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ABSTRACT 
 
 

Paleoceanographic proxy data indicate that the Agulhas leakage into the South 40 

Atlantic was dramatically reduced during glacial times. In our former papers, we 

suggested that this was due to a northward shift of the zero wind stress curl that, in turn, 

forced the retroflection to occur farther north, where the slant of the coastline relative to 

the north is steep. In the present paper, we propose that strong westerlies (0.4 Pa, 

implying a wind speed of ~ 12 m s !1  at zero degrees centigrade), which were supposedly 45 

common during glaciations, can also arrest the leakage. This arrest occurred because the 

wind stress opposed the momentum flux associated with the retroflection; such an arrest 

did not require the retroflection to shift in latitude.  

We use a simple, nonlinear, “reduced gravity” model to show analytically and 

numerically that, under the above conditions, the eastward wind stress compensates for 50 

the zonal westward flow-force associated with the retroflection, thus avoiding the 

development and shedding of rings. For a nearly zonal wall, westerly winds, and small 

upper layer thickness along the wall, the arresting wind stress is found, theoretically, to 

be, ! x
= 0.042" 3/2# f

0
[(2 f

0
Q)

3
/ g ']1/4 ,where α is twice the retroflection eddy vorticity, ρ 

is the water density, Q is the Agulhas Current volume flux, and the remaining notation is 55 

conventional. 
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1. Introduction 

In our earlier articles (Zharkov and Nof, 2008ab; ZNab, hereafter), we argued that 

the shutoff of Agulhas ring shedding during glacial periods (suggested by 

paleoceanographic proxy data) was probably caused by a northward shift of the 65 

retroflection position. Specifically, a northward shift of the zero wind stress curl (WSC) 

caused migrations of the retroflection to regions where the coastline has what we termed 

“supercritical coastline slant.” Because of its almost north-south orientation, the coast 

significantly slows the β-induced westward propagation speed of the rings. In such 

regions, the westward propagation of the newly detached eddy is not fast enough to 70 

escape from the next ring generated behind. Therefore, the eddy is re-captured by the ring 

following immediately behind it or by a meander of the retroflected current.  

      

      While this seems plausible, we suggest here that the strength of the wind-stress itself, 

which intensified significantly during glacial periods because of a reduced friction on the 75 

ground, could also affect the ring-shedding regimes dramatically. Such a response has 

been suggested on the basis of sediment provenance studies (Franzese et al., 2006). [Note 

that the amplification of Southern Hemisphere latitudinal and precessional insolation 

(Esper et al., 2004) also contributes to the strengthening of glacial winds.] Surprisingly, 

the Agulhas Current itself was not enhanced during glaciation (Franzese et al., 2006) 80 

even though the wind stress increased (e.g., Shulmeister et al., 2004; Butzin et al., 2005; 

Anderson et al., 2009; Pichevin et al., 2005). This is probably because the Indian Ocean 

is open (to the south, northeast and southeast) so the familiar concept that the western 
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boundary current (WBC) is equal and opposite to the Sverdrup interior does not hold. 

This is reflected in Casal et al. (2009) who showed that, at present, not only the Sverdrup 85 

Transport (ST), but also the Indonesian Throughflow and the Indian Ocean overturning, 

contribute to the mass budget of the AC current. During glacials, the relationship between 

these three components may have been different, so that an increase in ST did not directly 

transmit to a change in the Agulhas influx.  

 90 

We show that, if the wind is sufficiently strengthened, the shutoff could occur even 

when the point of retroflection is located near the coast with a nearly critical, but not 

supercritical, slant. The idea of a retroflection arrest due to stronger westerlies is 

consistent with recent observations of eastward propagating eddies in the South China 

Sea. Apparently, during the summer monsoon, the wind that blows toward the east is so 95 

strong that it overcomes the β-induced westward migration tendency and forces the 

eddies eastward [see Fig. 10 in Xiu et al. (2010) and, for general eddies structure in the 

South China Sea, see Nan et al. (2011)]. This is very similar to what we are proposing 

here regarding the Agulhas retroflection whose eddies’ westward migration is inhibited.  

 100 

a. Present day observations 

Several observations and numerical models show that variations of the Agulhas 

inflows, particularly those caused by shed rings, significantly affect the decadal 

variability in the Atlantic meridional overturning cell and various models confirm this 

(Weijer et al., 1999, 2002; Biastoch et al., 2008, 2009; Beal et al., 2011). In a closed 105 

basin, WBCs separate (or retroflect) at the same latitude of the zero WSC because their 
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transport is equal and opposite to that of the Sverdrup interior. In the case of the Agulhas 

Current (Fig. 1), the Indian Ocean basin is not closed (it is open to the Atlantic in the 

southwest), so the WBC can separate north or south of the zero WSC. Indeed, the wind 

stress curl vanishes at about 45°S, whereas the Agulhas Return Current flows between 110 

38°S and 41°S and shifts slightly to the north during earlier retroflection events. Still, the 

main cause of Agulhas retroflection is the vanishing WSC farther south (as it is for other 

WBCs) because there can be no returning interior (Sverdrup) flow past that latitude.  

 

Typically, Agulhas rings are shed at a frequency of 5-6 per year, although there have 115 

been periods of almost half a year when no shedding event was observed (e.g., Gordon et 

al., 1987; Byrne et al., 1995; Schouten et al., 2000; Lutjeharms, 2006; Van Aken et al., 

2003, Dencausse et al., 2010a,b). This increased length of the shedding period is possibly 

associated with retroflections farther to the east (De Ruijter et al., 2004), but the possible 

effect of wind stress on such events has not been studied.  120 

 

Presently, the typical winds in the Agulhas region are westerlies, whose speed is 

about 5 m s 
!1  (see, e.g., Rouault et al., 2009). The wind stress can be calculated by the 

bulk formula
  
!

s
= "

A
C

DA
U

2 , where 
 
!

A
 is the air density and 

 
C

DA
 is the drag coefficient. 

Typical values for 
 
!

A
and 

 
C

DA
are 1.3 kg m-3 (at zero degree centigrade or somewhat 125 

colder) and 0.002 (the low limit in the familiar 0.002-0.0025 range). In this case, 

  
!

s
= 0.08  Pa, which is apparently too small to affect ring shedding. However, some 

authors use values as high as 0.2 Pa (see, e.g., Dijkstra and De Ruijter, 2001a) and, 

according to Kutsuvada et al. (2004), present day wind stress can reach, and even exceed, 
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0.3 Pa. (Note that the maximal wind stress associated with these high values is situated 130 

farther to the south, at about 52°S.)  

 

b. Paleoceanographic proxies 

Otto-Bliesner et al. (2006) suggested that, during the Last Glacial Maximum (LGM), 

the wind stress was about 0.25 Pa in the Southeastern Atlantic, so the wind stress in the 135 

more active Agulhas region is taken to be 0.4 Pa. This corresponds to a glacial wind of 12 

m s 
!1 . Here, we again use a 

 
C

DA
of 0.002, which is perhaps a bit high for fast winds (see, 

e.g., Morey et al., 2005), but is adequate for a slightly unstable atmosphere such as the 

one above the warm Agulhas Current. 

 140 

The above choice of stress is supported by several other studies. Shulmeister et al. 

(2004) infer increased wind stress in the Australian sector of the Antarctic Circumpolar 

Current during glacial stages as well. Butzin et al. (2005) produced plausible 

reconstructions of the glacial radiocarbon field with an enhanced wind configuration that 

reached amplitudes twice as big as those of the modern winds in high southern latitudes 145 

(see their Fig. 7). Anderson et al. (2009) suggested that there was a strong intensification 

of Ekman upwelling (six times the modern value in the Atlantic and probably in the 

Agulhas region), implying that the wind stress could reach about 0.4 Pa or even higher. 

Furthermore, Pichevin et al. (2005) corroborated this view, noting that aeolian dust 

recovered from a core raised from the Namibian upwelling zone indicates a strong 150 

inverse correlation between enhanced winds and SST, evidence of greater upwelling 

during glacial periods, particularly in marine isotope stages 3 and 4 (~ 30-85 ka). They 
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found no evidence of incursions of warm, poleward waters during glacial stages prior to 

early stage 6 (~ 160-190 ka).  

 155 

In addition, it was tentatively suggested even earlier that Agulhas rings shedding was 

shut off during glacials (Howard and Prell, 1992; Berger and Wefer, 1996; Flores et al., 

1999; Rau et al., 2002; Peeters et al., 2004). Pether (1994) found evidence for enhanced 

Agulhas advection into the Benguela Current during the initial deglaciation (as the 

system transitioned into the modern state). Esper et al. (2004), employing fossil plant 160 

assemblages and pollen records from a core off the Cape-of-Good-Hope, reached similar 

conclusions. They noted that greater upwelling intensity, postulated to occur in response 

to an equatorward shift of the maximal wind stress, in fact occurred in response to greater 

seasonality associated with stronger precessional forcing. Although our original idea 

(ZNa,b) was that this shutoff occurred primarily because of the northward shift of the 165 

wind bands, it is interesting to investigate whether the increasing intensity of the wind 

stress itself (with no change in the WSC position) could be a second cause.   

 

c. Theoretical background  

 170 

According to Nof and Pichevin (1996), rings are generated to compensate for the 

eastward retroflecting current momentum flux. Also, Zharkov and Nof (2008a; ZNa, 

thereafter) pointed out a vorticity paradox: only rings with strong relative vorticity satisfy 

the equations of momentum and mass conservation. One way to avoid this paradox is to 

focus on currents retroflecting near coastlines with slants greater than a threshold value 175 
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(~15°).  ZNb and Zharkov et al. (2010) elaborated on the effect of coastal geometry on 

ring shedding for one-and-a-half layer models with slanted and kinked coastlines. They 

showed that, in the case of a rectilinear coast, there is a critical value of a slant above 

which there is almost no shedding. These results are in agreement with the numerical 

runs shown in Pichevin et al. (2009).  180 

 

In virtually all of the earlier modeling efforts the wind stress (with its vanishing curl) 

was considered only as a general basin-wise cause of current retroflection. The wind 

forcing itself directly over the retroflection was assumed negligible in comparison with 

inertial terms, Coriolis force, and reduced gravity forcing. Recently, Chung and Oey 185 

(2010) showed the significant effect of wind on Loop Current ring shedding in the Gulf 

of Mexico, where the typical values of wind stress are about 0.2 Pa, suggesting that it 

may also be important to the Agulhas.  

 

d. Present approach 190 

Here, we consider the wind stress terms in the equations of motion for the 

retroflection region and show that the effect of the enhanced winds could cause a 

significant reduction of the ring-induced leakage during glacials. We have tried to make 

this paper as self-contained as possible--we listed the most important equations of the 

previous works (ZNa,b and Zharkov et al., 2010), so that the reader is able to follow the 195 

main steps of our theory. The paper is organized as follows. In Section 2, we introduce 

the governing equations that control the development of the base eddy (BE) in windy 

conditions, and discuss the terms that should be added to the governing equations used in 
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our earlier no-wind papers (ZNa,b). The theoretical analysis of these equations is given in 

Section 3. In Section 4, we present model solutions for slanted and kinked coastlines and 200 

their dependence on the vorticity and slant. Section 5 is devoted to an examination of 

detached ring size, drift speed, and shedding period. In Section 6, we give the results of 

numerical simulations and in Section 7 we compare the analytics and numerical results. 

Finally, we summarize and discuss our results in Section 8. For convenience, we define 

all the variables both in the text and in the Appendix B.   205 

  

2. Statement of problem 

As in our preceding papers (ZNa, Zharkov et al., 2010), we consider two models of 

retroflecting currents. The schematic diagrams are shown in Fig. 2 (for a slanted 

rectilinear coast), and in Fig. 3 (for the “kinked” coast i.e., a coastline whose slant 210 

changes abruptly within the region of retroflection).  In both models, a boundary current 

with density ρ, embedded in an infinitely deep stagnant lower layer whose density is 

( ! + "! ), flows along a slanted coast in a southwestward direction (for the Southern 

Hemisphere), and then retroflects and heads eastward. The shed rings propagate away 

from the retroflection region along the coast (in southwestward direction) in the slanted 215 

model, and westward along the zonal section of the coast in the kinked model. We bind 

the coordinate system with the movement of the Basic Eddy (BE, i.e., the eddy formed in 

the retroflection area) and, in the case of straightforward coast, rotate this system by the 

slant angle (using the axis ξ and η, as shown in Fig. 2).  

 220 

We now consider the physics of the problem taking into account a constant wind 
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stress. This is valid because the area is located close enough to the position of the zero 

WSC. All the following equations are given in the  !
0 order approximation, where the 

small parameter   ! = "Rd / f characterizes the variation of the Coriolis parameter (due to 

β) at the scale of the eddy’s Rossby radius  Rd  (see, e.g. Arruda et al., 2004). In this 225 

approximation, we assume that the BE is circular, and that the incoming and outgoing 

fluxes are geostrophic in the cross-stream direction. We emphasize here that this does not 

necessarily mean a pure geostrophy of the outflow (Nof et al., 2011b, see also Van 

Leeuwen and De Ruijter, 2009).   

 230 

The arresting condition reflects the balance between the wind stress action on the 

growing retroflecting eddy and the momentum flux of the upstream jets forcing the eddy 

to grow in the absence of wind. One of the most important parameters in our models is α  

(twice the eddy Rossby number).  We assume that the BE’s orbital speed v!  is !" fr / 2 , 

where f is the Coriolis parameter and r the radius (in the system connected with the BE’s 235 

center).  The parameter α  does not exceed unity and, in the case  ! = 1, the BE has zero 

potential vorticity.  

 

a. Conservation of volume 

The integrated volume conservation for the BE is,  240 

  

 
  

dV

dt
=Q !q.                                                         (1) 
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Here, V is the volume of the BE; Q and q are the incoming and outgoing mass fluxes 

(Figs. 2, 3).  245 

 

b. Momentum fluxes 

Taking into account the continuity equation and using the slowly varying 

approximation, we write the momentum equation in along-coast direction in the moving 

(and tilted) coordinate system for a slanted coast as, 250 

 

                           !
!"

hu
*2( ) +

!

!#
hu

*
v
*( )$ fh v

*
+C#( ) = $

%g

2

!

!"
h
2( ) +

& "

'
.                      (2a) 

  

In the moving, non-tilted system for the kinked coast, the equation in the zonal direction 

is, 255 

 

                              !

! x
hu

2( ) +
!

! y
huv( )" fh v +Cy( ) = "

#g

2

!

! x
h
2( ) +

$ x

%
.                       (2b)                                                  

                                                                    

Here, u and v are the velocities (in the tilted system they are denoted with asterisks); 

  
Cy , C! are projections of the BE’s epicenter propagation speed on the corresponding axes 260 

of fixed coordinate systems; h is the upper layer thickness;  !g is the reduced gravity; 

  !
x ,! " are projections of the wind stress on the axes x and ξ. Note that the equations in the 

cross-coast direction are omitted because they involve an unknown force on the wall and 

are, therefore, of no use here. 
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3. Theoretical analysis 

The theoretical analysis in this section follows a traditional approach of integrating 

the momentum equations (2a, b) [see ZNa] and the mass conservation equation (1) over a 

region encompassing the eddy and the retroflection.  This way, we obtain an integrated 

balance of forces over our region of interest without deriving the detailed solution. After 270 

that, we expand all variables in powers of !  and retain only the leading order terms. At 

the end of our calculations, we will be able to derive a system of differential equations 

that models the BE growth as a function of the known input parameters. 

 

a. Integrated momentum balance equations 275 

We assume that the wind is zonal, i.e.,  !
y = 0 . After integrating the first equations of 

systems (2a) and (2b) over the rectangular area S enclosing the BE (grey contours ABCD 

in Figs. 2, 3) and using Stokes’ theorem, we get, 

 

                

! hu*v * d"
#
!$ + hu*2

+
%g h2

2
! f&

'

(
)

*

+
, d- ! . & sin/ + fhC-

'( *+
S

$$
#
!$ d"d-

=
0 x

1
S

$$ cos/d"d-

     (3a)                      280 

 

for the model of a slanted coastline, and,  

 

                  
   

! huv dx
"
!# + hu 2

+
$g h2

2
! f%

&

'
(

)

*
+dy ! fhC

y

S

##
"
!# dxdy =

, x

-
S

## dxdy                 (3b) 
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for the model of a kinked coastline.  Here γ is the slant angle,  ! = "s , and !  is the 

stream-function, defined by   !" / !# = $hu*, !" / !% = hv*  in (3a), and by 

  !" / !y = #hu, !" / !x = hv  in (3b).  

 

b. Estimation of terms in the momentum balance equations 290 

The forthcoming analysis of the left-hand sides of (3a) and (3b) is analogous to that 

given in ZNa. First, we show that in (3a) and (3b), we can neglect the terms involving 

  !g h2 / 2" f#( ) . Since f is not constant, the order of 
  !g h2 / 2" f#( )  is  ! y"  and 

  !g h2 / 2" f#( ) / hu2( )  is    !R / f0 ! O(" ) . The first term (integration of   hu*v* ) in (3a) is 

also negligible because   v* is zero along the wall. In the remaining terms with integration 295 

over the contour ! , we leave only integrals over cross-sections of incoming and outgoing 

current. After some manipulations with integration over oblique cross-sections, we obtain 

the momentums balances,  

   

                                          
  
F

1
+ F

2
cos! " F

3
" F

4
sin! = F

5
cos!                                      (4a) 300 

 

for the model of a slanted coastline and,  

 

                                                      
  
F

1
cos! + F

2
" F

3
= F

5
                                                 (4b) 

 305 

for the model of a kinked coastline. Here,   F1  is the momentum flux of the incoming 
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current, which is defined as 
  

hu2

D3

D2

! dl  in (3a), or 
  

hu2

D1

D2

! dl  in (3b) (see Figs. 2, 3).   F2  is the 

momentum flux of the outgoing current defined as 
  

hu2

A1

A

! dl   in (3a), or 
  

hu2

A3

A2

! dl  in (3b). 

  F3  is the Coriolis force resulting from the growth of the BE and its resulting off-shore 

movement, which is 
 

fhC!
S
"" d#d!  in (3a), or 

 
fhCy

S
!! dxdy  in (3b).   F4  (for the model of 310 

a straightforward coastline) is the β-force resulting from anticyclonic rotation of the BE, 

defined as 
 
! " d# d$

S
%%  in (3a).   F5  is the wind stress force, which is 

 

! x

"S
## d$d%  in (3a), 

or 
 

! x

"S
## dxdy in (3b).  

 

As described before, we use the integrated equations (3a,b) to derive a balance of 315 

forces acting on our region of interest. To estimate each term in (3a,b), we connect the 

BE with the upstream inflow and downstream outflow assuming (via Bernoulli) that the 

flow speed is constant along the streamline bounding both the eddy and the currents. The 

BE is assumed circular with a parabolic depth profile  (linear velocity   v = ! f0r / 2 ) and a 

depth H on its boundary, where   f0  is the absolute value of f at the center of the BE. The 320 

incoming/outgoing flows are also assumed to have parabolic depth profiles with velocity 

match along the bounding streamline.  

Without loss of generality, we will now analyze the terms in (4a,b) in the case of 

zonal coastline (! " 0 ), for which the calculation of the integrals is the easiest. For 
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convenience, we re-drew this special case (Fig. 4) introducing the new notations and 325 

using the original coordinate system (x, y) . When we consider the problem for a slanted 

coastline, we should compare Figs. 4 and 2 (for the case of kink, the analysis is analogous 

but we compare Figs. 3 and 2). Comparison with Fig. 2 shows that A1 coincides withD2  

now, so that instead of having two segments we now have one combinedAD3 . The 

integration segment for F2  is A1A2 , so with the error   O (! ) , we have  330 

 

           F
1
= hu

2
d(!y),

0

d1

" F
2
= hu

2
d(!y),

d1

d1+d2

" F
3
= f

0
Cy hdxdy,

S

"" F
4
= # $ dxdy

S

"" .         (5)  

 

Here, d1 and d2  are the widths of the incoming and retroflected currents. The further 

analysis of the integrals (5) is analogous to ZNa and is given in details in the Appendix 335 

A. We obtain:  

 

                                 
  

F
1
=

!
3f

0

4

240 "g
2R5

#5$
1

3
+ 3$

1

5( ) +
!

2f
0

2h
0

12
R3

#$
1

3( ),                           (6a)   
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F
2
=

! 3f
0

4

240 "g
2R5 #5 $

1

2 #$
2

2( )R3 #5$
2

3R2
+5$

1

2$
2

3 # 2$
2

5%
&

'
( +

! 2f
0

2h
0

12
R3 #$

2

3( ),      (6b)  

 

                                          
  

F
3
= !R2f

0

" (2#" )f
0

2R2

16 $g
+ H

%

&
'

(

)
*

dR

dt
,                                     (6c)  
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F
4
=
!"#f

0
R4

8

" (2$" )f
0

2R2

24 %g
+ H

&

'
(

)

*
+ ,                                   (6d)   345 

 
 
where the variables, !1, ! 2  are defined by    

 

                           
   

!
1
= R2 "

4 #g

$f
0

2

!h " h
0( )

%

&
'

(

)
*

1/2

, !
2
= R2 "

4 #g

$f
0

2
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%

&
'

(

)
*

1/2

,                     (6e)   350 

 

with  

                                   
   

!h = h
0

2
+

2f
0
Q

!g

"

#
$

%

&
'

1/2

, H = h
0

2
+

2f
0
(Q (q)

!g

"

#
$

%

&
'

1/2

.                               (6f)                                

 

Note that (6f) is consistent with geostrophy outside the retroflection area (see Figs. 2, 3). 355 

As before,   f0  is the value of  f  at the BE center,    h0 , !h, H are values of h at the wall, in 

the wedge between incoming and outgoing fluxes, and outside the retroflection area 

(where we assume   h0 to be given), R is the BE radius,   
!1,2 = R " d1,2 , where   

d1,2  are the 

widths of the incoming and outgoing fluxes (Figs. 2, 3).  

 360 

Because the BE area is the main part of the ABCD interior, we find to leading order, 

 

                                                           F
5
= !R2" x

/ #.                                                         (7) 

 

The error in (7) is of O (! ) when we take the retroflection eddy radius to be the mean 365 
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value. In the worst-case scenario (error-wise), the eddy is arrested by the wind before it 

reaches its mean size so the error is larger. However, even if the eddy does not grow, the 

error in (7) is still not more than the difference between the area of a square and the area 

of a circle inscribed in it, i.e.,   (4!" ) / " ! 0.27  (strictly speaking, about 0.27/2 ~ 0.14 

because the currents are located only to the east of BE, not to the west).  370 

 

c. Complete system of equations for the BE development 

Substituting (6) and (7) into (4a) and (4b), we obtain the equation for   R(t) . 

However, we also have to find q [or, equivalently,   ! = (Q " q) / Q ] that is also time 

variable and enters the formulas through the expression for H. Using (1), taking the 375 

derivative (in time) of (A5) for the BE volume (see Appendix A), and invoking (6f), we 

obtain, 

 

Q ! q = 2"R
# (2 !# ) f

0

2
R
2

8 $g
+ h

0

2
+
2 f

0
(Q ! q)

$g
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1/2+
,
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.-
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!

" fR2

$g h0( )
2

+ 2 f
0 $g (Q ! q)%

&
(
)

1/2

dq

dt
,

 

 380 

where, as stated before, the BE radius R, the depth along its boundary H, and the 

outgoing mass flux q are all functions of time. Our numerics show that the relative 

contribution of the term with   dq / dt  is no more than 
 
!O(0.01) , so this term is 

negligible. With this neglect, we get a quadratic equation for (Q ! q)whose physically 

relevant solution (Q ! q ) is 385 
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µ

"g
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+ f
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where   µ = 2!RdR / dt .  

 390 

Now, the system of (4) [with substitution of (6) and (7)] and (8) defines the functions 

  R(t) and   !(t)  where   ! = (Q " q) / Q  is the ratio of the mass flux going into the rings to 

incoming mass flux. Recall that the known parameters are Q,  !g , 
  
f

0
, α, β, γ, 

  
h

0
,  !

x , and 

ρ. Substitution of (7) into (4) and (6) yields a single equation for   R(t) . As an initial 

condition at   t = 0 , we choose the “complete retroflection” case when the initial BE radius 395 

( Ri ) coincides with   d1 . Taking  !1 = 0  in (6e, left), we find 

 

                                                 
   
R

i
= 2 !g ( !h " h

0
) /#$

%
&
'

1/2

/ f
0
.                                              (9) 

 

The numerical solution of our system (4, 6-9) is described in Section 4. However, at 400 

least for the simplified case (  ! = 0  and   h0 = 0 ), we can immediately estimate the 

magnitude of the wind stress necessary to arrest the BE shedding (which is the aim of our 

present work). We do this in the next sub-section.  

 

d. Arresting wind stress 405 
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To estimate how significant   F5  is in (4a,b), we compare the right-hand side of (7) 

with the most significant term (containing R5 ) in the sum of   F1  and   F2  (see 6a, b); when 

they are roughly the same then the shedding is arrested because the wind prevents the BE 

growth. For the case ! = 0  (zonal wall), we should balance !R2
" x

#
 with

!
3
f
0

4

60 "g
R
5 , which 

gives, 410 

 

                                                           ! x
=
" 3

f
0

4#R3

60$ %g
.                                                      (10) 

 

Next we take   h0 = 0  in (6f) and the initial value  Ri  from (9), so that,  

 415 

                                                       Ri
3
=
8

f
0

3

2 f
0
!g Q( )

3/4

"
3/2

.                                                  (11)                                        

 

Substituting (11) into (10) yields the approximate arresting wind stress, 

 

                                               ! x
=
2

15"
# 3/2$ f

0

2 f
0
Q( )

3

%g

&

'
(
(

)

*
+
+

1/4

.                                         (12)    420 

 

For ! = 1010  kg m !3 , f
0
= 0.88 !10

"4 s !1 , Q = 70  Sv, and !g = 0.02m s !2 , (12) gives,  
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                                                            ! x
= 11.7"

3/2Pa.                                                 (12a) 

 425 

In the case of ! = 0.1, which is typical for present day conditions (see Zharkov et al., 

2010, page 1008, for their analysis of data from Van Sebille et al., 2009), we get an 

arresting ! x  of 0.37 Pa, which is close to the stress typical for the Agulhas region during 

LGM. It follows from (12a) that the effect of wind stress decreases with growing α . This 

result seems strange at first because a growing α means decreasing radius of the BE, 430 

implying weaker wind force. However, the term describing the wind stress force 

decreases more slowly than   R5  so that it stays dominant. Interestingly, for the North 

Brazil Current (NBC), (12) gives a much smaller arresting stress (
  
!

x
= 0.54"

3/2 Pa), 

which is not surprising because the NBC is not far from the equator, where the wind 

stress is much weaker (Kutsuwada et al., 2004, their Fig. 3).  435 

 

So far, we have estimated the arresting stress, but we still need to determine the eddy 

growth and mass fluxes using these fairly complicated equations. This will be addressed 

in the next section. 

                                                                                                           440 

4. Basic eddy growth 

a. Slanted (but straight) coastline  

To obtain an analytical solution for  R(t)  and  !(t) , we solve the system of equations 

(4), (6)-(8) using the Runge-Kutta method of the fourth order. We use   Q = 70 Sv, 

  !g = 2 "10
#2 m s 

!2 , 
 
! = 1.02 "10

3

 kg m 
!3 , and 

  
f

0
= 8.8 !10

"5 s 
!1  (corresponding to 35° 445 
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of latitude). We consider two cases of
  
h

0
: 0 m and 300 m. Also, we use the natural value 

of 
 
! = 2.3"10

#11 m 
!1 s 

!1  and a magnified value 
 
! = 6 "10

#11 m 
!1 s 

!1 . The parameter α is 

varied between 0.1 and 1.0, and γ  between 0° and 90°. Figs. 5 and 6 show  R(t)  and   !(t)  

for the model of a straight slanted coast with 
  
h

0
= 300 m, 

 
! = 2.3"10

#11 m 
!1 s 

!1 ,  ! = 0.1  

(panels a, c) and 0.2 (panels b, d), and   !
x
= 0  (panels a, b) and 0.4 Pa (panels c, d).  450 

 

As pointed out in ZNa, in the case of a slanted coast without wind stress (Fig. 5a), 

eddies whose PV is large ( ! = 0.1) cannot grow at the point of retroflection when the 

slant angle is 45° or more. Instead, they squeeze into the wall. Figs. 5c and 6c show that 

when the wind stress reaches 0.4 Pa, the BE grows only near the walls whose slants are 455 

less than 15°. Also, as expected, the wind decreases the growth rate, so the radii of the 

detached eddies are smaller in the case of nonzero wind. Small PV (large α) eddies are 

not particularly sensitive to wind effects. As can be seen in Figs. 5c and d, the case of 

 ! = 0.2  displays a reduced influence of the wind. Nevertheless, it is seen from Figures 6c 

and d that, even for  ! = 0.2 , the wind significantly reduces Φ. This should be the case 460 

because the volume of a generated eddy is proportional to the fourth power of its radius 

(Nof and Pichevin, 2001).  

 

In the case when the thickness near the wall (
  
h

0
) is zero, the effect of the wind is 

stronger, so strong PV eddies (with ! = 0.1) cannot grow even when the WBC  retroflects 465 

from a zonal wall (! = 0°). We do not show the corresponding figures because, for 

  !
x
= 0.4 Pa, they are simply “empty”.  However, we will show the numerical results 
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mainly for 
  
h

0
= 0 m since, in that case, the one-and-a-half-layer structure collapses 

(owing to viscosity) more slowly than for 
  
h

0
= 300 m. 

 470 

b. Kinked coastline 

For a kinked coastline configuration (Fig. 3) and in absence of wind (Zharkov et al., 

2010), eddies are shed for any γ because there are no obstacles on their paths westward. 

However, as seen from Fig. 7, with 0.4 Pa wind stress, strong PV eddies (
 
! = 0.1) can be 

shed only when the slant of the eastern coast does not exceed 45°; otherwise, no mass 475 

flux goes into eddies. For ! = 0.2 , the wind affects the growth of the BE only moderately 

as it does in the case of a straight slanted coast. (The figures for Φ are analogous and not 

shown here.)  

 

c. Magnified β 480 

When we take the magnified value of 
 
! = 6 "10

#11 m 
!1 s 

!1  (making the numerics 

less expensive and reducing the effect of viscosity), we find that, in the straight coastline 

model, the equatorward β-force increases, resulting in more intensive interaction of the 

eddy with the wall. The theoretical results show that when 
  
h

0
= 300 m, eddies with 

 ! = 0.1  squeeze into the straight wall whose slant exceeds 15° without wind, and for any 485 

nonzero slant with wind strength of 0.4 Pa. If α is 0.2, squeezing occurs when the slant 

exceeds 30°, both without and with wind. We note, however, that in our numerics, the 

viscosity decreases the eddies’ spin, so we expect squeezing when γ is larger than in the 
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theoretical model. In the model with a kinked coastline, the β-force does not affect the 

growth of the BE, so the results are insensitive to the value of β.  490 

 

5. Detachment of rings 

We define below the lower and upper bounds of the final eddy radius and generation 

period in the same manner that they were defined in ZNb and Zharkov et al. (2010).  

 495 

a. Lower bounds  

The lower bound reflects the condition that, at the most, the rings can “kiss” each 

other but not overlap. Mathematically we get this limit by noting that the generation 

period for each individual ring is,  

 500 

                                                        
  
t

f
= 2R

f
+d( ) / C

!f
                                               (13a) 

 

for the model of a slanted coastline, and,  

 

                                                        
  
t

f
= 2R

f
+d( ) / C

xf
                                               (13b) 505 

 

for the model of a kinked coastline. Here d is the distance between two consecutive rings,  

and,  
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is the ring propagation rate in the zonal direction,   
C! = Cx cos" is the ring propagation 

rate along the slanted coast, and the subscript f denotes the final value (i.e., the value at 

the time of detachment). The lower bound for the final eddy size ( 
Rfl ) is obtained from 

the condition of “kissing eddies,” i.e.,  d = 0 . Using (14), we obtain the equation for the 515 

lower bound of the rings generation period, 

 

                                         
  

t
fl
=

24(2!" )f
0

2R
fl

# " (2!" )f
0

2R
fl

2
+ 24 $g H

fl
%& '(cos)

                                  (15)  

 

for the slanted coastline, and the same without  cos!  for the kinked coastline. 520 

Here
  
H fl = h0

2 + 2 f0!l / "g#$ %&
1/2

, and equation (15) is solved numerically, 

implying
  
Rfl = R t fl( ), !l = ! t fl( ) .   

 

b. Upper bounds 

Next, we define the upper bound ( 
Rfu ) for the BE’s final size and for the generation 525 

period ( 
t fu ). This expression implies that, within the shedding period, the ring can 

propagate at least its own diameter: 

 

                                                           
  

C! dt = 2R
fu

0

t
fu

"                                                    (16a)      
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          530 

for the slanted coastline, and, 

 

                                                            
  

C
x

dt = 2R
fu

0

t
fu

!                                                    (16b) 

 

for the kinked coastline. The integral-algebraic equations (16) are also solved 535 

numerically, implying 
 
Rfu = R t fu( )  and 

 
!u = ! t fu( ) .  

 

Physically, the upper bound corresponds to the detachment of isolated rings, whereas 

the lower bound is a condition for the eddy chain formation. So, rings detach and 

propagate out of the retroflection area only when  
Rfl is indeed less than 

Rfu .   540 

 

c. Analysis of the eddy shedding regimes  

The plots of bounds of the eddy radii, generation periods, corresponding eddy 

propagation rates, and the averaged (over the generation period) mass fluxes going into 

eddies are shown in Fig. 8 for a straight slanted coast. Here, 
  
h

0
= 300 m and 545 

 
! = 2.3"10

#11 m 
!1 s 

!1 .  The left panels are for zero wind stress whereas the right panels 

are for   !
x
= 0.4 Pa. The lower and upper bounds are shown with solid and dashed lines, 

respectively. Without wind stress, they intersect at the same points for all the considered 

eddy characteristics (circles in Fig. 8), defining the critical values of the coastal slant. In 

the supercritical regime, when the slant exceeds this critical value, the shed eddies do not 550 
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form a chain but rather are re-captured by the retroflected current. For the model with a 

kinked coast, there is no critical slant, and the regime is subcritical in the sense that 

detached eddies leave the area of retroflection and form a chain. Also, the dotted 

horizontal “dead lines” on panels (d) and (h) are drawn for  ! = 1 , and the sections of 

curves for  ! = 1 above them are in the region of “vorticity paradox”  (PV of rings is so 555 

small that the system of momentum balance and mass balance equations cannot be 

satisfied, see ZNa). However, it is unnecessary to deal with this paradox here because we 

consider only strong PV eddies with small α.   

 

d. Effect of the wind stress  560 

The main difference between no-wind and windy conditions is much earlier 

terminations of curves for ! = 0.1 . The wind affects the small vorticity rings mainly by 

significantly increasing the rings squeezing into the wall. For 
  
h

0
= 0 m (now shown), the 

curves for  ! = 0.1  are absent (as is the case with the kinked coast as well), meaning that 

the rings are squeezed in all cases. For the slanted coast model, the  ! = 0.2  curves 565 

terminate for ! = 80°, implying that such rings are also affected by wind, though the 

effect is significantly weaker.  

 

When the slant is small in the no-kink model or moderate in the model with a kink, 

the radii of shed small vorticity rings decrease under the windy conditions, so the curves 570 

of radii of rings for  ! = 0.1  occasionally intersect those for ! = 0.2 . Also, the mass flux 

going into them decreases (and vanishes for those γ for which the curves of other 

parameters terminate, meaning q = Q ).  It should be noted that the decrease in mass flux 
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going into the rings is noticeable even for greater values of α,  meaning that the effect of 

winds on both the radii of detached rings and periods of detachment leads to a significant 575 

decrease in the Agulhas leakage into the South Atlantic.  

 

In contrast, the effect of wind on the critical coastal slant (Fig. 8) is not as clear. 

For ! = 0.1 , there is no intersection of lower and upper bounds of the rings radii and 

detachment periods, simply because these curves terminate for smaller slants. However, 580 

for ! = 0.2 , the subcritical range of slant increases under windy conditions, though the 

distance between the bounds for small slant decreases, implying the extension of nearly 

critical scenario to the larger slants. In the case of  ! = 0.2  and ! = 75°, the lower and 

upper bound curves for the radii of rings re-intersect, meaning the restoration of the 

subcritical regime for slants exceeding 75°. However, the relative difference in 
 
R

fl
 and 585 

 
R

fu
is 

 
!O 10

!5( )  and the mass flux going into the rings is very small, so that the 

aforementioned “restoration” hardly makes any sense. We note here that for   h0
= 0 m, 

such effects for  ! = 0.2  do not appear and, as expected, the subcritical range of coastal 

slant is shortened in windy conditions.  

 590 

6. Numerical simulations 

a. Model setup 

As in our previous studies (ZNab, Zharkov et al., 2010), we use a modified version 

of the earlier Bleck and Boudra (1986) reduced gravity isopycnic model with a passive 

lower layer and the Orlanski (1976) second-order radiation conditions for the open 595 
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boundary. The basin size is taken to be 3200! 1600 km 
2 . The coastline is modeled by 

either a fixed straightforward boundary whose slant is taken to be 15° and 45°, or by a 

western section with a slant of 15° and a zonal section about 1840 km long (kinked 

coastline). We also consider the continental termination, modeled by the meridional 

western wall and the slanted eastern one. The walls are taken to be slippery. We adapt a 600 

sinusoidal profile of the WSC with maximal  !
x  (0.4 or 0.8 Pa) at about 500 km to the 

south from the retroflection area (as it should be in reality) and zero  !
x  near the equator 

(about 4100 km to the north from the retroflection area). In this case, the difference 

between the peak of wind stress and stress in the retroflection area is relatively small 

(about 2%-3%) and cannot significantly affect our results. 605 

 

Other parameters that we use are   !g = 2 "10
#2 m s 

!2 , 
  
f

0
= 8.8 !10

"5 s 
!1 ,   Q = 70 Sv, 

 
! = 2.3"10

#11 m 
!1 s 

!1  (realistic) or  6 !10
"11 m 

!1 s 
!1  (magnified), and 

  
h

0
= 0 m or 300 m. 

We have run all the experiments for about 700 days. For most of the experiments, we 

have chosen the magnified value of β, which accelerates ring detachment and makes our 610 

runs more economical. Note that increasing the ring propagation rate compensates for the 

deceleration by viscosity. 

 

The experiment begins with turning on an outflow at  t = 0 ; the numerical source is 

an open channel containing streamlines parallel to the slanted wall in the incoming 615 

current and horizontal in the outgoing flow. The initial velocity profile across the channel 

is linear, and the thickness profile is parabolic. We have chosen the initial PV of outflows 

such that the starting values of α are 0.1 and 0.2. The spatial and temporal resolutions 
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that were used in our preceding works are increased because the inclusion of wind stress 

requires larger values of Laplacian viscosity coefficient for stability of the calculations. 620 

The numerical parameters are a time step of 20 s, a grid step of 3.33 km, and a Laplacian 

viscosity coefficient of  ! = 700 m  2 s  !1  for the model of a slanted coast and 

 ! = 800 m 2 s !1  for a kinked coast and coastal termination (also, for some no-wind 

simulations, we take  ! = 500 m 2 s !1 ). These coefficients are the minimum possible 

choices for the stability of long-time simulations. Unfortunately, the stability of 625 

calculations significantly decreases in the wind conditions, so the diffusion speed 

(! divided by the grid size) is 21 cm s 
!1  in simulations with slanted coast and 24 cm s 

!1  

with a kinked coast. Such values appear high but are still small compared to the rings’ 

orbital speed  (about 2 m s 
!1 ), so they are adequate. Chang and Oey (2010) used larger 

grid size (10 km) and smaller viscosity (100 m 
2 s 

!1 ) but their wind stress was much 630 

smaller too so the tendency of features to break-up was much smaller as well. Also, we 

believe that our numerics are still significantly nonlinear. For example, according to 

Dijkstra and de Ruijter (2001a,b), viscous effects become dominating for their forced 

model of Agulhas retroflection when !  is at least of the order 1650 m 
2 s 

!1 , and this 

conclusion is also in agreement with that of Boudra and Chassignet (1988).  635 

 

Despite increased resolution, the parameter α is altered by viscosity almost in the 

same way as it was in the simulations described in ZNb. Here, in the simulations with 

  
h

0
= 0 m, the parameter α increases from its initial value of 0.1, so that its average over 

the period of simulation is about 0.21-0.22. In the simulations when the initial value of α 640 
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is 0.2, it slightly increased to about 0.23-0.24. In the simulations with 
  
h

0
= 300 m 

and ! = 0.1 , α does not increase as much, so its averaged value is about 0.17-0.18. As 

noted by ZNb, the averaged value of α does not strongly depend on its initial value. 

Therefore, it is difficult to determine the desirable value of this parameter numerically. 

Rather, we assume that in all our simulations, the results should be in agreement with the 645 

theoretical predictions for ! = 0.2 . Hence, the effect of the wind in the  ! = 0.4 Pa case 

should not be very strong, though still noticeable, in the numerics. To compensate for the 

expected weakening of the wind effect owing to the growth of α, we also perform 

simulations with maximal wind stress of 0.8 Pa. The simulations for an initial α of 0.2 are 

preferable to those of 0.1 because the period of ring detachment decreases with growing 650 

α  (see Fig. 8f  for ! " 5°).  

 

Some snapshots of our experiments are shown in Figs. 9-11. The parameters that we 

chose are listed in Table 1.    

 655 

b. Slanted coastline 

Fig. 9 shows plots for the 300th, 450th, and 600th days of simulations for a 15° 

straight coast slant, zero
  
h

0
, magnified value of β, and an initial ! of 0.2. The left panels 

show the no-wind conditions, whereas the right panels are for   !
x
= 0.8 Pa. The viscosity 

coefficient is 700 m 
2 s 

!1 , which is minimal for stability of calculations in both cases. The 660 

scale on the coordinate axes is in kilometers, and the lines of constant upper layer 

thickness are given through 200 meters increments. Also, the maximal thickness (in 
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meters) is marked. It is seen that when there is no wind, a chain of eddies forms 

gradually, as should be the case because a 15° slant is subcritical (see ZNb).  With strong 

wind (Fig. 9, right panels), a chain of eddies does not form, and only one eddy is shed 665 

from the retroflection area. Note that, although the right panels are analogous to those in 

the case of no-wind conditions for supercritical slant (in the sense that the eddy shedding 

is nearly arrested in both cases), there is actually a difference between these two cases. In 

the supercritical case, the eddy detaches from the retroflection area but propagates very 

slowly, decays gradually, and is usually re-captured by the meandering outgoing flux. In 670 

the case of strong wind, on the other hand, the ring is not re-captured but rather squeezed 

onto the wall and finally destroyed. Indeed, ZNb noted that termination of lines depicting 

both the lower and upper bounds of the rings radii (in the case of very small α) indicates 

squeezing of eddies. This is probably the case for windy conditions. Of course, when the 

coast slant is nearly critical (or even supercritical) and the wind is strong enough, these 675 

effects act together to decrease/prevent the shedding.  

 

The ring propagation rate decreases with increasing wind speed, and for the 

somewhat artificial condition of very strong winds (0.8 Pa, introduced merely to 

compensate for the numerical friction), it practically vanishes. In this case, the 680 

retroflection shifts upstream, leaving the shed ring at the same place to be ultimately 

destroyed by the wind. For the cases of wind with   !
x
= 0.4 Pa, which is typical for 

glacials, the analytics predict that detached eddies (for which ! = 0.1) will be destroyed. 

The numerics, on the other hand, show that, after 700 days of simulation, only two of 

four detached eddies are destroyed, and the thickness of the last detached eddy decreases 685 
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by about 10%. This could be an effect of increased α.  

 

c. Coastal termination 

We suspect that the wind not only directly destroys detached eddies, but also pushes 

them to the left (looking downwind) into the wall. To examine this hypothesis, we 690 

conduct numerical experiments with a triangular continental termination not far from the 

retroflection area (Fig. 10). Here, we are obliged to take  ! = 800  m 2 s !1  to ensure the 

stability of calculations. Nevertheless, it is seen that, with no wind, the rings continue 

moving southwestward after passing the termination (although their radii are larger than 

those of the eddies shown in Fig. 9 and, staring from about the 560th day of simulation, 695 

the first eddy is gradually captured by the second one). As expected, with strong wind, 

eddies turn to the northwest (or even north-northwest) after passing the termination, and 

they do not decay as quickly as the eddies shown in Fig. 9. This is in agreement with our 

assumption and with Nof et al. (2011a).  

 700 

d. Kinked coastline 

We also consider the case of a kinked coastline with a zonal western section and an 

eastern section slanted by 15° (Fig. 11). Here, we again are obliged to take  ! = 800  

m 2 s !1 . Nevertheless, we see that rings propagate along the zonal coast faster than along 

the slanted coast (as should be the case) but the rate of their decay under the wind effect 705 

is stronger. This should be the case as well because the rings encounter the wind “head-

on”, so-to-speak. As a result, as seen in the right panel, more than one eddy near the 

zonal coast is destroyed at the same time.  On the other hand, the eddy that is left near the 
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kink is locked there with almost no propagation and a smaller decaying rate. It is either 

squeezed onto the kink or is re-captured by the next BE advancing from the area of 710 

retroflection. Note, however, that it is not very clear how often the locking effect will be 

repeated in experiments with varying input parameters. Similar effects can be seen for an 

initial value of  ! = 0.1 , but the rings decay a bit more slowly, probably because of longer 

periods of detachment.   

 715 

e. Varying viscosity and upper layer depth 

In our runs with no wind using a smaller viscosity coefficient ( ! = 500 m 2 s !1 ), the 

differences with our simulations shown in the left panels of Figs. 9-11 are not very 

significant. The main difference is that the capturing of the first eddy by the second one 

in simulation with coastal termination occurs later than seen in Fig. 10, when the first 720 

eddy is already passing through the left border of the calculation area. Therefore, the 

capturing of one eddy by another becomes more common with increasing viscosity.  

All of the effects of the wind stress mentioned above are significantly diminished in 

simulations with 
  
h

0
= 300 m (not shown). This is most likely because the wind acts on a 

deeper column of water. The quantitative effect of the wind with   !
x
= 0.4 Pa is seen only 725 

in the simulation with a kinked coast. The destroying effect of the wind with   !
x
= 0.8 Pa 

is not as strong as in the case 
  
h

0
= 0 m, so eddies lose only about one half of their 

intensity when approaching the border of the calculation area. The shift in the direction of 

propagation after passing the continental termination is weak.  

 730 



 34 

 7. A detailed comparison of the theoretical modeling and the numerical 

simulations 

We begin by giving the results for the conditions associated with the experiment 

described in Fig. 9 (! = 15°, 
  
h

0
= 0 m, and 

 
! = 6 "10

#11 m 
!1 s 

!1 ). For simplicity, we use 

the value of α averaged over the full period of the simulation, namely, 0.23 for the no-735 

wind conditions (left panels of Fig. 9), and 0.25 for   !
x
= 0.8 Pa (right panels), keeping in 

mind that the initial α  is 0.2 in both cases. Note, however, that, according to our 

analytical model, for   !
x
= 0.8 Pa, the magnified value of β, and ! = 0.2 , shedding of 

rings is not expected because the inertia associated with the vorticity is small compared to 

the force exerted by the wind. For the averaged value of ! = 0.25 , shedding can occur 740 

theoretically even though the mass flux going into the rings is small. So, for such a 

“balance” between shedding and arresting, we can compare the theoretical values for 

 ! = 0.25  with the numerical values only for a short time, immediately after detachment.  

 

The agreement in the radii of detached eddies is excellent. The theoretical value of 745 

 
R

f
 (calculated as mean of 

 
R

fl
 and

 
R

fu
) is 225 km for no-wind and 202 km for 

  !
x
= 0.8 Pa. In the numerics, we obtain 230 km and 197 km, respectively. So, even the 

volumes of eddies are expected to be close to each other in the theoretical model and in 

the numerics. However, the viscous dissipation in the numerics seems to be so strong that 

the ring propagation rates in the numerics are about half those in the analytics. The 750 

absolute numerical values of 
 
C

! f
 are 4.2 km day 

!1  with no-wind and 3.7 km day 
!1  with 

wind, instead of 9.6 and 7.0 km day 
!1  in the theoretical model. In accordance with this, 
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the mean periods of shedding in the numerics (155 and 140 days, respectively) are much 

larger than the theoretical values of 77 and 46 days. 

 755 

Finally, the averaged Φ is significantly smaller in the numerics than in the analytics. 

Again, the viscous dissipation is the probable cause. In addition, Φ  is proportional to the 

fifth power of the radius, implying a large accumulation of errors. For windy conditions, 

we obtain a negative value ( ! = "0.008 ) instead of the theoretical value 0.048 for 

averaged α. (Recall that, for initial  ! = 0.2 , we are beyond the “arresting point” 760 

theoretically, so that Φ is zero). For no-wind conditions, the theoretical value is 0.145 

and, in the numerics, we obtain 0.058. 

 

8. Conclusions and discussion 

We consider the wind effect on the Agulhas retroflection during glacials using both 765 

analytical and numerical models. Present-day winds are approximately 0.08 Pa and we 

took the glacial wind stress to be moderately strong, about 0.4 Pa (Figs. 5-8). The most 

informative results are displayed in Figs 6 and 9, which show the dramatic reduction in 

the eddies’ mass transport for ! = 0.4 Pa,  ! = 0.1 in theory and very strong numerical 

shut-off for ! = 0.8 Pa,  ! = 0.2 . For zero upper layer thickness along a zonal wall, the 770 

arresting wind stress is found, theoretically, to be,  

 

! x
= 0.042" 3/2# f

0
[(2 f

0
Q)

3
/ g ']1/4 . 

 

(All the variables are defined earlier in the text and are also given in the Appendix B). 775 
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This condition corresponds to an integrated wind stress (over the eddy) that is equal and 

opposite to the upstream momentum flux, so there is no eddy growth. 

 

Typical winds for the Agulhas region during glacial times (with stress of 0.4 Pa) 

significantly affect the typically moderately strong Agulhas rings (α  = 0.1) but, with 780 

increasing α, the influence of wind quickly decreases and becomes negligible for 

 ! > 0.2 . The disappearance of the lines for  ! = 0.1  in Figs. 5-7 for glacial wind 

conditions (right panels) and termination of curves for  ! = 0.1  in Fig. 8 (right panels) 

show that rings with weak vorticity squeeze into the wall rather than grow before 

detaching (as they do when the wind is light or moderate and the coast is not strongly 785 

slanted). Also, the effect of wind decreases slightly with increasing upper layer thickness.  

The above findings are in agreement with our numerical simulations. Despite the 

reasonable spatial resolution, the numerical runs with wind require relatively large 

viscosity coefficients. Their values are, nevertheless, acceptable because the relatively 

coarse resolution implies the diffusion speed of about 20-25 cm s 
!1 , which is still small 790 

compared to the rings’ orbital speed (about 2 m s 
!1 ). Unfortunately, this high (though 

acceptable) viscosity that we had to use increased the initialized value 0.1 of α in the 

weak vorticity case, so the averaged value that we considered was ~ 0.2 for all the runs. 

For the very same reason, the wind effect on the retroflection in the numerics was not 

very noticeable for   !
x
= 0.4 Pa, so, to compensate for the growth in α, we did runs with 795 

0.8 Pa. We also used the magnified value of β (gradient of the Coriolis parameter) to 

make our runs more economical and to increase the rings propagation rate, compensating 

again for the slowing down effect of viscosity.  
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The numerics show that the wind indeed tends to destroy the detached rings by 

squeezing them onto the wall. This is in agreement with the findings of Nof et al. (2011a) 800 

showing that rings subject to zonal westerly winds drift to the northeast. The result is 

valid in both the straight and the kinked coast cases. In the latter case, rings that detach 

near the kink are occasionally locked there and are re-captured by the retroflected current. 

When the rings are detached near the coastal termination, they turn northwestward after 

entering the open ocean. Also, both the theoretical results and the numerics show that the 805 

effect of the wind is stronger when the rings’ thickness along their rim is small. This is 

simply because the wind acts on less water in this case. 

 

Numerically verifying the weakening of the wind influence with growing α is 

difficult because this parameter is quickly reduced during the numerical runs and 810 

becomes 0.2-0.3 even for the high vorticity cases. However, in reality, α is indeed quite 

small (~ 0.1). As shown in the analytics, we expect the wind to affect the Agulhas ring 

shedding during glacials, and even shut it down completely (Fig. 6, upper panel). Note 

that in our model, the radii of the eddies with small α are too large (about 250-300 km), 

and the periods of detachment are too long (about 6-7 months). It can be argued, perhaps, 815 

that we obtained the strong effect of wind on such unnatural eddies because their 

propagation speeds are low (about 4 km day 
!1 ). However, this argument is not valid 

because the period of real shedding of Agulhas rings is about 2 months (see sub-section 

1a for references), and the distance between their centers is about 300-350 km, so their 

propagation rate is about 5-6 km day 
!1 , which is not far from our modeled value. The 820 

theoretical and numerical radii are in very good agreement; however, the numerical 
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eddies propagation rates and mass fluxes (going to eddies) are significantly smaller, and 

shedding periods are significantly larger probably because of accumulated errors and the 

damping effect of viscosity. 

 825 

Note that we do not really know the general wind direction in the Agulhas region 

during glacials, so we cannot speak about the actual squeezing of rings into the coast or 

about change in their direction after entering the Atlantic. It is also not quite clear why, in 

the numerics, the stability decreases with increasing wind stress particularly because 

similar stresses tend to stabilize the currents (see, e.g., Griffiths et al., 1982; Shi and 830 

RØed, 1999). However, in our case, the main destabilization probably comes not from the 

upstream and downstream currents but rather from the region of retroflection itself where 

the gradients of velocity are strong. The wind tries to compress this area, so the stability 

decreases because the gradients increase.  

 835 

A question arises about the direction in which the ejected fluid goes during the eddy 

squeezing process. If the fluid goes downstream as a part of direct Agulhas leakage (see, 

e.g., Doglioli et al., 2006; Van Sebille et al., 2010), then the Indian ocean water influx 

into the South Atlantic would not be strongly reduced. However, in theoretical papers 

about the eddy-wall interaction (e.g., Shi and Nof, 1994), it is shown that an anticyclonic 840 

eddy leaks fluid equatorwards. So, in the case of Agulhas rings, the leaked fluid should 

return to the retroflection area rather than flowing into the Atlantic. In our numerics, the 

direct dissipation of eddies is very strong, probably because the scale of leakage is 

comparable to the scale of viscous boundary layer (or even smaller than that). 
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Nevertheless, in our Figs. 9-11 (especially in windy conditions--right panels), some 845 

leakage of the detached eddies is seen. It is directed northeastward along a slanted coast. 

Therefore, even if, during glacials, there was a portion of water leaking to the Atlantic 

from squeezing Agulhas eddies, it was very little. 

 

In summary, we note that the increasing wind stress during glacials probably have 850 

contributed significantly to eddy-shedding-shutoff. However, the significant equatorward 

shift of the zero WSC (and subtropical front, see Beal et al., 2011, ZNb) could be another 

factor that strongly affected the position of the Agulhas retroflection.      
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APPENDIX A  865 

Derivation of formulas for  Fi  (i = 1,..., 4) in the case  ! = 0    
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In our analysis below, we first obtain the formulas   u( y)  and   h( y)  across the 

incoming (  0 < ! y < d1 ) and outgoing (  d1 < ! y < d1 + d2 ) fluxes. We assume   u( y)  to be 

linear in both flows (but allowing the jump of velocity at their vertical interface, where 

  y = !d1 ), satisfy the Bernoulli at the rims of incoming and outgoing currents, and the 870 

continuity of velocities along the streamlines passing through the cross–section 

connecting the currents and the BE (  x = 0 ). Because the angular velocity of the BE is 

  ! f / 2 , we take approximately   u(!d1 ! d2 ) =" f0R / 2  and   u(0) = !" f0R / 2  where   f0  is 

the absolute value of f at the center of BE. Finally, the expressions for   u( y)  are found to 

be, 875 

 

           u = ! f
0

2
("y " R), 0 # "y # d

1
;!!!u =

! f
0

2
"y + R " d

1
" d

2( ), d1 < "y # d
1
+ d

2
.    (A1) 

 

The functions   h( y) can be derived from   u( y) , assuming both flows to be 

geostrophic (with the error of the order ! ), and satisfying the condition of continuity of h 880 

at the vertical interface of the currents.  As a result,  

 

           
h = !

" f
0

2

4 #g
y 2R + y( ) + h0, 0 < !y $ d

1
,

h =
" f

0

2

4 #g
!y 2 d

1
+ d

2
! R( ) + y%& '( + 2d1 2R ! d

1
! d

2( ){ }+ h0, d1 < !y $ d
1
+ d

2
,

   (A2) 

 

where   h0 is value of h at the zonal wall (  y = 0 ).  885 

Next, we shall use the expressions for the downstream and upstream volume fluxes, 
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                                               Q = hudy, q = ! hudy.
!d1

!(d1+d2 )

"
0

!d1

"                                        (A3) 

 

Substitution of (A1) and (A2) into (A3) yields the equations for d1  and d2  whose 890 

solutions are d1,2 = R !"1,2 ,  where  
!1,2  are given by (6e) [invoking (6f)]. It is easy to 

show that  h = !h  at y = !d1  and h = H  at y = !(d1 + d2 ) , as should be the case. Finally, 

after substituting (A1), (A3), (6e) and (6f) into (5) for   F1  and   F2  and some algebra, we 

find (6a) and (6b).   

The leading-order expressions for F3  and F4  will be obtained using the polar 895 

coordinate system (r,! ) .  Next, we derive an expression for the thickness of the upper 

layer inside the BE from the equation, 
  
!h / !r = v"

2 / r + fv"( ) / #g  and the boundary 

condition   h(R) = H , to be, 

 

                                              h(r) = ! (2 "! ) f
0

2

8 #g
R
2
" r

2( ) + H .                                       (A4) 900 

 

The volume of the circular eddy together with (A4) yields, 

 

                                                V = !R2
" (2 #" ) f

0

2
R
2

16 $g
+ H

%

&
'

(

)
*.                                        (A5)  

 905 
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Assuming now that   dR / dt  is the propagation speed of the BE’s epicenter perpendicular 

to the coast (and that the eddy itself touches the coastline), and neglecting the variability 

of f inside the BE area, we find (6c) from (5) and (A5).  Finally, defining F4  in the same 

manner as in Nof (1981), we substitute (A4) into the formulas ! = v"
R

r

# hdr  and find 

F4 = 2!" r# dr,
0

R

$  giving (6d). 910 

 

APPENDIX B  

List of abbreviations and symbols 

BE – basic eddy 

 
C

DA
– coefficient of interfacial drag in the atmosphere 915 

C! , C" – eddy migration rates in the rotated coordinate system 

 
C

! f
– value of 

 
C

!
 after detachment 

  
C

!l
, C

!u
– values of 

 
C

! f
 for eddies with radii

  
R

fl
, R

fu
, respectively 

  
C

x
,C

y
,C

xf
,C

xl
,C

xu
– analogues to 

  
C

!
,C

"
,C

! f
,C

!l
,C

!u
, respectively, in the Cartesian 

coordinate system 920 

d - distance between two consecutive eddies 

d
1
– width of incoming current 

d
2

– width of retroflected current 

f – the Coriolis parameter 

f
0
– absolute value of the Coriolis parameter at the BE center 925 

  
F

1
 - force of incoming current  

  
F

2
 - force of outgoing current 

  
F

3
 - Coriolis force of the BE growth 
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F

4
 - ! -force resulting from the BE rotation 

  
F

5
- wind stress force 930 

!g – reduced gravity 

h –  upper layer thickness 

H – upper layer thickness outside the retroflection area 

h
0
– upper layer thickness at the wall 

 h
! – upper layer thickness in the stagnant wedge situated between the incoming and 935 

retroflected currents 

LGM – Last Glacial Maximum 

PV – potential vorticity 

Q – mass flux of the incoming current  

q – mass flux of the retroflected current 940 

r – polar radius (in the system connected with the BE center) 

R – radius of the eddy (a function of time) 

 
R

d
 - Rossby radius of the BE 

Rf - radius of detached eddy 

  
R

fl
, R

fu
– lower and upper bounds of 

 
R

f
 945 

R
i
– initial radius of the BE 

S – area of integration (enclosing the BE) 

ST – Sverdrup Transport 

Sv – Sverdrup (10 6 m 3 s !1 )  

t – time  950 

 
t

f
– period of the eddies generation  

  
t

fl
, t

fu
– lower and upper bounds of 

 
t

f
 

u, v – coordinates of the particle velocity vector 

 
v
!

- orbital velocity of the BE  

V – volume of the BE 955 

x, y –  zonal and meridional coordinate axes in the moving system 
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WBC – western boundary current 

WSC – wind stress curl 

ZNa – Zharkov and Nof (2008a)  

ZNb – Zharkov and Nof (2008b)  960 

α – twice the eddy Rossby number  

β – meridional gradient of the Coriolis parameter 

γ  – slant of the coastline (in the model of straightforward coast), or slant 

of the eastern section of coastline (in the model with kink) 

 
!

1,2
- differences between R and 

  
d

1,2
 965 

!" – difference between densities of lower and upper layer 

! - small parameter defined as 
  
!R

d
/ f  

!  −  integration contour (ABCD) enclosing the area S 

Φ – ratio of the mass flux going into the rings to incoming mass flux 

  
!

l
, !

u
– values of Φ for eddies with radii

  
R

fl
, R

fu
, respectively 970 

! – viscosity coefficient in numerics 

! – angle in polar coordinate system (connected with the BE center) 

! – upper water layer density 

 
!

A
– air density 

  !
x
, ! y

,! "
,!# – wind stress coordinates 975 

!, "– axes of rotated moving coordinate system 
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Table 1. Parameters used in the numerical experiments shown in Figs 9-11. The 1130 
experiments for slanted coastline, terminated coastline, and kinked coastline are 
denoted by SC, TC, and KC, respectively. 

 
Experiments Shown in 

Figure  
Common parameters Specific parameters 

SC01 Fig. 9   
g' = 2.0 × 10-2 m s-2 
f0 = 8.8 × 10-5 s-1 
β = 6.0 × 10-11 m-1 s-1 
Q = 70 Sv 
h0 = 0 m 
γ = 15o 
α = 0.2 
Horizontal resolution : Δx = Δy = 3.33 km  
Time step: Δt = 20 s (time step) 
Basin size: 3200 ×1600 km2 
 

ν = 700 m2 s-1; τx = 0 Pa 

SC02 Fig. 9 ν = 700 m2 s-1; τx = 0.8 Pa 

TC01 Fig. 10 ν = 800 m2 s-1; τx = 0 Pa 

TC02 Fig. 10 ν = 800 m2 s-1; τx = 0.8 Pa 

KC01 Fig. 11 ν = 800 m2 s-1; τx = 0 Pa 

KC02 Fig. 11 ν = 800 m2 s-1; τx = 0.8 Pa 

  
 1135 

 

 

 

 

1140 
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Figure Captions: 

    

Fig. 1. A conceptual portrayal of the present-day Agulhas Current system. Areas 
shallower than 3000 m are shaded. The edge of the continental shelf is represented by 
the dotted line at the 500 m isobath.  Intense currents and their component parts are 1145 
black; the general background circulation is indicated by open arrow. Cyclonic eddies 
are open; anticyclonic rings and eddies are black. Adapted from Lutjeharms (2006).  

 
Fig. 2.  A schematic diagram for a rectilinear slanted coastline. E is the center of the basic 

eddy (BE). In the (rotated) coordinate system !  is directed along the coastline, and η 1150 
is directed normal to the coastline. The incoming flux Q flows along the wall whereas 
the outgoing (retroflected) flux q is directed to the east. The widths of the currents are 
d
1
and d

2
, respectively. The “wiggly” arrow indicates the migration of the BE; it 

results from both the eddy growth, which forces the eddy away from the wall, and 
from β, which forces the eddy along the wall. We see that the migration C! (t) is 1155 
primarily due to the growth, whereas C! (t) is primarily due to β. The thick grey line 

(with arrows) indicates the integration path, ABCDA ;  h! is the upper layer thickness of 
the stagnant region wedged in between the upstream and retroflecting current, h

0
is the 

upper layer thickness near the wall, and H is the off-shore thickness. The segment 
D
2
D
3
 is involved in the expressions containing γ.   1160 

 
Fig. 3. A schematic diagram for a kinked coastline.  The basic notations are the same as 

in Figure 2 but projections of the eddy migration rate are 
  
C

x
(t)  and

  
C

y
(t) .  

 
Fig. 4. A schematic diagram of the model in the special case of a zonal coastline. Here, 1165 

we use the coordinate system (x, y) . The currents carrying Q and q are separated by the 
streamline at x > 0  and y = ! d

1
. The ‘wiggly’ arrows show the migration of the eddy 

(southward on account of the BE growth, and westward due to β). 
 
 Fig. 5. Analytical solution for the base eddy (BE) radius R as a function of time for a 1170 

straight coast. Here  ! = 0.1  (upper panels) and 0.2 (lower panels); wind stress is 
absent (left panels) and strong (0.4 Pa corresponding to ~ 12 m s !1 , right panels). The 
thick solid, dashed and dot-and-dashed lines correspond to γ = 0°, 15°, and 30°, 
respectively; and thin solid, dashed, and dot-and-dashed lines are given for γ = 45°, 
60° and 75°, respectively.  1175 

 
Fig. 6. The same as Figure 5 but for the eddy mass flux ratio Φ. Note that for low 

vorticity (! = 0.1, upper panels), the mass flux going into the eddies (Φ) decreases by 
a factor of 6-8 because of the wind. For high vorticity (! = 0.2 , lower panels) it 
decreases by roughly a factor of two (wind stress is 0.4 Pa). This figure represents the 1180 
core of our results—according to the analytical model, the mass flux going into the 
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eddies is almost zero for winds of 12 m s !1  and the most common (low vorticity) 
rings. 

 
Fig. 7. The same as Figure 5, but for the model of a kinked coastline. Here γ is the slant 1185 

of an eastern coastal section, and thin dotted lines are given for γ = 90°.  
 
Fig. 8. Final (analytical) BE radii (

 
R

fl
and

 
R

fu
, panels a, e), ring generation periods 

(
 
t

fl
and

 
t

fu
, panels b, f), ring propagation rates (

 
C

!l
and

 
C

!u
, panels c, g), and mass flux 

ratios (
 
!

l
and

 
!

u
, panels d, h) as functions of γ  for no-wind (left panels) and wind 1190 

with   !
x
= 0.4 Pa (right panels), for a straightforward slanted coastline model with 

  
h

0
= 300 m and 

 
! = 2.3"10

#11 m 
!1 s 

!1 . The critical points (i.e., locations where upper 
and lower bounds are the same) are circled. They need to be distinguished from the 
points of line terminations for  ! = 0.1  for windy conditions. 

 1195 
Fig. 9. Numerical simulations for a straight coast with ! = 15°, 

  
h

0
= 0 m, 

 
! = 6 "10

#11 m 
!1 s 

!1 ,  ! = 700 m 
2 s 

!1 . Left panels: no wind (experiment SC01 in Table 
1). Right panels: strong wind,   !

x
= 0.8 Pa (experiment SC02 in Table 1). To 

compensate for the numerical frictional effects, which accumulate over time, we use 
double the stress used in the analytics (0.4 Pa).  1200 

 
Fig. 10. Numerical simulations for continental termination with slant of an eastern coast 

! = 15°. Here 
  
h

0
= 0 m, 

 
! = 6 "10

#11 m 
!1 s 

!1 ,  ! = 800 m 
2 s !1 . Left panels: no wind 

(experiment TC01 in Table 1). Right panels: strong wind,   !
x
= 0.8 Pa (experiment 

TC02 in Table 1).  1205 
 
Fig. 11. Numerical simulations for a kinked coast with an eastern section slant ! = 15°. 

Here 
  
h

0
= 0 m, 

 
! = 6 "10

#11 m 
!1 s 

!1 ,  ! = 800 m 
2 s !1 . Left panels: no wind (experiment 

KC01 in Table 1). Right panels: strong wind,   !
x
= 0.8 Pa (experiment KC02 in Table 

1).  1210 
 
 
 
 
 1215 
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Fig. 1. A conceptual portrayal of the present-day Agulhas Current system. Areas 

shallower than 3000 m are shaded. The edge of the continental shelf is represented by 
the dotted line at the 500 m isobath.  Intense currents and their component parts are 1220 
black; the general background circulation is indicated by open arrow. Cyclonic eddies 
are open; anticyclonic rings and eddies are black. Adapted from Lutjeharms (2006).   
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 1225 

Fig. 2.  A schematic diagram for a rectilinear slanted coastline. E is the center of the basic 
eddy (BE). In the (rotated) coordinate system !  is directed along the coastline, and η 
is directed normal to the coastline. The incoming flux Q flows along the wall whereas 
the outgoing (retroflected) flux q is directed to the east. The widths of the currents are 
d
1
and d

2
, respectively. The “wiggly” arrow indicates the migration of the BE; it 1230 

results from both the eddy growth, which forces the eddy away from the wall, and 
from β, which forces the eddy along the wall. We see that the migration C! (t) is 
primarily due to the growth, whereas C! (t) is primarily due to β. The thick grey line 

(with arrows) indicates the integration path, ABCDA ;  h! is the upper layer thickness of 
the stagnant region wedged in between the upstream and retroflecting current, h

0
is the 1235 

upper layer thickness near the wall, and H is the off-shore thickness. The segment 
D
2
D
3
 is involved in the expressions containing γ.   
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Fig. 3. A schematic diagram for a kinked coastline.  The basic notations are the same as 

in Figure 2 but projections of the eddy migration rate are 
  
C

x
(t)  and

  
C

y
(t) .  1240 
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Fig. 4. A schematic diagram of the model in the special case of a zonal coastline. Here, 1245 

we use the coordinate system (x, y) . The currents carrying Q and q are separated by the 
streamline at x > 0  and y = ! d

1
. The ‘wiggly’ arrows show the migration of the eddy 

(southward on account of the BE growth, and westward due to β). 
 

 1250 
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Fig. 5. Analytical solution for the base eddy (BE) radius R as a function of time for a 

straight coast. Here  ! = 0.1  (upper panels) and 0.2 (lower panels); wind stress is 
absent (left panels) and strong (0.4 Pa corresponding to ~ 12 m s !1 , right panels). The 
thick solid, dashed and dot-and-dashed lines correspond to γ = 0°, 15°, and 30°, 1255 
respectively; and thin solid, dashed, and dot-and-dashed lines are given for γ = 45°, 
60° and 75°, respectively.  
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Fig. 6. The same as Figure 5 but for the eddy mass flux ratio Φ. Note that for low 1260 

vorticity (! = 0.1, upper panels), the mass flux going into the eddies (Φ) decreases by 
a factor of 6-8 because of the wind. For high vorticity (! = 0.2 , lower panels) it 
decreases by roughly a factor of two (wind stress is 0.4 Pa). This figure represents the 
core of our results—according to the analytical model, the mass flux going into the 
eddies is almost zero for winds of 12 m s !1  and the most common (low vorticity) 1265 
rings. 
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Fig. 7. The same as Figure 5, but for the model of a kinked coastline. Here γ is the slant 

of an eastern coastal section, and thin dotted lines are given for γ = 90°.  
 1270 
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Fig. 8. Final (analytical) BE radii (
 
R

fl
and

 
R

fu
, panels a, e), ring generation periods 

(
 
t

fl
and

 
t

fu
, panels b, f), ring propagation rates (

 
C

!l
and

 
C

!u
, panels c, g), and mass flux 

ratios (
 
!

l
and

 
!

u
, panels d, h) as functions of γ  for no-wind (left panels) and wind 1285 

with   !
x
= 0.4 Pa (right panels), for a straightforward slanted coastline model with 

  
h

0
= 300 m and 

 
! = 2.3"10

#11 m 
!1 s 

!1 . The critical points (i.e., locations where upper 
and lower bounds are the same) are circled. They need to be distinguished from the 
points of line terminations for  ! = 0.1  for windy conditions. 
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 1290 

 

 

Fig. 9. Numerical simulations for a straight coast with ! = 15°, 
  
h

0
= 0 m, 

 
! = 6 "10

#11 m 
!1 s 

!1 ,  ! = 700 m 
2 s 

!1 . Left panels: no wind (experiment SC01 in Table 
1). Right panels: strong wind,   !

x
= 0.8 Pa (experiment SC02 in Table 1). To 1295 

compensate for the numerical frictional effects, which accumulate over time, we use 
double the stress used in the analytics (0.4 Pa).  
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 1305 
Fig. 10. Numerical simulations for continental termination with slant of an eastern coast 

! = 15°. Here 
  
h

0
= 0 m, 

 
! = 6 "10

#11 m 
!1 s 

!1 ,  ! = 800 m 
2 s !1 . Left panels: no wind 

(experiment TC01 in Table 1). Right panels: strong wind,   !
x
= 0.8 Pa (experiment 

TC02 in Table 1).  
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 1310 
Fig. 11. Numerical simulations for a kinked coast with an eastern section slant ! = 15°. 

Here 
  
h

0
= 0 m, 

 
! = 6 "10

#11 m 
!1 s 

!1 ,  ! = 800 m 
2 s !1 . Left panels: no wind (experiment 

KC01 in Table 1). Right panels: strong wind,   !
x
= 0.8 Pa (experiment KC02 in Table 

1).  
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