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ABSTRACT 
 

 

State of the art fully three-dimensional ocean models are very computationally 

expensive and their adjoints are even more resource intensive.  However, many features 

of interest are approximated by the first baroclinic mode over much of the ocean, 

especially in the lower and mid latitude regions.  Based on this dynamical feature, a new 

type of data assimilation scheme to assimilate sea surface height (SSH) data, a 

reduced-space adjoint technique, is developed and implemented with a three-dimensional 

model using vertical normal mode decomposition.  The technique is tested with the 

Navy Coastal Ocean Model (NCOM) configured to simulate the Gulf of Mexico. 

 

The assimilation procedure works by minimizing the cost function, which 

generalizes the misfit between the observations and their counterpart model variables.  

The “forward” model is integrated for the period during which the data are assimilated.  

Vertical normal mode decomposition retrieves the first baroclinic mode, and the data 

misfit between the model outputs and observations is calculated.  Adjoint equations 

based on a one-active-layer reduced gravity model, which approximates the first 

baroclinic mode, are integrated backward in time to get the gradient of the cost function 

with respect to the control variables (velocity and SSH of the first baroclinic mode).  

The gradient is input to an optimization algorithm (the limited memory 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used for the cases presented here) 

to determine the new first baroclinic mode velocity and SSH fields, which are used to 

update the forward model variables at the initial time.   

 

Two main issues in the area of ocean data assimilation are addressed: 1. How can 



 ix

information provided only at the sea surface be transferred dynamically into deep layers?  

2. How can information provided only locally, in limited oceanic regions, be horizontally 

transferred to ocean areas far away from the data-dense regions, but dynamically 

connected to it? 

 

The first problem is solved by the use of vertical normal mode decomposition, 

through which the vertical dependence of model variables is obtained.  Analyses show 

that the first baroclinic mode SSH represents the full SSH field very closely in the model 

test domain, with a correlation of 93% in one of the experiments.  One common way to 

solve the second issue is to lengthen the assimilation window in order to allow the 

dynamic model to propagate information to the data-sparse regions.  However, this 

dramatically increases the computational cost, since many oceanic features move very 

slowly.  An alternative solution to this is developed using a mapping method based on 

complex empirical orthogonal functions (EOF), which utilizes data from a much longer 

period than the assimilation cycle and deals with the information in space and time 

simultaneously.  This method is applied to map satellite altimeter data from the ground 

track observation locations and times onto a regular spatial and temporal grid. 

 

Three different experiments are designed for testing the assimilation technique: two 

experiments assimilate SSH data produced from a model run to evaluate the method, and 

in the last experiment the technique is applied to TOPEX/Poseidon and Jason-1 altimeter 

data.  The assimilation procedure converges in all experiments and reduces the error in 

the model fields.  Since the adjoint, or “backward”, model is two-dimensional, the 

method is much more computationally efficient than if it were to use a fully 

three-dimensional backward model. 
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1. INTRODUCTION 
 

 

Measurements of the ocean environment are difficult and expensive, especially within 

the deep ocean.  As a result, oceanic data are usually sparser than their atmospheric 

counterparts and are non-uniformly sampled in time and space.  The launch of many 

ocean observing satellites over recent decades has yielded a vast amount of data for the 

ocean’s surface.  In order to deepen and broaden our understanding of ocean circulation, 

it is very important to optimize the use of these expanded but still insufficient valuable 

datasets.  This requires the blending of present observations with the theoretical 

knowledge from past observations, incorporated into numerical models.   

 

Numerical models can be used to assimilate oceanographic data, creating a 

dynamically consistent, complete and accurate depiction of the three-dimensional 

time-dependent ocean state.  One key problem for oceanographic applications is how to 

determine variables not directly observed at many locations, such as the velocity, from 

available observed variables, such as sea surface height (SSH).  The answer lies in the 

dynamical coupling between variables, which is a central role that dynamics plays in 

estimating the state of the ocean from incomplete data. 

 

 

1.1 Review of Data Assimilation Methods 

 

Data assimilation is a powerful tool for extracting the maximum amount of 

information from observations and has been extensively used in numerical atmospheric 
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and oceanic modeling.  In order to assimilate observations into numerical ocean models, 

there exist a variety of different methods, most of which were originally developed in 

meteorology.  An extensive review of these methods can be found in Ghil and 

Malanotte-Rizzoli (1991) and Le Dimet and Navon (1988).  Data assimilation methods 

can be classified as function fitting methods, statistical interpolation methods, nudging 

data assimilation, variational (adjoint) methods and Kalman Filtering techniques. 

 

One of the early and simple data assimilation methods is function fitting, in which the 

analysis function is expanded in a finite series of ordered mathematical basis functions 

with unknown expansion coefficients.  The coefficients are determined by either an 

exact fit to observations (analyzed values are required to be equal to observed values at 

observation locations) or through a least-square fit between the analysis and observations.  

Once the coefficients are determined, the analyzed variables can be evaluated at any 

location within the analysis domain.  The first attempt of using function fitting for 

objective analysis dated back to 1949 (Panofsky).  In his study, a cubic polynomial 

regional fitting was applied with arbitrarily specified constant weightings.  Gilchrist and 

Cressman (1954) conducted another study of local quadratic fitting. 

 

This method is linear in the sense that an analysis could always be expressed as a 

linear combination of observations: 

 

∑
=

=
K

k

obs
kik yWix

1

)( ,             (1.1) 

 

where the index i represents the analysis grid, the index k represents observation locations, 

and the a posteriori determined weights ikW  are independent of observations.  The way 

the observational information is spread to different regions and/or different variables is 

solely determined by ikW , which usually decreases with distance from the observation 



 3

(Bergthorsson and Doos, 1955).  Neither the knowledge of the statistical properties of 

the data nor a numerical model is used (Thiebaux and Pedder, 1987; Daley, 1991).  It is 

worth mentioning that some dynamical constraints, such as a geostrophic balance 

constraint, could be incorporated into the analysis and a weak or strong constraint can be 

imposed through a least-squares fit or a Lagrange multiplier. 

 

The optimal interpolation (OI) or statistical interpolation approach combines the 

model background field and the observation field to obtain the optimal estimate field, 

which minimizes the analysis error covariance.  This method takes the form of an 

analysis equation as  
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where ax  is the analysis field, bx  is the background field, obsx  is the observation 

field, ir
r  is the analysis or background location, kr

v  is the observation location, and ikω  

is the weighting function.  There are two major differences between function fitting and 

OI.  A background field is introduced into the analysis procedure and the a posteriori 

weights are determined statistically based on background and observation error 

covariance instead of depending purely on the interpolation function as in function fitting.  

The knowledge of spatial error covariance for both the model field and the observations 

is required (Lorenc, 1981, 1988), and a good estimate of these is one of the key factors of 

the quality of the interpolated field. 

 

The Kalman filter (Kalman, 1960, 1961) represents a sequential assimilation 

procedure, based on the statistical concept of OI.  At each observation time, the Kalman 

filter conducts an optimal interpolation of the model forecast field and the observations to 

obtain a new state vector with reduced error covariance.  This state is subsequently used 
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as the initial state for the model to compute a forecast for the next observation time.  By 

repeating this assimilation cycle and keeping track of the error covariance of the model 

state in a sequential manner, the model absorbs the information of the sequence of 

observations step by step (Cohn, 1982; Ghil et al., 1981).  The Kalman filter is very 

similar to OI, but with one major difference: the forecast or background error covariance 

is advanced using the model itself, rather than estimating it as a constant covariance 

matrix (Kalnay, 2002).  The biggest problem with this method is its computational cost, 

especially for the nonlinear case.  A simplification is the extended Kalman filter, which 

is derived from the basic Kalman filter to nonlinear dynamics by linearization at each 

time step.  Another simplification of Kalman filtering is ensemble Kalman filtering, 

using Monte Carlo sampling in the propagation step.  In this approach, an ensemble of K 

data assimilation cycles is carried out simultaneously (Houtekamer et al., 1998, 2001, 

Anderson, 2001).   

 

The nudging data assimilation (NDA) method (Anthes, 1974), which is called 

optimal nudging data assimilation in the work of Zou et al. (1992), relaxes the model 

state towards the observations during the assimilation period by adding a non-physical 

diffusive term to the model equations.  The goal is to find the best initial state for 

numerical weather prediction (NWP) and optimal nudging coefficients which best 

assimilate the given observations. 

 

The variational data assimilation method tries to find an optimal initial condition 

and/or model parameters which minimize the differences between the observations and 

the model solution based on optimal control theory.  It requires an adjoint model to 

obtain the gradient of the cost function with respect to the control variables.   
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1.2 Variational Data Assimilation 

 

The first application of variational methods was by Sasaki (1955, 1958) in 

meteorology.  Sasaki (1969, 1970a, 1970b, 1970c) has made further efforts in 

developing variational methods and generalizing the application of variational methods in 

meteorology to include time variations and dynamical equations in order to filter 

high-frequency noise and to obtain dynamically acceptable initial values in data void 

areas.  The four-dimensional (4-D) Variational approach was first introduced as early as 

the 1980’s (Le Dimet and Talagrand, 1986; Derber, 1987; Talagrand and Courtier, 1987; 

Courtier and Talagrand, 1987) and has been the subject of further study (Courtier and 

Talagrand, 1990; Yu and O’Brien, 1991; Zou et al., 1995; Zou et al., 1997).  Its 

fundamental concept is to find an optimal state by minimizing the distance between a 

model solution and observations (cost function) while at the same time satisfying the 

dynamical constraints. 

 

The variational data assimilation technique is a novel, versatile methodology for 

estimating oceanic variables.  It requires knowledge of ocean science, computational 

science, statistics, optimal control theory, and observations.  Ocean science provides the 

fundamental concepts, or the dynamical principles, which govern the system under 

observation.  With knowledge of computational science, the governing equations are 

translated into numerical models, which can be solved by computers.  Knowledge of 

statistics and observations is also crucial for many aspects, such as the definition of the 

cost function, the analysis of errors in the whole system.  Optimal control theory has 

significantly advanced data assimilation research.  It offers a deterministic approach of 

the estimation problem posed by the data assimilation method. 

 

Oceanic models are constructed based on physical laws that govern the temporal 

evolution of the oceanic flows of interest.  A numerical model predicts values of future 

ocean states from specified values of input parameters, which include initial conditions, 
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boundary conditions, and many other parameters.  Let us consider a model 

 

0)( =xF                (1.3) 

 

where x  is a vector of ocean state variables.  Suppose some observations obsy  of the 

variable x  exist over the model domain.  The variational data assimilation is defined as 

a search, amongst all the possible solutions of this model, for the solution closest to the 

observations.  This distance between the model solution and the observations becomes 

the cost function, which takes the form of 

 

dsgJ obs∫
Σ

−= yxx )()(             (1.4) 

 

where )(xg  is the estimate of model state variables over the observation locations and 

 is a norm. 

 

This is an optimization problem, which requires the minimization of the cost function 

(1.4) under constraint of the model governing equations (1.3).  Applying the Lagrange 

multiplier, the above constrained optimization problem turns into an unconstrained 

minimization problem of 

 

)(,)(),( xλxλx FJL +=             (1.5) 

 

where ba,  is an inner product of a  and b , and λ  is the Lagrange multiplier. 

 

It can be easily shown that the solution of the constrained optimization problem is 

equivalent to finding the stationary point, the optimal solution, of (1.5) with respect to 

variables x  and λ . 
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Differentiating L with respect to λ  recovers the model governing equation (1.3) and 

differentiating L with respect to x  leads to  

 

x
λ

xx ∂
∂

+
∂
∂

=
∂
∂

=
FJL ,0 .            (1.6) 

 

(1.6) is called the adjoint model.  It is also called the “backward” model, since it is 

integrated backward in time (see details in Le Dimet and Talagrand, 1986).  The solution 

of (1.6) at the initial time is the gradient of the cost function, L, with respect to the model 

control variables. 

 

 

1.3 Plan of Dissertation 

 

The main goal of this research is to develop a new data assimilation technique based 

on the variational method, and to apply it to a realistic numerical ocean model for testing 

and demonstration.  In this new method, the adjoint model is simplified by 

approximating the ocean model variable fields by their first baroclinic mode counterparts.  

Vertical normal mode decomposition is applied in each assimilation cycle to retrieve the 

first baroclinic mode information from the forward model and to convert the fully 

three-dimensional problem into a two-dimensional one.  The projection of the 

two-dimensional field onto three dimensions with the first baroclinic mode vertical 

profile connects the mode one variables to the three-dimensional full model variables and 

allows the information from the ocean surface to transfer to deep layers.  A new method 

is developed to map SSH observations along satellite altimeter ground tracks to a regular 

grid.  Applying this method over a long time period considers observations that are 

outside the actual assimilation window, thus reducing the length of the window.   
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Three experiments are conducted for testing purpose.  Experiment one begins with a 

perturbed initial condition, and assumes a full model grid SSH “observations”.  

Experiment two simulates a more realistic scenario by sampling the SSH observations in 

a similar manner as the satellite altimeters (along satellite ground tracks).  The mapping 

method is applied before the assimilation.  The last experiment is an application of the 

technique using observations from TOPEX/Poseidon (T/P) and Jason-1 satellite 

altimeters.   

 

The assimilation procedure is designed to adjust the model initial conditions.  The 

improved initial conditions will result in the model better simulating the ocean state 

within the assimilation window, yielding an improved analysis with which an ocean 

forecast can be initialized.  Several assumptions are made in the reduced space 

variational data assimilation technique, which lead to a more efficient way of assimilating 

the observations into the model system at a cost of a non-perfect convergence of the cost 

function. 
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2. METHODOLOGY AND DATA 
 

 

A new method of implementing the variational data assimilation technique is 

developed and explained in this chapter.  The method consists of several components, 

connected in a modular fashion that can be applied to a number of three-dimensional 

ocean models.  For this research, the Navy Coastal Ocean Model (NCOM) is chosen as 

the “forward” model for testing the method.  The adjoint, or backward model for the 

variational method, is developed from a simplified model, a one-active-layer reduced 

gravity model.  The forward and backward models are connected through vertical 

normal mode decomposition and reconstruction.  These components form the data 

assimilation system when iterated within an optimization algorithm (see the flowchart in 

Figure 2.1).  This new technique is designed to efficiently assimilate satellite altimeter 

data, which can be mapped to a uniform grid using a new method developed as part of 

this work, into the three-dimensional ocean model.  The data and each of the 

assimilation system components are described below. 

 

 

2.1 The Reduced Space Variational Data Assimilation Method 

 

Oceanic state variables can be dynamically decomposed into different vertical 

normal modes, where each individual mode or the combination of several modes 

accounts for different phenomena.  Previous work (Dewar and Morris, 2000; Dewar and 

Huang, 2001; Shu and Clarke, 2002) shows that many oceanic features of interest can be 

approximated by the top several baroclinic modes.  It has been suggested (Liu, 1999) 
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that the SSH variability is mainly associated with the first baroclinic mode.  For 

example, Siegel et al. (1999) showed that in the subtropical North Atlantic, the first 

baroclinic mode explained 88.5% of the SSH anomaly variance using hydrographic and 

satellite altimeter data.  A similar analysis conducted within the Gulf of Mexico model 

domain used for this present research reveals that the first baroclinic mode accounts for 

around 80% of the total variance.  Since the satellite altimeter SSH data are assimilated 

in this application, it is reasonable to reduce the dimensions of the assimilation problem 

by using a reduced gravity adjoint model, which closely approximates the first baroclinic 

mode.  This assimilation method is different from the conventional adjoint technique, in 

which the forward and backward models are based on the same dynamics.  

 

The variational assimilation procedure works by minimizing a cost function, the data 

misfit between the SSH observations and their counterpart model variables.  For this 

research, the assimilation method is applied to a three-dimensional time-dependent 

forward ocean model that is integrated within the assimilation window.  Instead of 

constructing and running an adjoint model based on the fully three-dimensional forward 

model as in the conventional adjoint data assimilation technique, an adjoint model based 

on a one-active-layer reduced gravity model, which approximates the first baroclinic 

mode, is developed.  The different forward and backward models are dynamically 

connected through vertical normal mode decomposition, which retrieves the first 

baroclinic mode information from the outputs of the forward model and inputs it into the 

backward model.  After the integration (backward in time) of the approximate adjoint 

model, the gradient of the cost function with respect to the control variables (velocity and 

SSH associated with the first baroclinic mode) is obtained as an input to an optimization 

routine (here, the limited memory BFGS (L-BFGS) method is used).  The optimization 

algorithm updates the first baroclinic mode velocity and SSH fields, which are then used 

to update the full forward model variables by reconstructing the model fields from the 

vertical modes (with the newly updated first mode) as described in section 2.2.  This 

procedure repeats until a prescribed convergence criterion is met. 
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Figure 2.1.  The flowchart of the reduced-space variational data assimilation technique.  

The models are run for the assimilation window t=[0, T], and the forward model 
solution at time t=T can be used to initialize a forecast. 
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2.2 Vertical Normal Mode Decomposition 

 

Vertical normal mode decomposition is applied to retrieve the information from the 

forward ocean model and connect the forward and adjoint models which have different 

dynamics.  The vertical normal modes are determined by solving the Sturm-Liouville 

type of partial differential equation: 

 

0
2

=+ S
gh
NS zz               (2.1) 

 

with boundary conditions: 

 

0=S ,   at bottomzz =  ,          (2.2) 

0=− zhSS ,  at 0=z            (2.3) 

 

(see Appendix A for the detailed derivation of 2.1-2.3), where S is a function of z, N is the 

Brunt-Väisälä frequency, g is the acceleration of gravity, and h is the equivalent depth. 

 

Discretization of (2.1-2.3) yields an eigenvalue problem: 

 

SAS λ= , 

 

where A is an n × n tri-diagonal matrix, λ  is the eigenvalue, and S is the eigenvector.  

The first eigenmode, called mode zero, is barotropic and all the other modes are 

baroclinic.  Based on the magnitude of the eigenvalues, the baroclinic modes are ordered 

as mode one, mode two, etc.  The mode number m is the number of zero-crossing(s) of 

the eigenvector Rm (Figure 2.2). 
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Figure 2.2.  The density profile to which vertical normal mode decomposition is applied.  

Right: Eigenvectors R associated with the first three baroclinic modes.  Blue solid 
line: mode one; Red dashed line: mode two; Black dotted line: mode three. 
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The eigenvectors Rm and Sm give the vertical structure of each mode, and the 

equivalent depth associated with each mode is obtained from the corresponding 

eigenvalue.  Once the vertical normal modes are known, the complete three-dimensional 

time-dependent fields can be reconstructed as 
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Suppose at the end of each iteration, the updates of the first baroclinic mode 

variables are 1UΔ , 1VΔ , and 1ηΔ .  Since only the first baroclinic mode part of the field 

is updated and the separation of variables is linear, the update for the two horizontal 

velocity components and the pressure field are in the form of 

 

)()0,,()0,,,()0,,,( 11
1 zRyxUzyxuzyxu ii Δ+=+ ,      (2.8) 

)()0,,()0,,,()0,,,( 11
1 zRyxVzyxvzyxv ii Δ+=+ ,       (2.9) 

)()0,,()0,,,()0,,,( 110
1 zRyxgzyxpzyxp ii ηρ Δ+=+ ,      (2.10) 

 

based on (2.4-2.6), where i is the iteration number. 

 

Differentiating (2.10) with respect to z, one gets 
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dz
zdRyxgzyxpzyxp i

z
i
z

)()0,,()0,,,()0,,,( 1
10

1 ηρ Δ+=+ .     (2.11) 

 

From (10A), the hydrostatic balance, the density update is  

 

dz
zdR

yxzyxzyx ii )(
)0,,()0,,,()0,,,( 1

10
1 ηρρρ Δ−=+  .     (2.12) 

 

The updated density must then be converted to temperature and salinity variables for 

the forward model.  For the application of the method used in this research, a mapping 

from density onto temperature and salinity is derived from the local temperature and 

salinity profile of the forward model as follows.  At each grid point, the local vertical 

density, temperature, and salinity profiles averaged over time are obtained from the 

previous model run and hence the relation of these three variables is derived using the 

regression method.  The update of the temperature and salinity variables is based on this 

relation and the density values.  A quality control procedure is conducted after this, 

since some non-realistic values may occur over some points because of overshooting.  

An extreme value is replaced with the weighting average of the values from its 

neighboring points.  Other techniques could also be used for the temperature and salinity 

update. 

 

 

2.3 Numerical Optimization 

 

The efficient implementation of the variational assimilation method depends 

crucially upon the fast convergence of a large-scale unconstrained minimization 

algorithm.  Since problems in oceanography contain many degrees of freedom, the 

Limited Memory Quasi-Newton method (LMQN) (Navon and Legler, 1987; Navon et al., 

1992) is a good choice.  A review of experiences and details concerning various 
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algorithms can be found in Zou et al. (1993).  In the LMQN algorithm, the optimal 

solution is approximated asymptotically by adjusting the value of the control variables 

iteratively along its gradient or a direction obtained from a combination of the gradients 

from previous iterations. 

 

Assume that kg  ( )()( kkk Jg xxg ∇== ) is the gradient of the cost function with 

respect to the model control variables of the kth iteration, the LMQN method forms an 

approximation to the search direction, kd , which is defined as 

 

kkk gHd −=                (2.13) 

 

where kH  is the inverse of the Hessian matrix (the second derivative of the cost 

function with respect to the control variables) of the kth iteration.  A step size kα  along 

the descent direction kd  is found, which satisfies 

 

)(min)( kkkkk JJ dxdx αα α +=+ ,         (2.14) 

 

and the control variables are updated using the formula 

 

kkkk dxx α+=+1 .             (2.15) 

 

This procedure continues until the convergence criterion 

 

{ }11 ,1max ++ ≤ kk xg ε             (2.16) 

 

is reached.  Various LMQN methods differ in the choice of initial Hessian matrix 0H , 
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the method computing kk gH , and the line search implementation that determines the 

suboptimal step size kα .  For the purpose of this study, the L-BFGS method (Liu and 

Norcedal, 1989) is used. 

 

 

2.4 TOPEX/Poseidon and Jason-1 Altimeter Data 

 

Many earth-observing satellites launched over recent years have provided scientists a 

huge amount of data.  One such instrument important to oceanographers is the satellite 

altimeter.  Satellite altimeters use microwave radar to determine the instantaneous 

elevation of the sea surface relative to an Earth-centered coordinate system, providing an 

absolute-reference frame for studies of sea level rise.  Satellite altimeters provide 

frequent near-global data coverage of the world’s oceans.  This allows altimeter-derived 

estimates of the SSH to be based on data collected over most of the ocean surface in 

contrast to the conventional datasets, e.g., the geographically sparse coastal data provided 

by tide gauges.  Data from the T/P and Jason-1 satellite altimeters are chosen to be 

assimilated in this research. 

 

The T/P satellite altimeter provided SSH measurements with a root mean square error 

of less than five centimeters from its launch in August 1992 until its failure in October 

2005.  The satellite had a 10-day repeat orbit, with 6.2 kilometers between observations 

along the ground track, and a 315-kilometer distance between neighboring ground tracks 

at the equator.  A complete cycle in the data record consists of 127 orbits and each orbit 

has a period of 112 minutes. 

 

Jason-1, a follow-on to the T/P mission with similar functions, was launched on 

December 2001.  After a period of flying in tandem with T/P, T/P was commanded to 

move onto a parallel ground track mid-way between two adjacent Jason-1 ground tracks.  
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With the addition of this new satellite, the spatial coverage of the observations doubled 

for the period during which both instruments operated. 

 

Despite the increased spatial coverage provided by the two orbiting altimeters 

(Figure 2.3),  there are still large gaps between the ground tracks comparable to 

mesoscale oceanic features.  For example, oceanic eddies have measurable sea level 

anomalies and diameters of roughly 100 kilometers.  Loop Current eddies in the Gulf of 

Mexico are large (typically 150 to 200 kilometers) anticyclones with anomalously high 

sea levels in the center, commonly over 50 centimeters.  These, along with cyclonic 

eddies and some smaller features, generally propagate toward the west.  While 

observing these eddies with T/P and Jason-1 data, major difficulties arise when the 

centers of these eddies are located between satellite ground tracks.  Traditional spatial 

interpolation of these satellite data will result in intermittent occurrences of these eddies 

in spatial maps of SSH constructed from T/P and Jason-1 data.  As a consequence, it is 

necessary to use a good interpolation procedure to create a regular set of data values as 

part of the data processing. 

 

 

2.5 Mapping Satellite Altimeter Data 

 

During the course of this research, a mapping technique (Yu et al., 2004) has been 

developed to produce an SSH data set with a regular temporal and spatial grid for 

assimilation.  The mapping method considers not only the observations within the 

assimilation cycle but also those prior to the assimilation window.  This allows a shorter 

assimilation cycle, since the technique maps the original observations from satellite 

ground track observational locations onto a finer spatial and temporal grid and hence 

reduces the time for the propagation of information between the grid points.  This 

method is based on complex empirical orthogonal function (CEOF) analysis (Barnett, 

1983; Shriver et al., 1991).  CEOF analysis extracts physical information on propagating 
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Figure 2.3.  The TOPEX/Poseidon and Jason-1 ground tracks in the Gulf of Mexico.  

Red lines: T/P ground tracks; blue lines: Jason-1 ground tracks. 
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features from a two-dimensional data array, 

 

MNnmhD ×= )( ,              (2.17) 

 

where D is an NxM matrix with elements nmh , and N and M are the numbers of space 

and time points, respectively.  With the use of CEOF analysis the component 

eigenmodes of D are obtained. 

 

From the CEOF component eigenmodes of D, M pairs of complex vectors iT  

and iS , are determined as 

 

Mmi TT ×= 1)(  ,              (2.18) 

1)( ×= Nni SS  .              (2.19) 

 

The vector S will be referred to as the spatial function (SF) and T as the temporal 

function (TF).  By definition a complex vector C(x) can be represented as  

 

)](exp[)()( xixAxC Θ=             (2.20) 

 

where A(x) is an amplitude and )(xΘ  is a phase, which can also be rewritten as 

 

)](exp[)()( xixExS Θ= ,            (2.21) 

)](exp[)()( titRtT φ= .            (2.22) 

 

Their product (real part) is 
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))()(cos()()())]}()((exp[)()(Re{ txtRxEtxitRxE φφ +Θ=+Θ .   (2.23) 

 

E(x) (the spatial amplitude function) shows the variability of the amplitude in space 

associated with a given eigenmode.  R(t) (the temporal amplitude function) provides the 

information on the variability of the amplitude in time.  For a line of constant phase 

(letting )()(),( txtx φξ +Θ= ), 

 

0)()(),( =∂
∂

∂
+∂

∂
Θ∂

= t
t
tx

x
xtxd φξ ,         (2.24) 

 

or rearranging, 

 

xx
ttc

t
x

∂Θ∂
∂∂

−==
∂
∂

)(
)(φ  .            (2.25) 

 

The phase speed is kc ω= , where 

 

x
xk

∂
Θ∂

=
)( ,               (2.26) 

t
t

∂
∂

−=
)(φω .              (2.27) 

 

CEOF analysis decomposes data into orthogonal modes, identifies the propagating 

information, and obtains the spatial and temporal information associated with each mode.  

The most significant modes (modes with larger eigenvalues compared to others) are 

chosen among all modes and contain most of the variability.  For the TF and SF with 

respect to each mode, the phase and amplitude information is mapped onto a regular finer 

grid in time and/or space.  From these remapped phase and amplitude functions, the 
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new TFs and SFs are rebuilt and the data set is reconstructed by summing the product of 

TF and SF associated with each mode.   

 

As a demonstration, the method is tested with a simple analytical experiment 

requiring only the temporal interpolation.  In this case, a sinusoidal wave is propagating 

to the right and is sampled at each one fourth of its period (i.e., there are four 

observations, or samples, during each cycle).  The result from a traditional interpolation 

method (linearly interpolate data in time between samples) is shown as a comparison with 

the result from the new mapping method (Figure 2.4).  It is clear that the new method 

identifies the propagating information very well and retains the wave form and amplitude 

at the interpolated time much better than the linear interpolation method, which reduces 

the amplitude of the wave. 

 

The second experiment simulates a more realistic scenario in order to demonstrate 

the spatial interpolation of this technique (Figure 2.5).  In this experiment a synthetic 

eddy propagates to the left.  The SSH field is sampled at locations simulating the 

orbiting T/P satellite altimeter observational pattern.  The mapping method is applied 

and interpolates the synthetic along-track SSH observations onto a finer regular spatial 

grid.  The reconstruction yields an SSH field very close to the “truth”.  A closer look 

shows that the technique recovers the maximum successfully when the eddy moves to 

between tracks.  This new mapping technique is applied to the T/P and Jason-1 satellite 

along-track data to produce an SSH data set regularly gridded in time and space for 

assimilation into the ocean model, as described in Chapter 3. 

 

 

2.6 The Ocean Model 

 

The model used to test the reduced-space variational data assimilation technique is 

the NCOM developed at the Naval Research Laboratory－Stennis Space Center (Martin, 
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2000; Morey et al., 2003). It uses a hybrid sigma-z level coordinate.  The free surface is 

a sigma level, and the levels below the free surface are a specified number of sigma and 

z-levels. 

 

The NCOM is a fully three-dimensional primitive equation ocean model with the 

hydrostatic, incompressible, and Boussinesq approximations.  The equations, in 

Cartesian coordinates, are  

 

)(
1

)(
0 z

u
K

z
F

x

p
fvQuu

t
u

Mu
∂

∂

∂

∂
++

∂

∂
−++⋅−∇=

∂

∂

ρ
v ,     (2.28) 
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∂
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∂
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∂
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p ρ−=
∂
∂ ,               (2.30) 
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SAQSS
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S

HhHh ∂
∂

∂
∂

+∇∇++⋅−∇=
∂
∂ v ,      (2.33) 

),,( zSTρρ = ,              (2.34) 

 

where t is the time, x, y, and z are the three coordinate directions, u, v, and w are the three 

components of the velocity, Q is a volume flux source term, v is the vector velocity, T is 

the potential temperature, S is the salinity, h∇  is the horizontal gradient operator, f is the 

Coriolis parameter, p is the pressure, ρ  is the water density, 0ρ  is a reference water 

density, g is the acceleration of gravity, uF  and vF  are the horizontal mixing terms for 

momentum, HA  is the horizontal mixing coefficient for scalar fields (potential 
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temperature and salinity), MK  and HK  are the vertical eddy coefficients for 

momentum and scalar fields, respectively, rQ  is the solar radiation, and γ  is a function 

describing the solar extinction.   

 

The model supports a number of higher order numerical methods.  For these 

simulations, a quasi-third-order advection scheme is used with a leapfrog time 

differencing scheme. 
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Figure 2.4.  The interpolation of a sine wave propagating to the right.  Positions shown 

are t=0 (blue) and t=32 (hatched).  Interpolation results (red) at positions at t=7, 14, 
21, 28 are shown.  The left panels show results based on linear interpolation, and 
the right panel panels show results based on the new mapping method. 
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Figure 2.5.  A synthetic eddy propagating westward (left) and the field produced by 

application of the CEOF mapping method (right) applied to simulated satellite 
“observations” at yellow dots. 
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3. EXPERIMENTS AND RESULTS 
 

 

 The reduced space variational data assimilation method, described in Chapter 2, is 

applied to an NCOM simulation of the Gulf of Mexico for testing and demonstration.  

Three numerical experiments are run.  The first is an idealized experiment in that the 

data to be assimilated are not obtained from satellite altimetry, but are rather the SSH 

field from a model run.  The data are then assimilated into a model that has started from 

a different initial state and the goal is to adjust the model initial state to the original one 

from which the assimilated SSH data are obtained.  The second experiment is similar to 

the first, except that the SSH data are sampled along a pattern similar to the T/P and 

Jason-1 satellite tracks, and the mapping technique is applied to construct the gridded 

SSH fields to be assimilated.  The last experiment is an application of the technique with 

real data, assimilating T/P and Jason-1 data from January 9, 2004 to January 18, 2004. 

 

 

3.1 Idealized Experiment One 

 

The data assimilation technique is tested using the NCOM configured for a domain 

covering the entire Gulf of Mexico and the northwestern Caribbean (98.15°W–80.60°W, 

15.55°N–31.50°N) (Figure 3.1).  The horizontal resolution is 0.05° in both latitude and 

longitude and there are 352 grid points zonally and 320 grid points meridionally.  It has 

20 evenly spaced sigma levels above 100 m depth and 40 z-levels below 100 m with a 

maximum depth of 4000 m.  Open boundaries are found along the eastern edge of the 

domain in the Caribbean and the Florida Straits.  This model is integrated for a period  
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Figure 3.1.  The model domain (98.15°W–80.60°W, 15.55°N–31.50°N) and topography 

for the NCOM simulations used in this work. 
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of 11 years from rest forced by wind stress, latent, sensible, and radiative heat fluxes 

derived from the DaSilva et al. (1994) 0.5° × 0.5° analyzed COADS monthly climatology 

fields.  The 1994 World Ocean Atlas (National Oceanic and Atmospheric Administration, 

1994) (WOA94) is used to derive the model initial temperature and salinity fields.   

 

The model fields at the end of the 11th year are used as the initial condition for the 

first iteration of the assimilation technique (a “first guess”).  The NCOM is then 

integrated with a different initial condition as a control or truth run.  The SSH field at 

the native model resolution is sampled at one-day time intervals as the “observation” 

fields (Figure 3.2).  The goal of this experiment is to assimilate the SSH data from the 

truth run into the model to adjust it toward the same state as the truth run.  This 

experiment assimilates an SSH observation field into a model that has not been 

constrained to match the truth fields in any way.  Thus, the first guess is quite different 

from the observation.  The purpose is to illustrate how the technique works and show if 

it can handle a bad first guess of the initial condition. 

 

During each iteration the NCOM is run from an initial condition for a ten-day period 

and the cost function, defined as in Appendix B, is calculated.  Vertical normal mode 

decomposition is applied to retrieve the first baroclinic mode SSH and horizontal velocity 

fields as the model control variables and to get the eigenfunction corresponding to the 

first baroclinic mode.  The adjoint model is integrated backward in time for ten days to 

obtain the gradient of the cost function with respect to the model control variables.  The 

L-BFGS method (the details are in Chapter 2) is applied to minimize the cost function 

and update the first baroclinic mode SSH and horizontal velocity fields at the model 

initial time.  These updated first baroclinic mode variables are used to calculate the 

update for the full model velocity and pressure fields through vertical normal mode 

reconstruction.  The density, temperature, and salinity are updated based on the 

algorithm described in Chapter 2.  The whole procedure repeats until a prescribed 

convergence criterion is met. 
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Figure 3.2.  The SSH fields from the model control run in idealized experiment one 

(used as “observations”) at model day 0 (top) and model day 9 (bottom). 
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The cost function normalized by its value of the first iteration (Figure 3.3a) does not 

decrease dramatically during the first three iterations, and then drops rapidly in the 

following several iterations when the optimization algorithm gathers more information 

from the previous iterations.  By iteration 7, it drops to 17% of the value from the first 

iteration with negligible change following subsequent iterations.  The evolution of the 

gradient norm normalized by its value from the first iteration is similar to that of the cost 

function (Figure 3.3b).  Since the system is based on several assumptions, it is 

reasonable to have a non-monotonically decreasing cost function (more details of this 

will be given in the following chapter).   

 

The SSH field (Figure 3.4) is effectively adjusted by the assimilation technique and 

reaches a state that is closer to the observation field.  The biggest difference between the 

first guess and the observation is the big anticyclonic eddy in the northwestern Gulf of 

Mexico.  It disappears after the assimilation procedure and the SSH field in the area 

around Cuba improves dramatically.  The root mean square error (RMSE, which is 

defined in the form of 2)),,(),,(( tyxSSHtyxSSH obs− , where  means a time average 

over the assimilation window) fields (Figure 3.5) supply a better comparison.  The 

RMSE averaged over the model domain, defined in a way equivalent to the square root of 

the cost function, behaves in a similar way as the cost function.  The 18°C isotherm map 

(Figure 3.6) indicates that vertical normal mode decomposition and reconstruction 

effectively transfers the information observed at the sea surface to deep layers.  Since 

the adjoint model has only one vertical layer due to the simplified dynamics, it takes 

much less time (around 1/30 of the computational time required by the NCOM) than the 

forward model run. 
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Figure 3.3.  The normalized cost function (top) and the normalized gradient norm 

(bottom) with respect to the iteration number in experiment one. 
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Figure 3.4.  SSH synoptic maps (at model day 9) of the initial guess (top) and iteration 

10 (bottom). 
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Figure 3.5.  The root mean square error (RMSE) of SSH of the initial guess (top) and 

iteration 10 (bottom) computed from the control run SSH fields. 
 
 



 35

 
 

98˚W 96˚W 94˚W 92˚W 90˚W 88˚W 86˚W 84˚W 82˚W

16˚N

18˚N

20˚N

22˚N

24˚N

26˚N

28˚N

30˚N

Longitude

L
a
t
i
t
u
d
e

Experiment One: 18C Isotherm (”Truth”) at Day 9 

10
00

2
0
0
0

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0 m

 
 
 

98˚W 96˚W 94˚W 92˚W 90˚W 88˚W 86˚W 84˚W 82˚W

16˚N

18˚N

20˚N

22˚N

24˚N

26˚N

28˚N

30˚N

Longitude

L
a
t
i
t
u
d
e

Experiment One: 18C Isotherm (First Guess) at Day 9 

10
00

2
0
0
0

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0 m

 98˚W 96˚W 94˚W 92˚W 90˚W 88˚W 86˚W 84˚W 82˚W

16˚N

18˚N

20˚N

22˚N

24˚N

26˚N

28˚N

30˚N

Longitude

L
a
t
i
t
u
d
e

Experiment One: 18C Isotherm (Iteration 10) at Day 9 

10
00

2
0
0
0

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0 m

 
 
 
 
Figure 3.6.  The 18°C isotherm depth (at model day 9) of the “truth”, or control run 

(top), the first guess (lower left) and iteration 10 (lower right). 
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3.2 Idealized Experiment Two 

 

This experiment is designed to simulate a more realistic scenario in which the SSH is 

sparsely sampled by satellite altimeters.  The model configuration is the same as in 

experiment one.  After the eleven-year spin-up period the NCOM is run for an 

additional 100 days.  Rather than assimilating the SSH field with the native model grid, 

the model SSH data are sampled along locations corresponding to T/P and Jason-1 

observation locations every ten days.  The mapping technique, described in Chapter 2, is 

applied to interpolate the data to the native model grid in space and to a one-day interval 

over time between day 90 and day 99 as the observations.  The comparison between the 

mapped SSH data and the model truth SSH fields (Figure 3.7) shows that the gridded 

SSH constructed from the mapping method represents the original field well.   

 

The NCOM model state at the end of the 11-year spin-up period (before the additional 

100 days of integration) is taken as the first guess of the assimilation and the same 

assimilation procedure is applied.  Thus, the first guess is a perturbation from the truth 

as they are separated in time by 90 days.  The cost function reaches 36% of its value at 

the first iteration after iteration six with a rapid reduction of the cost function and the 

normalized gradient norm during the first four iterations (Figure 3.8).  The comparison 

between the truth and the NCOM outputs (Figure 3.9) shows the improvement of the SSH 

field during the assimilation, e.g., the shape of the large anticyclonic eddy in the 

northwestern Gulf is closer to the truth; the positions and shapes of the eddies at Bay of 

Campeche are improved; and the shedding of an anticyclonic eddy at the end of the 

assimilation window is recovered.  The surface velocity field is also dynamically 

consistent with the SSH field.  The SSH RMSE (Figure 3.10) gives a clearer comparison 

between the truth and the model outputs.  Two 10-day forecasts are conducted in order 

to show the impact of the assimilation on forecasting.  The first one takes the model 

state of the first guess at day 9 as the initial condition and the second one takes that of 

iteration 13 at day 9 as the initial condition.  The SSH RMSE (Figure 3.11 ) of these two 
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Figure 3.7.  (a) Top left: Control run (“truth”) SSH field from experiment two.  Top 

right: SSH field constructed by applying the CEOF mapping technique to values 
sampled along locations corresponding to T/P and Jason-1 observation locations 
(black dots) every ten days.  Bottom: Difference between the two SSH fields.  All 
fields are from model day 0. 
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Figure 3.7.  (b) Same as Figure 3.7(a) except that the results at model day 5 are shown. 
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Figure 3.7.  (c) Same as Figure 3.7(a) except that the results at model day 9 are shown. 
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Figure 3.8.  The normalized cost function (top) and the normalized gradient norm 

(bottom) with respect to iteration number for experiment two. 
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Figure 3.9.  (a) The SSH and surface velocity synoptic maps of the initial guess at 

model day 0 (top) and model day 9 (bottom). 
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Figure 3.9.  (b) The SSH and surface velocity field synoptic maps at model day 0 (top) 

and model day 9 (bottom) of iteration 13. 
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Figure 3.10.  The RMSE of SSH of the initial guess (top) and iteration 13 (bottom) 

computed from the control run SSH fields. 
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Figure 3.11.  The RMSE of SSH following a 10-day forecast from the first guess (top) 

and from iteration 13 (bottom). 
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experiments from the truth field shows the improvement of the forecast achieved by 

improving the forecast initial state using the assimilation procedure. 

 

 

3.3 Experiment Three: Application to Real Data 

 

The data assimilation technique is applied to a real-world case in this experiment.  

The model configuration and the initial guess remain the same as in the previous 

experiments.  The observation fields are derived from T/P and Jason-1 along-track SSH 

data and the mapping method is used to interpolate the along-track data to a regular grid.  

While it is acceptable for this application to assume that the observation time for each 

point within each ground track in the domain is the same for each cycle, the observations 

from different ground tracks are by no means simultaneous.  Therefore, synchronization 

of the data from different tracks is necessary.  The data from each track are processed 

first and interpolated to the same time grid with the mapping method, and then the same 

technique is applied to the synchronized data from all tracks as a whole data set to map 

the data to the model grid at one-day time intervals (Figure 3.12) as the observation fields 

to be assimilated. 

 

The cost function decreases to 25% of its value of the first iteration at iteration ten 

(Figure 3.13).  Visual comparison between the observations and the model outputs 

(Figure 3.14) and the RMSE of the model SSH relative to the gridded altimeter data 

(Figure 3.15) show the improvement of the SSH field by assimilating the observations.  

The strong anticyclonic eddy in the northwestern Gulf of Mexico, which is in the first 

guess but not observed by the satellite altimeters, completely disappears and the features 

around Cuba are successfully recovered.  The assimilation procedure has the added 

benefit of dynamically smoothing irregularities in the mapped SSH into a more 

physically realistic field.  It should be noted that for forecasting purposes, the field at the 

end of the assimilation cycle would be used as the initialization state for the forecast 
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model run.  The SSH data are also compared over the along-track observation locations.  

The along-track SSH RMSE computed along the altimeter ground tracks (Figure 3.16) 

behaves in a manner consistent with that of the cost function and drops to 43% of its 

value from the first iteration. 
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Figure 3.12.  Synoptic maps of the gridded SSH fields produced using CEOF mapping 

method applied to T/P and Jason-1 data shown at model day 0 (January 9, 2004) and 
model day 9 (January 18, 2004).  
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Figure 3.13.  The normalized cost function (top) and the normalized gradient norm 

(bottom) with respect to the iteration number for experiment three. 
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Figure 3.14.  (a) Synoptic maps of SSH and surface velocity for the initial guess at 

model day 0 (top) and model day 9 (bottom). 
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Figure 3.14.  (b) Synoptic maps of SSH and surface velocity during iteration 14 at 

model day 0 (top) and model day 9 (bottom). 
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Figure 3.15.  The RMSE of SSH of the initial guess (top) and iteration 14 (bottom) 

computed with respect to the gridded observation fields. 
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Figure 3.16.  SSH RMSE between the model and the along-track satellite altimeter data 

plotted against iteration number. 
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4. DISCUSSION 
 

 

The new variational data assimilation technique features several traits that may be 

attractive to the ocean modeling and forecasting community.  This method is based on 

the first baroclinic mode approximation, which relies on the fact that the vertical structure 

of the ocean can be decomposed into different vertical normal modes.  Since over much 

of the ocean the first baroclinic mode is dominant, it can provide a good approximation 

for many oceanic features of interest.  This is valid especially for observations like SSH, 

for which the first baroclinic mode is mainly responsible.  While in most conventional 

adjoint methods the adjoint model is constructed based on the forward model, for this 

research, it is constructed from an adjoint of a reduced gravity model with simplified 

dynamics.  The forward and backward models are dynamically linked by vertical normal 

mode decomposition and reconstruction.  As a consequence, the assimilation method is 

able to be designed in a modular fashion.  Therefore, it could be applied to other 

three-dimensional ocean models without major changes as long as the first baroclinic 

mode is dominant in the region being modeled.  This feature of the assimilation system 

is advantageous considering the extreme effort required for developing the adjoint of a 

complex ocean model.  Additionally, this feature aids model intercomparison studies 

since different models can be run with the identical data assimilation system. 

 

Another advantage of this data assimilation method is its potential for significantly 

decreasing the computational cost of applying a variational approach.  Since it is based 

on a simplified dynamical model, the backward model requires fewer dynamical 

variables and is only two-dimensional (no vertical dependence) compared to the forward 

model with three spatial dimensions and more complicated physics.  For the application 
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to the NCOM simulation used here, the dimension is reduced from 60 vertical layers and 

five prognostic variables in the forward model (and a traditional adjoint model would 

have the same grid size) to one vertical layer and three variables in the backward reduced 

gravity adjoint.  Thus the backward model has a significantly lower computational cost 

than would an adjoint based on the forward model. 

 

For the application of the reduced space variational method presented here, a new 

technique has been developed for producing regularly gridded SSH data sets from rather 

sparsely sampled satellite SSH observations.  Poor coverage of oceanic observations 

requires that numerical ocean circulation models act as dynamical interpolators or 

extrapolators, which propagate information from data-dense areas to data-sparse regions.  

Since many oceanic features move quite slowly, a long assimilation cycle is required in 

order to provide enough time for the information transference.  An alternative to this 

approach is the use of a statistical interpolator for the observations based on complex 

EOF analysis.  This technique considers the propagation of information based on the 

observations from a much longer period compared to the assimilation window and 

obtains a data set with a finer regular grid.  This reduces the duration of the assimilation 

window required for the model to capture the propagation of observed features.  The 

preliminary results of this method indicate that it is a powerful and efficient tool for 

interpolating satellite along-track data.  There are other good gridded SSH data sets and 

mapping methods that could be used in this assimilation system.  However, the 

performance of the system crucially relies on the quality of the gridded data set and so 

special attention must be paid when choosing from them. 

 

In addition to the choice of gridded SSH product for assimilation, several other 

choices and assumptions have been made when applying the technique for this project, 

and the consequences of these choices on the effectiveness of the assimilation technique 

must be considered.  Vertical normal mode decomposition decomposes the ocean 

vertical structure into different vertical normal modes by separating the vertical 
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dependence from each mode.  Vertical normal mode reconstruction uses the vertical 

dependence function (the eigenfunction) corresponding to the first baroclinic mode to 

update the first baroclinic component prior to reconstruction of the full model SSH, 

velocity, and density variables at the end of each assimilation iteration.  This allows the 

assimilation system to effectively transfer information observed at the ocean surface 

throughout the water column in the model.  Since vertical normal mode decomposition 

is based on the domain averaged vertical density profile in this research, a flat ocean 

bottom assumption is necessary.  An alternative approach is to decompose the vertical 

structure based on the local density profile.  However, experiments with this method 

showed that density inversions (which are highly unlikely in the mean profile) can lead to 

non-physical values of the equivalent depth.  Further study of this issue may improve 

the implementation of the reduced-space variational data assimilation technique.   

 

The conversion from the updated density fields to the temperature and salinity fields 

is based on their regressed relationship computed from the local profiles of these three 

variables.  Extrapolation, which can potentially lead to errors in the updated temperature 

and salinity fields, is sometimes necessary when using this algorithm, so quality control 

checks must be performed.  Other methods of mapping the updated density fields onto 

the model temperature and salinity fields could be developed and incorporated into the 

assimilation system in order to improve its performance. 

 

In the data assimilation technique, the purpose of running a backward model is to 

compute the gradient of the cost function with respect to the model control variables.  

Since the backward model in this research is based on the reduced gravity model 

approximating the first baroclinic mode, traditionally the cost function would have been 

defined in a consistent way based on the first baroclinic mode component.   However, 

since the only observation assumed to be available is the SSH, vertical normal mode 

decomposition cannot be applied to get the first baroclinic mode component of the SSH 

without observing the ocean’s vertical structure.  Thus, the cost function is defined using 
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the full SSH field (that is, the distance between the full model SSH and the SSH 

observational field).  Though this is a reasonable approximation considering the 

dominance of the first baroclinic mode in the SSH field, this and other assumptions made 

during the application of the assimilation method lead to some unusual behavior of the 

cost function compared to other studies using the variational data assimilation method.  

For example, the cost function is not always a monotonically decreasing function and 

does not always converge to a small value. 
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5. SUMMARY 
 

 

A new variational data assimilation technique based on the first baroclinic mode 

approximation of the three-dimensional ocean dynamics has been developed and tested in 

this study.  The results of the tests conducted with this technique demonstrate that it is a 

viable alternative to the conventional variational data assimilation method for 

assimilating satellite altimeter data into a three-dimensional ocean model.  The modular 

design makes the assimilation system more flexible; not only the ocean model, but also 

the other components of the system can be replaced with different techniques and 

algorithms.  For example, a different statistical interpolation algorithm, or mapping from 

density to temperature and salinity could be substituted rather easily.  The incorporation 

of the statistical interpolator and vertical normal mode decomposition contributes to a 

more computationally efficient data assimilation system.  The mapping technique 

successfully recovers the information in data-sparse areas (areas between satellite 

altimeter ground tracks in this study) and makes the assimilation window shorter.  The 

computational cost is also reduced by using an adjoint based on a one-active-layer 

reduced gravity model with simplified dynamics, which leads to a reduced number of 

dimensions and model variables in the backward model. 

 

Forecasting mesoscale ocean processes requires accurate initial conditions that can 

be improved by assimilating observational data.  The application of the new data 

assimilation technique for initializing an ocean forecast is summarized as follows.  First, 

the ocean dynamics within a model region must be analyzed to ensure that the 

assumption that the SSH is dominated by the first baroclinic mode is valid.  Next, the 

forward model is integrated for some assimilation time period.  A cost function is 
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computed, which involves the forward model SSH misfit to a prescribed SSH 

observational field (in the test cases, a new CEOF based interpolation method has been 

used to construct this SSH field from satellite altimeter data).  The three-dimensional 

model fields are decomposed into their vertical normal modes, and the first baroclinic 

mode variables are used in computing the reduced gravity adjoint model, which is 

integrated backward in time.  The gradient of the cost function with respect to the model 

control variables is used to adjust the variables to reduce the size of the cost function 

based on a numerical optimization method (the L-BFGS method).  The adjusted first 

baroclinic mode variables are then substituted to reconstruct the full model fields at the 

beginning of the forward model integration time by summing their vertical modes.  This 

procedure is iterated initializing the forward model with the updated fields until the cost 

function asymptotes to some small value.  As a consequence of simplifications and 

assumptions made to the variational data assimilation method, a perfect convergence of 

the cost function may not be obtained.  Finally, the model fields at the end of the 

forward model integration at the last iteration provide a more accurate description of the 

state of the ocean at that time than the first guess, and can be used to initialize an ocean 

model forecast. 

 

The main goal of this study is to develop a new effective and efficient method for 

assimilating satellite altimeter data that can be applied to a number of different ocean 

models.  The method has been successfully applied to a model of the Gulf of Mexico 

that has high resolution in all three spatial dimensions.  Experiments have been 

conducted to test the effectiveness of the method, and to demonstrate its applicability to a 

real-world case by assimilating an SSH data set produced from satellite altimeter data 

using a new gridding technique.  It is not assumed that all the choices made for these 

tests will ultimately prove to be the best.  Nevertheless, the technique shows great 

promise for future studies and possibly operational implementation.  The quality and 

performance of the assimilation system can likely be improved by replacing some 

algorithms used in the application of this research with other options, which shows the 



 59

advantage of the modularly designed system. 
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APPENDIX A 

VERTICAL NORMAL MODE DECOMPOSITION FROM 

NCOM EQUATIONS 
 

 

Following Philander (1990), a method of computing vertical normal modes is derived 

from the NCOM model equations.  The NCOM equations are as given in continuous 

form in equations (2.28-2.34).  The model equations are simplified as follows.   

 

First, the equation of state is simplified to a linear form as 
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So the time dependence of density can be written as 
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Expanding the material time derivative as 
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allows the equations (2.32) and (2.33) to be substituted to obtain the form 
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where the subscript z stands for z∂∂  and the subscript t stands for t∂∂ . 

 

By again using equation (1A) it can be shown that 
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Substituting (5A) and (6A) into (4A) gives a prognostic equation for density 
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that can replace equations (2.32-2.34).  Equation (7A) and equations (2.28-2.31) are the 

reduced set of equations. 

 

The problem needs to be further simplified by linearization of the above equations.  

To linearize these equations it is necessary to assume that the ocean, in its basic state, is 
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motionless and has density )(zρρ = , which is a function of depth only.  Motion and its 

associated density variation ),,,( tzyxρ′  are considered as small perturbations to this 

basic state.  For the sake of mathematical convenience, it is assumed that 
2NAKK HM == , where N is defined as 2/1

0 )( ρρ zgN −=  (the Brunt-Väisälä 

frequency) and A is a constant. 

 

With these assumptions and neglecting the source term Q and solar radiation Qr, the 

linearized unforced NCOM equations become 
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ρ  is eliminated by substituting (10A) into (12A) yielding 
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The method of separation of variables is applied by assuming 
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where m is the mode number and M is the upper limit for m which goes to infinity for 

continuous functions. 

 

Substitution yields 
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where the subscript m has been dropped.  By rewriting (20A) as 
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where h is the constant of separation, one gets 
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zghSR −= .               (23A) 

 

Separating the z-dependence in (18A) and (19A) yields 
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Both (24A) and (25A) lead to  
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Plugging (23A) into (26A) yields 
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which is integrated vertically to arrive at the relation 
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where C is an arbitrary constant. 
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Assuming 0=S  and 0=zzS  at the bottom leads to 0=C  and (28A) turns to 
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The boundary conditions are given by 
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Substituting (16A) and (17A) into (31A) leads to 
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So, 
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Thus, the vertical normal mode decomposition problem is reduced to the following 

equations: 
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with boundary conditions: 
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(36A) along with the boundary conditions (38A) and (39A) is a Sturm-Liouville 

problem, and the discrete version is an eigenvalue problem, which can be solved via 

standard numerical methods.  (33A), (34A) and (35A) are governing equations for each 

mode, which are shallow-water equations. 

 

From (36A) and (37A), the equation for R is 
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Based on the Sturm-Liouville general solution, the eigenfunctions, Rn, form a 

complete set and are orthogonal in the sense that 
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The baroclinic modes can be obtained as 
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So, 
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APPENDIX B 

DERIVATION OF THE ADJOINT OF THE REDUCED 

GRAVITY MODEL 
 

 

Adjoint equations are derived from the equations for a reduced gravity ocean model, 

using the calculus of variations and forming a Lagrange cost function by adding the 

constraints multiplied by the Lagrange multipliers. 

 

The cost function is defined as 
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Assuming the observation errors at different locations are uncorrelated and the 

observation error variances are constant reduces Km to a constant.  So (1B) can be 

rewritten as 
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where uλ , vλ , and hλ  are the adjoint variables with respect to the control variables, U, 

V, and η .  At the minimum of the cost function, F has a stationary point, and its first 

variation with respect to all control variables must vanish.  In order to find the adjoint 

equations, one has to set the first derivative of the associated Lagrange function to zero, 

i.e., 
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where the initial conditions, 0| ==τλ tu  and 0| =tU  are used.   
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So, the governing equation for uλ  is  
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Similarly, when (4B) is considered, 

 

[ ]∫ ∫−=−
∂
∂

tyx tyx
uu dxdydtfdxdydtfV

V ,, ,,

11 λ
α

λ
α

,       (11B) 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

∂
∂

=
∂
∂

∫∫∫
tyx

v

tyx
v

tyx
tv dxdydt

t
VdxdydtV

tV
dxdydtV

V ,,,,,,

)(11 λ
λ

α
λ

α
 

dxdydt
ttyx

v∫ ∂
∂

−=
,,

1 λ
α

,             (12B) 

∫ ∫=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

tyx tyx

v
v dxdydt

gh
A

dxdydt
gh
AV

V ,, ,,

11 λ
α

λ
α

,       (13B) 

[ ]∫ ∫ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

=
∂
∂

tyx tyx tyx

h
yhyh dxdydt

y
VhdxdydtVh

V
dxdydthV

V ,, ,, ,,

)(
λ

λλ  

dxdydt
y

h
tyx

h∫ ∂
∂

−=
,,

λ
.             (14B) 

 

So, the governing equation for vλ  is 
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Consider (5B), 
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Similarly, 
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So, the governing equation for hλ  is  
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Reorganize the above equations 
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For the scaling purposes, let hg=α , and the equations become 
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