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ABSTRACT

Wind data from the SeaWinds instrument on NASA’s Quick Scatterometer (QuikSCAT) satellite are
investigated to ascertain how well the surface manifestation of the Madden–Julian oscillation (MJO) can be
resolved. The MJO signal is detected in nonfiltered gridded data using extended EOF analysis of the zonal
wind field, overshadowed by annual, semiannual, and monsoon-related modes. After bandpass filtering with
Lanczos weights, MJO signals are clearly detected in several kinematic quantities, including the zonal wind
speed, the zonal pseudostress, and the velocity potential. Extraction of the MJO using QuikSCAT winds
compares favorably with extraction using NCEP Reanalysis 2, except that the QuikSCAT signal appears to
be more robust.

In addition, an alternative bandpass-filtering technique using variable filter weights near time series
endpoints is presented. The method uses least squares minimization to match newly created frequency
response functions in edge zones as closely as possible to the predetermined frequency response function
of interior points. This method stands in contrast to the common practice of simply discarding those
endpoints where a convolution cannot be computed.

1. Introduction

The Madden–Julian oscillation (MJO) is the primary
mode of intraseasonal variability in the Tropics, al-
though the signal is often more conspicuous in the In-
dian and western Pacific Oceans than it is over the
eastern Pacific and the Atlantic. The oscillation exhibits
a relatively broad frequency range, repeating anywhere
from 20 to 100 days. However, much of the signal’s
spectral energy is concentrated in the 40–60-day band.
First observed by the mode’s namesakes in 1971, the
MJO is somewhat unique among large-scale climatic
signals in that its frequency range is its defining char-
acteristic (Madden and Julian 1971). In fact, Madden
and Julian originally dubbed this signal the 40–50 Day
Oscillation. A secondary attribute of the MJO is its
eastward, equatorially trapped propagation.

The MJO signal is fairly conspicuous in outgoing
longwave radiation (OLR) data, which is a proxy for
convective activity in the Tropics (Lau and Chan 1985).

MJO convective anomalies in the Indian and western
Pacific Oceans account for a large portion of precipita-
tion variability on intraseasonal time scales. However,
the MJO signal is found in other variables: wind (Mad-
den and Julian 1994), pressure (e.g., Kayano and
Kousky 1998), and even sea surface temperature
(Krishnamurti et al. 1988). Given the clear link between
the MJO and tropical convection, the divergent com-
ponent of the wind field plays a more visible role than
the rotational component, although a growing body of
evidence suggests that rotational effects cannot be dis-
counted (e.g., Raymond 2001).

In the present study, the ability of the MJO to be
identified in Quick Scatterometer (QuikSCAT) data is
investigated. QuikSCAT is a relatively new tool that
can be utilized to address outstanding MJO questions
near the surface, such as the physics involved in the
propagation and reinitiation mechanisms. First, it is
necessary to assess the level to which QuikSCAT is able
to capture the MJO signature. It will be shown that the
MJO is indeed conspicuous in a prefiltered gridded
QuikSCAT product, and that clear signals can be seen
in the following variables after bandpass filtering over
the MJO time scales: zonal wind, velocity potential, and
zonal pseudostress at the surface. Moreover, we show
that the average propagation speed over the Indian and
western Pacific Oceans is on the order of 4 m s�1. The
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novelty of the present work is the ability to clearly de-
tect the MJO in a gridded QuikSCAT dataset, as well as
the presentation of a new bandpass-filtering algorithm
that retains time series endpoints and can be utilized for
real-time monitoring of the MJO and other climate
phenomena. The QuikSCAT dataset can be utilized in
the future to improve our understanding of MJO phys-
ics at the surface, a research avenue that has so far
relied on reanalysis data.

Section 2 describes the QuikSCAT gridded product.
The detection of the MJO in prefiltered QuikSCAT
data is addressed in section 3. Section 4 highlights the
results of analyses involving bandpass-filtered data. A
summary and concluding remarks are in section 5.

2. QuikSCAT wind product

a. Scatterometer data

Scatterometers are active microwave instruments
that measure backscatter, primarily from capillary
waves on the ocean’s surface. Scatterometers are
mounted on polar-orbiting satellites. Their motion rela-
tive to the earth’s surface enables them to measure col-
located backscatter from several orientations (azimuth
directions and incident angles). Backscatter is a func-
tion of both wind speed and direction: given observa-
tions at enough orientations, wind speed and direction
can be recovered (Wentz and Smith 1999). The obser-
vational accuracy is extremely good (Bourassa et al.
2003): 0.3 m s�1 and 3° for the Ku-2000 model function.
These numbers represent one standard deviation in
random errors. They are determined with in situ data
that are closely collocated in time (�30 s difference),
and the influence of differences in spatial collocation
was considered by binning the collocated data as a func-
tion of difference in distance. These results are aver-
aged across the swath, and in the absence of rain. The
scatterometer backscatter observations that contribute
to a single wind vector can be averaged over an ap-
proximately 70 km � 70 km area; however, the spatial
averaging is far from uniform. The wind vector obser-
vations were found to correspond marginally best with
a 7-km length scale; the above estimates of uncertainty
apply to this scale. More small-scale information is con-
volved into the scatterometer observations than was
originally expected.

The influences of rain are functions of rain rate and
wind speed (Weissman et al. 2002); however, all vectors
suspected of being rain contaminated are flagged, re-
gardless of the magnitude of the problem. For most
storms there is little modification to many rain-
contaminated wind vectors: the wind signal dominates
the influence of rain. However, in areas of low wind

speed, the rain often leads to serious errors. For our
scatterometer wind fields, all observations that are
flagged as rain-contaminated are removed from consid-
eration. Rather than instrument measurement error or
rain contamination, the irregular temporal sampling
(Schlax et al. 2001) at a given location by the scatter-
ometer during its orbital cycle contributes the greatest
errors during the mapping of wind data along the sat-
ellite observational swaths onto regular grids. For time
series analysis, this problem is very severe for frequen-
cies more rapid than several times the length of the
orbital cycle, which is 4 days for QuikSCAT.

b. The objective gridding technique

The gridded scatterometer fields are produced using
a variational approach adapted from Pegion et al.
(2000). The key differences from Pegion et al. are the
direct consideration of uncertainty and the construction
of the background field. The constraints in the varia-
tional method are misfits to the observed vector com-
ponents, a Laplacian penalty function, and a misfit to
the curl of the background field. The constraint on the
curl of the pseudostress couples the vector components
and greatly reduces spurious curl-related ocean forcing.
The weights for each of these constraints are deter-
mined through cross validation. The quality and sam-
pling of the scatterometer observations are such that
the objectively determined weights put most of the em-
phasis on the observation field.

c. Experimental design

From the zonal (�x) and meridional (�y) components
of pseudostress, the zonal (u) and meridional (�) wind
components are computed. From u and �, the velocity
potential (�) is derived via a spectral method (see
Krishnamurti et al. 1998). Only results of analyses of u,
�x, and � are considered. The data span from 10°N to
10°S and from 40°E to 80°W on a 1° � 1° grid, covering
the deep Tropics of the Indian and Pacific Oceans. The
data are temporally averaged into 392 consecutive pen-
tads, from late July 1999 through early December 2004.

3. Detection of the MJO from prefiltered
QuikSCAT data

a. Methodology

Obtaining a representative time series of the MJO is
not a trivial task. The MJO is assumed to be present in
the time series of every grid point in our domain. A
variance decomposition technique is required to obtain
a representative time series of the MJO for the entire
domain. The need to consolidate geophysical data into
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the most energetic modes prompted the application of
principal component analysis, or empirical orthogonal
function (EOF) analysis, to geophysical space–time
datasets. Kessler (2001) and Wheeler and Hendon
(2004) are among the many works that have success-
fully utilized EOF analysis to define the MJO. A com-
mon problem with EOF analysis is that the spatial
modes are stationary, an unattractive attribute when
dealing with a propagating feature like the MJO. In
addition, proper detection of the MJO with EOF analy-
sis typically requires prior removal of low-frequency
variability.

To overcome the shortcomings of EOF analysis on
nonfiltered data, we utilize extended EOF analysis,
which uses a covariance matrix extended by cross-
covariances at different lags (e.g., see Weare and
Nasstrom 1982). This allows the spatial pattern to move
in time because propagating patterns (assuming the
propagation speed is fairly uniform) will be spatially
correlated at a given distance over a given time interval.
Extended EOF analysis has been widely used to repre-
sent MJO variability (e.g., Lau and Chan 1985; Kayano
and Kousky 1998; Myers and Waliser 2003). Consecu-
tive plots of the lagged eigenfunctions clearly demon-
strate propagating modes (a practical feature that EOF
analysis lacks by its very nature). Moreover, since ex-
tended EOF analysis is able to differentiate between a
propagating intraseasonal pattern (the MJO) and simi-
lar spatial signatures that are associated with low-
frequency variability, extended EOF analysis is prefer-
able over EOF analysis for nonfiltered data in the MJO
domain.

The justification for extracting the MJO time scale
from space–time data is often misconstrued by some in
the scientific community. A frequent concern is that
this act constitutes statistical voodoo, observing a 40–
60-day oscillation only after bandpass filtering over the
40–60-day time scale. Based on the superposition prin-
ciple, all space–time data can be considered as infinite
combinations of spatial patterns and associated time
series. Therefore, bandpass filtering over any frequency
band would yield modes that vary primarily across the
time scale that was isolated. This begs the following
question: why is the MJO significant if it appears as
though it must be extracted via filtering before it can be
observed?

By performing extended EOF analysis on the prefil-
tered zonal velocity data, it will be clear that the MJO,
while not as energetic as the annual cycle of solar ra-
diation or the Indian monsoon mode, is indeed embed-
ded in the data and does account for a nontrivial por-
tion of the variance. A lag covariance parameter of 15
pentads is used, which corresponds to a maximum lag of

75 days. Varying this parameter between 5 and 21 pen-
tads did not materially affect the results. Annual and
semiannual variations associated with the seasonal
march of solar radiation are not removed. Given its
propagating nature, it is anticipated that MJO variabil-
ity will be represented by two extended EOF modes in
temporal quadrature with each other. Cross correlation
and hodograph analysis will be utilized to test for
quadrature. Spectral and wavelet analyses (see Meyers
et al. 1993) will be conducted on the leading PC time
series of MJO variability to ascertain the energetic time
scales captured by QuikSCAT, as well as how the time
scale fluctuates over the record length. In addition, the
above analysis will be repeated with the National Cen-
ters for Environmental Prediction (NCEP) Reanalysis
2 zonal wind data (see Kanamitsu et al. 2002), provided
by the National Oceanic and Atmospheric Administra-
tion–Cooperative Institute for Research in Environ-
mental Sciences (NOAA–CIRES) Climate Diagnostics
Center directly from their Web site (http://www.cdc.
noaa.gov/). This dataset covers the same time period
(late July 1999 through early December 2004) and was
linearly interpolated and regridded to the 1° � 1° grid
of the QuikSCAT data in order to compare extraction
of the MJO using these two independent data sources.

b. Results

Our results indicate that the primary modes of zonal
velocity over our domain are associated with the annual
cycle, the transitions between summer and winter In-
dian monsoons, and semiannual variations. These three
phenomena are associated with the three leading
modes of prefiltered zonal wind, accounting for 41.5%,
10.1%, and 3.7% of the total variance, respectively.
However, modes 4 and 5, in quadrature with each
other, are clearly associated with the MJO. This is made
evident by examining the lagged eigenfunctions of the
fourth mode (Fig. 1a) as well as the associated PC time
series (Fig. 1b). Based on the extended EOF maps, the
pattern propagates eastward at approximately 4 m s�1.
This compares favorably with previous reports (Hen-
don and Salby 1994; Jones and Weare 1996; Shinoda et
al. 1998; Rui and Wang 1990). Together, modes 4 and 5
account for about 4.6% of the total variance, a respect-
able portion considering the analysis was performed on
the actual zonal velocity. EOF analysis of the nonfil-
tered zonal velocity data was also performed (not
shown). As expected, EOF analysis was not capable of
separating the MJO’s intraseasonal, eastward-propa-
gating variability from lower-frequency modes.

The spectral characteristics of the PC time series in
Fig. 1b are shown in Fig. 2. The spectral peak occurs
near the 50-day time scale, in general agreement with
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FIG. 1. (a) Lagged eigenfunctions of the fourth leading extended EOF (EXEOF) of nonfiltered zonal velocity from QuikSCAT. The
lag parameter for the EXEOF analysis was 15 pentads. Negative contours are dashed and the zero line is bold. Land areas, including
the Maritime Continent and Africa in the west, are shown in black. The lag number is shown in the upper right-hand corner of each
plot. Note that plots 9–10 lags apart are similar, indicating an MJO time scale of 45–50 days. (b) The associated PC time series. (c) The
PC time series of the sixth leading mode of EXEOF analysis using NCEP Reanalysis 2. The time series in (b) and (c) have a maximum
lag correlation coefficient of 0.96.
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previous observations of the MJO time scale (see Mad-
den and Julian 1994). Wavelet analysis provides an idea
of the variation in time scale (Fig. 2b). Clearly, the time
scale fluctuates around 50 days, with considerable en-
ergy occurring between 35- and 85-day periods in cer-
tain instances.

c. Comparison with NCEP Reanalysis 2

Extended EOF analysis of the nonfiltered zonal ve-
locity from the National Centers for Environmental
Prediction (NCEP) Reanalysis 2 reveals a clear MJO
pair as modes 6 and 7, garnering a combined 3.2% of
the variability. The PC time series of mode 6 is pre-
sented in Fig. 1c. Its spectrum and a wavelet analysis of
this time series are presented in Fig. 3. The PC time
series has a maximum lagged correlation (at 1 pentad)
of 0.96 with the fourth leading mode PC from Quik-
SCAT, shown in Fig. 1b. In addition, the raw and wave-

let spectra in Fig. 3 for the reanalysis data compare
remarkably well with the corresponding QuikSCAT
plots in Fig. 2, both showing clear spectral peaks at a
time scale of 50 days and evincing common fluctuations
in spectral energy over time.

The difference in percent variance accounted for by
the MJO modes in QuikSCAT (4.5%) and NCEP Re-
analysis 2 (3.2%) is noteworthy. This represents an in-
crease of relative importance of about 40% from one
dataset to another. If we account for the fact that the
QuikSCAT data overall contain a 9% larger total vari-
ance over the MJO domain than the reanalysis data
prior to interpolation (20% greater after interpolation),
the disparity in intraseasonal energy between the two
datasets is even greater. Spectral energy over the MJO
domain in the 30–60-day range is about 30% lower on
average in the Reanalysis zonal wind data compared to
QuikSCAT data (Fig. 4). Therefore, it appears that the
major difference between observed MJOs in Quik-
SCAT and NCEP Reanalysis 2 lies in the signals’ am-
plitudes, whereas strong agreement exists regarding the

FIG. 2. (a) Smoothed spectral estimates of the time series in Fig.
1b. The 95% �2 confidence bands are shown as dashed lines. (b)
Wavelet analysis of the time series in Fig. 1b. The values have
been scaled to range between 0 and 7.

FIG. 3. As in Fig. 2, but for the PC time series of the sixth
leading mode of zonal wind using NCEP Reanalysis 2.
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observed time scales as well as temporal fluctuations in
time scale.

4. Bandpass-filtered analyses

a. Methodology

Based on the spectrum in Fig. 2a, Lanczos weights
were determined for bandpass filtering u, �, and �x. The
filter consists of 31 weights, symmetric about the central
point, with half power at about 33 and 75 days. Time–
longitude plots are computed from the bandpass-
filtered values of u, �, and �x. From these charts, propa-
gation speeds are estimated.

To preserve the record length, which is pivotal when
dealing with satellite data because of limited record
lengths, a minimization algorithm is employed that de-
termines filter weights for computing values for each
slot in the endpoints (see the appendix). Wheeler and
Hendon (2004) point out that the major obstacle of
real-time monitoring and prediction of the MJO is the
loss of endpoints due to bandpass filtering. The variable
filter weight technique offered here is an attractive al-
ternative to the more indirect methods currently used
to address this issue.

b. Results

Time–longitude plots of bandpass-filtered u, �, and �x

are shown in Fig. 5. Clear eastward propagation is evi-
dent for each variable. Approximate estimations from
Fig. 5 suggest a propagation speed across the longitu-
dinal extent of our domain of about 5 m s�1. However,
it is clear that the propagation speed is not at a constant
rate but ranges from about 1 to 10 m s�1. This compares
favorably with previous studies (e.g., Lau and Chan
1985). Closer inspection reveals that the propagation
speed is considerably higher in the eastern Pacific (�10

m s�1), in accordance with previous research (Hendon
and Salby 1994; Maloney and Hartmann 1998).

The time–longitude plots portray fairly regular MJO
events, although the MJO signal was either absent or
diminished during several brief episodes. These include
disruptions in early 2000 and late 2003, when a west-
ward propagation occurred, as well as a brief absence in
late summer of 2002. In general, it appears that the
MJO is not prone to favor a particular season, although
recent studies maintain that the signal is most conspicu-
ous during springtime because of reduced interaction
with the Indian monsoon (e.g., Myers and Waliser
2003). Similar time–longitude analyses were conducted
with other kinematic variables, such as meridional ve-
locity, and rotational quantities, such as vorticity and
streamfunction. As expected from previous works,
clear MJO signals were not apparent in these param-
eters.

5. Summary and conclusions

Gridded data from the SeaWinds instrument on the
QuikSCAT satellite were inspected to ascertain how
well the instrument could resolve MJO variability at the
surface. Extended EOF analysis of nonfiltered surface
zonal velocity over the tropical Indian and Pacific
Oceans, with a lag parameter of 15 pentads, reveals that
MJO variability is captured by modes 4 and 5. These
two modes are in quadrature with each other and ex-
plain a combined 4.6% of the total variance. The first
three modes explain the majority of the variance and
are associated with annual, semiannual, and monsoon-
related variations. Although the MJO is not the domi-
nant mode in the nonfiltered dataset, it does represent
the dominant mode of intraseasonal variability, over-
shadowed by modes associated primarily with the an-
nual cycle of solar radiation. The QuikSCAT results

FIG. 4. Local percent deviation of spectral energy in the 30–60-day band for zonal winds between
QuikSCAT and NCEP Reanalysis 2. Areas with light shading indicate regions where the spectral energy
is at least 25% greater in the reanalysis than QuikSCAT. Darker shading indicates that QuikSCAT has
at least 25% more spectral energy than the reanalysis. It is clear that QuikSCAT zonal wind data
displays considerably larger spectral energy within MJO time scales, especially near the Maritime
Continent and in the western Pacific Ocean.
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FIG. 5. (a) Hovmöller diagram of bandpass-filtered u. (b) Same as in (a), but for velocity potential. (c) Same as in (a), but for zonal
pseudostress. For all three charts, the magnitudes are arbitrary and dimensionless. This is a consequence of bandpass filtering with the
constraint of preserving the expectation of the mean of the data.
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compare favorably with results from NCEP Reanalysis
2, with the main difference being the considerably
larger amplitude of the MJO’s surface signal in Quik-
SCAT data.

After confirming the existence of MJO variability in
the data, bandpass filtering was conducted to isolate
MJO time scales. Clear MJO patterns (with appropri-
ate spatial scales and eastward propagations) were
found in zonal velocity, velocity potential, and zonal
pseudostress. Time–longitude plots and extended EOF
analysis reveals typical propagation speeds ranging
from 1 to 10 m s�1, with a mean value in the vicinity of
4 m s�1.

In addition, an alternative filtering strategy was ap-
plied that retained time series endpoints, based on least
squares minimization of the frequency response func-
tion. This generalized filtering method is not unique to
bandpass filters, such as the Lanczos filters, since the
frequency response function is a fundamental attribute
of all filters. We anticipate that this method can be
utilized in other climate research avenues, especially
for shorter record lengths like satellite datasets. With
regard to the MJO, it is anticipated that real-time moni-
toring and perhaps even prediction of the MJO can
benefit from this method.

Our findings highlight the usefulness of a gridded
QuikSCAT dataset for investigation of the MJO. As
the steady stream of satellite data, such as those avail-
able from QuikSCAT, further improve the spatial and
temporal coverage of available datasets, more detailed
descriptions of weather phenomena will be possible. In
particular, the potential of improved understanding of
the MJO due to increased coverage, rather than relying
on reanalysis data, is promising, especially for winds.
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APPENDIX

Time Series Filtering near Endpoints

Time series filtering is typically computed in time
space, using filter weights, h(�). This requires a convo-
lution,

y�t	 
 �
�
a

�
b

h��	x�t � �	. �A1	

The parameters a and b are integers that are usually
chosen such that b is the negative of a. Thus, the num-
ber of filter weights becomes 2b � 1. The parameter �
represents a time lag. Filtering in the time domain re-
sults in lost points at the endpoint intervals; this is a
consequence of using a convolution. Specifically, the
convolution cannot be defined at the first b points and
the last b points of the time series. In these regions, at
least one of the lags is associated with an unavailable
point in the time series (points beyond the terminal
values). These points where the full convolution cannot
be computed are usually dropped from consideration
(see Fig. A1a).

In the present study, variable filter weights in the
endpoint intervals are determined such that the fre-
quency response function (FRF) appropriately repro-
duces the predetermined FRF of the interior points. A
penalty function is constructed that minimizes the
squared error between the FRF in the interior and a
new FRF in each point within the endpoint intervals.
The value of b is incrementally decreased to force a
symmetric filter at each point. The result is a set of filter
weights for each point in the endpoint interval. It can be
shown that, unconstrained, this minimization technique
will simply truncate the filter weights used in the inte-
rior (see Bloomfield 2000). A practical constraint is to
force the new weights to sum to 1, thereby preserving
the expectation of the mean of the output series. For a
particular value of b, L, referring to a point in the end-
point interval, the new FRF is

G� f	 
 �
k
�L

L

��k	ei2�fk, �A2	

→

FIG. A1. Schematic used for describing the variable filter weight technique. (a) Sample 100-point time series to be filtered with a
31-point Lanczos filter. Points marked with an asterisk depict time points in which the complete convolution can be computed with 31
weights. In the left- and right-hand edges of the time series (the first and last 15 points of the time series), the least squares filtering
technique is employed. (b) The full 31 Lanczos weights used for bandpass filtering in the text. (c)–(e) Filter weights computed using
the least squares technique at points 11, 7, and 3 in the time series, respectively. The same weights are used at the corresponding points
in the right-hand end of the series. (f)–(i) The associated power transfer functions of the filter weights in the left-hand panel.
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FIG. A1. (Continued)

DECEMBER 2005 A R G U E Z E T A L . 1893



where � represents the new filter weights. The cost
function J for a given point L in the endpoint interval is
a function of � and  (the Lagrangian multiplier that
imposes our constraint):

J��, �	 
 �
f

�H� f 	 � G� f 	�2 � ��1 � �
k
�L

L

��k	�,

�A3	

where H represents the frequency response function of
interior points. The minimum of this penalty function is
obtained by taking the partial derivatives with respect
to each � and  and setting them equal to zero:

�J

��j

 �2�

f
�H� f 	 � G� f 	�ei2�fj � � 
 0, �A4	

�J

��

 1 � �

k
�L

L

��k	 
 0. �A5	

Equations (A4) and (A5) are solved simultaneously us-
ing matrix operations to arrive at the coefficients.

Figure A1 shows the filter weights for the complete
31-point Lanczos filter (Fig. A1b), as well as the com-
puted weights for points 11, 7, and 3 in the time series
(Figs. A1c–e, respectively). Figures A1f–i show the as-
sociated power transfer functions. Inevitably, as indi-
cated in the figure, the errors due to this method in-
crease closer to the terminal points for two primary
reasons. First, less data are available for the computa-
tion. Second, the ability to reproduce the frequency
response function is hampered by a reduced number of
allowed filter weights. The second source of error is
especially problematic for bandpass filters, such as the
Lanczos filter used in the present study, since the
weights must include both positive and negative
weights to extract salient time scales. Despite these er-
rors, it is the authors’ contention that the method pre-
sented here for estimating endpoint values is preferable
to discarding endpoints, a common practice in the geo-
sciences. Future work may involve combining the least
squares technique with a statistical prediction method
that takes on increasing weight closer to the terminal
ends.
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