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SeaWinds Validation with Research Vessels 
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 Abstract. The accuracy of vector winds from the SeaWinds scatterometer on the QuikSCAT 
satellite is assessed, for rain-free conditions, through comparison with observations from research 
vessels. Several factors that contribute to uncertainty in scatterometer winds are isolated and 
examined as functions of wind speed. The independent sources of uncertainty considered herein are 
ambiguity selection, wind speed, wind direction (for correctly selected ambiguities), variability 
associated with spatial separation between scatterometer and ship observations, and random errors in 
the ship observations. Rain-related errors, which are functions of wind speed and rain rate (hence 
varying on an event to event basis), are not examined. Ambiguity selection refers to the selection of 
a unique scatterometer wind direction from multiple likely solutions. For SeaWinds on QuikSCAT, 
in rain free conditions, ambiguity selection is found to be near perfect for surface wind speed (w) >8 
ms-1; however, ambiguity selection errors cause the directional uncertainty to exceed 20° for w < ~5 
ms-1. Improved statistical methods that account for the spatial variability in the winds and 
uncertainty in the ship data are applied to determine uncertainties in speed and direction separately 
for correctly selected ambiguities. These uncertainties (averaged over the full comparison set) are 
found to be 0.45 ms-1 and 5° for the QSCAT-1 model function and 0.3 ms-1 and 3° for the Ku-2000 
model function.  
 The QuikSCAT winds are examined as vectors through two new approaches. The first is a method 
for determining vector correlations that considers uncertainty in the comparison data set. The second 
approach is a wind speed dependent model for the uncertainty in the magnitude of vector errors. For 
the QSCAT-1 (Ku-2000) model function, this approach shows ambiguity selection dominates 
uncertainty for 2.5 < w < 5.5 ms-1 (0.6 < w < 5.5 ms-1), uncertainty in wind speed dominates for w < 
2.5 ms-1 and 5.5 < w < 7.5 ms-1 (w < 0.6 ms-1 and 5.5 < w < 18 ms-1), and uncertainty in wind 
direction (for correctly selected ambiguities) dominates for w > 7.5 ms-1 (w > 18 ms-1). This 
approach also shows that spatial variability in the wind direction, related to inexact spatial co-
location, is likely to dominate rms differences between scatterometer wind vectors and in-situ 
comparison measurements for w > 4.5 ms-1. Similar problems will exist with many validation efforts. 
The techniques used herein are applicable to any validation effort with uncertainty in the comparison 
data set or with inexact co-location. Application of these techniques leads to more accurate estimates 
of observational uncertainty. 
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1.   Introduction 
 Ocean vector winds, critical for determining the 
dynamical forcing of the ocean, are sensitive indicators 
of the surface manifestation of over-ocean atmospheric 
phenomena. Applications of NASA scatterometer 
(NSCAT) observations demonstrated the remarkable 
uses for plentiful high quality wind vector observations: 
gap flow [Bourassa et al., 1999b; Chelton et al., 2000a,b], 

pressure fields [Foster et al., 1999; Zierden et al., 2000], 
forcing ocean models [Milliff et al., 1999a; Verschell et al., 
1999], and studies in regions with sparse in-situ coverage 
[Bourassa et al., 1999b; Milliff et al., 1999b; Chelton et al., 
2000a,b]. SeaWinds on QuikSCAT was commissioned to 
fill the untimely gap in wide-swath ocean vector wind 
observations due to the catastrophic failure of the 
Advanced Earth Observing Satellite (ADEOS-1), which 
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carried NSCAT. Another SeaWinds instrument will be 
operational aboard ADEOS-2 in 2002.  
 The accuracy of vector winds from the SeaWinds 
scatterometer on the QuikSCAT satellite is assessed 
through comparison with observations from research 
vessels. Differences in sampling characteristics are 
examined to select an averaging scheme for the ship 
data that minimizes the differences between the two sets 
of observations. Sources of difference between satellite 
and in-situ observations are separated into six 
independent components: rain contamination, ambiguity 
selection, scatterometer wind direction errors for 
correctly selected ambiguities, scatterometer wind speed 
errors, errors in the surface comparison observations, 
and spatial variability due to inexact co-location. Rain-
related errors are not directly considered in this study 
because they are a function of wind speed and rain rate 
[Weissman et al., 2001]; hence rain-related errors vary 
on an event to event bases, and they cannot be treated as 
random errors. Consideration of the last two 
components is essential to an accurate estimate of 
uncertainty in all situations were there is no absolute 
standard of truth and when the comparison data sets 
cannot be exactly co-located. Use of similar techniques 
in the validation of other sensors should result in much 
better estimates of uncertainty.  
 The accuracy of QuikSCAT wind vectors is 
examined through two new approaches. The first is a 
method for determining vector correlations that 
explicitly considers errors and uncertainty in the 
comparison measurements. Correlation analysis 
typically implicitly considers one set of observations as 
errorless (truth) and examines variance relative to this 
truth (i.e., differences are measured perpendicular to the 
axis of the comparison data). Such correlation 
techniques underestimate the fraction of variance 
explained by a linear relation between the two data sets. 
This problem can be a serious for instruments with 
accuracy that is similar to or better than that of 
comparison measurements.  
 The second approach to vector analysis is a wind 
speed dependent model of vector uncertainty. This 

approach is valid only for wind speeds greater than a 
threshold that is a function of the uncertainties in both 
wind speed observations [Freilich, 1997]. Below this 
threshold (several times the larger uncertainty), random 
component errors are a better model of observational 
uncertainties. However, we will show that random 
component errors are inconsistent with results for 10 m 
wind speeds w10 > 7 m s-1. In our model of vector 
uncertainty, errors are modeled as a non-isotropic 
Gaussian distribution about the head of the wind vector. 
The uncertainty in the magnitude of vector errors (i.e., 
the spread about the head of the wind vector) is modeled 
in terms of uncertainties in ambiguity selection errors, 
wind direction uncertainty for correctly selected 
ambiguities, and wind speed uncertainty. The relative 
importance of these terms is shown and compared to 
variability resulting from inexact spatial co-location 
with the surface measurements. The will demonstrate 
the high quality of SeaWinds vector winds. 
2.   Data 
 The remotely sensed winds will be validated through 
comparison with in-situ wind measurements. The 
remotely sensed winds were from the SeaWinds 
scatterometer on the QuikSCAT satellite, using the 
QSCAT-1 and Ku-2000 geophysical model functions 
(GMFs). The QSCAT-1 scatterometer data were 
obtained from the NASA Physical Oceanography 
Distributed Active Archive Center (PO.DAAC) at the 
Jet Propulsion Laboratory / California Institute of 
Technology, and the Ku-2000 scatterometer data was 
provided by Frank Wentz and Deborah Smith at Remote 
Sensing Systems. The winds from both model functions 
were considered in this study because both are likely to 
be used by the community. Knowledge of the relative 
strengths and weaknesses will be valuable to almost all 
users, and should help the developers of these data sets 
improve their products. In-situ observations were 
gathered from automated weather systems on research 
vessels. The ship observations are available through the 
WOCE Data Archive Center (DAC) for surface 

 

Table 1. Vessels used in SeaWinds on QuikSCAT validation, and the range of U10EN and dimensionless atmospheric 
stability (z/L; where z = 10m, and L is the Obhukov scale length) for co-located observations. 
Ship Location Time Range of  

 U10EN (ms-1) 
Range of Atmospheric 
Stabilities (z/L) 

R/V Atlantis Gulf of Alaska July, Aug. 1999 4 to 10 −0.44 to 0.01 
RSV Aurora Australis Southern Ocean July – Sept. 1999 4.5 −0.04 
R/V Knorr North and Equatorial Atlantic Jan. – June 2000 1 to 16 −8.1 to −0.01 
R/V Melville Tropical Pacific July – Nov. 1999 2 to 11 −9.2 to −4.5 
R/V Meteor North Atlantic July 1999 − Aug. 2000 1 to 16 −3.5 to –4.3 
R/V Oceanus North Atlantic July − Dec. 1999, April 2000 2 to 13 −2.7 to –0.37 
R/V Polarstern North Atlantic July 1999 − June 2000 1 to 19 −8.3 to 5.3 
R/V Ronald Brown Tropical Pacific July − Sept. 1999 1 to 7 −6.5 to −0.09 
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meteorology at Florida State University. The ship 
observations represent many ocean and atmospheric 
conditions (Table 1); consequently, taken over the 
whole comparison set, there is unlikely to be a bias in 
these findings due to location (nor is there indication of 
biases), a specific sea state, or atmospheric stability. 
There were 505 ship and SeaWinds co-locations that 
meet all our quality control constraints. The observed 
wind speeds ranged from 2 to 20 m s-1. 

2.1.   Scatterometer Winds 
 Scatterometers are unique among satellite remote 
sensors in their ability to determine surface wind speed 
and direction. Microwaves are scattered by short water 
waves (capillary and ultra-gravity waves), which 
respond quickly to changes in winds. The backscatter 
cross-section (the fraction of transmitted energy that 
returns to the satellite) is a function of wind speed and 
wind direction relative to the orientation of the 
scatterometer. Scatterometers operate by acquiring 
multiple spatially and temporally co-located 
measurements of backscattered power from different 
viewing geometries. The known relationship between 
cross-section, wind velocity, and viewing geometry is 
then used to estimate wind speed and direction [Naderi 
et al. 1991].  
 Ku-band scatterometers (NSCAT and SeaWinds) are 
calibrated to “equivalent neutral wind speeds” [Liu and 
Tang, 1996; Verschell et al., 1999; Mears et al. 2001] at 
a height of 10 m above the local mean water surface. 
Equivalent neutral wind speeds differ from wind speeds 
that would be measured by anemometers after 
adjustment to a height of 10m. These differences are a 
function of atmospheric stratification and are usually 
<0.5 m s-1 (hereafter equivalent neutral winds will be 
referred to as winds). For this validation, a boundary 
layer model [Bourassa et al., 1999a] is used to adjust 
the research vessel winds to 10m equivalent neutral 
winds. 
 The relationship between backscatter cross-section 
and relative wind direction, at fixed wind speed and 
incidence angle, is sinusoidal [Naderi et al., 1991; 
Wentz and Smith, 1999]. Consequently, the measure of 
misfit for the satellite relative wind direction is 
sinusoidal in wind direction, which typically results in 
1-4 local minima (see Naderi et al. for a detailed 
discussion). Ideally, the best fit corresponds to the 
correct direction. Noise in the observed backscatter 
cross-sections can alter the dependence of misfit on 
relative wind direction and thereby cause incorrect 
directions (also known as aliases) to be chosen. For 
previous scatterometers (with fixed-beam antennas), the 
second best fit is typically in the opposite direction, and 
the third and fourth minima are typically in directions 
roughly perpendicular to the wind direction. For 
NSCAT, the results of a median filter were compared to 
each of the ambiguous directions to determine which 
ambiguity was selected. This process requires an initial 
guess at the correct ambiguity: the ambiguity (of the two 

most likely ambiguities) with the direction that was the 
closest match to the direction from the National Centers 
for Environmental Prediction (NCEP) 2.5° analysis 
[Shaffer et al. 1991]. The use of an analysis with coarse 
resolution compared to the scatterometer observations 
can result in erroneous ambiguity selection. However, 
this approach leads to more accurate ambiguity selection 
than the use of the median filter alone [Wentz and Smith, 
1999]. 
 NSCAT had many similarities to SeaWinds in both 
design and processing of the backscatter to winds. 
Comparisons of NSCAT winds to in-situ observations 
include data from buoys [Graber et al., 1997; Caruso et 
al., 1999; Atlas et al., 1999; Freilich and Dunbar, 
1999], volunteer observing ships [Atlas et al., 1999], 
and research vessels [Bourassa et al., 1997]. These 
studies investigated the accuracy of wind speed, wind 
direction (usually for correctly selected ambiguities), 
and vector winds [Freilich and Dunbar 1999], as well as 
the likelihood of correct ambiguity selection. They 
determined the rms difference between NSCAT and in-
situ winds, which provides an upper limit on uncertainty 
in NSCAT winds: substantial fractions of the 
differences are likely due to uncertainty in the 
comparison measurements and space-time differences in 
the co-located observations. An additional cause of 
differences is geophysical: ship and buoy winds are 
usually earth relative, whereas scatterometer winds are 
surface (current) relative. These errors are significant in 
areas of strong currents [Cornillon and Park, 2001; 
Kelley et al., 2001]. NSCAT rms differences were ~1.2 
ms-1 [Freilich and Dunbar, 1999; Freilich and Vanhoff, 
2000], 13° for correctly chosen ambiguities (and w > 4 
ms-1); [Bourassa et al., 1997], with 90% accuracy in 
ambiguity selection [Gonzales and Long, 1999]. Most of 
the errors in ambiguity selection occurred for w < 4 ms-

1, with a much smaller fraction for 4 < w < 6 ms-1, and a 
nearly negligible fraction for w > 8 ms-1 [Bourassa et 
al., 1997; Freilich and Vanhoff, 2000].  
 The SeaWinds scatterometer uses a new radar design 
with two conically rotating pencil beams. These beams 
have incidence angles of 46.25° and 54°. The inner 
beam has a radius of 707 km, and the outer beam has a 
radius of 900 km. Individual footprints are binned into 
25x25 km cells, with up to seventy-six cells across the 
satellite swath (Fig. 1). This geometry is expected to 
result in relatively accurate observations between ~200 
and 700 km from nadir, with the greatest uncertainties 
farthest away and closest to nadir. Typical 25x25 km 
vector wind cells contain the centers of ten to twenty-
five 25x35 km oval radar footprints. All footprints with 
centers within the cell are applied to determining the 
winds, which results in radar returns being gathered 
from an area of ~50x60 km2. We will show that the 
scatterometer's sampling characteristics are better 
matched to winds on substantially smaller spatial scales. 
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Figure 1. Example of a SeaWinds observation swath (QSCAT-1 GMF and MUDH rain flag) for 09:48 to 09:51 
UTC on Sept. 20, 2000. Only selected ambiguities are shown, and there is no smoothing. Vectors identified as rain 
contaminated are black. Arrow lengths are proportional to wind speed. Accuracy is dependent on across-swath 
position. We divide the swath into three categories that are symmetric about nadir (black line): inner swath (<200 
km from nadir; cells 31 − 46), middle swath (cells 9 − 30 and 47 − 68), and outer swath (>700 km from nadir; cells 
1 − 8 and 69 − 76). The borders of these regions are shown by the solid gray lines. 

 

 SeaWinds’ new beam geometry results in much more 
diverse solution geometries. Solutions from two 
ambiguity removal techniques are available in the JPL’s 
QuikSCAT dataset. The standard product uses the 
ambiguity selection technique applied to NSCAT. The 
second product, Direction Interval Retrieval THreshold 
(DIRTH [Huddleston and Stiles, 2000]), attempts to 
better account for the more complex SeaWinds solution 
geometry. DIRTH was developed to reduce the 
relatively large uncertainty near nadir and at the edges 
of the swath. The DIRTH vector field is smoother than 
the standard product, thereby reducing the correlation to 
point observations (which include small-scale 
variability). Consequently, this analysis will be confined 
to the standard product. 
 Rain can have a substantial influence on SeaWinds 
observations. Rain influences radar returns through 
three processes: backscatter from the rain, attenuation of 
the signal passing through the rain [Moore et al., 1999], 
and modification of the surface shape by raindrop 
impacts [Bliven et al., 1993; Sobieski et al., 1995, 1999]. 
The influence of these considerations on the accuracy of 
winds is a function of scatterometer design. Rain has a 
greater influence at large incidence angles (the beam 

interacts with more rain) and for Ku-band (NSCAT and 
SeaWinds) rather than C-band (ERS-1/2). Modeling 
these problems is a concern of ongoing research; 
however, a theoretical basis for modeling the errors now 
exists [Weissman et al., 2001] and should help develop 
retrieval algorithms that better account for rain. 
 Several rain flags are being developed based on 
scatterometer observations, coincident radiometer rain 
rates (from other satellites) or a combination of these 
data. Four such flags are examined herein. The 
normalized objective Function (ENOF) flag [Mears et 
al., 2000] is based on variability in the normalized radar 
cross sections within a wind cell, calculated relative to 
the value consistent with the selected wind vector. The 
multi-dimensional histogram (MUDH) flag [Huddleston 
and Stiles, 2000] is based on a probability space 
determined from four of six parameters that are sensitive 
to rain. Both the ENOF and MUDH rain flags are in 
JPL’s data set. The SeaWinds data set available from 
Remote Sensing Systems (RSS) contains four rain flags, 
well designed for combination into a single rain flag that 
can be tailored to an application. In this case, the 
following flags and criteria were used to produce a 
single flag for rain: 
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 1) Ku-2000 ‘quality of retreival’ flag (iclass) = 0 (no 
retrieval), or 

 2) Ku-2000 scatterometer-based flag (rflag_scat) = 1, 
or 

 3) Ku-2000 fit to GMF flag (sos_all) > 1.9, or 
 4) Ku-2000 radiometer-based (rad_rain) flag > 0.15 

and difference in temporal co-location < 30 
minutes 

These four flags are combined as suggested by RSS, 
with the exception of (1) which is more generous than 
suggested, and is similar to the flags in JPL’s product. 
We examine this single (multi-source) rain flag as well 
as the RSS rain flag based solely on co-locations with 
radiometers on other platforms (SSM/I and TMI). The 
key shortcoming of a rain flag based solely on off-board 
devises is the large fraction of wind observations that 
were not co-located with rain observations. Only 50% of 
QuikSCAT and ship co-locations were co-located (3 
hours and 50 km) with SSMI observations; and the co-
location in time must be much closer than 3 hours due to 
the rapid variability in rain rates. 

2.2.   Research Vessel Winds 
 Wind direction measurements from research vessels 
have proven to be the most consistently accurate source 
of in-situ wind direction [Bourassa et al., 1997]. True 
winds (i.e., speeds relative to the fixed earth and 
directions relative to true north) that are correctly 
calculated from ship-relative observations [Smith et al., 
1999], do not suffer from the intermittent quality of 
buoy winds found by Freilich and Dunbar [1999] or the 
large uncertainties in VOS observations [Pierson 1990; 
Kent et al. 1998]. Preliminary comparisons between 
VOS and NSCAT winds found that the rms differences 
in wind speeds that were roughly three times as large as 
the differences with quality-controlled research vessel 
winds [V. Zlotnicki and R. Atlas, personal 
communications, 1997]. Research vessel data have 
errors due to insufficient maintenance and erroneous 
calculation of true (earth relative) winds [Smith et al., 
1999]. Automated quality control and limited visual 
inspection [Smith et al., 1996] identified and flagged 
serious errors. The most common problem, incorrect 
calculation of true winds from ship-relative winds, was 
solved by recalculation of the true winds [Smith et al., 
1999]. Another advantage of ship observations over 
buoy observations is that the observation height is above 
the regime where wave motions modify the log-wind 
profile [Large et al., 1995], which is not the case for 
buoys in heavy seas. In very stable air, ship (and 

occasionally buoy) anemometers can be above the 
height of the log-profile layer; these occurrences are rare 
and usually restricted to vessels with very high masts [S. 
Goodrick; pers. Comm., 1998]. Research ships record 
the temperature and humidity information needed as 
input to a boundary layer model [Bourassa et al., 1999a] 
to adjust the anemometer measurements to a height of 
10 m (the height to which the scatterometer winds are 
calibrated) equivalent neutral winds. Errors in height 
adjustment are small compared to other shortcomings of 
ship observations. 
 The major shortcoming of ship observations is the 
impact of flow distortion on wind directions and speeds 
[Yelland et al., 1998; Kent et al., 1998; Taylor et al. 
1999]. Flow distortion errors greatly exceed the 
uncertainty in mean winds (e.g., averaged over five 
minutes) sampled in 60s intervals. This problem is 
reduced by eliminating winds from ship-relative angles 
for which the winds would have passed through or near 
the superstructure, and through quality control of the 
observations. The worst cases of flow distortion are 
eliminated through our constraints on ship-relative wind 
directions (±30° about the aft for bow mounted sensors, 
and within ±60° of the port or starboard for side 
mounted sensors). Much of the wind observation record 
from the R/V Ronald Brown were discarded during our 
quality control of the ship data (prior to comparison 
with the scatterometer); most cruises during this time 
period suffered from severe flow distortion (Chris 
Fairall, personal communication, 2000). Nevertheless, 
flow distortion causes biases that vary from ship to ship, 
depend on anemometer location, and vary cruise to 
cruise due to repositioning of equipment [Taylor et al., 
1999]. These biases are dependent on ship-relative wind 
direction, and appear as random noise in the set of co-
located wind vectors; however, observations from a 
single leg of a cruise could have directional biases due 
to little variability in ship-relative wind direction. The 
bias in QuikSCAT speed (relative the ships used in this 
study; Table 2) ranges from 0.0 to 0.4 ms-1for the 
QSCAT-1 GMF (–0.4 to +0.7 ms-1 for the Ku-2000 
GMF), with most speed biases being within ±0.2 ms-1. 
One potential application of high quality scatterometer 
data is the estimation of biases due to flow distortion. In 
less than a year of open-ocean operations, there would 
be sufficient observations (an average of two per day for 
QuikSCAT) to examine the problem as a function of 
wind speed and ship-relative wind direction. 

 
Table 2. Biases (scatterometer minus ship) in speed (ms-1; for all selected ambiguities) and direction (degrees, in 
meteorological direction convention; for correctly selected ambiguities) for selected research vessels. 
Uncertainties correspond to one standard deviation.  
Biases Atlantis Melville Meteor Oceanus Polarstern All Ships 
QSCAT-1 speed 0.2±0.2 0.18±0.1 0.06±0.1 0.4±0.3 0.0±0.06 0.06±0.05 
Ku-2000 speed 0.7±0.07 −0.4±0.3 −0.18±0.02 −0.12±0.1 −0.14±0.02 −0.01±0.01 
QSCAT-1 direct. 5±3 1.8±1 −4.6±1 −3.4±3 −2.3±1 −1.6±0.7 
Ku-2000 direction 10±2 − −0.7±0.2 −4.4±2 -4.6±0.2 −1.99±0.09 
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 Another minor shortcoming of ship data is that one-
minute sampling intervals are insufficient to remove 
averaging errors associated with ship acceleration. 
These errors are due to averaging non-linear equations 
where the ship’s speed and/or direction are changing. 
For research vessels, the errors in speed during the first 
few minutes of acceleration are typically 1 to 2 m s-1 
[Smith et al., 1999]. These errors are sufficiently large 
and frequent enough to have caused a statistically 
significant increase in rms differences between NSCAT 
and research vessels wind speeds [Smith et al., 1999]. In 
1999, the wind calculation on the Polarstern was 
changed to process true winds every 5s and average 
them every minute. The acceleration-related (averaging) 
errors are not evident in the winds recorded by this 
system. Ship winds associated with excessive ship 
acceleration are eliminated through a criterion 
developed by Smith et al. [1999]: the magnitude of the 
sum of variances in the component ship’s velocities 
must be less than 1.0 m2

 s-2.  
2.3.   Co-locations and Matching 
Sampling Characteristics 

 The uncertainty in the comparison measurements at 
the location of the satellite observation is reduced by 
restricting this analysis to a set of coincident satellite 
and high quality research vessel observations. The 
differences in the central (mean) observation times are 
less than twenty minutes (usually <30s), and the largest 
differences in location are <12.5 km (half the 
scatterometer cell width). The co-located winds are  also 
quality controlled to remove gross errors in wind speeds 
(presumably related to unflagged rain) following the 
criteria    of    Freilich     and     Dunbar     [1999].     All  
  

Figure 2. Example of backscatter footprints within a 
SeaWinds vector wind cell. Each oval represent one 
backscatter observation. 

scatterometer data flagged as rain contaminated are 
discarded, as are those with missing rain flags. The 
estimated uncertainties are dependent on the choices of 
co-location criteria and rain flag. There are several 
SeaWinds-based rain flags in use, as well as a flag based 
on instruments (SSM/I and TMI) aboard other satellites. 
Each of these rain flags will be considered in various 
aspects of this evaluation of SeaWinds accuracy. 
 The high temporal resolution of the research vessel 
observations provides the opportunity to investigate the 
optimal averaging scheme to match a series of point 
observations with the scatterometer observations. There 
are typically 8-20 radar cross-sections observations 
(footprints) that are combined in each 25x25 km 
scatterometer wind cell (Fig. 2). The distribution of 
footprints within the cell is non-uniform, with the 
average observation density greatest at the center of the 
cell and falling by a factor of four at the corners of the 
cell. The time over which the radar cross-sections are 
gathered is also a function of the position across the 
satellite track. The averaging period is near 
instantaneous at the swath edge and increases to ~4 
minutes near nadir. These differences suggest that the 
optimal averaging period for ship data might be a 
function of cross-track position, which is confirmed in 
our results (Fig. 3). It is also apparent (Fig. 3) that the 
choice of sampling volume for the ship data can 
influence the comparison. A preliminary examination 
showed that averaging over fixed times (examined over 
a wide range of time intervals) had little influence on 
rms difference or vector correlations for most wind 
speed ranges. For high wind speeds, short averaging-
times (several minutes) clearly resulted in smaller rms 
differences; for low wind speeds much longer averaging 
 

 Figure 3. Vector correlation (section 5b) as a function 
of position across the swath and length-scale for the 
ship's sampling volume. The sampling volume is 
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estimated from the ship-relative wind speeds. The 
spatial co-location criterion is 8 km. 
times (30+ minutes) were superior. The change in 
optimum averaging time with wind speed results can be 
anticipated from Taylor's hypothesis [Taylor 1938]. 
Therefore, we examined the influence of the ship's 
sampling “volume” (equivalent to a length scale for 
point observations) as estimated from the ship relative 
wind speeds. For most parts of the swath, there is a local 
or global minimum at a length scale at or near 5 km. 
This result is not directly indicative of the resolution of 
the scatterometer: it indicates a spatial-temporal scale 
where the balance between signal and noise in the 
research vessel observations result in the best matches 
the scatterometer winds. Averaging over this length 
scale resulted in slightly smaller (at least 10%) rms 
differences compared to any fixed averaging time. The 
ship observations were averaged over a sampling 
volume of approximately 5 km for the remainder of this 
study. 
3. Ambiguity Selection Accuracy 
 The patterns of wind-vector cell ambiguous solutions 
are more diverse for a SeaWinds instrument than a fixed 
beam instrument. For SeaWinds, the solution geometry 
is also a function of the distance from nadir (Fig. 1). For 
parts of the swath covered by both beams but not too 
close to nadir (200 − 700 km from nadir, hereafter 
referred to as the middle swath), the patterns of 
ambiguities are similar to those found with NSCAT 
(assuming a similar GMF): there are usually large 
angles (>30°) between the ambiguities. However, for the 
outer swath (>700 km from nadir) and the inner swath 
(<200 km from nadir) pairs of ambiguities are more 
likely to be <30° apart. For such situations, difference 
between satellite and in-situ measurements makes it 
difficult to determine which of the similar directions is 
correct. Pairs of SeaWinds ambiguities are more likely 
than NSCAT ambiguities to converge to a single 
solution, resulting in two ambiguous solutions rather 
than four. We examine only gross errors in ambiguity 
selection: all selected ambiguities within 45° of the 
surface measurements are considered to be correctly 
chosen. 
 Ambiguity selection errors tend to occur in areas of 
low wind speed, area with large change in wind 
direction between adjacent scatterometer cells (fronts 
and low pressure systems), and near rain. The fraction 
of correctly selected ambiguities is also a function of 
wind speed and across-swath location. The accuracy of 
SeaWinds ambiguity selection skill, averaged across the 
swath (Fig. 4a) is compared to the skill in the 25 and 50 
km resolution NSCAT products. QuikSCAT ambiguity 
selection skill is excellent for w > 4 m s-1 and is a great 
improvement over NSCAT for w < 4 m s-1. Ambiguity 
selection skill is also a weak function of cross-swath 
position (Fig. 4b): the most accurate QSCAT-1 
ambiguity selection occurs away from nadir and away 
from the edges of the swath. This result is consistent 

with visual inspection of the SeaWinds swaths, which 
have greater cross-swath variability near nadir and near 
the swath edges. Ambiguity selection skill for the Ku-
2000 GMF is similar in magnitude to QSCAT-1 skill; 
however, it has much less across-swath dependence. 
The main difference is in the inner swath, where Ku-
2000 skill is superior to the QSCAT-1 skill. 
 The limited geographic distribution of wind speeds 
sampled from the research vessels is not representative 
of the global distribution sampled by QuikSCAT; 
therefore, the fraction of correctly selected ambiguities 
based on ship  observations  (91.8%  for  QSCAT-1  and  

Figure 4. Ambiguity selection as a function of wind 
speed for (a) the 25 and 50 km NSCAT products, the 
QSCAT-1 product, and the Ku-2000 product. NSCAT 
co-locations were within 25 km, whereas QuikSCAT 
co-locations are within 12.5 km. b) QSCAT-1 ambiguity 
selection (applying the ENOF rain flag) is also a 
function of cross-swath position. 
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93.0% for Ku-2000) will differ from the global average. 
A better estimate of this global percentage is determined 
by applying the observed wind speed dependency to the 
distribution of wind speed observed by QuikSCAT. This 
approach results in an estimate of global accuracy at 
92.6% for the QSCAT-1 GMF, and 93.3% for the Ku-
2000 GMF.  
4.  Biases and RMS Differences 
 Biases relative to individual ships are small (Table 2), 
indicating that regional biases are small. Trends in wind 
speed biases as a function of wind speed are also small 
(Fig. 5). The apparent scatterometer overestimation for 
low wind speeds  (w < 3 m s-1) has been explained 
[Freilich, 1997; Freilich and Dunbar, 1999] as due to 
uncertainty in positive scalar quantities. The small bias 
(<1%) at high wind speeds could be due to flow 
distortion: the source of this bias cannot easily be 
verified [Thiebaux, 1990; Taylor et al., 1999]. Flow 
distortion biases cannot be corrected for at this time, as 
the corrections are ship dependent and costly to assess 
[Yelland et al., 1998; Taylor et al., 1999]. The 
magnitudes of the remaining wind speed biases are in 
the expected ranges for flow distortion problems. There 
is no strong evidence of a substantial systematic error in 
the QuikSCAT wind speeds. 
 Biases in wind directions are slightly more difficult 
to assess due to the 0/360 breakpoint. This problem is 
solved modifying one set of directions: 
 θR → θR + 360°, when θR − θI < −180°, and  (1) 
 θR → θR − 360°, when θR − θI > 180°,  (2) 

Figure 5. Scatterometer wind speed (QSCAT-1 model 
function; for correctly selected ambiguities) versus 
research vessel wind speed. Cross-swath dependence is 
weak for a 12.5km co-location criterion. The line 
indicates a perfect fit. 

where θR is the remotely sensed direction, and θI is the 
in-situ direction. The bias for the ensemble of all ships 
is <2° (scatterometer minus ship directions; 
meteorological direction convention).  

 
Figure 6. Scatterometer wind (QSCAT-1 model 
function) direction versus research vessel wind direction 
for various region of the swath: (a) outer swath, (b), 
middle swath and (c) near-nadir swath. The solid line 
indicates a perfect fit, dashed lines are 90° errors, and 
dotted lines are 180° errors. The symbols indicate wind 
speed ranges of (+) 0−4 ms-1, (∗ ) 4−6 ms-1, (◊) 6−8 ms-1, 
(∆) 8−10 ms-1, (∇ ) 10−20 ms-1. The statistics apply only 
to correctly selected ambiguities: those within 45° of the 
ideal line. 
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 Scatterplots of directions (Fig. 6) are also extremely 
useful for visualizing random errors and errors in 
ambiguity selection. For previous scatterometers, 
ambiguity selection errors typically resulted in 
directional errors near 180° (most likely) or ±90°, and 
they were easily identified. With QuikSCAT's scanning 
geometry, only gross errors (herein differences > 45°) 
are easily identified.  
 Root-mean-square differences between satellite 
observations and surface measurements have been a 
common method for establishing an upper limit on the 
uncertainty of the satellite observations. These 
differences are shown (Table 3) for each GMF and rain 
flag, with all selected ambiguities, which provides an 
upper limit on uncertainty for the bulk of users who do 
not have the luxury of improving or testing the 
ambiguity selection. The second condition restricts the 
examination to correctly selected ambiguities (Table 3), 
which is more useful for identifying the independent 
contributions to the total uncertainty. The importance of 
successful ambiguity selection can be seen in Fig. 7a,b 
and Table 3. The rms differences for wind speed have 
little sensitivity to the restriction of correctly selected 
ambiguities: the rms difference increasing ~0.1 ms-1 
when gross ambiguity errors are included in the 
comparison set. In contrast, direction-related differences 
are greatly influenced by the restriction of correctly 
selected ambiguities: for w < 6 ms-1, rms differences in 
wind direction (Fig. 7b) increase by >100% when gross 
ambiguity selection errors are considered. Despite 
ambiguity selection that is quite effective relative to 
other scatterometers, errors in ambiguity selection make 
a major contribution to the uncertainty in QuikSCAT 
vector winds (particularly for w < 6 ms-1). 
 The choice of rain flag influences the misfit between 
ship and satellite winds (Table 3). Comparison  of  RMS 
 
Table 3. RMS differences in wind speed (ms-1), wind 
direction (degrees), zonal wind component (ms-1), and 
the meridional wind component (ms-1) for each of the 
GMFs and various rain flags. Also shown is the 
importance of ambiguity selection. The criterion for 
spatial co-location is differences ≤12.5 km. 

MUDH rain flag ENOF rain flag Radiom. rain flag  
 
QSCAT−1 

Select 
Ambig. 

Correct 
Ambig. 

Select 
Ambig. 

Correct 
Ambig. 

Select 
Ambig. 

Correct 
Ambig. 

Wind Speed 1.2 1.1 1.1 1.1 1.2 1.2 
Wind Direct. − 15 − 15 − 15 
Zonal Wind 2.2 1.5 2.3 1.5 2.1 1.6 
Meridional  
Wind 

2.7 1.6 2.5 1.5 2.2 1.4 

Ku−2000 Ku2000 flags   Radiom. rain flag 
Wind Speed 1.0 1.0   1.0 0.9 
Wind Direct. − 14   − 14 
Zonal Wind 1.9 1.4   1.7 1.3 
Meridional  
Wind 

1.8 1.4   1.7 1.3 
 
Figure 7. Uncertainties in (a) wind speed and (b)
direction as functions of ship wind speed for several
QSCAT wind products: QSCAT-1 with MUDH rain
flag (white background); Ku-2000   (§ § §); and Ku-2000
with radiometer rain flag (crossed lines). The
background shading indicates three difference
measures of uncertainty: rms differences for all
selected ambiguities (no shading), rms difference for
correctly selected ambiguities (light gray), and PCA
derived uncertainty (dark gray). The rms average of
vector wind difference magnitudes (|uscat − uship|) (c)
combines errors in speed and direction. 
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differences for selected ambiguities shows that the 
radiometer rain flag is more effective than MUDH or 
ENOF for identification of rain contaminated 
observations. It also eliminates many rain-free 
observations where no radiometer observations were 
coincident with scatterometer observations. The 
rightmost columns in Table 3 show the QSCAT-1 and 
Ku-2000 rms differences with the same radiometer rain 
flag. The Ku-2000 rms differences are smaller, despite 
the larger biases (Table 2). The Ku-2000 improvements 
in directional accuracy (seen in the smaller 
uncertainties) are apparent in the relatively large 
improvements to accuracy of zonal and meridional wind 
components (Table 3). The Ku-2000 rms differences for 
the product with all rain flags strongly suggest that rain-
contaminated data without coincident radiometer 
observations are occasionally classified as rain free. The 
improved rain flags and directions in the Ku-2000 
product result in a substantial reduction in rms 
differences compared to the QSCAT-1 model function. 
 For correctly selected ambiguities (defined herein as 
within 45° of the comparison data), the uncertainty has 
relatively little dependence on wind speed (Fig. 7a,b), 
and that dependency could be a consequence of minor 
(<45°) errors in ambiguity selection. The rms magnitude 
of the wind vector differences (Fig. 7c) has a strong 
dependence on wind speed: there is a local peak for 4 > 
w > 6 ms-1, and for w > 10 ms-1 it increases with 
increasing wind speed (rapidly for the QSCAT-1 model 
function). This is a particularly useful diagnostic 
quantity because it can be used to distinguish between 
two models for SeaWinds uncertainty. For low wind 
speeds (w < 4 ms-1), uncertainty has been very 
effectively modeled in terms of random vector 
component errors (σu, σv; [Freilich 1997; Freilich and 
Vanhoff 2000]). If the uncertainties in each component 
are equal (σu = σv), then the equation for the uncertainty 
in the magnitude of vector errors (σ ∆w , where w = 

wscat − wship), described as a Gaussian distribution about 
the 'head' of the wind vector, with a standard deviation 
equal to σ ∆w , is  

 2 22 vσ σ∆ =w , (3) 
which is independent of wind speed. Conceptually, this 
uncertainty should be the combination of two Gaussian 
distributions, one for uncertainty in the ship winds and 
one for uncertainty in scatterometer winds. The 
observed distributions (Fig. 7c) are more consistent with 
constant uncertainties in wind speed (σw) and wind 
direction (σθ), for which the magnitude of vector 
uncertainty is 

 ( ) ( )2 2

2 2 2
ww θσ σ σ

θ∆
   ∂ ∆ ∂ ∆

= + =      ∂ ∂   
w

w w  

 ( )2 2 2 2 2
,scat ,ship ,scat ,shipw w w θ θσ σ σ σ+ + + .  (4) 

This form of σ ∆w  results in a non-isotropic error 

function, with different Gaussian distributions about w 
and θ axes (i.e., w w θσ σ≠ ). For large wind speeds, 
the second term on the right hand side will dominate, 
and the uncertainty in wind vectors increases in 
proportion to the wind speed. Consequently, it is also 
apparent from (4) that, if vector component uncertainties 
are weakly dependent on wind speed (i.e., 2σ ∆w is 

approximately constant), then the directional uncertainty 
is proportional to w-1 for sufficiently large w. Such 
dependence is not found in the directional rms 
differences, which further supports the need for a model 
of uncertainty that is appropriate for moderate and high 
wind speeds. 
5. Improved Estimates of QuikSCAT 
Uncertainty 
 Traditional statistical techniques, such as ordinary 
least square fits and root-mean-square differences, 
presume that all uncertainty is related to one of the two 
sets of observations being compared. Incorrect estimates 
of uncertainty in the comparison measurements result in 
erroneous estimates of bias and gain of the observations 
as a function of comparison measurements [Kent et al., 
1998]: estimates of uncertainty in QuikSCAT winds 
should consider the uncertainty in comparison 
measurements [Stoffelen, 1998; Freilich and Vanhoff 
2000]. If the uncertainty in the comparison data set is 
known, then the uncertainty in the scatterometer can be 
determined through linear regression [Stoffelen, 1998]. 
Alternatively, if the uncertainty in the comparison data 
set is unknown, there are techniques that determine the 
uncertainty in both data sets [Stoffelen, 1998; Freilich 
and Vanhoff 2000]. Uncertainty in the quality-controlled 
research vessel observations is small; however, it is 
unknown because it varies from ship to ship and cruise 
to cruise [Smith et al., 1999]. Techniques that determine 
the uncertainty in both data sets require at least 
thousands of co-located observations from three 
sources. At this time, we have too few co-located 
observations to apply the techniques of Stoffelen [1998] 
or Freilich and Vanhoff [2000]. Furthermore, these 
methods do not distinguish between observational errors 
and geophysical differences (e.g., imperfect co-location 
and earth relative vs. surface relative winds). We will 
use an alternative approach to show that much of the 
uncertainty and rms differences are due to the spatial 
separation between the research vessel and the center of 
the satellite footprint. The techniques of Stoffelen [1998] 
and Freilich and Vanhoff [2000] could be modified to 
consider spatial separation; however, currently they 
combine this source of uncertainty with error in the 
observations. Additional subtleties in the analysis of 
scalar winds have been identified [Freilich, 1997]. 
These complications involve low wind speeds and are 
greatly diminished by determining best fits using 



 7 

observations with w > 3 σw (where σw is the largest 
uncertainty in the two sets of speed observations).  
 Principal component analysis [PCA; Preisendorfer 
and Mobley, 1988; Pearson 1901] assumes that there is 
equal uncertainty in each set of observations; therefore, 
it is ideal for the situation where the accuracy of the 
comparison data set is unknown and similar to the 
accuracy of the observations. For example, 
underestimation in the research vessels' uncertainty 
results in overestimation of QuikSCAT uncertainty. The 
assumption of similarity is valid if both uncertainties are 
small compared to the span of co-located observations. 
PCA can be used to estimate the uncertainty in terms of 
the standard deviation perpendicular to the axis of 
maximum variance.  

5.1.   Principal Component Analysis 
 Principal component analysis is analogous to finding 
the variance from the best-fit line (determined by a 
linear orthogonal regression), where the differences 
used to calculate the variance are perpendicular to this 
best-fit line. PCA determines the axes of minimum and 
maximum variability. For unbiased data spanning a 
much larger range than the uncertainty and for similar 
small uncertainties in ship and satellite winds, the axis 
of maximum variability will be very close to the ideal-
fit. Large difference in these axes would contradict the 
assumption of similar uncertainties for each data set. For 
the QSCAT-1 and R/V comparisons, the angle between 
axis of maximum variability and the ideal fit line is only 
3° for wind directions and 6° for wind speed.  
The steps involved in PCA [Preisendorfer and Mobley, 
1988] are outlined below. The observations are 
combined into a single matrix D. 
 [ ],i ix x y y= − −D , (5) 
where x is one set of observations (e.g., in-situ winds), y 
is the other set (e.g., QuikSCAT winds), and i is an 
index for the N co-located pairs of winds. The 
covariance matrix (C) can be calculated from D. 

 
2 2T

2 2
x xy

xy yN
σ σ
σ σ

 
= =  

  

D DC  (6) 

 The eigenvalues of C are positive and easily 
obtainable. The larger eigenvalue (λ1) corresponds to 
the variance parallel to the axis of maximum variance, 
and the smaller eigenvalue (λ2) corresponds to the 
variance perpendicular to this axis. The uncertainty in 
the scatterometer observations (corresponding to one 
standard deviation), for correctly selected ambiguities, is 
given by the positive square root of λ2. Due to our 
assumptions, this uncertainty is equal to the uncertainty 
in the R/V observations. The fraction of variance 
explained (r2) can also easily be determined: 
 r2 = λ2 / (λ1 + λ2).  (7) 
These fractions (Table 4) demonstrate the effectiveness 
of the SeaWinds scatterometer. When averaged over the 
entire set of co-located data (for correctly selected 
ambiguities), both model functions account for ~90% of 
the observed variance in speed and 97% in direction. 

 
 

 PCA can easily be used to investigate the dependency 
of uncertainties on variables such as wind speed or 
direction (Fig. 7c). This is accomplished by rotating the 
coordinate system so that the axes of the new system are 
the axes of maximum and minimum variance. The 
original axes are rotated by either  

 
2

2 20.5 atan( )xy

yy xx

σ
θ

σ σ
=

−
, (8) 

or 90° plus this angle (an additional test determines 
which of these angle corresponds to the axis of 
maximum variability). The wind directions are rotated 
to the new axes: 
 ( ) ( )cos sini i ix x yθ θ′ = − , and (9) 

 ( ) ( )sin cosi i iy x yθ θ′ = +  (10) 

where ( ix′ , iy′ ) are the points in the new coordinate 
system. If j is the index (i) for all values of x within the 
specified range (x1 < x < x2), then  

 ( ) ( )
1 2

0.5
2

, / 1x x x x j
j

x x nσ < <

  
′ ′= − −  

   
∑ , (11) 

where x′  is the mean value for the subset, and n is the 
number of points in the subset.  
 For correctly selected ambiguities, wind vectors 
observed by SeaWinds on QuikSCAT (Table 5) are 
found to have average uncertainties of ~0.7 m s-1 for 
speed and 10° for direction. The PCA-derived 
uncertainties show negligible dependence on wind 
speed. The Ku-2000 GMF uncertainties in wind speed 
and direction are slightly smaller than the corresponding 
values from QSCAT-1 GMF. However, the Ku-2000 
speed and direction errors are better correlated than the 
QSCAT-1 errors, resulting in larger errors in zonal and 
meridional wind components (and non-Gaussian error 
distributions). A larger majority of well correlated Ku-
2000 errors are in the inner swath: the uncertainties for 

Table 4. Variance explained (%) assuming the 
uncertainty in the scatterometer is equal to the 
uncertainty in the research vessels and that there are no 
other sources of variability. The criterion for spatial co-
location is differences ≤12.5 km. 

MUDH rain flag ENOF rain flag Radiom. rain flag  

Select 
Ambig. 

Correct 
Ambig. 

Select 
Ambig. 

Correct 
Ambig. 

Select 
Ambig. 

Correct 
Ambig. 

Wind Speed 89 90 90 90 89 89 
Wind Direct. − 97 − 97 − 97 
Zonal Wind 87 93 86 93 87 93 
Meridional  
Wind 

80 93 83 93 85 93 

Ku−2000 Ku-2000 flags   Radiom. rain flag 
Wind Speed 93 93   89 89 
Wind Direct. − 97   − 97 
Zonal Wind 92 95   93 96 
Meridional  
Wind 

90 94   88 93 
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zonal and meridional winds are much smaller for the 
rest of the swath. 
 

5.2.   Vector Correlations 
 Vector correlations can also be used to assess the 
relative accuracy of winds [Freilich 1997]. Most 
techniques for calculating linear correlations suffer from 
limitation that errors in both sets of observations 
contribute to a reduction in the magnitude of the 
correlation. If the uncertainty in the comparison data set 
is negligible (and there is no bias or gain in these 
observations), then these correlations can be a useful 
standard of comparison. However, in the case of open-
ocean surface winds, the uncertainty in the comparison 
data set is not negligible. We will demonstrate a 
technique that is easily applied and takes advantage of 
PCA to better account for uncertainty in the truth.  
 The wind vectors are written as complex numbers (u 
+ i v), with the real component equal to the zonal wind 
(u), and the imaginary component equal to the 
meridional wind (v). PCA has been applied to vectors in 
this form [Hardy, 1977; Hardy and Walton, 1978; 
Legler, 1983; Denbo and Allen, 1984]. These studies 
examined covariance rather than correlation. Vector 
correlation can be examined by placing complex wind 
vectors for in-situ and satellite winds in a matrix similar 
to D (Eq. 5). The covariance matrix is similar to (6): 

 
2 2T

2 2
x xy

xy yN
σ σ
σ σ

∗  
= =  

  

D DC , (12) 

where the star indicates a complex conjugate, and the 
diagonal terms are the sums of the variance in each 
component. The diagonal terms represent the sums of u 
and v variability in each of the data sets. 
 Principal component analysis is again used to find the 
axes associated with the minimum and maximum 
variances. The fraction of variance explained (r2) is 
again calculated with Eq. 7. The magnitude of the 
correlation |r| (ranging from –1 to 1) can be determined 
from r2; however, the sign of r must be determined 

through visual inspection. In this case, the r2 values for 
individual ships are 0.95-0.997 with correctly selected 
ambiguities and 0.94-0.993 with all selected 
ambiguities.  

5.3.   Influence of Spatial Separation 
Between Co-locations 

 Several of the rms differences for individual ships are 
substantially lower than the values for other ships. The 
early R/V Atlantis observations (not shown) are an 
extreme example of low uncertainties: an rms difference 
of 0.5 ms-1. An examination of the spatial differences in 
co-location revealed that most of the R/V Atlantis 
observations were <5 km from the center of QuikSCAT 
cells, suggesting that this distance could have 
considerable influence on the estimates of uncertainty. 
Bi-linear interpolation of the QuikSCAT winds to the 
location of the ship tested the possibility that such 
dependence was due to linear changes in wind vectors. 
The impact of such interpolation was small and often 
slightly unfavorable. This result implies that there is 
considerable natural variability on spatial scales <25km, 
and that if the variability is wave-like then the 
wavelength varies throughout the co-located data. The 
sampling volume for the research vessel observations 
(integrated over space and time) is much smaller than 
the sampling volume for the scatterometer; 
consequently, the ship observations are more sensitive 
to this variability than the scatterometer. However, the 
weighting within 25x25 km scatterometer cells (and 
within individual footprints) is substantially non-
uniform. Therefore, the scatterometer is also sensitive to 
variability on scales less than the size of the 
scatterometer’s wind cell. 
 The spatial weighting within the 25x25 km wind 
vector cells is dependent on the distribution of the 
individual footprints that are combined to determine a 
cell's vector wind. In the cases of the current routine 
products, all 25x35 km oval footprints that have centers 
within the cell are used (with equal weighting) to 
determine the cell's vector wind (Fig. 2). The average 
weighting distribution within a wind cell can be 
estimated by assuming a tight (relative to cell size) and 
uniform distribution of footprints. The number of 
applicable footprints (those used in calculating the 
vector wind for the cell) overlapping the center of the 
cell is more than twice the number at the center of a cell 
edge, and roughly four times the number at the cell 
corner. Consequently, the winds near the center of the 
cell are weighted more heavily than those near the 
corners and edges. This geometry allows for sensitivity 
to variability on scales smaller than the cell size. 
 This hypothesis was confirmed in an examination of 

2
wσ  and 2

θσ  binned as functions of spatial separation 
between the in-situ observations and the center of the 
scatterometer cell (Fig. 8). The range of separations is 
from 0 to 12.5 km to ensure that all observations are 
within the closest cell, and to avoid atypically large 
spatial differences in co-location at the swath edges and 

Table 5. PCA derived uncertainties in SeaWinds winds 
speed (ms-1) and direction (°) for various model functions 
and rain flags. The spatial co-location criterion is 
differences ≤12.5 km. 

MUDH rain flag ENOF rain flag Radiom. rain flag  
 
QSCAT−1 

Select 
Ambig. 

Correct 
Ambig. 

Select 
Ambig. 

Correct 
Ambig. 

Select 
Ambig. 

Correct 
Ambig. 

Wind Speed 0.82 0.77 0.81 0.76 0.81 0.76 
Wind Direct. − 10.8 − 10.6 − 9.7 
Zonal Wind 1.14 1.02 1.49 1.06 1.60 1.18 
Meridional  
Wind 

1.13 1.02 1.63 1.03 1.63 0.96 

Ku−2000 Ku2000 flags   Radiom. rain flag 
Wind Speed 0.65 0.63   0.72 0.70 
Wind Direct. − 9.9   − 9.5 
Zonal Wind 1.87 1.21   1.73 1.15 
Meridional  
Wind 

2.27 1.33   2.35 1.29 
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near areas of missing data. The variance (σ2) is 
examined rather than the standard deviation (i.e., 
uncertainty, σ) because independent random 
uncertainties are additive in terms of σ2 rather than σ. 
The variance in wind speed ( 2

wσ ; Fig. 8a) for the JPL 
product has only a small dependence on spatial 
difference in co-location; however, the Ku-2000 product 
shows a stronger dependence. The values in the 2.5-5.0 
km bins correspond to wσ = ~0.6 ms-1 (similar to the 
NSCAT random component error; Freilich 1997; 
Freilich and Vanhoff 2000]. However, the values in the 
closest bin are much smaller (corresponding to 0.05 to 
0.3 ms-1). The Ku-2000 products show the clearest 
trends of reduced uncertainty with reduced difference in 
co-location. The sensitivity to differences in co-location 
is expected to greatly decrease for distances less than 
the half the 5km length scale for the sampling volume of 

the research ships (i.e., half the smaller of the two 
sampling volumes). A parabolic curve is likely to best 
represent the dependence on spatial separation. The data 
set is too noisy to determine this curve; therefore, we 
make a conservative estimate by linear extrapolation to 
2.0 km. For the radiometer rain flag, the corresponding 
uncertainty in wind speed is estimated at ~0.45 ms-1 for 
QSCAT-1, and 0.3 ms-1 for Ku-2000.  
 The impact of spatial differences in co-location on 
direction (Fig. 8b), is also large. The appropriate shape 
for a best-fit curve is not clear from these results. A 
PCA-based parabolic fit to QSCAT-1 rms differences 
indicates an uncertainty of ~4°. A more conservative 
estimate, based on the 0 to 2.5 km bin, indicates θσ = 
5°. The Ku-2000 directional differences are 
substantially smaller than the QSCAT-1 differences 
except in the 5 to 7.5 km bin, where they peak. The 0 to 
2.5 km bin, and the substantially smaller variances, 
indicate that the Ku-2000 uncertainty is ~3°. Restricting 
the Ku-2000 co-locations to the middle (higher quality) 
part of the swath (not shown) indicates that the 
directional uncertainty for this part of the swath is ~2°. 
These results demonstrate the exceptional accuracy of 
SeaWinds on QuikSCAT and research vessel vector 
winds, as well as the importance of considering 
differences in spatial co-locations in any validation 
effort. 
 The model for uncertainty including spatial 
variability ( 2

sσ ) becomes 

 ( )2 2 2 2 2 ,w sw x wθσ σ σ σ= + + ∆w  ,  (13) 
where 2

sσ  is a function of the spatial difference in co-
location (∆x) and wind speed. This term also implicitly 
considers small-scale variability in the sampling volume 
and differences between the two sampling volumes. It 
does not contribute to observational uncertainty. The 
variability due to spatial co-location differences can be 
parameterized in terms of contributions due to 
uncertainties in wind speed (σws) and direction (σθ s), 
both of which are functions of the spatial difference in 
co-location: 
 ( ) ( ) ( )2 2 2 2,s ws sx w x w xθσ σ σ∆ = ∆ + ∆ . (14) 
The values of 2

wsσ  and 2
sθσ  can be estimated from Figs. 

8a,b: for ∆x = 6 km, 2
wsσ ≈ 0.15 m2s-2 and 2

sθσ  = 40 
degrees2; and for ∆x = 8.8 km (the average difference in 
co-location for data sets limited to 12.5 km), 2

wsσ ≈ 0.20 

m2s-2 and 2
sθσ  = 75 degrees2. For both examples, the 

contribution to directional uncertainty is larger than the 
corresponding value for SeaWinds observational 
uncertainty. For comparison of in-situ and scatterometer 
winds, the number of co-locations will be very small for 
∆x < 6 km. Consequently, the contribution to total 
uncertainty from 2

sσ  often will be large in comparisons 
to in-situ observations: it must be considered to avoid 

Figure 8. PCA-derived (a) 2
wσ  and (b) 2

θσ  binned as 
functions of spatial separation. Bins are in 2.5 km 
intervals, ranging from 0 to 12.5 km. 
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significant overestimations of observational uncertainty. 
The influence of temporal difference in co-location is 
not examined herein, but is also expected to be 
significant for differences greater than ~3 minutes (half 
the maximum time over which scatterometer 
observations are taken within a cell). 

5.4.  Contributions to Total Uncertainty 
 Knowledge of how various problems contribute to 
the total uncertainty is useful in evaluating where 
improvements in processing the satellite observations 
can lead to the greatest reduction in uncertainty. 
Independent random uncertainties are additive in a RMS 
sense (i.e., variances are additive). The uncertainty 
related to direction (for correctly selected ambiguities) 
is greater than the contribution related to wind speed for 
w > 8 ms-1 for the QSCAT-1 GMF, and w > 18 ms-1 for 
the Ku-2000 GMF. However, for w < 8 ms-1 errors in 
ambiguity become significant. Gross errors in ambiguity 
selection result in wind vector errors with systematic 
(directions opposite the true wind vector) and random 
components. For the purpose of examining contributions 
to rms differences, we approximate this component of 
uncertainty as an entirely random uncertainty in 
direction (σθ,a). This is not an entirely valid 
approximation: ambiguity errors have a substantial 
systematic component in a wind vector relative 
coordinate system. Furthermore, we ignore ambiguity-
related uncertainty in direction (σw,a). Future studies 
should explore these considerations. Herein, ambiguity 
errors are modeled as an additional source of directional 
uncertainty, and can be included in Eq. 14 to model the 
total observational uncertainty: 
 ( ) ( )2 2 2 2 2 2 2

, , ,w w a a sw x wθ θσ σ σ σ σ σ= + + + + ∆w  . (15) 
 We have few points with which to estimate the 
dependence of σθ,a on w, and they are sufficient for only 
a crude model of uncertainty related to ambiguity 
selection. Better models for ambiguity-related errors 
must be developed from other data sets with a much 
larger number of co-locations. These few points suggest 
QSCAT-1 and Ku-2000 σθ,a = ~55° at w=0, and σθ,a = 
~0 at w=8, then QSCAT-1 σθ,a rises again for greater 
wind speeds. We empirically approximate the wind 
speed dependence of σθ,a for w < 8 ms-1 as 
 ( ), 55cos 0.21a wθσ = , for w < 7.5 ms-1. (16) 
The cosine function was chosen because of it’s slow 
initial decrease, with a very rapid decrease near the 
upper limit in wind speed. The function provided to be a 
much better fit to the very limited data than linear or 
quadrate functions. However, these results, which are 
based only on variance due to gross errors in ambiguity, 
underestimate the uncertainty related to ambiguity 
selection. This term peaks near w = 4 ms-1, falls rapidly, 
and is negligible for w = 7.5 ms-1.  
 The various contributions to 2σ w  in (15) can be 

examined (for each GMF) as a function of wind speed 
(Fig. 9) to determine for what conditions reductions in 

these uncertainties would have the greatest impact. 
Variability in |∆u| related to spatial co-location ( gσ ) 
dominates for most wind speeds. Reduction to 20 km 
cells can reduce variability within cells, and it has been 
 
Figure 9. Cumulative contributions to the variance
(uncertainty squared) in the magnitude of the vector
difference ( 2σ ∆u ) as a function of wind speed for the (a)

QSCAT-1 GMF and (b) Ku-2000 GMF. The
histograms show the observed values of ( 2σ ∆u ) for

correctly selected ambiguities (dark shading) and all
selected ambiguities (light plus dark shading). The
colored regions show the cumulative variance due to all
sources of modeled variance. The order in which these
variances are stacked is wind speed ( 2

wσ ; red), wind

direction ( 2 2w θσ ; light blue), ambiguity selection

( 2 2
aw θσ ; green), ship observational uncertainty (pink),

and spatial differences in co-location ( 2
gσ ). The yellow

shows 2
gσ  for a difference in co-location of 6 km, and

the total of yellow and blue is for a difference in co-
location of 10 km. The uncertainty (one standard
deviation) is equal to the square root of the variance.
SeaWinds’ observational uncertainty squared is given
by the sum of red, light blue, and green variances. 
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shown to be effective [Wu-Yang Tsai, personal 
communication, 1999]; however, reduction below this 
limit requires smaller footprints or more 
computationally intensive processing. Of the 
observational terms (uncertainty in speed ( wσ ), 

uncertainty related to direction ( w θσ ), and uncertainty 

related to ambiguity selection ( aw θσ )), for the 
QSCAT-1 model function, uncertainty related to 
ambiguity selection dominates for 2.5 < w < 5.5 ms-1, 
uncertainty in speed dominates for w < 2.5 ms-1 and 5.5 
< w < 7.5 ms-1, and uncertainty in direction dominates 
for w > 7.5 ms-1. For the Ku-2000 model function, 
uncertainty related to ambiguity selection dominates for 
0.6 < w < 5.5 ms-1, uncertainty in speed dominates for w 
< 0.6 ms-1 and 5.5 < w < 18 ms-1, and uncertainty related 
to direction dominates for w > 18 ms-1.  
 For wind speeds below ~2 ms-1, modified by water 
temperature [Pierson et al., 1997], atmospheric 
stratification [Bourassa et al., 1999a], and swell 
[Bourassa et al., 1999a], there is a wind speed threshold 
(capillary cutoff) below which short water waves do not 
exist. Typically, these smooth patches are associated 
with convective cells with horizontal scales much 
smaller than the size of the scatterometer footprint. The 
scatterometer signal is confused due to inhomogeneous 
wind direction and surface roughness characteristics of 
the surface: the scatterometer direction should 
correspond to an average direction within the footprint. 
In the relatively rare cases where the surface is smooth 
within the entire footprint, wind directions cannot be 
found because the radar signal does not interact with 
short water waves. Therefore, wind directions (and 
ambiguity selection) below this threshold are random 
and cannot be improved. Fortunately, the impacts of 
such errors in meteorological and oceanographic 
applications are likely to be negligible. For w < 5.5 ms-1 
(i.e., approximately half of ocean winds), improvements 
in ambiguity selection are likely to have the greatest 
impact in reducing errors in scatterometer winds.  
 It should be emphasized that these results are across-
swath averages. The accuracy in the middle swath is 
superior to these results, and the accuracy in the inner 
swath (near nadir) and the outer swath (near the edges) 
is considerably worse. Improving accuracy in these 
regions could have a relatively strong impact on the 
average accuracy.  
 The model for uncertainty (15) can be verified 
through comparisons of modeled rms of the magnitude 
of differences (|∆w|rms) to observed values of |∆w|rms. 
The modeled value of |∆w|2rms is equal to the uncertainty 
squared in (15) plus the uncertainty squared of the 
ship’s observations (ship uncertainty is assumed to be 
equal to the scatterometer’s uncertainty for correctly 
selected ambiguities).  
 2 2 2

,scat ,shiprms w wσ σ∆ = + +w  
  ( ) ( )2 2 2 2 2

,scat ,ship ,a gw x wθ θ θσ σ σ σ+ + + ∆  (17) 

 These rms differences are shown (Fig. 9) for both the 
QSCAT-1 and Ku-2000 GMFs. The error model (dash-
dot line) is a good match to |∆w|2rms, except for the 
QSCAT-1 problems ambiguity selection for w > 8 ms-1 
which are not captured (it was not considered in the 
model). The peak in ambiguity selection related 
uncertainty (at w = 4 ms-1) is also underestimated due to 
our consideration of only gross ambiguity selection 
errors. Replacing the variance for low wind speeds in 
(16) with a value of 65° results in much better matches 
(not shown). 
 This study has demonstrated that there is substantial 
variability in speed and direction on length scales 
smaller than the scatterometer cell size (25 km). This 
variability contributes to what is perceived as noise in 
the backscatter, and hence it causes additional 
uncertainty in determining both speed and direction. 
This study suggests a preliminary physical basis from 
which the signal to noise ratio can be optimized in terms 
of cell size and footprint size.  
6.   Summary  
 Accuracy of rain-free vector winds is assessed 
through two techniques. One technique is a new PCA-
based method for determining vector correlations. The 
fraction of variance explained by assuming a linear 
relationship between in-situ and satellite wind vectors 
was between ~90% and 99.7% for correctly selected 
ambiguities and only slightly smaller for all selected 
ambiguities. Wind vector uncertainty was also defined 
through the standard deviation in the magnitude of 
vector errors (|wscat − wship|). An error model (Eq. 17; 
Fig. 9) based on the above results accounts for five 
contributions to uncertainties as functions of wind 
speed. It also considers differences in satellite and in-
situ winds due to differences in spatial co-locations, 
which implicitly considers differences in sampling 
volume. The function for observational uncertainty can 
be used in conjunction with the variability as a function 
of spatial difference in co-location (Fig. 8) to provide a 
preliminary basis from which the scatterometer's signal 
to noise ratio can be optimized in terms of cell size and 
footprint size. A reduction in footprint size would 
reduce the spatial variability within cells. If this 
reduction in size does not result in too great a loss of 
signal, it would increase the accuracy of scatterometer 
wind speed and direction as well as the fine spatial 
scales of fronts and small-scale circulations. 
 Estimates of uncertainty in an instrument must 
consider the accuracy of the data used as the standard of 
comparison. There is no absolute standard for wind 
speed and direction measurements over the open ocean. 
The uncertainty in our comparison measurements is 
unknown and varies from ship to ship and cruise to 
cruise. Principal component analysis (PCA) is an 
excellent tool for error analysis when the uncertainty is 
similar in the test data set and the comparison 
measurements. This assumption of similarity is valid if 
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the uncertainties in both data sets are small compared to 
the span of the observations, as they are in this case. 
 We demonstrate that differences in spatial co-
location have significant impact on rms differences (Fig. 
9), and that these differences can dominate instrument 
dependent sources of uncertainty of w > 4.5 ms-1 when 
spatial co-location is within 10.0 km. The observational 
uncertainty in the instrument can be estimated by 
plotting uncertainty as a function of co-location distance 
and then extrapolating the observed uncertainties to an 
exact spatial co-location. This procedure results in 
conservative estimates of QSCAT-1 (Ku-2000) 
uncertainties, for rain-free conditions, of 5° (3°) for 
direction and 0.45 ms-1 (0.3 ms-1) for speed. This 
assessment of directional accuracy does not consider 
errors in ambiguity selection, which peak near w = 4 ms-

1, dominates instrument and GMF related uncertainty for 
w < 5.5 ms-1, and has some across-swath dependence. 
The QSCAT-1 model function also has ambiguity 
selection errors in the inner swath (near nadir) for w > 
12 ms-1, which contribute to very large vector 
differences. 
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