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Overview

Hurricane Isabel, 12 Sept. 2003

B Images of polygonal hurricane eyewalls have spurred interest in
wave-vortex coupling—role in intensification?

® Established models of linear instability (e.g. Montgomery,
Schubert, Nolan, Schecter etc.):
B Centrifugal (symmetric) instability: fast; observed?
B \Vortex Rossby Waves (VRW): barotropic VRW-VRW coupling.
B Rossby-Inertial-Buoyancy (RIB): baroclinic VRW-IB coupling.
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Properties of the RIB instability:

® Observed to require a sharp negative PV gradient, arguably
where the VR and IB waves couple.

® First studied at small Froude number by Ford (1994) who
concluded:

“unlikely to be of any practical interest in geophysical fluid
dynamics”

B Relevant in the “superspin” regime of large Rossby (R) and
Froude (F,) numbers, e.g. hurricanes.

B Attractive — unstable at wave-number 2 which is “missing” in
VRW-VRW models (Terwey & Montgomery, 2002).

However, Rossby character of RIB instability has
never been formally established at large F..
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Investigate the nature of the 3D instability that lives on a piece-wise
constant vorticity profile (Schubert profile) using three models:

Model # 1:

B Construct analytic normal mode solutions.
B Solve for the eigenvalue (frequency) numerically.

Model # 2:

B Derive an approximate analytic dispersion relation for
baroclinic modes on the Schubert base-state.

Model # 3:

B Solve the initial value problem for the linearized primitive
equations numerically.
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Piecewise constant vorticity (Schubert 1999):
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o(r, 0, z,t) = d(r) exp [i(10 + mz — vt)]

Parameters:
[ = Azimuthal wave-number
m = \ertical wave-vector
v = Frequency
{ri,m2,&1,&}+ = Base-state Vorticity
Q(r) = Base-state Angular Velocity
N = Brunt-Vaisala Frequency

Non-Dimensional Numbers:

Ry = 572 = Rossby Number
F, = T2 _ Eroude Number
) N
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A

Model #1: 3-Region Analytic Model
Numerical Eigenvalues
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Pressure equation from linearized primitive equations [e.g. Smyth and
McWilliams, 1998]:

ru’ / L [20+ f 12 mAr
2 ) T 2 ] — 5y~ vz | T=0
b, — o o\ P, —0 r(®, —o?) N

where

o = v—IQ(r)
o, = (2Q(r)+ /) (Z+f)
— Absolute centrifugal stability

Step 1: Define
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Equation set:
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Note: exact momentum balance, approximate incompressibility.
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Region | (r < rq):

29
7T:J1< UN2 amr)

Region Il (ry < r < ry):

r?(o? —®,)° = air®+ag+azr?

Q

Resulting equation is
r?G" —rG' + (C + Br*)G =0

with solution

G=r {clJ,,(\/Efr) + CQYV(\/ET)}
yrandv =+1—C.

a1r® + as + as|(r1 + 7“2)/2]_2
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Region Il (r > r5):

r?(0? —®,)° = a1r®+ag+azr?

2 —92 2 _4
ar —|—a2—|—a3(2r2 — 17, )

Q

Resulting equation is
r°G" —rG’' + (C + Br®)G =0
with solution (radiation boundary condition)
G =rH,(VBr)

and v = v1 - C.
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Example: Exponentially Unstable Mode

Solve eigenvalue problem for jump conditions at (r1,72).

lim w,.(r1 — €) = ur(r1 +€),w(r1 —€) = w(ry + €)

e—0

0.0

Velocity

a v >

/
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B |nstability:
Modes become unstable when (equivalently)

ro < Rossby Deformation Radius

Rotational Froude Number <« 1

® Frequency:
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Pure Inertia
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Model #2: Approximate Analytic Dispersion Relation
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Analysis of the jump conditions at r, suggests an edge wave BC:
’U,r<7°2) ‘TQ-I-G =0

Using the WKB approximation to relate 7’ to = we find the dispersion
relation:

T 1 \/N(ZQQ—I—f) T2i\/(m)2_4l2

V2 Tom \ Lg

with stability criterion

ro < 2lLg
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Unstable: (r < 21L4)

VIN (292 + f) 1

Y

1
Im(v) = i\/§ — N

Stable: (r > 2(Lgy)
Wave 1.

v =10y — /20 + fA/f

This is an inertial oscillation that is retrograde at small Rossby number.

Wave 2:
V=10, — 200 + f IN
f rom

This is an inertia-gravity wave that is prograde at large Froude number.

These waves phase-lock and grow when ry = [Lg4 I
N

)
» Los Alamos

NATIONAL LABORATORY

Intensification — p. 17



Very large body of literature on the non-centrifugal (non-symmetric)
instability of stably stratified vortices with sharp vorticity gradients
(Kurihara, Willoughby, Ford).

This work: Inertia-Gravity-Edge Instability

® Quter vorticity gradient acts as a moving edge (u,, = 0). The total
centrifugal force ~ 2Q5 + f at o supports the waves.

® Mode is similar to stratified Taylor-Couette instability (Yavneh,
McWilliams, Molemaker), with no Rossby character.

Modern Interpretation (Schecter, Montgomery, Hodyss, Nolan etc.):
Rossby-Inertia-Buoyancy Instability

® RIB instability couples an inner Vortex Rossby wave with an outer
Inertia-buoyancy wave.

A = Requires relatively sharp negative PV gradient for instability.

Vi
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Present Analysis (large F,):

V2Ah+f

Im(v) N

, Independent of &,

Ford (1994; small F,):

21
Im(v) ~ F,2 (mz - %) + O(F,2112)

Experiment: Using the linearized primitive equations, we solve
initial-value problem for the Schubert base-state:

Case 1: Vary the Vorticity Jump &»(r1,&1) keeping the Angular
Velocity Q5 fixed.

Case 2: Vary the Angular Velocity (71, &1) keeping the Vorticity
Jump &, fixed.

Hypothesis: VRW coupling will exhibit £&;-dependence.
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Model #3: Numerical Primitive Equation Model
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Base-state:

f = \orticity (Z)
= AngularV (Q)

&1
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i &
N
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. Radius
Numerics:

B Strong Stability Preserving 3rd-Order RK (SSP33).

® PV conserving numerical scheme.
|
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Approximate numerical result:

RG(V) -~ (29 + 1)1.252—0.5
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B |nvestigated unstable modes that grow on vorticity gradients.

® |n the superspin regime of large Froude and Rossby numbers:

Inertial-Gravity-Edge Instability: coupling of a retro-
grade inertial oscillation and a prograde gravity wave.

B Approximate dispersion relation:

V:lQQ— 1 \/N(292+f) T2 i\/(m>2412

V2 Tom \ Lgq

® We find little or no evidence of a Rossby-wave character (vorticity
gradient dependence) in the growth rate.

B However, the oscillation frequency does have a mild
N vorticity-gradient dependence; this is currently being investigated.
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