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ABSTRACT 
 

 An improved model is developed for the dependency of surface turbulent stress on wave characteristics. Recent 
studies have used differences between satellite and in situ observations to gain insights into the physical processes that 
might be related to air-sea interaction. Both scatterometers and buoys provide very accurate measurements of wind 
speed. Differences between these measurements can be explained in terms of the different mechanisms to which the 
instruments respond. A physically-based flux model is developed herein. Prior results suggest that the stress 
parameterizations, converting neutral equivalent wind speed to stress, applied to in situ observations differ subtlety 
from those that should be used for scatterometer-derived winds. These differences are due to water waves modifying 
the surface stress. This model provides a physical explanation of the observed differences, and provides a model for 
calculating stresses from scatterometer winds. The model is validated with recent in situ observations gathered under 
severe conditions. The model explains more wave-related variability in surface stress than previous models. 

 

INTRODUCTION 

 Surface stress over water is primarily dependent on the vertical profile of wind speed, which is dependent on 
stratification of the atmosphere (atmospheric stability) and sea state (i.e., characteristics of the surface wave field). A 
typical assumption in GCM modeling of surface fluxes is that the wind and the waves are in a state of local 
equilibrium or a prescribed state of non-equilibrium. This assumption is equivalent to specifying a sea state. Recent 
examinations (Bourassa et al., 1999; Taylor and Yelland, 2001) based on in situ data have shown that this assumption 
is invalid for most spatial and temporal scales where there is substantial variability in sea state. Physical mechanisms 
have been proposed to account for the dependency of stress on sea state (Kusaba and Masuda, 1988; Geernaert et al., 
1990; Toba et al., 1990; Perrie and Toulany, 1990; Maat et al., 1991; Smith et al., 1992; Yelland et al., 1998; Bourassa 
et al., 1999, 2001); however, an empirical formulation based on a much wider range of wind speeds and non-
directional sea states (Taylor and Yelland, 2001) has been shown to provide substantially better matches to 
observations that cover a wide range of conditions. Differences between satellite and in situ wind observations have 
been used to infer the relative importance of several wave characteristics (Quilfen et al., 2001). The results of this 
study are correlations, which do not explain the physical mechanisms through which these wave characteristics modify 
surface fluxes. These differences also indicate that different parameterizations should be used to convert the observed 
wind speeds to stresses. A physical mechanism that utilizes these satellite-derived insights is developed, and it is found 
to be largely consistent with the results of Taylor and Yelland’s (2001) empirical relation. One advantage of this 
physically-based mechanism is that it also considers directional sea state (i.e., the wind direction relative to the 
direction of wave propagation). This additional consideration makes the flux model consistent with observations over a 
wider range of conditions. The non-directional impacts on surface turbulent stress are developed and validated herein. 
 A stress-dependent model for significant wave height is coupled with a sea state dependent surface flux model to 
demonstrate the interdependence of surface fluxes and wave characteristics. It is shown that significant wave height 



    
can be used, in conjunction with wind speed, as an indicator for the departure from local wind-wave equilibrium as 
well as the calculation of non-equilibrium fluxes. This result is largely consistent with the empirical formulation of 
Taylor and Yelland (2001); however, the physical impacts of sea state are parameterized through the influences of the 
surface’s orbital motion induced by waves, rather than the slope of the waves. Such a model has been successfully 
applied to capillary-wave related surface stress (Bourassa et al., 1999); however, such wave dominate stress for ten 
meter wind speeds (U10) < ~5 ms-1. The mechanism was not applied to gravity wave related surface stresses, which 
dominate greater wind speeds due to the lack of appropriate data for validation. A recent study (Quilfen et al., 2001) 
has shown that the differences between observed and modeled scatterometer backscatter are well correlated to wave 
slope characteristics, but better correlated to the wave-induced surface motion. The modeled backscatter were found by 
inverting the geophysics model function (GMF) that was used to convert backscatter to vector winds. This model 
function has been shown be very accurate (Bourassa et al. 2003), indicating that small differences in wind speed 
(greater than ~5 cm/s), or the equivalent in backscatter, are likely to be due to physical differences rather than noise. 
These differences were binned according to low, moderate, and strong wind speeds. The correlations between these 
differences in backscatter, and the wave characteristics (orbital velocity and significant slope) were similar for low and 
moderate wind speeds; however, for strong winds the correlation was much better with orbital velocity (the 
significance of these differences was not given). This finding supports the physical reasoning applied in the flux model 
developed herein, for low wind speeds as well as high wind speeds. 

DATA 

 The impacts of sea state on stress have previously been validated (Bourassa et al., 1999) for conditions dominated 
by capillary waves. The model reproduced observed changes in stress as a function of directional sea state. The 
developments in this study are applicable to conditions where stress is dominated by gravity waves. There are few 
observational data sets that contain both stress and wave observations. A preliminary version of observations from the 
Storm Wave Study experiment (SWS-2; Dobson et al., 1999; Taylor et al., 1999) was kindly provided by Peter K. 
Taylor. These observations have the additional advantage of covering a large range of wind conditions: 4 ms-1 to 24 
ms-1, with the quality control criteria described below. It is also the data set that Taylor and Yelland (personal 
communication, 2000) used to demonstrate that models using the HEXOS parameterization (e.g., Bourassa et al., 
1999) overestimated stresses for high wind speeds.  
 The following constraints were applied to the SWS-2 observations.  
 1) The sonic anemometer’s estimate of the speed of sound is between 332 and 338 ms-1, 
 2) The standard deviation of the platform’s heading is less than 14°, 
 3) The dimensionless Monin−Obukhov scale length (z/L; eqs. 4-6) is less than 0.18. 
They serve as quality control on the stress and wave observations, as well as remove conditions that were too far from 
neutral to be considered examinations of near-neutral conditions. The first constraint ensures that the speed of sound, 
which is critical to the calculation of turbulent fluxes, is within the range expected from the observed air temperatures 
(P. K. Taylor, pers. comm., 2003). The second constraint attempts to remove cases where excessive ship motion or 
flow distortion introduces too much variability in the observations; approximately 1% of the observations are removed 
due to this constraint (P. K. Taylor, pers. comm., 2003). The third constraint applies a measure of atmospheric 
stratification (z/L) to remove cases that are far from neutral stability, where the parameterizations that account for such 
departures are relatively uncertain.  

FLUX MODEL 

 The downward momentum flux (τ) can be modeled in terms of the friction velocity (u∗): 
 τ  = ρ u* | u* | ,  (1) 
where ρ is the density of the air.  The upward surface turbulent fluxes of sensible (H) and latent heat (E) are 
   H  = −ρ Cp θ* | u* | , and (2) 
   E  = −ρ Lv q* | u* | , (3) 
where θ* and q* are scaling parameters analogous to u∗, Cp is the specific heat of air, and Lv is the latent heat of 
vaporization. The goal of this study is to improve the accuracy of modeled values of u∗, which will improve the 
accuracy of these surface turbulent fluxes. 



    
 The direct influence of surface waves on flux and airflow characteristics (u∗ and zo) is determined by the relation 
between u∗ and roughness length (zo). Given zo(u∗) and the modified log wind relation U(z), where z is the height above 

the local mean surface, it is possible to iteratively solve for u∗(U) and τ(U).  The modified log−wind relation is 
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where k is von Kârmân’s constant for momentum, and L is the Monin-Obukhov stability length. The influence of 
atmospheric stratification in the boundary-layer is modeled through the Monin-Obukhov stability length (Liu et al., 
1979). The profiles of potential temperature (θ) and specific humidity (q) have functional forms similar to the log-wind 
profile. 
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The parameterizations of roughness lengths for potential temperature (zoθ) and specific humidity (zoq), and L are 
identical to those used in the BVW (Bourassa-Vincent-Wood) flux model (Bourassa et al., 1999). 

Dependence of stress on sea state 
 The dependence of stress on sea state (wave age, cp / u∗ in earlier versions of this model) typically enters through 
the gravity wave contribution in the roughness length parameterization (e.g., Kusaba and Masuda, 1988; Geernaert et 
al., 1990; Toba et al., 1990; Perrie and Toulany, 1990; Maat et al., 1991; Smith et al., 1992; Bourassa et al., 1999; 
Taylor and Yelland, 2001). The BVW roughness length (7) is among the most complicated: it is anisotropic and 
considers contributions to surface roughness from three types of surface features. 
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where the β terms are binary weights for the roughness lengths associated with (from left to right) associated with an 
aerodynamically smooth surface (Nikuradse 1933; Kondo 1975), capillary waves (Bourassa et al. 1999), and gravity 
waves (Smith et al. 1992), where ν is the molecular viscosity of air, Uorb is the orbital speed of the dominant waves, b 
is a dimensionless constant (determined from laboratory observations; Bourassa et al. 1999), σ is surface tension, ρw is 
water density, cp is the phase speed of the dominant waves, and g is gravitational acceleration. In this case, sea state 
(through orbital velocity) also influences the capillary wave roughness length. The orbital velocity term in the capillary 
wave roughness length simply changes the velocity frame of reference to that of a fraction f of the orbital velocity of 
the dominant waves. Laboratory studies (Okuda et al., 1997) have shown that must of the interactions between wind 
and waves occur near the crest of the dominant waves). This term in the model is analogous to modifying the lower 
boundary condition on velocity. 
 For U10 > 7 m s-1 the roughness length due to capillary waves is small compared to that for gravity waves. The 
BVW parameterization of capillary wave roughness length is dependent on the velocity frame of reference, which is 
often considered to match the surface current. However, the capillary waves and short gravity waves that interact with 
the airflow tend to ride on top of the dominant gravity waves. The exponential term in the capillary wave roughness 
length is an adjustment to the velocity frame of reference of the surface current. This frame of reference adjustment is 
the second mechanism through which sea state influences the roughness length. 

Improvements to model 
 An improvement is made to the BVW (Bourassa et al. 1999) flux model. For high wind speeds, the BVW stresses 
were found to greatly overestimate the stresses observed in the Storm Wave Study experiment (SWS-2; Dobson et al., 
1999; Taylor et al., 1999) experiment (P. K. Taylor, personal communication, 1999). Both Bourassa et al. (1999) and 
Taylor (personal communication, 1999) suggested that such biases were due to extrapolating the HEXOS 
parameterization for surface roughness length (Smith et al. 1992) to conditions for which it was not valid. The HEXOS 
parameterization is not applied in the model developed herein: the roughness length (8) can be written with no explicit 
dependence on sea state, where the gravity wave roughness length is a two-dimensional version of Charnock’s 



    
equation (Charnock, 1955). The influence of sea state enters solely through the modification of vertical shear in wind 
speed (9), due to a non-zero lower boundary condition: the wave-induced surface motion. 
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The orbital speed of gravity waves (Uorb) is approximated by 
 U Horb s pT= π / , (10) 
where Hs is the significant wave height, and Tp is the period of the significant waves. For gravity waves, Uorb can easily 
be related to the significant slope used by Taylor and Yelland (2001). The fraction of the orbital velocity (f) that 
modifies the surface wind was set at 50% in BVW. There was considerable uncertainty in f, with little difference in the 
accuracy of fluxes for values of f > 0.45. Both f and a must be re-evaluated for use in (8). 
 The use of significant wave height in (10) is an oversimplification: Hs can be a combination of wind waves and 
swell from multiple sources. Directional differences in the wave spectra will contribute to errors in the estimated 
orbital velocity and consequently the errors in the stresses. However, wave spectra are rarely available from 
observational studies; whereas Hs is relatively common recorded in situ observations, and it is remotely sensed through 
altimetry. In practice, there are few sources of spectral wave information other than from wave models (e.g., WAMS; 
Gunther 1992; Janssen 1989, 1991) applied in operational weather centers.  
 The log-wind equation is in a more typical form, when the orbital velocity term is moved from the left hand side 
of (9) to the roughness length: 
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This version of the roughness length has an explicit dependency on sea state through the exponential dependence on 
the orbital velocity (or the ratio of Hs to Tp). However, there is a minor disadvantage associated with (11): changes of 
the sign of the stress, due to Uorb > U(z), are not explicitly resolved. The sign of the stress components must then be 
determined by examining U(z) − Uorb. 

COMPARISONS TO OBSERVATIONS 

 The model is evaluated with SWS-2 observations, and it is compared to empirical relation (12) developed by 
Taylor and Yelland (2001) based on the observations from SWS-2 and data from a wide range of other conditions. The 
functional form of the gravity wave portion of (11) is far different than the empirical relation (12): 
 4.51200 ( )o S Sz H H λ= p , (12) 

where λp is the wavelength associated with the dominant waves. Equation (12) has been shown (Taylor and Yelland, 
2001) to be an excellent match to mean observations over a wide range of sea states. For moderate and high wind 
speeds, this empirical relation appears to be better than existing physically-based algorithms (Taylor and Yelland 
2001); therefore, it is an excellent standard of comparison.  
 The roughness length can be estimated from the observed friction velocity and wind speeds. The impact of 
considering orbital velocity in (8) and (9), indicates that for the SWS-2 conditions the orbital velocity could have a 
large impact on the roughness length. The mean roughness lengths based on (11) are similar to the observed means and 
means based on (12). Both (11) and (12) are good representations of the mean roughness lengths.  
 A fit to the mean is not an ideal test for the quality of the roughness length parameterizations because the 
comparison roughness length is cross-correlated with the observed friction velocity. The substantial, but unknown, 
uncertainty in friction velocity leads to biases in the apparent dependence of observation-base roughness length on 
friction velocity. Accounting for this bias is beyond the scope of this study. This bias complicates the estimation of the 
constant in Charnock’s parameterization (or the modified from in (11)), which is usually determined from the y-
intercept of Fig. 1. For this preliminary study, the value of the modified a in (11) is approximated as 0.035, and f = 0.8. 



    
These values are near to minima root mean square (rms) differences of observed friction velocity and drag coefficients. 
A slightly better fit to the mean SWS-2 observations could probably be achieved; however, it will be shown that this 
approximation is a considerable improvement over existing models. 
 The strong winds and atypically large drag coefficients (Fig. 1) seen in the SWS2 experiment are ideal for testing 
the influence of orbital velocity.  
 
 

 
Fig. 1. SWS-2 drag coefficients as a function of wind speed. The 
variability in the drag coefficients and wind speeds is greater than typical 
for high quality in situ data sets. 

 
 Scatterplots of the modeled and observed friction velocities (Fig. 2) are useful for accessing the accuracy of the 
roughness length parameterizations through their influence of the modeled friction velocities. Comparison of the 
modeled and observed friction velocity is ideal because they avoid cross correlation. The friction velocities calculated 
with the Taylor and Yelland parameterization have a good fit to the mean (Fig. 3a); however, there is substantial 
variability (Fig. 2a) despite the wide range of wind and wave conditions for which the model is applicable. The model 
developed herein has a modestly better fit to the mean (Fig. 3b), with substantially smaller variability from the 
observed values. For 0.6 < u∗ < 0.8, there is a substantial bias between the two parameterizations, with the Taylor and 
Yelland parameterization overestimating the observed values. Taylor and Yelland’s parameterization provides a better 
match to the extreme friction velocities (u∗ ≈ 1.0); however, there are very few observations (4), and the overestimation 
for 0.6 < u∗ < 0.8 is inconsistent with the good fit for larger friction velocities.  
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g. 2. Comparisons of observed and modeled friction velocity, based on SWS2 observations. Friction 
locity derived with the (A) Taylor and Yelland 2001, (B) the model derived herein. 
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g. 3. Comparisons of means, within 0.05 bins of friction velocity, for SWS-2 observed friction velocity 
rsus (A) Taylor and Yelland 2001, (B) the model derived herein. Bins must have ≥8 observations to be 
own. The error bars indicate ±3 standard deviations in the mean. 

for the standard deviations (Fig. 3) indicate that the model developed herein has substantially smaller 
ty from the binned means (Table 1).  

USIONS 

ghts gained from examining the differences between satellite and in situ observations demonstrated a 
cy with theory that had previously only been tested for low and moderate wind speeds. These observations 

ry indicated that the orbital velocity of waves modifies wind shear, and consequently modifies oceanic surface 
t stress. This concept had been difficult to verify because there were few appropriate in situ observations. The 
observations provide an excellent opportunity to test a model that considers orbital velocity. A physically-
odel that considers orbital velocity is developed. Comparisons to the SWS-2 data find that the model 
d herein has mean distributions similar to Taylor and Yelland’s impressive empirical formulation. However, 

 model’s rms difference to roughness length is ~35% smaller than rms differences achieved by Taylor and 
 the new model better accounts for variability from the mean. Similarly, the uncertainty in the new model’s 
velocity is much smaller than that of Taylor and Yelland’s parameterization. Further work is required to 
 parameters in the new model; however, even with the estimates used herein, the new model is a substantial 
ment over existing models.



    
 

Table 1. Uncertainty in the mean friction velocity, within 5 cm s-1 
bins, specified by SWS2 friction velocity. The SWS2 standard 
deviation is limited by the bin width, causing the values to be much 
smaller than for the modeled friction velocities. 

Standard Deviations in Mean (cm s-1) SWS2 bin 
mean (ms-1) 

Number 
in bin BVW03 TY SWS2 

0.1267 63 0.32 0.34 0.18 
0.1772 95 0.28 0.28 0.16 
0.2234 89 0.36 0.44 0.14 
0.2737 104 0.36 0.48 0.15 
0.3213 83 0.54 0.77 0.16 
0.3755 70 0.50 0.83 0.17 
0.4215 63 0.56 0.98 0.19 
0.4744 51 1.1 1.5 0.21 
0.5234 26 1.3 2.4 0.30 
0.5698 28 1.1 1.8 0.23 
0.6195 22 1.3 2.1 0.30 
0.6756 10 1.4 3.1 0.55 
0.7247 10 1.7 2.9 0.43 

 
 
 The above results explain the differences in satellite and in situ wind observations. The stress associated with 
these wind observations must be identical, indicating that different parameterization, for converting wind speed to 
stress, should be used for these two types of observations. The model developed herein provides the physical basis for 
understanding these differences: the orbital velocity of water waves modifies the frame of reference (the bottom 
boundary condition) for wind speed. For in situ observations, a fraction (~80%) of the orbital velocity should be 
subtracted from the wind vector. However, for scatterometer observations, this modification of the scatterometer vector 
wind appears to be unnecessary, making the calculation of surface stress remarkably easier than for in situ wind 
observation 
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