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In order to investigate the origins and consequences of 
systematic ocean-sea-ice model biases in climate models, 

an international group of ocean modelers proposed an 
Ocean Model Intercomparison Project (OMIP; Griffies 
et al. 2016). The essential element behind the OMIP is a 
common set of atmospheric and river runoff datasets for 
computing surface boundary fluxes to drive the ocean-
sea-ice models, many of which are used as components 
of coupled climate system models. The OMIP protocol 
is an outcome of the Coordinated Ocean-ice Reference 
Experiments (CORE), which assessed the performance of 
ocean-sea-ice models (Griffies et al. 2009; Danabasoglu 
et al. 2014; Griffies et al. 2014; Downes et al. 2015; Farneti 
et al. 2015; Danabasoglu et al. 2016; Wang et al. 2016a, 
2016b; Ilicak et al. 2016; Tseng et al. 2016; Rahaman et 
al. 2020) using the atmospheric and river runoff dataset 
of Large and Yeager (2009).  However, this dataset has 
not been updated since 2009 and a new dataset (JRA55-

do; Tsujino et al. 2018) has been developed for the OMIP 
based on the Japanese Reanalysis (JRA-55) product from 
Kobayashi et al. (2015) to ensure that it is regularly 
updated. Tsujino et al. (2020) compares CORE-forced (i.e., 
OMIP-1) and JRA55-do-forced (i.e., OMIP-2) simulations 
considering metrics commonly used in the evaluation 
of global ocean-sea-ice models to assess model biases. 
Many features are very similar between OMIP-1 and 
OMIP-2 simulations, but Tsujino et al. (2020) identify many 
improvements in the simulated fields in transitioning 
from OMIP-1 to OMIP-2. They attribute many of the 
remaining model biases either to errors in representing 
important processes in ocean-sea-ice models (some 
of which are expected to be mitigated by taking finer 
horizontal and/or vertical resolutions) or to shared biases 
in the atmospheric forcing. A first attempt at quantifying 
the impacts of the models’ horizontal resolution on 
biases was made by Chassignet et al. (2020). They assess 
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the robustness of climate-relevant improvements in 
ocean simulations (mean and variability) associated 
with moving from coarse (~1º) to eddy-resolving (~0.1º) 
horizontal resolutions using the same atmospheric 
forcing dataset (JRA55-do) for both low- and high-
resolution configurations. Within the ocean modeling 
community, it is usually assumed that high-resolution 
simulations should in general produce better results 
than low-resolution ones (Fox-Kemper et al. 2019). While 
this is clearly the case for surface currents and internal 
variability, greatly enhanced horizontal resolution does 
not necessarily deliver unambiguous bias improvement 
in temperature and salinity in all regions (Chassignet et 
al. 2020). Here, we emphasize some of the salient points 
of Chassignet et al. (2020) most relevant to the main 
topic of this special joint issue of US CLIVAR Variations 
and CLIVAR Exchanges., i.e., “Sources and Sinks of Ocean 
Mesoscale Eddy Energy.”

Because the goal is to identify the robust differences 
and improvements associated with increased horizontal 
resolution given the same forcing datasets, the 
participating modeling groups configured their high-
resolution configuration with similar parameters to that 
of the coarse-resolution configuration (see Chassignet et 
al. 2020 for details). The four models that participated 
in the comparison are the HYbrid Coordinate Ocean 
Model (HYCOM, Bleck 2002; Chassignet et al. 2003), the 
ocean (POP) and sea-ice components of the Community 
Earth System Model version 2 (CESM2, Danabasoglu et 
al. 2020), the ocean-sea ice component (FESOM) of the 

coupled Alfred Wegener Institute Climate Model (AWI-
CM, Sidorenko et al. 2015, 2018; Rackow et al. 2018, 
2019; Sein et al. 2018), and the LASG/IAP Climate system 
Ocean Model (LICOM, Zhang et al. 1989; Liu et al. 2004; 
Liu et al. 2012; Yu et al. 2018; Lin et al. 2020). Because 
of the large computational cost associated with the 
high-resolution runs (factor of 1000 more expensive), 
only one JRA55-do cycle (1958-2018) is analyzed (versus 
six cycles for the coarse-resolution runs of Tsujino et al. 
2020). It is important to note that not all models use the 
same climatology for the initial conditions, nor do they 
use the same wind stress formulation (absolute versus 
relative winds). When evaluating the bias of a numerical 
simulation, it is performed with respect to the climatology 
used to initialize the run.

Table 1 shows the domain-averaged mean kinetic energy 
for all experiments averaged over the last 20 years of the 
1958 -2018 integrations. Not surprisingly, the total kinetic 
energy is significantly higher for the high-resolution 
experiments over the low-resolution experiments. For 
the high-resolution configurations, HYCOM has the 
highest kinetic energy, with a globally averaged value of 
~35 10-4 m2/s2 and LICOM has the lowest kinetic energy, 
with a globally averaged value of ~15 10-4 m2/s2 (Table 
1). The higher kinetic energy in HYCOM can be partially 
explained by the wind stress formulation, which does not 
take into account the ocean current velocities (absolute 
winds) while the other three models do (relative winds). 
The latter has an eddy killing effect that can reduce the 
total kinetic energy by as much as 30% (see Renault et al. 

Low-resolution High-resolution

HYCOM 11 36

NCAR 6 24

FESOM 9 19

LICOM 4 14

Table 1. Global mean kinetic energy per surface area (units are in 10-4 m2/s2).
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2019 for a review). This is roughly the difference that is 
seen here between HYCOM and POP (POP with absolute 
winds in the wind stress has a level of kinetic energy that 
is close to HYCOM in Maltrud and McClean 2005, see 
their Figure 1). But even with the highest resolution used 
here (~0.1°), the total kinetic energy remains significantly 
lower than what can be inferred from observations and 
higher resolution models (closer to 50 10-4 m2/s2, i.e., 
Chassignet and Xu 2017). The increase in total kinetic 
energy from the low- to the high-resolution configuration 
is approximately a factor of three to four for all models, 
except for FESOM (factor two only). This is probably 
because the high-resolution FESOM has a highly variable 
grid spacing (Chassignet et al. 2020) and does not resolve 
the Rossby radius of deformation everywhere.

The impact on the circulation of increasing the horizontal 
resolution is two-fold. First, the solution becomes more 
nonlinear and allows for a better representation of 
western boundary currents. Second, the first Rossby 
radius of deformation is resolved throughout most 
of the domain (Hallberg 2013) and eddies are formed 
through barotropic and baroclinic instabilities, although 
higher vertical modes including submesoscale eddies 
are not often resolved (nor are they resolved by 
altimetry, i.e. AVISO). Overall, the large-scale patterns 
are well represented globally, and there is a significant 
improvement in the representation of the western 
boundary currents as resolution is increased (Gulf 
Stream and Kuroshio). In the North Atlantic, most coarse 
resolution models to date have the tendency to exhibit 

Figure 1. Mean sea surface height fields for observations (Rio et al. 2014) (top panel), high-resolution experiments (middle panel), and 
low-resolution experiments (lower panel).
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an overshooting Gulf Stream and a poor representation 
of the North Atlantic Current (NAC) at the Northwest 
Corner (Figure 1). This was the case for three out of the 
four models. Instead of turning north-northeastward 
along the continental rise of the Grand Banks and past 
the Flemish Cap to a latitude of ~51ºN before turning 
eastward (see review paper by Rossby 1996), the modeled 
NAC is strongly zonal in POP, FESOM, and LICOM, and 
does not turn northward near the Grand Banks (Figure 
1). This has been a long-standing issue for many ocean 
components of the CMIP climate models, and it does 
not necessarily improve as the computational mesh 
is refined. Increasing the horizontal resolution does 
improve the Gulf Stream separation (see Chassignet and 
Marshall 2008 and Chassignet and Xu 2017 for a review) in 
all models, but not necessarily the representation of the 
Northwest Corner circulation. HYCOM is the only model 
that had a good representation of the Northwest Corner 
in both the low- and high-resolution experiments (Figure 
1). Since all the models use the same atmospheric forcing 
dataset, the difference is solely due to the numerical and 
physical choices made by each modeling group.

As expected, there is a significant increase in the sea 
surface height (SSH) variance as resolution increased 
and the eddying solution SSH variance maps are much 
closer to the observations than their low-resolution 
counterpart (Chassignet et al. 2020). The surface eddy 
kinetic energy (EKE) maps for two of the high-resolution 
simulations (HYCOM and POP) and from observations 
(AVISO) are displayed in Figure 2. The AVISO EKE map 
has some inherent smoothing since the along-track 
measurements were optimally interpolated on a 0.25° 
grid which filters scales less than 150 km (due to track 
separation and measurement noise and errors) and time 
scales less than 10 days (repeat cycle of the altimeters). 
To match the observations, the modeled EKE maps are 
computed using 10-day average outputs and this time 
averaging removed much of the small-scale variability 
associated with inertial motions and ageostrophic effects 
(Chassignet and Xu 2017). Overall, the EKE is larger in 
HYCOM because absolute winds are used to force the 
models, but in all high-resolution experiments (~0.1°), the 

variability is still lower than observed, especially in the 
gyre interiors and in the experiments that used relative 
winds (POP, FESOM, and LICOM). This underestimation 
is thus partly a consequence of the eddy-killing effect 
which results from considering the shear between 
atmospheric wind and ocean current when computing 
the wind stress, which can reduce the kinetic energy by 
as much as 30% (see above discussion). However, the use 
of absolute wind in HYCOM is not sufficient to raise the 
level of surface variability to that of the observations, and 
Chassignet and Xu (2017) argue that one actually needs 
to significantly increase the resolution (~0.01°) in order to 
resolve the submesoscale instabilities that can energize 
the mesoscale (Callies et al. 2016) and therefore enhance 
EKE comparable to the mesoscale AVISO observations. It 
is more physical to take into account the vertical shear 
between atmospheric winds and ocean currents when 
computing the wind stress (see Renault et al. 2019, for a 
review), as it allows for a better representation of western 
boundary current systems (Ma et al. 2016), especially 
the Agulhas Current retroflection and associated eddies 
(Renault et al. 2017). In HYCOM, the Agulhas eddies are 
too regular and follow the same pathway (Figure 2). The 
use of relative winds does improve the pathway for the 
Agulhas current eddies (NCAR vs. HYCOM), but it also 
reduces the level of EKE in the Antarctic Circumpolar 
Current (ACC) and suppresses variability in many areas. 
This is especially true for the Indian Ocean, in the 
tropics, and west of the Hawaiian Islands. Most model-
observations comparisons usually focus on the surface 
fields because of the scarcity of long time series at depth 
covering a large spatial area. While the EKE at depth in the 
high-resolution experiments is a significant improvement 
over the quasi non-existent EKE of the coarse-resolution 
simulations, it is still significantly less than very limited 
observations (Richardson, 1993; Ollitrault and Colin de 
Verdière 2014). There is however much less EKE at depth 
in the experiments using relative winds (POP, FESOM, 
or LICOM) than in the experiment using absolute winds 
(HYCOM, not shown). Significantly higher resolution may 
be necessary in order to obtain a level of EKE at depth 
close to the observations (see Chassignet and Xu 2017 
for a discussion).
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Figure 2. Mean surface eddy kinetic energy for observations (top panel), high-resolution experiments (middle panel), and low-resolution 
experiments (lower panel).
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Overall, the gross features of the bias patterns in low 
resolution models – position, strength, and variability 
of western boundary currents, equatorial currents, and 
ACC – are significantly improved in the high-resolution 
models. However, despite the fact that the high-resolution 
models “resolve” these features, the improvements in 
temperature or salinity are inconsistent among different 
model families and some regions show increased bias 
over their low-resolution counterparts (see Chassignet 
et al. 2020 for a discussion). SSH variability and near-
surface EKE are significantly – even qualitatively – 
improved in all high-resolution models over their low-
resolution counterparts, although all of these models 
still underpredict the observed SSH variability and EKE, 
particularly in the ocean interior, which indicates a need 
for further refinements in resolution (Chassignet and 
Xu 2017) and improvements in less dissipative subgrid 
schemes for high-resolution models (Pearson et al. 2017). 
The results in coupled models in the HighResMIP ensemble 
(Haarsma et al. 2016) show similar improvements in SSH 
and SST variability and EKE. Considerable differences 
in the high-resolution models used here are associated 
with the use of relative winds versus absolute winds. 

Another interesting aspect of the high-resolution models 
versus the low-resolution models is that the interannual 
variability in the ACC, Indonesian Throughflow, and 
Atlantic Meridional Overturning Circulation (AMOC) 
transports (not shown) is more consistent among the 
high-resolution models than among the low-resolution 
models (Chassignet et al. 2020). Consistency in all of these 
transports potentially indicates that higher-resolution 
models are needed to represent process variability, which 
may explain some of the past difficulties in comparing 
the magnitude of these phenomena across coarse-
resolution models. However, the mean ACC transport 
and AMOC strength are not in greater agreement among 
the high-resolution than the low-resolution models, 
which means that more work remains in evaluating 
sensitivity to numerics and subgrid-scale schemes for 
high-resolution models. Furthermore, Danabasoglu et al. 
(2016) note that low-resolution models come into greater 
agreement in AMOC variability after more cycles of the 

CORE forcing. This comparison is limited by the cost of 
the high-resolution models to only a single cycling of 
the forcing. The short duration of a single forcing cycle 
limits the comparison of the decadal changes that are 
emphasized in Danabasoglu et al. (2016), so the improved 
agreement among the high-resolution models is year-
by-year rather than decade-by-decade. Nonetheless, 
the high-resolution models have systematically stronger 
and more variable AMOC, in better agreement with 
observations, both in maximum overturning and profile, 
than the low-resolution models.
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