During the course of this research, a mapping technique (Yu et al., 2004) has been developed to produce an SSH data set with a regular temporal and spatial grid for assimilation.  The mapping method considers not only the observations within the assimilation cycle but also those prior to the assimilation window.  This allows a shorter assimilation cycle, since the technique maps the original observations from satellite ground track observational locations onto a finer spatial and temporal grid and hence reduces the time for the propagation of information between the grid points.  This method is based on complex empirical orthogonal function (CEOF) analysis (Barnett, 1983; Shriver et al., 1991).  CEOF analysis extracts physical information on propagating features from a two-dimensional data array,
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where D is an NxM matrix with elements 
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, and N and M are the numbers of space and time points, respectively.  With the use of CEOF analysis the component eigenmodes of D are obtained.
From the CEOF component eigenmodes of D, M pairs of complex vectors 
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The vector S will be referred to as the spatial function (SF) and T as the temporal function (TF).  By definition a complex vector C(x) can be represented as 
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where A(x) is an amplitude and 
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Their product (real part) is
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E(x) (the spatial amplitude function) shows the variability of the amplitude in space associated with a given eigenmode.  R(t) (the temporal amplitude function) provides the information on the variability of the amplitude in time.  For a line of constant phase (letting
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or rearranging,
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The phase speed is
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CEOF analysis decomposes data into orthogonal modes, identifies the propagating information, and obtains the spatial and temporal information associated with each mode.  The most significant modes (modes with larger eigenvalues compared to others) are chosen among all modes and contain most of the variability.  For the TF and SF with respect to each mode, the phase and amplitude information is mapped onto a regular finer grid in time and/or space.  From these remapped phase and amplitude functions, the new TFs and SFs are rebuilt and the data set is reconstructed by summing the product of TF and SF associated with each mode.  
As a demonstration, the method is tested with a simple analytical experiment requiring only the temporal interpolation.  In this case, a sinusoidal wave is propagating to the right and is sampled at each one fourth of its period (i.e., there are four observations, or samples, during each cycle).  The result from a traditional interpolation method (linearly interpolate data in time between samples) is shown as a comparison with the result from the new mapping method (Figure 2.4).  It is clear that the new method identifies the propagating information very well and retains the wave form and amplitude at the interpolated time much better than the linear interpolation method, which reduces the amplitude of the wave.

The second experiment simulates a more realistic scenario in order to demonstrate the spatial interpolation of this technique (Figure 2.5).  In this experiment a synthetic eddy propagates to the left.  The SSH field is sampled at locations simulating the orbiting T/P satellite altimeter observational pattern.  The mapping method is applied and interpolates the synthetic along-track SSH observations onto a finer regular spatial grid.  The reconstruction yields an SSH field very close to the “truth”.  A closer look shows that the technique recovers the maximum successfully when the eddy moves to between tracks.  This new mapping technique is applied to the T/P and Jason-1 satellite along-track data to produce an SSH data set regularly gridded in time and space for assimilation into the ocean model, as described in Chapter 3.

This experiment is designed to simulate a more realistic scenario in which the SSH is sparsely sampled by satellite altimeters.  The model configuration is the same as in experiment one.  After the eleven-year spin-up period the NCOM is run for an additional 100 days.  Rather than assimilating the SSH field with the native model grid, the model SSH data are sampled along locations corresponding to T/P and Jason-1 observation locations every ten days.  The mapping technique, described in Chapter 2, is applied to interpolate the data to the native model grid in space and to a one-day interval over time between day 90 and day 99 as the observations.  The comparison between the mapped SSH data and the model truth SSH fields (Figure 3.7) shows that the gridded SSH constructed from the mapping method represents the original field well.  

The data assimilation technique is applied to a real-world case in this experiment.  The model configuration and the initial guess remain the same as in the previous experiments.  The observation fields are derived from T/P and Jason-1 along-track SSH data and the mapping method is used to interpolate the along-track data to a regular grid.  While it is acceptable for this application to assume that the observation time for each point within each ground track in the domain is the same for each cycle, the observations from different ground tracks are by no means simultaneous.  Therefore, synchronization of the data from different tracks is necessary.  The data from each track are processed first and interpolated to the same time grid with the mapping method, and then the same technique is applied to the synchronized data from all tracks as a whole data set to map the data to the model grid at one-day time intervals (Figure 3.12) as the observation fields to be assimilated.
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