Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

WREF Tiger Team Documentation: The Registry

John Michalakes, NCAR
Daniel Schaffer, NOAA/FSL

Revision history:
WREF Software Design and Implementation Document, Section 5. August, 2001. Michalakes
Updated to WRF 2.0. June, 2004. Schaffer; Broken out as separate document. June 2004. Michalakes

1 of 15 05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

CONTENTS

1. INTRODUCTION
2. REGISTRY CONTENTS

2.1. DIMSPEC ENTRIES

2.2. STATE ENTRIES

2.3. 11 ENTRIES

2.4. TYPEDEF ENTRIES

2.5. RCONFIG ENTRIES

2.6. PACKAGE ENTRIES

2.7. HALO AND PERIOD ENTRIES
2.8. XPOSE ENTRIES

APPENDIX: TABLE OF REGISTRY FILES

20f 15 05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

3o0f15

1. Introduction

The WREF software infrastructure provides a high level of flexibility with respect to computer architectures, dynamical cores,
applications, and external libraries. The Registry is a computer aided software engineering (CASE) mechanism built into the WRF
software framework to help manage this complexity as the model continues to develop. In addition, the Registry is serving as a first
prototype for the eventual development of a sophisticated Application-Specific Interactive Develop Environment (ASIDE), the next
step beyond computational frameworks.

The Registry as currently implemented in the WRF framework consists of a database of information about a source code as well as
a program for manipulating that information to help manage the code. The registry provides a great deal of high-level single-point-
of-control over the fundamental structure of the model data, and thus provides considerable flexibility for supporting multiple
dynamical cores, application-specific data structures (e.g. arbitrary number of tracer arrays), and transparent and package
independent management of parallel communication. The registry automatically generates sections of code that would be the most
error-prone and effort intensive to manage by hand: generating code to declare, allocate, and initialize state data; generating dummy
argument lists and their declarations, as well as actual argument lists used when passing state data between subroutines at the
interface between layers in the WRF software architecture (driver, mediation, and model layers); generating calls to routines for
initial (first guess), restart, history and boundary I/O for selected state data fields; generating halo-exchange, periodic boundary
updates, transpose, and nesting communications for selected state data fields in selected patterns; generating code that defines, sets
defaults for, inputs, broadcasts among processors, and makes available to the code the variable=value (namelist) information used
to configure the running application; etc. Adding or modifying a state variable to a model involves modifying a single line of a
single file. The registry provides a single point of control -- the registry data base -- for making changes that affect many different
aspects of the code.

A number of functions of the registry have or will be mentioned elsewhere:
Define state fields in the domain DDT (module domain.F). Page 9.
Generate ALLOCATE statements for state arrays in domain DDT (module_domain.F). Page 9.

(

(

(Generate model configuration inquiry routines (module configure.F). Page 9.

(Generate assignments of namelist configuration data to fields in the domain DDT. Page 27.
(

Generate actual arguments to the solve routine, dereferencing the domain DDT. Page 30.

There are other functions as well:

(Generate dummy arguments and their definitions in the solve routine.
(Generate code to read and write fields in /O modules (e.g. module _io wrf.F).
(Generate communication package specific code (e.g. inc/rsl rk data calls.inc).

The Registry also provides a means of defining packages and associating fields and symbolic names for indices into the 4D scalar
arrays with these packages. It defines the configuration variables that appear in the WRF namelist file and their meanings. The
Registry is currently implemented as a flat ASCII text file, Registry/Registry. The program that interprets the registry and generates
files in the inc directory is tools/registry. Source code (C language) for the program and a Makefile are also included in that
directory. The registry program is designed to be extensible; for example, to add interfaces to new communications, I/O, or other
external packages to WRF.

Logically, the registry data base is a collection of tables that describe the dimensions, derived types, state fields, il fields, packages,
and communication operations (for halo updates, periodic boundary communications, transposes, and nest interpolations).
Registry/Registry contains all the entries of all the tables as white-space delimited tuples. The table membership of each tuple is
determined by the first element; thus, entries from different tables may be listed in any order and intermixed, though for readability
one generally organizes the entries from each table in a block. The caveat for this is that the registry mechanism is single-pass;
thus, if an entry of the registry depends on definitions of other entries, these must have been defined already (above) the definition
that uses them. Comments in the registry begin with a # character and extend to the right to the end of the line. Certain elements
are allowed to contain spaces; these must be enclosed within double quotes (). Elements may not contain quote characters.

2. Registry Contents

The Registry file contains entries for a number of tables:

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

4 of 15

(Dimspec -- Describes dimensions that are used to define arrays in the model
(State — Describes state variables and arrays in the domain DDT
(I1 — Describes local variables and arrays in solve

Typedef -- Describes derived types that are subtypes of the domain DDT[]]

Rconfig — Describes a configuration (e.g. namelist) variable or array
Package — Describes attributes of a package (e.g. physics)

Halo -- Describes halo update interprocessor communications

Xpose -- Describes communication for transposition of a variable between decompositions
Initialization -- Describes communications and data for nest initialization from the coarse domain

(
(
(
(
(Period -- Describes communications for periodic boundary updates
(
(
(Force -- Describes communications and data for forcing of nest boundary arrays
(

Feedback -- Describes communications and data for nest feedback onto the coarse domain

2.1. DIMSPEC ENTRIES

Dimspec Table entries provide a way to define dimensions that can then be used in the definitions of arrays in the State, 1, and
Typedef Tables of the Registry. As with any Registry-defined entity, a dimension must be defined before it can be used in the
Registry file. The fields of a Dimspec entry are:

Entry: The keyword “dimspec”

DimName: The name of the dimension (single character)

(
(
(Order: The order of the dimension in the WRF framework (integer: 1, 2, 3, or *-)
(HowDefined: specification of how the range of the dimension is defined

(

CoordAxis: which axis the dimension corresponds to, if any (X, Y, Z, or C)
(DatName: metadata name of dimension
DimName is a single character name that will identify the dimension in specification strings used in State, 11, and TypeDef entries.

Order specifies with which of the internal WRF framework sets of dimension variables the dimension being defined here is
associated. In other words, is it associated with the sd31:ed31,[...], sd32:ed32,[...], or sd33:ed33,[...] set of dimension variables
(these are defined in frame/module domain.F). Note that this does not determine the storage order (the order of indices) of the
individual state arrays; individual storage order is specified in the State, I1, or TypeDef table entry for each array.

The registry infers the mapping of WRF framework internal dimensions to the coordinate axes of the domain according to the
combination of the order specification, here, and the coordinate axis (below) specified in this table, and will set the WRF global
variable MODEL ORDER accordingly in the registry-generated file model data order.inc, included by the WRF source file
frame/module driver constants.F. Note that it is all right to have more than one dimension name for, say, the x dimension.
However, the Order and Coord-axis relationship must be consistent throughout.

HowDefined specifies how the dimension is defined for the domain. This may be done in one of three ways:

(standard domain
(namelist=[<start namelist var>:]<end namelist variable>
(constant=[<start constant>:]<integer constant>

A dimension may be defined as being a “standard domain” dimension, in which case the size of the dimension is specified by the
associated internal set of dimension variables in the WRF framework. A dimension's range may be specified by namelist variables.
Two namelist variables may be used to specify a starting and ending indices; if only one namelist variable is specified, the
beginning index is assumed to be 1. The namelist variables must be defined in the registry's Rconfig table. Lastly, the dimension
may be a constant start and end. If only one integer constant is provided, the starting range is assumed to be one.

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

50f15

CoordAxis specifies which coordinate axis the dimension is defined for. Allowable entries are X, Y, Z, or C. An entry of C means
that the dimension is not associated with a coordinate axis of the domain.

DatName is a string that provides a meaningful name by which this dimension is known in the metadata contained in WRF data
sets that are read/written by the program. If this is not specified, the particular implementation of the WRF I/O API may choose its
own metadata name or leave it without a name.

2.2. STATE ENTRIES

The State Table is used to define WREF state variables that will be fields in the domain derived-data-type in module domain.F. State
variables may have simple types or may themselves be derived data types in the registry; these types, in turn may contain derived
data types. Although the WRF model itself does not use derived subtypes in the domain DDT, other applications may require this.
The fields of a state entry are:

Entry: The keyword “state”

Type: The type of the state variable or array (real, double, integer, logical, character, or derived)
Sym: The symbolic name of the variable or array

Dims: A string denoting the dimensionality of the array or a hyphen (-)

Use: A string denoting association with a solver or 4D species array, or a hyphen

Stagger: String indicating staggered dimensions of variable (X, Y, Z, or hyphen for no staggering)
10: String indicating whether and how the variable is subject to I/O

(
(
(
(
(
(NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for scalars)
(
(
(DName: Metadata name for the variable

(

Descrip: Metadata description of the variable

{ Units: Metadata units of the variable

Type may be simple or derived. A derived data type must have been previously defined in the registry in the Typedef table (see
below). Note, derived data types are discouraged in the WRF model registry but may be used in other applications implemented
under the WRF framework.

Svm is the base name of the variable as it will be known in the model except when the variable is a member of a four dimensional
scalar array. If the variable has only one time level ('1' or '-' in the NumTLev column, #6) then the name in the registry is the name
in the code; if there is more than one time-level then there are separate names in the code for each time-level, named <name> 1,
<name> 2, and so on.

If the variable is a member of a 4D species array, the modifier 'f' appears in the Dims column (#4) and the name of the 4D species
array appears in the Use column (#5). In all cases, F90 naming rules apply for this entry.

Lastly, if a variable is associated with a particular dynamical core (dyn_<corename> appears in the Use column (#5)), the variable
is known as <corename> name within the driver layer; that is, this is the name of the field in the TYPE(domain) in

module domain.F. Below the point in the mediation layer where fields are dereferenced from TYPE(domain) the variable is known
without the <corename>_prefix.

Dims specifies the dimensionality of the state field. The entry is a string of single-character dimension names followed by single
character modifiers, if any. The dimension names are those that have been previously defined in the Dimspec table (see above). The
number of dimensions is inferred from the number of dimension names in the string. The index order is denoted by the order that
the names appear, where the fastest varying stride-one variable is leftmost. Zero-dimensional state variables may be indicated with
an hyphen (-) in this column.

Modifiers appear in the string after (to the right) of the last dimension name. Modifiers are:

f The variable is a member of 4D array of fields. The name of the 4D array
appears in the Use column (#5). The variables must be three dimensional,
and the index order must match the index order of the other members of

the array. [2]

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

6 of 15

t This applies only to 4D arrays (so this must be specified only with the f
modifier). It causes the registry to also generate a 4D tendency array in
the I1 data called <arrayname>_tend.

X The 2D decomposition of the 3D array is such that all elements in the X
dimension are on-processor (the default is for all elements in the Z
dimension to be on processor.) Applies only to 3D arrays.

y The 2D decomposition of the 3D array is such that all elements in the Y
dimension are on-processor. Applies only to 3D arrays.

b The 2D or 3D array is a lateral boundary array. The registry is allowed to
define and allocate this array in a way that excludes the interior.@

The following examples assume that i, j, and k have been defined (using DimSpec entries) to refer to the X, Y, and Z coordinate
axes of the model domain:

Dims Description

3D array whose dimensions are ordered XZY and whose Z dimension is

ikj non-decomposed
iKix 3D array whose dimensions are ordered XZY and whose X dimension is
) non-decomposed
e 3D array whose dimensions are ordered XZY and whose Y dimension is
Iy non-decomposed
ij 2D array whose dimensions are ordered XY
k 1D array whose dimension is Z
ikjf A 3D array that is a member of the 4D array whose name is specified in the

<use> field (see below)

A 3D array that is a member of the 4D array whose name is specified in the
ikjft <use> field (see below) and that has an associated tendency in the 4D
tendency array whose name is <use>_tend.

ikjb Defines a 4D array with dimensions: (max(x,y),spec_bdy width,z,4)
ijb Defines a 4D array with dimensions: (max(x,y),spec_bdy width,1,4)
- A scalar

Use is a string that gives additional usage information about the variable. It can be used to specify whether a variable is associated
with a particular dynamical core, in which case the first four characters of the use string must be "dyn_". In the case the field is a
members of a 4D species array (dimstring has 'f' modifier), the use field tells the name of the 4D array (e.g. moist, or chem).
Otherwise the use field is strictly informational and can have any string, or just '-'.

In the case of 4D species arrays, the use field provides the name of the array as it is stored in the domain derived data type and
passed in through the argument list to the mediation/model layer routines. If the number of time levels (NumTLev) is greater than
one, there is a 4D state array for each time level with 1, 2, and so on, appended to the array name.

In the case where the state variable being defined is associated with a particular dynamic core (e.g. dyn_eh, for
Eulerian/Height-based vertical coordinate), the variable will be defined as a field in the driver layer derived data type but will only
be allocated if that dynamics option is selected in the namelist.

The registry keeps track of the set of dynamic cores that are specified in the use entries of all the registry state arrays and then
generates a set of include files in the inc directory for each dynamical core:

<core> allocs.inc allocate statements for <core>'s state arrays
<core>_ actual args.inc actual argument list for <core>

<core> dummy _args.inc dummy argument list for <core>

<core> dummy_decl.inc declarations of dummy arguments for <core>

The set of arrays in each of these files will be the dyncore specific fields plus the non-dyncore-associated fields.

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

7 of 15

Four-dimensional arrays of fields ('f' modifier in dimstring) may not be core associated.

'

NumTLev is an integer that specifies the number of time-levels for a variable: may be 1, 2, 3, or '-' (which implies 1). If a variable
has only one time level it is know by its registry name in the code (with a core prefix at the driver level if the variable is
core-associated). If the variable is two time level or greater, multiple instances are created and the name of each instance has an
underscore and a time level appended as discussed previously.

In the case of fields that are members of 4D arrays, the name of the 4D array (not the field name) is appended with underscore and
time level.

Boundary arrays (Dims has 'b' modifier) may not have multiple time levels.

Stagger is a string that specifies the staggering, if any, for a variable. The string may consist of X' (denoting an extra element in the
X dimension), 'Y' (extra element in Y) or 'Z' (extra element in Z) in any order or combination. An entry of '-' denotes no staggering.

(In the current implementation of WREF, all state arrays are over-dimensioned to include the extra element in each dimension
whether or not the field is staggered. The specification of staggering in the registry is important for I/O, which does not include the
extra element when the field is written to or read from a dataset.)

10 is a string that specifies if the variable is to be subject to initial, restart, history, boundary I/O or nesting interpolation. The string
may consist of 'h' (subject to history I/O), 'i' (initial dataset), 'r' (restart dataset), or 'b' (lateral boundary dataset). The nesting section
below lists other possible letters. The 'h', 't', and 'I' letters may appear in any order or combination. Any dimension variable except
one whose Dims element contains the 'b' modifier may be included in history, initial, or restart I/O. In addition, the ‘h’ and ‘i’ letters
may be followed by an optional integer string consisting of ‘0, ‘1°, ‘2°, “3°, ‘4’ and/or ‘5’. Zero denotes that the variable is part of
the principal input or history I/O stream. The characters ‘1’ through ‘5’ denote one of five auxiliary input or history I/O streams. If
an integer string appears after ‘i’ or ‘h’ then the variable is removed from the principal input or history data stream unless it is
explicitly added to the stream using the character ‘0’. Examples:

irh -- The state variable will be included in the input, restart, and history I/O streams,

irh13 -- The state variable has been added to the first and third auxiliary history output streams; it
has been removed from the principal history output stream, because zero is not among the integers in
the integer string that follows the character 'h’,

rh01 -- The state variable has been added to the first auxiliary history output stream; it is also
retained in the principal history output,

1205hr -- Now the state variable is included in the principal input stream as well as auxiliary inputs
2 and 5. Note that the order of the integers is unimportant. The variable is also in the principal
history output stream, and

irl2h -- No effect; there is only 1 restart data stream.
Variables with multiple time levels are handled as follows:
History Only time level two is input/output

Initial Only time level two is input/output and timestep one is copied
from two on input

Restart Both time levels are input/output separately and DName is
appended with underscore and time-level in metadata

State variables that are members of 4D arrays ('f' modifier in dimstring) are input and output to history, initial, or restart dataset as
individual fields. There is no mechanism for performing I/O on an entire 4D array.

If 'b' is specified it must appear by itself and the dimstring must also contain the 'b' modifier. Only boundary arrays are read/ written
to a boundary I/O dataset.

'-"indicates that no I/O is performed on the variable.
Only state variables may be subject to /O in WRF.

NESTING: If a variable is subject to nest interpolation or feedback, operators are also specified using the /O entry of the state
entry. There are three streams that a variable may take between a coarse domain and a nested domain: down, indicated by a ‘d’
character in the /O string; up, indicated by a “u’; and force, a special form of down, indicated with an ‘f’. If the stream identifier is
specified by itself, a default interpolation subroutine is used. Down uses interp_fcn(), defined in share/interp fen.F, which is the
semi-Lagrangian interpolator, SINT, from MMS5 nesting. Up uses copy_fcn() by default, also defined in that source file. There is no
default for force; however, there is a function bdy_interp() (which also uses SINT) provided in share/interp fcn.F. When these are
specified, the state variable is passed as an argument to the interpolation routine on both the coarse domain and the nest. If the state

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

8 of 15

variable has multiple time levels, the highest numbered time level is passed.
Different functions can be specified, and additional fields can be passed into those functions, using the following syntax:
f=(my bdy fcn:dt,u b,u bt)

This will cause a different subroutine, named my_bdy_fcn, to be called instead of the default and the additional state variables dt,
u_b, and u_bt (boundary and boundary tendency arrays, respectively) will be passed for both the coarse and nested domains. The
interface to the subroutine should be as follows. Note the extra arguments defined for dt, u_b, and u_bt on coarse and nested
domains. Note also that the registry-generated call to this routine will also provide two logical arguments to the routine indicating
whether the variable is x-staggered or y-staggered.

SUBROUTINE my bdy fcn (cfld, & ! CD field
cids, cide, ckds, ckde, cjds, cjde, & ! CD domain dims
cims, cime, ckms, ckme, cjms, cjme, & ! CD mem dims
cits, cite, ckts, ckte, cjts, cjte, & ! CD patch dims
nfld, & ! ND field
nids, nide, nkds, nkde, njds, njde, & ! ND domain dims
nims, nime, nkms, nkme, njms, njme, & ! ND mem dims
nits, nite, nkts, nkte, njts, njte, & ! ND patch dims
shw, & ! stencil half width
xstag, ystag, & ! staggering of field
ipos, jpos, & ! Nest lower left in CD
nri, nrj, & ! nest ratios
cdt, ndt, & ! extra vars on CD and ND
cbdy, nbdy, [W W W
cbdy t, nbdy t & N W N W
)
IMPLICIT NONE
INTEGER, INTENT (IN) :: cids, cide, ckds, ckde, cjds, cjde, &
cims, cime, ckms, ckme, cjms, cjme, &
cits, cite, ckts, ckte, cjts, cjte, &
nids, nide, nkds, nkde, njds, njde, &
nims, nime, nkms, nkme, njms, njme, &
nits, nite, nkts, nkte, njts, njte, &
shw, &
ipos, jpos, &
nri, nrj
LOGICAL, INTENT (IN) :: xstag, ystag
REAL, DIMENSION (cims:cime, ckms:ckme, cjms:cjme) :: cfld
REAL, DIMENSION (nims:nime, nkms:nkme, njms:njme) :: nfld
REAL, DIMENSION(*), INTENT(INOUT) :: cbdy, cbdy t, nbdy, nbdy t

REAL cdt, ndt
The down, up, and force descriptions may be included in the same 1O field for a state-entry. Here is an example:

i0lrhu=(my feedback)d=(my interp:mask) f=(bdy interp:dt,u b,u bt)

This entry would specify that the state variable is input in the main input stream as well as the auxiliary-1 stream, it is part of restart
and history data, it is downward forced using the user-supplied routine my_interp() which also takes the state variable mask as an
argument; it is upward forced using the my_feedback() routine; and it is forced using the bdy_interp() routine, which takes as extra
arguments the dt, u_b, and u_bt state variables. The mask might be a land/sea mask. It must have been previously declared as a
state variable.

DName is the data name of the variable; the one by which it is known externally in the WRF metadata. If omitted or specified with
"' then the Sym name (above) is used.

Descrip is a short description that may accompany the variable in the dataset metadata. It may include spaces as long as the entire
string is quoted using double quotes.

Units is a short unit description string that may accompany the variable in the dataset metadata. It may include spaces as long as

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

90of 15

the entire string is quoted using double quotes.

2.3. 11 ENTRIES

Intermediate Level 1 (I1) data are similar to state data except that they do not persist from time step to time step and are defined
local to the solver (stack allocated). I1 entries are distinguished from state entries in the registry by the keyword 'il' as the first
entry and by the lack of IO, DName, Descrip, and Units fields (since no I/O is allowed on I1 data).

An I1 variable may be multi-time level, and if so, the name has an underscore and time-level appended as is done with state data.

The 'v','f, 't', 'x', and 'y' modifiers are not valid for the Dims of an I1 variable. Four-dimensional species arrays may not be 11;
however, as noted above, if a member of a 4D species array has 't' in its DimString, a 4D tendency array is autmoatically created as
an I1 variable. This does not need to be specified in the I1 table of the registry.

2.4. TYPEDEF ENTRIES

Entries of the registry State table are, in effect, field definitions in the WRF Framework derived data type (DDT), of TYPE
(domain). In addition to simple types, however, the fields in the WRF domain DDT may also be derived data types. The Typedef
Specification Table in the registry provides a means for defining DDTs that can then be used as types in State table entries or other
Typedef entries. The entries of the Typedef Specification Table are similar to State Table entries except the first entry is typedef
instead of state and there is an additional entry in the second position which provides the name of the type being defined. The
entries are:

Entry: The keyword “typedef”

TypeSym: The name of the derived type being defined.

Type: The type of the state variable or array (real, double, integer, logical, character, or derived)
Sym: The symbolic name of the variable or array

Dims: A string denoting the dimensionality of the array or a hyphen (-)

NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for variables)
Stagger: String indicating staggered dimensions of variable (X, Y, Z, or hyphen for no staggering)
10: String indicating whether and how the variable is subject to I/O

(
(
(
(
(
(Use: A string denoting association with a solver or 4D scalar array, or a hyphen
(
(
(
(DName: Metadata name for the variable

(

Descrip: Metadata description of the variable

(Units: Metadata units of the variable

Fields are added to a type by listing additional entries. Types may be nested; that is, the field type element of a Typedef entry may
be the name of a derived type defined by previous typedef entries. Like all other entries in the Registry, TypeDef entries for a
particular type do not have to appear consecutively; however, since a type definition must be completely defined before it can be
used in a State entry or another Typedef entry, the type definition must be completely defined before it is used. In other words, no
further typedef entries for derived type may appear after the derived type is used in a State or other Typedef entry.

A crucial difference between a Typedef Table entry and a State Table entry in the registry is that Typedef entries do not cause any
data to be allocated or defined. Only State entries and, to a more limited extent, I1 entries do that; thus, the name of the derived
type or top-level type in a nested set of derived types must ultimately appear in a State Entry to be used. Registry defined derived
types may also be used in 1 entries, in which case the data object is defined as 11 data in the program: local to the mediation layer
(stack allocated) and existing for the duration of one call to the solve routine.

Although it is legal to list a core-association with a field in a Typedef Entry, it doesn't make sense to do so. If a derived data type is
meant to be used only with a particular dynamical core, the core association should be listed with the State Table entry in which the
type is used. Since the name of a field in a Typedef table entry will be defined as a field in a derived data type in the program, the
name may be the same as the name of a State or 11 variable in the program. For example, a State variable U and a field U of a
derived data type may exist together, because the derived data type will always be reference as a field in a derived data type
(grid%typename%u versus grid%u) and no namespace collision will occur. This is not the case for metadata names in the registry,

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

10 of 15

however, and if derived data type fields are subject to I/O (i, 1, or h in the 1O string of the TypeDef entry) they must have unique
DName strings.

State declarations that have a derived data type in the Type element may not be subject to I/O; they must have '-' in the 1O element.
Here is an example:

BEGIN XB_TYPE DEFINITION

typedef xb_type integer map

typedef xb_type real grid box area ij - 1 -

typedef xb_type real dnw

END XB_TYPE DEFINITION

state xb_type xb - -

In this example, xb is of type xb_type. It consists of 3 fields: map and dnw (scalars) and grid box_area (a two-dimensional array).

2.5. RCONFIG ENTRIES

Rconfig entries specify variables and arrays that are part of the runtime configuration information that is input to the model at the
beginning of the run. Rconfig entries may apply to variables or arrays. If they are variables, they apply model-wide; if they are
arrays, they apply to individual domains (nest levels). In that case, the array is dimensioned from 1 to the number of domains in the
run. The current (June 04) implementation of the model configuration is through a namelist and, for simplicity, the discussion in
this section will assume this.

The rconfig entries have the following fields:

(Entry: the keyword “rconfig”

(Type: the type of the namelist variable (integer, real, logical — no strings yet)
(Sym: the name of the namelist variable or array
(

How set: indicates how the variable is set: e.g. namelist or derived, and if namelist, in which block (i.e. time_control,
domains) of the namelist it is set.

(Nentries: specifies the dimensionality of the namelist variable or array. Either 1 or max_domains (an integer
parameter defined in module_driver constants.F) may be specified. If 1 is specified, the variable has the same value
for all nests domains. Otherwise it varies over domain.

(Default: the default value of the variable to be used if none is specified in the namelist; hyphen (-) for no default

2.6. PACKAGE ENTRIES

Package entries in the Registry are used to define a package, for example a cumulus physics package, and associate it with an
rconfig variable for toggling between different packages, for example, between other cumulus schemes. The package entry also
indicates which species within the 4D arrays (defined in the state entries of the registry) the package uses. Based on the runtime
selection of packages, the model is able to dimension the 4D species arrays to contain the species fields that will be used on that
domain. The species indices are also set accordingly. Package entries have the following fields:

Entry: the keyword “package”,
Package name: the name of the package: e.g. “kesslerscheme”

(
(
(Associated rconfig choice: the name of a rconfig variable and the value of that variable that chooses this package
(Package state vars: unused at present; specify hyphen (-)

(

Associated 4D scalars: the names of 4D scalar arrays and the fields within those arrays this package uses

The following is a set of example package entries and an associated rconfig entry in the Registry for microphysics schemes:

package passiveqw up physics== - moist: ow

package kesslerscheme np physics== - moist: ow, go , oy

package linschene up physics== - moist: ov, oo, o ,qi,qs, qF
roeonfio integear uv vhwvsics namelist namelist 04 nay domains u}

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

This specifies that three microphysics options are associated with the namelist variable mp_physics. If mp_physics is set to 1 in the
namelist, the Kessler microphysics option is selected. If mp_physics is 2, the Lin scheme is selected. If mp _physics is set to 0, then
no microphysics is selected (passiveqv is a dummy name) but this ensures that QV will still be a field in the 4D species arrays
moist 1, moist 2, and moist_tend. If a package uses fields from additional 4D species arrays, this can be specified in the associated
4d scalars field by separating the lists with a semicolon (but no spaces): “moist:qv,qc,qr;chem:no2,03”.

Species indices are defined in the Registry-generated source file, module state description.F (in the src directory). The indices are
set to values at run time, based on which packages are selected in the namelist. This is done in the routine
set_scalar_indices from_config (module configure.F) using code in the Registry-generated include file set scalar indices.inc.

The package name is also used to generate integer parameters in the Registry-generated source file module state description.F:

INTEGER, PAPAMETER :: PASSIVEQV = 0
INTEGER, PARPAMETER :: EKESSLERSCHEME = 1
INTEGER. PAPAMETER :: LINSCHEME = 2

These may be used in F90 SELECT statements or [IF-THEN-ELSE constructs within the code by testing on the rconfig variable
mp_physics (from microphysics_driver.F):

SELECT CASE(config flagsiup physics) ! select microphysics based on namelist
CASE (KESSLERSCHEME)
CALL kessler(th_phy,
woist new(ims kms, jns P_QV),
woist new(ims kms, jus P_QC),
wmoist old(ims kms, jus P _QC),
woist new(ims kms, jus P_QR),
wmoist old(ims Jms, jus P_QR),
rho, pi phy, BATHNC, dc, =z,
ids,ide, jds,]jde, kds kde,
ims , ime, jms,jne, ks knoe,
its,ite, jts,jte, kts kte
CASE (LINSCHEME)
CALL lin et_ali{ th phy,

bt~ -)

CASE DEFAULT
WRITE(6,*) ' no microphysics for n moist = ', n moist
WRITE(&,*) ' error stop in subroutine wicrophyscis '
STOP
END SELECT

2.7. HALO AND PERIOD ENTRIES

Halo and period entries in the registry define communication operations in the model. Halo entries specify halo updates around a
patch; period entries define updates of periodic boundary conditions (in both cases these apply only to horizontal dimensions). The
first field is the keyword "halo" or the keyword "period". The second entry is the name that will be used to refer to the
communication operation being defined. The third entry is a list of information about the operation.

For halos, the third entry comprises a list of the form:

npts:f1.12,...[;npts:f1.12,...]*

No spaces separate the elements of the list. Npts specifies the number of points of the stencil to be used in updating the state arrays
named in the list following the colon. A single halo update operation may involve different stencils on different arrays and these
may be listed separated by semi-colons. There may be two or more update operations that use the same variables. However if npts
differ between the two operations then you will need separate entries in the Registry. Currently defined values for npts are:

(4 point: one cell in N,S,E, and W

(8 point: 4 point plus corners (all eight neighbors around a cell)
(12 point: 8 point plus second cell in N,S,E, and W

(24 point: 12 point plus all corner cells

(48 point: 24 point plus third cell in N,S,E, and W, plus all corners

Graphical representations of values of npts is shown in the figure below.

11 of 15 05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

12 of 15

npts—=4 npts=8 npts=12

Figure 1. Representation of the halo points updated for npts=4,8,12. Updated halo points are shown in grey.

Period entries are similar to halo entries except the form of the third entry is:

Width:f1f2,... [;width:f1 f2,...]*

where width is the number of cells to update in the periodic boundary.

2.8. XPOSE ENTRIES

Xpose entries are used to define transpositions of a variable between one decomposition and another. The three
decompositions are Z non-decomposed, X non-decomposed, Y non-decomposed. These decompositions are shown in the figure
below. Xpose entries have the following fields:

(Entry: the keyword “xpose”,

(XposeName: This name will be used by the code to refer to the transpose operation being defined as shown in the
example below.

(Use: A string that associates the transpose with a dynamical core or gives descriptive information.

(XposeVariables: A list of state variables that are the source or target of a transposition. Order is significant. The
first variable must be non-decomposed in Z, the second in X and the third in Y.

Here is an example Registry entry:

Xpose TRANS Adyn emU z U x,U y

In this case, the model code would need to contain the following at the location where the transpose is required:
#include “TRANS A z2x.incl”

In this case, TRANS A z2x.incl will contain code that transposes of U_z (Z non-decomposed) to U_x (X
non-decomposed). TRANS A x2y.incl will contain code that transposes U_x (X non-decomposed) to U _y (Y
non-decomposed) and so on.

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

z Y
Z Non- X Non- Y Non-
Decomposed Decomposed Decomposed

Figure 2. Decompositions supported by the Xpose registry entry.

13 of 15 05/31/2012 01:08 PM

Directory Structure

Appendix: table of registry files

Registry include file

Description

http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

Included by

Generated by

rk_allocs.inc

Field allocate statements for domain data structure

src/module_domain.F

args and il.pm

rk_actual args.inc

Actual argument list of state fields

src/module_dm.F

src/module _initialize.F
src/module_initialize b_wave.F
src/module _initialize hill2d x.F
src/module_initialize quarter_ss.F
src/module_initialize_real.F
src/module_initialize squall2d_x.F
src/module _initialize squall2d y.F
src/module_start.F
src/solve_interface.F

args_and _il.pm

rk dummy args.inc

Dummy argument list of state fields

src/module_dm.F
src/module_initialize.F
src/module_initialize b_wave.F
src/module_initialize hill2d x.F
src/module_initialize quarter_ss.F
src/module_initialize real.F
src/module _initialize squall2d x.F
src/module _initialize_squall2d_y.F
src/module_start.F

src/solve rk.F

args and il.pm

rk_dummy arg defines.inc

Definition statements for dummy argument list

src/module_dm.F

src/module _initialize.F

src/module _initialize b_wave.F
src/module_initialize_hill2d x.F
src/module _initialize quarter_ss.F
src/module_initialize real.F
src/module _initialize squall2d x.F
src/module_initialize squall2d_y.F
src/module_start.F

src/solve rk.F

args and il.pm

rk il.inc

Definition of I1 (intermediate) fields

src/module_dm.F
src/solve rk.F

args_and il.pm

state_namelist_defines.inc

Definitions of namelist variables

src/module_configure.F

config.pm

state_namelist_defines2.inc

Definitions without dimensions

src/module_configure.F

config.pm

state_namelist_statements.inc NAMELIST statements for namelist variables

src/module configure.F

config.pm

state_namelist defaults.inc

Default values of namelist variables

src/module configure.F

config.pm

state_namelist assigns.inc

Statements for assigning namelist variables

src/module_configure.F

config.pm

state_namelist reads.inc

Statements for reading namelist variables

src/module_configure.

config.pm

config_assign *.inc

Statements for assigning namelist variables

src/add_config_info to grid.F
src/module_configure.F

config.pm

config_*.inc

Set/get subroutines for data in model config rec

src/module_configure.F

config.pm

set scalar_indices.inc

Sets up indices into 4-D scalar arrays for a domain

src/module configure.F

config.pm

module_state description.F

Parameter statements used by model

decls.pm

state_struct items.inc

Definitions of fields in domain data structure

src/module_domain.F

decls.pm

rsl_cpp flags

Definitions of RSL comm descriptors (page 27)

arch/configure.defaults

rsl_comms.pm

rslhalos.inc

RSL halo communications

src/module dm.F

rsl comms.pm

rslperiods.inc

RSL periodic boundary communcations

src/module dm.F

rsl_comms.pm

rk il.inc

I1 (intermediate) field definitions for RK solver

src/module_dm.F
src/solve_rk.F

rsl_comms.pm

rsl_rk data calls.inc

14 of 15

Calls to register F90 state variables with RSL (page 28) src/module_dm.F

rsl_comms.pm

05/31/2012 01:08 PM

Directory Structure http://www.mmm.ucar.edu/wrf/WG2/Tigers/Registry/

src/module _initialize.F
src/module_initialize b_wave.F
src/module_initialize_hill2d_x.F
src/module_initialize quarter_ss.F
src/module initialize real.F
src/module_initialize squall2d_x.F
src/module _initialize squall2d y.F
src/module_start.F

src/solve rk.F

wrf histout.inc Calls to output state to history src/module io wrf.F wrf io.pm
wrf restartout.inc Calls to output state to restart src/module_io wrf.F wrf i0.pm
wrf initialout.inc Calls to output state to initial input data src/module_io wrf.F wrf io.pm
wrf bdyout.inc Calls to output state to lateral boundary file src/module_io wrf.F wrf i0.pm
wrf histin.inc Calls to input state from history src/module_io wrf.F wrf i0.pm
wrf restartin.inc Calls to input state from restart src/module io wrf.F wrf i0.pm
wrf initialin.inc Calls to input state from initial input data src/module_io wrf.F wrf io.pm
wrf bdyin.inc Calls to input state from lateral boundary file src/module io wrf.F wrf io.pm

[1] The WRF model itself does not use subtypes; however, this was added to accommodate other Fortran90 programs that

may be incorporated into the WRF framework in the future; for example, 3DVAR.

E When the field is an entry in a 4D array, the field name specified as the Sym entry (see above) is used to produce a
symbolic (integer variable) index into the fourth dimension of the array. This symbol is P_<symname> and is defined in the
registry-generated include file inc/scalar_indices.inc. Mediation and model layer subroutines may use these indices to access
specific fields from the 4D arrays provided that the symname is also specified with a package (see Package Table) and the package
is turned on via the namelist. Otherwise, no space is allocated in the 4D array for the field and the P_<symname> variable is set to
an invalid value and should not be used.

E In the current WRF framework these arrays are declared 4D: the first dimension is the maximum of the two horizontal
dimensions, the second dimension is the width of the boundary, (an integer namelist variable named spec_bdy width -- user must
define in Registry), and the third is the number of vertical layers (1 for 2D data). The fourth dimension is the index over
boundaries: 1=boundary at start of X dimension (typically the west boundary), 2=boundary at end of X dimension (east),
3=boundary at start of Y dimension (south), and boundary at end of Y dimension (north). The boundary indices are defined as
integer parameters P XSB, P XEB, P YSB, and P_ YEB in the file frame/module state description.F, which is generated by the

registry.

15 of 15 05/31/2012 01:08 PM

