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Frequency Filter for Time Integrations 
RICHARD ASSELIN- Canadian Meteorological Service, Montreal, Quebec, Canada 

ABSTRACT-A simple filter for controlling high-frequency 
computational and physical modes arising in time integra- 
tions is proposed. A linear analysis of the filter with leap- 
frog, implicit, and semi-implicit, differences is made. The 
filter very quickly removes the computational mode and 
is also very useful in damping high-frequency physical 
waves. The stability of the leapfrog scheme is adversely 

affected when a large filter parameter is used, but the 
analysis shows that  the usc of centered differences with 
frequency filter is still more advantageous than the use 
of the Euler-backward method. An example of the use of 
the filter in an  actual forecast with the meteorological 
equations is shown. 

1. INTRODUCTION 
Certain types of finite-difference approximations for 

time derivatives have traditionally been used for inte- 
grating hydrodynamical equations because of their known 
damping properties (Kurihara 1965). Often, as in the 
Euler-backward method, the amount of damping is not 
adjustable and the calculations involve extra evaluations 
of the tendency, making the procedure very costly. At 
the Dynamic Prediction Research Unit we have been 
using a frequency filter originally designed by Robert 
(1966) that alleviates both of these inconveniences. An 
analysis of this filter for a simple advective equation 
treated with centered implicit or explicit differences is 
presented below, and response curves for several values 
of the filter parameter are shown. Particular attention 
is given to the study of the linear stability of the leapfrog 
scheme. Examples of various uses of the filter are given 
in section 4. 

2. BASIC TIME FILTER 

Assume a time series 

to be defined at discrete points one time unit apart with 
angular frequency, w .  The filtered function is 
- 
F( t )  = F( t )  +0.5v[F( t - 1) -2F( t )  +F( t + l ) ]  (2) 

where v is the filter parameter. Letting 

F(t) = T F (  t ) (3) 

define the response, 2, of the filter, we find that 

The amplitude response, R, and the phase shift, 6, are 
plotted against cos w for different values of v in figures 1 
and 2. One can see that the responses of all filters with 
parameters between 0.5 and 1 are very similar, some 
kind of optimum being a.chieved with v=6/7. In  general, 

for moderate values of v, the phase shift is large only for 
highly damped waves. 

We see also that for O<v<2/3 the amplitude response, 
R, is similar to  the response, R,, of the well-known cen- 
tered filter 
- 
F,(t)=F(t)+0.5v[F(t-l)-2F(t)fF(t+l)l (5) 

E,= 1-p( 1-cos w ) .  (6) 

where 

3. FILTER WITH TIME DIFFERENCES 
The effect of the filter used in conjunction with leap- 

frog, semi-implicit, or fully implicit t,ime differences d l  
now be studied. Following Kurihara (1965), we decompose 
the frequency into two arbitrary parts and write the dif- 
ferential equation, 

(7) 

in difference form as 

tF( t + 1) +m. 
=iwAF( t )  + ~ ( w - w A )  2 

F( t + 1) - F( t - 1) 
2 

In  eq (8), the smoothed function at  t- 1 is obtained from 
eq (2) using values at  t-2, t-1, and t. If we now define 
the amplification factor by 

(9) F( t + 1) =XF( t )  , 

we find from eq (8) and (2) that 

(10) 

The negative sign conresponds to the computational 
solution. 
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FIGURE 1.-Amplitude response due to application of the time filter to a periodic function for a few values of the filter coefficient. The 
response of a conventional centered filter is a straight line with intercepts 1 -v at cos w = O  and 1 at cos w= 1. 
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FIGURE 2.-Phase increase due to application of the time filter to a periodic function for a few values of the filter coefficient. 

By setting wA=O in eq (lo), we get the amplification For u l l ,  the radicand is positive so that the frequency 
is tan -'wAt independently of v. Also, by using (41- factor applicable to the implicit scheme; that is, 
- v /2 )*  as an upper bound for the radicand we- see that 

If, instead, we set w=wA, we get the leapfrog scheme 
l + i w  v IXl<l for u>O and o>O. x=w [ ~ ~ ~ J 1 + w 2 + ~ - - u c 1 i - w 2 ) ]  4 
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FIGURE 3.-Sise of the amplification factor against frequency for the Euler-backward method (thin line) and for the leapfrog scheme in- 

cluding filter with coefficients v = O ,  0.5, and 1.0 with At=1.0 ,  0.75, and 0.5, respectively. The dashed parts belong to the computa- 
tional solution. 

for which 

When 0 ~ I ( l - v / 2 ) ~ ,  the largest root has magnitude 
smaller than 1. The stable range is slightly greater, how- 
ever, and by allowing the radicand to become negative 
we find stability (1x1 5 1) for 

Thus, with p = l ,  me need w<0.57; that is, we must 
reduce the time step, At, to 0.57 time unit if me want to  
admit the same range of frequencies as the leapfrog 
scheme alone in the stable domain of X. 

It is interesting to  compare the characteristics of the 
leapfrog scheme including a heavy filter with another 
well-known dissipative scheme, the Euler-backward 
method for example. The amplification factor for the 
latter is 

AEB=1-w2+i~; 

with At=1 this scheme is stable for w l  1. For the leapfrog 
scheme with filter, we select v = l  and At=0.5 for sim- 
plicity (although the maximum time step would be 0.57). 
The amplification per unit time is then 

(1 I-tJ1-T;I+iw>Z 
4 A,=,= 

since there are two time steps per unit time. The ampli- 
tudes of A,, and AVz1 are plotted against o in figure 3. 
There are also two other curves in figure 3: 

corresponding to two other choices of v and At (v=?<, 
At=Yi and v = O ,  At=]). From these, the curve for any 
other choice of v can easily be imagined. 

For any value of v 5 1, the filter with leapfrog differences 
gives less damping of the low frequencies than the Euler- 
backward method. On the other hand, depending on the 
choice of v, more damping can be obtained at high fre- 
quencies. The damping per time step is actually very 
nearly equal to  the damping of the frequency filter [eq 
(2)] alone. As for the computational solution, it is nicely 
damped for any choice of v>O. Since the Euler-backward 
method requires the evaluation of two tendencies per 
unit time, the use of the filter with the leapfrog scheme 
remains advantageous. 

When the time filter is used with centered differences, 
the computed frequency is increased by approximately 
61At, where 6 is the phase shift of the filter alone as in eq 
(4). However, this effect is almost perfectly offset if the 
time step is reduced by 1-v/2. In  particular, if v = l  and 
At=0.5 as in the example above, the frequency is identical 
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he was ushig v=0.02 and At=20 min. Ewizak (1970) 
prevented the growth of the computational solution in 
a 20-day semi-implicit integration by using v=O.Ol and 
At=60 min. 

One of the interesting applications of the filter has been 
for the elimination of a significant part of the spectrum 
of external and internal gravity waves in a hemispheric 
primitive-equation baroclinic model. A large parameter 
was’used to quickly damp the oscillations shorter than 
about 12 hr without affecting significantly those longer 
than 24 hr. The parameter was 0.86 for the first 36 hr, 
0.5 until 48 hr, 0.2 until 60 hr, and finally 0.0 thereafter. 
The time steps were 1 hr, the grid length 381 km at 60°N 
on a polar stereographic projection, and the integration 

A Z  DI V was by the semi-implicit method. The model was a baro- 
and 

Robert (1971). Figure 4 shows the time variation of the 

FIGURE 4.-The 500-mb height change (m) and divergence (10-91) 
a t  a point near the border during the integration of a three-level, 
iximitive-eauation model without filter (rough curves) and with 

extension Of the described by 
I 

a time filter using coefficients v=0.86 up to 36 hr, v=0.5 to 
48 hr, v=0.2 to 60 hr, and v=O thereafter (smooth curves). 

geopotential and of the divergence at 500 mb at one 
gridpoint during an integration (1) when the filter param- 
eter was zero and ( 2 )  when the time filter with the param- 
eters given above was applied. Figures 5A and 5B show 
the left half of the 96-hr forecast of the divergence in 
these two cases. 

5. CONCLUSIONS 

,ki- 0 0 1  

I 

The frequency filter described earlier is an excellent 
damper for the computational modes arising in leapfrog, 
centered implicit, and centered semi-implicit time integra- 
tions. Furthermore, because it discriminates well between 
frequencies, it can be adjusted to damp out high-frequency 
motions in the physical solution such as external gravity- 
inertia waves. The possibility of varying the filter param- 
eter during an integration makes it a very versatile tool. 
The application of the filter requires very little computing 
time, although it does require the storage of the time- 
dependent variables at three time levels. The filter does 
not badly affect the stability of the difference equations 
for reasonable values of the filter coefficient. 

FIGURE 5.-The 500-mb divergence after 96 hr of integration (A) 
without filter and (B) with the time filter. 

to  that of the leapfrog scheme alone (v=O, At=1) since 

To complete the study of the frequency filter, we cal- 
culated the amplification factors from eq (10) for three 
values of wA/w (0,  0.2, 1.0) and for several values of v 
from - 1.0 to 5.0. These calculations supported the above 
analysis and showed that the range of v should be limited 
to the interval (0, 1). 

4. EXAMPLES 
The frequency filter has been used for various purposes 

so far. Robert (1966) used it first in a general circulation 
primitive-equation spectral model with centered differ- 
ences t o  control the instability due to a friction term; 
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