which corre-
sponds to the most probable equilibrium state maxi-
mizing entropy (Smith 1991). In three dimensions, this
feature is observed as ‘‘caps’’ on top of vertical plumes
(Turner 1962). Initially, the gravity current is stable, but
after 3 h and over a distance of about 7 km down the
slope, the head becomes unstable, exhibiting breaking
waves and intense mixing (Fig. 1d). There is a com-
plicated shifting pattern of lobes and clefts caused by
the gravitational instability of less dense fluid which is
overrun by the nose of the current. The trailing current,
the ‘‘tail,’’ is marginally stable at this point in time,
displaying only some patterns of waves, but later (4.2
h; Fig. 1e) the instability near the top of the tail leads
to a rolling up of the density interface in lumped vortices
separated by a characteristic length scale. This behavior
is clearly indicative of the Kelvin–Helmholtz instability
in which waves made up of fluid from the current entrap
the ambient fluid (e.g., Corcos and Sherman 1984). The
thickness of the tail is typically 100–200 m, in approx-
imate agreement with the thickness of oceanic bottom
density currents (Price and Yang 1998). The head grows
and is diluted as the gravity current travels down the
slope, due to entrainment of fresh ambient fluid (quan-
tified in section 5). These general characteristics are
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FIG. 3. Examples of laboratory gravity currents. (upper panel) Profiles of the head of horizontal
gravity currents for increasing buoyancy flux (a)–(f ), from Simpson (1982). (middle panel) Hor-
izontal density current from Simpson (1969). (lower panel) Gravity current descending a ramp
from Monaghan et al. (1999).

exhibited by all of experiments 1–9, as seen also from
the snapshots of the salinity distribution in two other
experiments depicted in Fig. 2.

Several examples of gravity currents from laboratory
experiments are shown in Fig. 3 to provide a qualitative
reference for our results. As in the numerically simu-
lated gravity currents, the laboratory experiments ex-
hibit the characteristic ‘‘head’’ that develops at the lead-

ing edge of the current both on flat and inclined planes
(Fig. 3, top and bottom panels, respectively) and mixing
that takes place by the Kelvin–Helmholtz instability
(Fig. 3, middle panel). Not only do the simulated gravity
currents have different physical parameters from those
in laboratory experiments, but the ratio of the spatial
scales of simulated and laboratory gravity currents is
also approximately O(104–105).
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FIG. 4. Schematic illustration of the bottom gravity current on a
slope with angle u, downslope direction X, head height H, head length
L, descent speed UF, and tail speed UT. The shaded area indicates
the total area of the dense current Atotal. The area remaining below
the dashed line indicates the area in the absence of entrainment A0,
as defined in section 5c.

FIG. 5. The ratio of descent speed to buoyancy flux to the 1/3 power, UF/B1/3, vs distance for expts 1–9. Corresponding laboratory results
from Britter and Linden (1980) and Mohaghan et al. (1999) are shown. Thick lines mark the mean value and thin lines indicate the range.

b. Comparison of the speed of descent with
laboratory results

In order to conduct a quantitative comparison with
laboratory experiments, the speed of descent of gravity
currents for all numerical experiments is calculated by
tracking the salinity front (Fig. 4). Britter and Linden
(1980) found from theory and laboratory experiments
that the head of density currents travels at a constant
speed, UF, proportional to the 1/3 power of buoyancy
flux per unit width, defined as

B [ g9Q, (5)

where g9 5 g(Dr/r0) (or g9 5 gbDS in expts 1–9) is
the reduced gravity and Q [ hU is the volume flux per
unit width, with h and U being the average thickness
and speed of the current at the input location. In the
context of the present model, Q 5 cin, where cin is the
maximum streamfunction value at the input location (the
strait).

Figure 5 shows the ratio UF/B1/3 as a function of dis-
tance down the sloping bottom for all experiments. This
scatterplot indicates that the numerical experiments are
in agreement with the theoretical and laboratory results
of Britter and Linden (1980) in that UF/B1/3 is approx-

imately constant for simulated gravity currents and is
empirically expressed by

UF 5 1.05 6 0.1. (6)
1/3B

This result is in reasonable agreement with that of Britter
and Linden (1980), who found UF/B1/3 5 1.5 6 0.2,
and is in excellent agreement with recent measurements
by Monaghan et al. (1999), who reported UF/B1/3 5 1.0
6 0.1.

These results are also in agreement with the obser-
vations of Ellison and Turner (1959), who concluded
that the mean velocity of the gravity currents was in-
dependent of the downstream distance to the source.
Figure 6 depicts the head speed as a function of distance
for all experiments and shows that simulated density
currents quickly attain an approximately constant speed
of descent.

Laboratory experiments of gravity currents also show
that the speed of descent remains roughly constant when
the slope angle is varied. To explain this behavior, Brit-
ter and Linden (1980) surmised that the increase in the
gravitational force due to greater slope angle is com-
pensated by buoyancy gain due to increased entrainment
both to the head and the tail. This effect produces an
increased retarding force on the current as momentum
is imparted to the entrained fluid. Therefore, the en-
trainment of ambient fluid into the gravity current must
be represented in order to simulate the insensitivity of
the descent speed to variations in u. Figure 6 also shows
clearly the grouping of head speed according to the
salinity differences:

210.38 m s for DS 5 0.5 psu
21U ø 0.65 m s for DS 5 1.5 psu (7)F 
210.95 m s for DS 5 3.0 psu.

The experiments with a greater buoyancy flux (those
with DS 5 3.0 psu) show higher variability in descent
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FIG. 6. Descent speed UF (m s21) vs distance (u 5 18: solid line, u 5 2.58: line with asterisk symbols, u 5 58: line with circle symbols).
Note that UF is approximately independent of the bottom slope angle.

FIG. 7. The ratio of head speed to tail speed, UF/UT, as a function of the distance covered by the front, for expts 1–9. The solid line shows
laboratory estimates by Simpson and Britter (1979), and the dashed lines indicate the range of values reported by Ellison and Turner (1959).

speed due to more vigorous and variable entrainment
to the head, whereas those with a smaller buoyancy flux
(e.g., those with DS 5 0.5 psu) exhibit less fluctuation.
In general, however, the descent speed remains constant
in the statistical sense when the slope angle is changed,
in agreement with laboratory results.

The ratio of the head speed to that of the tail is an
indicator of the slowing of the downward motion due
to the entrainment of ambient fluid into the head, which
increases as the gravity current flows down the slope.
The tail speed, UT, is calculated by taking a suitable
sampling near the source,

x21
U [ 2 c [x, z (x)] dx, (8)T E 0(x 2 x )(z 2 z )2 1 0 b x1

where zb(x) is the bottom depth, z0(x) is the depth at
which the horizontal velocity becomes zero before re-
versing, and noting that u 5 2]c/]z and c[x, zb(x)] 5
0. The interval x1 5 218 km and x2 5 216 km is taken
close to the source but far enough away for currents to

attain full speed. The head speed is calculated after the
front of the current passes this interval. The ratio of the
head speed to that of the tail as a function of distance
covered by the front is shown in Fig. 7 for experiments
1–9. Clearly, UF/UT , 1, or more quantitatively,

UF 5 0.74 6 0.07, (9)
UT

which indicates that the front of the density current
moves slower than the tail due to momentum and buoy-
ancy exchange with the ambient fluid. Therefore, the
head volume increases not only due to entrainment of
ambient fluid but also due to accumulation of the fluid
coming from behind. The result (9) is within the range
of laboratory values: Ellison and Turner (1959) reported
UF/UT ø 0.61–0.69 (depending on the slope angle),
while Simpson and Britter (1979) measured UF/UT ø
0.85. Since the entrainment drag acting on the head
decreases with slope angle, UF/UT is inversely related
to slope angle. Britter and Linden (1980) found that
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FIG. 8. Evolution of head height H as the gravity currents travel down the slope in expts 1–9. Data points
in experiments with DS 5 0.5 psu, DS 5 1.5 psu, and DS 5 3.0 psu are marked with asterisks, circles, and
plus signs respectively. Note the grouping of the growth rate according to slope angle u, leading to dH/dX
ø 0.017 for u 5 18, dH/dX ø 0.038 for u 5 2.58, and dH/dX ø 0.070 for u 5 58.

UF/UT → 0.6 for large slope angles (u $ 308), and
Middleton (1966) showed that UF/UT → 1 at small an-
gles.

c. Comparison of the rate of head growth with
laboratory results

Laboratory experiments by Ellison and Turner
(1959), Britter and Linden (1980), and Monaghan et al.
(1999) show that the rate of change of thickness of the
head H with distance down the slope X is given by

dH
23ø 4 3 10 u, (10)

dX

where u is in degrees.
In order to quantify the rate of change of H with

distance X in the present numerical simulations, the
thickness of the head is estimated from all experiments
manually, by plotting the salinity distribution typically
every 0.5 km of propagation distance. Since the char-
acteristic head does not always remain coherent over
time, the results presented in this section were evaluated

during the evolution of the boundary current over the
first half of the domain. The results for dH/dX are shown
in Fig. 8, which indicates that the rate of change is
approximately independent of DS, and clearly exhibits
a grouping according to the slope angle u as well as a
constant growth rate. A least squares approximation to
the data points yields

0.017 for u 5 18dH
ø 0.038 for u 5 2.58 (11)

dX 
0.070 for u 5 58.

The result (11) can be approximated as
dH

23ø 13 3 10 u. (12)
dX

Both (10) and (12) indicate that the simulations are
able to capture the constant rate of growth of H with
X, the independence of dH/dX from DS, and its linear
dependence on u correctly. However, dH/dX is over-
estimated by a factor of 3 when compared to the lab-
oratory results. We surmise that this is due to the two-
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FIG. 9. Evolution of head length L as the gravity currents travel down the slope in expts 1–9. Data
points are marked with open circles. The least squares approximation to data indicates dL/dX ø 0.36.

dimensional nature of the solution, which does not al-
low for lateral spreading and widening of the current
as it flows downslope. Turner (1986) reports that the
spread of the head can be much larger than that of the
plume behind. In the laboratory experiments, the drag
exerted by the surrounding fluid induces the spreading
and reduces the head growth. One can also estimate
from the numerical experiments the length of the head.
The results are plotted in Fig. 9 for experiments 1–9.
The fit shows that

dL
ø 0.36, (13)

dX

hence a constant rate of change of L with X, independent
of u and DS within the parameter range of the experi-
ments. There are no laboratory measurements available
for comparison but, since dH/dX is overestimated in the
numerical experiments, it is likely that dL/dX is also
overestimated for the same reasons.

Britter and Linden (1980) discuss the aspect ratio H/

L for several experiments at different slope angles. The
smallest angle in Britter and Linden (1980) is 58, so we
looked at the aspect ratio H/L in experiments 3, 6, and
9, the experiments conducted on a slope with an angle
of 58. The aspect ratio is shown as a function of distance
X in Fig. 10. After a short distance down the slope
(approximately 1 km), the aspect ratio from these ex-
periments oscillates around a mean value of

H
ø 0.25 for u 5 58, (14)

L

which is in good agreement with the observations of
Wood (1965) as reported by Britter and Linden
(1980).

5. Entrainment

In the previous section, we showed that the numerical
simulations compare well with laboratory measurements
and that the laboratory results are valid on geophysical
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FIG. 10. The ratio of head height to head length H/L as a function of distance in expt 3 (DS 5 3 psu,
u 5 58, the line with plus signs), expt 6 (DS 5 1.5 psu, u 5 58, the line with open circles), and expt 9
(DS 5 0.5 psu, u 5 58, the line with asterisks). The dashed line indicates the laboratory result by Wood
(1965) that H/L ø 0.25 for gravity currents over a slope with u 5 58.

scales. We can now investigate in detail the character-
istics of the mixing taking place between the simulated
bottom gravity currents and the ambient fluid.

a. Qualitative analysis of entrainment

In order to visualize the nature of entrainment, 500
Lagrangian particles were released into the flow field
in experiment 5 (DS 5 1.5 psu and u 5 2.58) between
t 5 4.2–4.8 h on a regular grid (horizontal spacing of
400 m or every 80 grid points and vertical spacing of
20 m or every 4 grid points). The trajectories are plotted
in Fig. 11 (see the figure caption for further details).
They indicate a clear distinction between the entrain-
ment characteristics in the head and the trailing flow.
In the head section, entrainment takes place by two
mechanisms. First, the lighter fluid is displaced and lift-
ed up by the front of the gravity current, and strong
entrainment takes place into the head from behind.

Therefore, the head vortex carries fresh fluid from
around the front to the rear of the head, and this en-
trainment in return leads to the growth of the head. This
is in qualitative agreement with laboratory observations
by Monaghan et al. (1999). A secondary type of en-
trainment into the head takes place by light fluid that
cannot travel around the head, and is thus overrun by
the oncoming gravity current. Since this fluid is lighter
than the fluid in the head, it rises by gravitational in-
stability and leads to additional mixing in the head. This
can be seen in Fig. 11, near the bottom of the slope at
approximately x 5 28 km, and in laboratory experi-
ments as well (e.g., Simpson and Britter 1979).

In the tail section, the formation of distinct vortices
engulfs fluid from the ambient flow and enhances the
transport of the density current. Most of the entrainment
takes place in between the vortices. There is also a gen-
eral tendency for these vortices to coalesce and form
larger vortices via pairing (observed via movies of our
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FIG. 11. Trajectories of approximately 500 Lagrangian particles released into the velocity field between t 5 4.2 2 4.8 h in a regular array
(with an horizontal spacing of 400 m or every 80 grid points, and a vertical spacing of 20 m or every 4 grid points) in expt 5 (DS 5 1.5
psu and u 5 2.58). Salinity field is plotted in the background at t 5 4.5 h (refer to Fig. 1 for the colorbar).

FIG. 12. (a) Entrainment velocity E in the tail section as a function of slope angle u and salinity difference DS as estimated from exptsw
1–9. (b) As in (a) but for scaled parameter E/B1/3.w

numerical simulations). This is a well-documented be-
havior of two-dimensional Kelvin–Helmholtz instability
(e.g., Fig. 15 of Corcos and Sherman 1984).

b. Quantitative analysis of entrainment to the head
and the tail

The entrainment in the head can be quantified fol-
lowing the definition of Ellison and Turner (1959) and
Turner (1986),

dH
E [ . (15)H dX

The quantity dH/dX was calculated in section 4 for ex-
periments 1–9 and the entrainment EH is therefore given
by (12).

The entrainment in the tail can be quantified following
the definition of Morton et al. (1956),

wEE [ , (16)T UT

where E is the entrainment velocity into the tail. Thew
entrainment velocity is estimated from

Dc
w [ , (17)E l

where Dc is the increase in the transport of the density
current over the length of the tail section, l. Hence, ew
is the average net entrainment velocity into the tail (pos-
itive downward). This definition of ET is similar to the
one defined by Turner (1986) as dh/dX, where h is the
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FIG. 13. (a) Original (supplied) dense fluid area A0 and total (after
mixing) dense fluid area Atotal (in m2), and (b) entrainment coefficient
E as a function of downslope distance X (in km) for Exp-5 (DS 5
1.5 psu and u 5 2.58). The sampling points are marked.

TABLE 3. Comparison of entrainment parameters based on labo-
ratory experiments of Ellison and Turner (1959) (Turner 1986): E as
given in eq. (20) vs expts. 1–9 in this study, ET as given in Eq. (19)
for 18 # u # 58.

18
2.58
58

6 3 1023

7.5 3 1023

10 3 1023

5.6 3 1023

14 3 1023

28 3 1023

0.9
1.9
2.8

thickness of the tail, since ET 5 Dc/(UTl) ø Dh/DX
(assuming Dc/UT 5 Dh and l 5 DX).

Figure 12a shows that the average net entrainment
velocity E into the tail of density currents in experi-w
ments 1–9 increases with slope angle and salinity dif-
ference from the surrounding fluid. Using the charac-
teristic speed scale B1/3 given by the buoyancy flux, one
can show that the curves in Fig. 12a collapse approx-
imately on a single curve (Fig. 12b), which can be ap-
proximated by

wE 23ø 8 3 10 u, (18)
1/3B

for 18 # u # 58. This is in agreement with Fig. 5, which
shows that the changes in slope angle are compensated
by changes in the strength of the entrainment. Then,
using the empirical relationships [(6) and (9), previously
derived in section 4], UF/B1/3 ø 1.05 and UF/UT ø 0.74,
the entrainment in the tail can be quantified by

23E ø 5.6 3 10 u.T (19)

The entrainment parameter based on the laboratory ex-
periments of Ellison and Turner (1959), as given by
Turner (1986), is

23E ø (5 1 u) 3 10 . (20)

A comparison of E to the entrainment parameter ET of
(19) is presented in Table 3. The observed and simulated
parameters agree well for a slope angle u 5 18, but are
overestimated in the numerical experiments by factors
of 2 and 3 for u 5 2.58 and 58, respectively. The ratio
of entrainment to the head and to the tail in experiments
1–9 can be calculated from (12) and (19) as

EH ø 2.3, (21)
ET

which indicates that entrainment to the head is stronger
than that to the tail.

Entrainment results presented in this section rely on
the separation of head and tail, and these features be-
come gradually less distinct from one another as the
currents travel down the slope. The head loses its dis-
tinctive nature in some experiments, resembling that in
Fig. 3, middle panel. Therefore, these results are re-
stricted to a downslope distance of approximately 10
km for experiments with u 5 18 and u 5 2.58 and of
approximately 5–6 km for experiments with u 5 58.

c. Total entrainment

The definitions of entrainment in the previous section
[(15) and (16)] are valid only as long as the head and
tail remain separate entities. This is not always the case
since the head eventually merges with the tail as the
head grows with downslope distance. In order to provide
a better quantification of the total entrainment of am-
bient fluid into the gravity current, we define an un-
ambiguous metric following Meleshko and Van Heijst
(1995):
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FIG. 14. Entrainment coefficient E as a function of distance X (in
km) in the laminar regime for expts 1–9: (a), (b), and (c) indicate a
clear grouping according to the slope angle leading to dE/dX ø 0.020,
0.043, and 0.086 km21 for u 5 18, 2.58, and 58, respectively.

A 2 Atotal 0E [ , (22)
A0

where
t h t

A 5 u(x , z, t) dz dt 5 c (x , h, t) dt (23)0 E E 0 E 0

0 0 0

is the total volume per unit depth (area) of dense water
that has entered the domain across x0 with thickness h
in the strait. In the absence of any entrainment, the total
area that has entered the domain, A0, would be equal
to the total area of dense fluid within the domain, Atotal.

Therefore, the entrainment coefficient E 5 0 in the ab-
sence of mixing. When, however, there is entrainment
of ambient fluid, the total area of the dense fluid inside
the domain would be larger than the area that has ac-
tually entered through the boundary, Atotal . A0, and
hence E . 0. For instance, E 5 1 for 50% dilution of
the density current or, in other words, the inflation of
the area of dense fluid by a factor of 2.

The time evolutions of the original dense fluid area
A0, the total dense fluid area Atotal, and the entrainment
coefficient E are illustrated in Fig. 13 for experiment 5
(DS 5 1.5 psu and u 5 2.58). These quantities are shown
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as a function of the downstream distance X using the
linear relationship between distance and time resulting
from the constant descent speed (section 4). The amount
of dense water entering the domain, A0, increases lin-
early with X (Fig. 13a) because of the constant rate of
volume/depth flux at the strait. For the first 5–6 km
down the slope, there is no significant difference be-
tween A0 and Atotal , indicating small entrainment of am-
bient fluid to the gravity current. But at X ø 7 km, Atotal

starts to deviate significantly from A0, indicating the
occurence of high entrainment. The transition point at
X ø 7 km coincides with the onset of instabilities in
the gravity current (Fig. 1d). The quadratic increase of
Atotal with X is related to the increase in the thickness
of the gravity current due to entrainment by shear in-
stability, in addition to the increase in its length. The
variation of the entrainment coefficient E as a function
of X is shown in Fig. 13b, which clearly indicates two
distinct regimes of entrainment. In the first regime (1
km , X , 7 km), the linear increase E with X is due
to the formation of the characteristic head vortex (e.g.,
Fig. 1c). This regime is denoted as the laminar entrain-
ment regime. Then, a rapid transition to the second re-
gime takes place (X . 7 km) in which E also increases
linearly with X, but at a much higher rate than in the
first regime. This regime is denoted as the turbulent
entrainment regime. Figure 13b also indicates that at X
ø 12 km, E ø 1; that is, the original area of the gravity
current is doubled due to entrainment of ambient fluid.

The entrainment coefficient E as a function of the
downstream distance X for the laminar entrainment re-
gime is shown for all experiments in Fig. 14. There is
a clear dependence on the slope angle u. In general, dE/
dX, the rate at which the gravity plume is diluted over
distance, increases with u, or quantitatively,

25 212.0 3 10 m for u 5 18dE
25 21ø 4.3 3 10 m for u 5 2.58 (24)1 2dX 

laminar 25 218.6 3 10 m for u 5 58.

The result (24) can be approximated by

dE
25 21ø 1.7 3 10 (m )u. (25)1 2dX

laminar

The entrainment coefficient E as a function of down-
stream distance X in the turbulent entrainment regime
is shown for all experiments in Fig. 15. As in the laminar
regime, dE/dX increases with slope angle u. Also, as
DS increases, the transition to turbulence takes place
over a shorter distance X (i.e., the curves representing
experiments with DS 5 3.0 psu are to the left of those
for DS 5 1.5 psu). The curves indicate that the bottom
gravity currents on higher slope angles make a transition
to turbulent entrainment over a shorter distance than
those with smaller slope angles. Two experiments do
not exhibit any turbulent entrainment: experiment 7 (DS
5 0.5 psu and u 5 18), which remains laminar (smallest

DS and slope), and experiment 9 (DS 5 0.5 psu and u
5 58), which does not have enough distance for the
transition to turbulence to occur.

The quantitative results for the turbulent entrainment
regime are:

25 2111.3 3 10 m for u 5 18dE
25 21ø 15.7 3 10 m for u 5 2.58 (26)1 2dX 

turbulent 25 2121.1 3 10 m for u 5 58

or

dE
25 21ø 10 3 10 (m )Ïu . (27)1 2dX

turbulent

A comparison of the laminar and turbulent entrain-
ment rates, (25) and (27), shows that (i) the rate of
increase of turbulent entrainment with distance is greater
than that for the laminar entrainment and (ii) the tur-
bulent entrainment regime exhibits less sensitivity to the
slope angle u than the laminar entrainment regime (dE/
dX ; vs dE/dX ; u).Ïu

The rate of change of E with time can be estimated
using dX/dt ø UF and the ratio UF/B1/3 (6). For the
turbulent entrainment regime, the rate of change of the
entrainment coefficient can then be written as

dE
24 21 1/3ø 10 (m )ÏuB . (28)1 2dt

turbulent

This means that, for example, the time scale for a gravity
current with DS 5 1.5 psu on a slope of 18 to double
its volume/depth by turbulent entrainment is approxi-
mately 4 h.

The turbulent entrainment relationships (27) and (28)
quantify the mixing time and space scales of bottom
gravity currents as a function of the basic parameters
of the system, that is, the slope angle u and the buoyancy
flux B, which are in general quite well known for most
oceanographic flows. Consequently, these relationships
can be useful in developing parameterizations of mixing
of bottom gravity currents.

6. Summary and discussion

In light of recent studies demonstrating that the large-
scale thermohaline circulation in ocean general circu-
lation models is strongly controlled by the details of
mixing of the overflows across the Greenland–Scotland
region (DYNAMO Group 1997; Willebrand et al. 2001)
and that the entrainment of Atlantic water into the Med-
iterranean overflow may lead to the formation of basin-
scale currents such as the Azores Current (Jia 2000) and
Azores Countercurrent (Özgökmen et al. 2001), the de-
tailed structure of the start-up phase of bottom gravity
currents in a nonrotating and homogeneous environment
is explored by using a two-dimensional, nonhydrostatic
model. The primary characteristic of the numerical sim-
ulations is that the Kelvin–Helmholtz instability, the
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FIG. 15. Entrainment coefficient E as a function of distance X (in
km) in the turbulent regime for expts 1–9: (a), (b) and (c) indicate
a clear grouping according to the slope angle leading to dE/dX ø
0.113, 0.157, and 0.211 km21 for u 5 18, 2.58, and 58, respectively.

main mechanism of mixing of bottom gravity currents,
is explicitly captured due to high model resolution.

Two questions were addressed: (i) are the results ob-
tained in laboratory experiments valid for geophysical
scales and parameters and (ii) can we quantify and pa-
rameterize the details of the mixing? A series of nu-
merical experiments were analyzed for bottom gravity
currents, with density contrasts and slope angles rep-
resentative of oceanic overflows.

As in the laboratory experiments, the numerical sim-
ulations exhibit a characteristic head at the leading edge
of the currents and distinct lumped vortices along the
density interface between the ambient fluid and the tail

of gravity currents. Quantitatively, as for the laboratory
experiments, the speed of descent of gravity currents is
determined by the buoyancy flux at the input location,
UF ø B1/3. The increase in gravitational force is com-
pensated by increased entrainment when the slope angle
is increased. The tail speed is approximately 33% higher
than the head speed, leading to accumulation of fluid
toward the leading edge, hence to the growth of the
characteristic head with distance. Overall, most of the
quantitative measures performed in the laboratory ex-
periments can be carried over to the numerical exper-
iments, despite the different scales and parameters.

In the numerical experiments, the characteristics of
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mixing between the gravity currents and the ambient
fluid can be analyzed in detail. Two different regimes
of entrainment were identified by releasing Lagrangian
particles into the flow field. The head of the gravity
currents displaces and lifts the lighter fluid ahead, which
is then entrained into the head from behind. In the tail
section, Kelvin–Helmholtz vortices are generated and
entrain fluid from the ambient flow. Both entrainment
mechanisms are quantified according to conventional
definitions and are found to depend only on the slope
angle, in agreement with laboratory results. The en-
trainment in the head however is overestimated in the
model when compared to the laboratory results. This is
likely a consequence of the two-dimensional nature of
the numerical simulations, which do not allow for any
lateral spreading of the head.

In the numerical simulations, the head and the tail do
not always remain as two distinct entities as the head
grows and merges with the tail. A separate analysis of
the entrainment into the head and tail is therefore not
always possible, and a more general measure of the
entrainment needs to be introduced. A simple but un-
ambiguous metric for total entrainment was therefore
introduced as the ratio of the volume increase in fluid
denser than the background to the volume of fluid en-
tering the domain. In the absence of any entrainment,
there would be no increase in denser fluid, and therefore
the entrainment coefficient would be equal to zero. The
variation of this coefficient with respect to the distance
covered by the descending gravity currents shows two
different regimes of entrainment, laminar and turbulent.
The former is due to the formation of the head vortex
by the drag exerted by the fresh fluid ahead as the current
starts its initial descent, and the latter begins with the
transition to turbulence and is associated with shear in-
stability. The entrainment in both regimes was quanti-
fied, and it was shown that the turbulent entrainment is
much stronger than the laminar entrainment. The time
evolution of the entrainment was found to be a function
of the slope angle only, but with less sensitivity in the
turbulent regime (proportional to and u, respec-Ïu
tively). Finally, the timescale of turbulent mixing can
be estimated as a function of main parameters of the
system, that is, the buoyancy flux B and the slope angle
u.

Given the idealized nature of the experiments, we
next address the implications of the various assumptions
and simplifications and outline recommendations for fu-
ture studies. First, the head of gravity currents is a fea-
ture of the start-up phase, and it is therefore not clear
how it is relevant to geophysical overflows. Some over-
flows are approximately continuous, but it is known that
the Red Sea overflow shuts off completely at the end
of summer (Murray and Johns 1997). One would there-
fore expect the formation of a characteristic head when
this overflow starts flowing again. Localized heads can
be formed by high frequency fluctuations in the outflow
buoyancy flux, such as tidal effects in the Mediterranean

overflow (e.g., Baschek and Send 1999). Localized
heads can also be formed in regions of large variations
in the topographic slope. These variations induce local
deceleration/acceleration of the dense fluid. Second, the
experiments exhibit continuous entrainment within the
length of simulations. It needs to be explored whether
entrainment would slow down or would totally shut off
at some point in time, and this requires simulations in
a much larger domain. More comprehensive entrainment
relationships, such as Richardson number dependent en-
trainment criteria, may control the beginning and ending
of turbulent entrainment. The effect of rotation should
be investigated using a 3D model and a larger domain.
Based on laboratory experiments, Griffiths and Hopfin-
ger (1983) report that vertical mixing in the rotating
case appears to be more vigorous than in the nonrotating
case. Also, deflection of the current parallel to topo-
graphic contours will take place on scales larger than
the radius of deformation. Additional factors need to be
taken into account such as the effects of ambient strat-
ification, continuous overflows, topographic features,
etc. These will be topics of further investigation.
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