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Abstract We examine the Florida Climate Institute–

Florida State University Seasonal Hindcast (FISH50) skill

at a relatively high (50 km grid) resolution two tiered

Atmospheric General Circulation Model (AGCM) for

boreal winter and spring seasons at zero and one season

lead respectively. The AGCM in FISH50 is forced with

bias corrected forecast sea surface temperature averaged

from two dynamical coupled ocean–atmosphere models.

The comparison of the hindcast skills of precipitation and

surface temperature from FISH50 with the coupled ocean–

atmosphere models reveals that the probabilistic skill is

nearly comparable in the two types of forecast systems

(with some improvements in FISH50 outside of the global

tropics). Furthermore the drop in skill in going from zero

lead (boreal winter) to one season lead (boreal spring) is

also similar in FISH50 and the coupled ocean–atmosphere

models. Both the forecast systems also show that surface

temperature hindcasts have more skill than the precipita-

tion hindcasts and that land based precipitation hindcasts

have slightly lower skill than the corresponding hindcasts

over the ocean.

Keywords ENSO � Seasonal predictability �
Forecast skill

1 Introduction

The basis for global seasonal climate prediction was initially

best illustrated for the boreal winter climate when the El Niño

and the Southern Oscillation (ENSO) Sea Surface Tempera-

ture (SST) anomalies in the equatorial anomalies are the

largest (Bengtsson et al. 1993; Kumar and Hoerling 1995;

Shukla 1998; Shukla et al. 2000). These ‘success stories’

spurred the climate modeling community that resulted in

significant amount of literature on the impact of slowly

varying surface boundary conditions on the genesis, suste-

nance and demise of several atmospheric climate anomalies

(Barnston et al. 1994; Koster et al. 2000; Hoerling et al. 2001;

Goddard et al. 2001). However these studies highlighted a

somewhat arcane and possibly unattainable (in an operational

environment) ‘potential’ predictability of the seasonal atmo-

spheric anomalies as they were forced with observed SST. As

a result the interest in diagnosing ‘potential’ predictability

waned in the community, while efforts to develop and diag-

nose seasonal predictability of coupled ocean–atmosphere

models increased (Stockdale et al. 1998; Kirtman et al. 2002;

Kirtman 2003; DeWitt 2005). From these sustained efforts in

the last decade or so, there has been a notable improvement in

the dynamical ENSO prediction (Saha et al. 2006, 2010;

Kirtman and Min 2009; Stockdale et al. 2011; Zhu et al. 2012).

Saha et al. (2006) demonstrated for the first time that

dynamical coupled ocean–atmosphere models were compa-

rable if not better than statistical forecasts for ENSO. It has

now culminated in a massive nation wide co-ordinated effort

to develop the National Multi-Model Ensemble [NMME

(Kirtman et al. 2013); http://www.cpc.ncep.noaa.gov/
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products/ctb/nmme/] project to harvest the improvements

made in the individual modeling centers towards improved

seasonal prediction.

In this paper we seek to revisit the two-tiered seasonal

forecast system for seasonal prediction. The motivation for

this is several. One, the improvement in the forecasted SST

anomalies from the dynamical prediction systems is worth

leveraging. Second, coarseness of the coupled ocean–

atmosphere models continues to be an issue. In this study we

are investigating seasonal predictability with an Atmo-

spheric General Circulation Model (AGCM) of *50 km

grid resolution, which is two to four times higher resolution

than the current coupled climate models in the NMME. To

meet the growing needs of application studies say for

example in hydrology, there is a push towards obtaining

climate prediction products at a higher spatial and temporal

scales (Bohn et al. 2010; Clark and Hay 2004; Shukla et al.

2010). Third, there are some recent studies suggesting that

improvement of monsoon climate simulations in climate

models is a result of the improved ENSO signal in the model

(Delsole and Shukla 2012). Fourth, if the results from this

study are promising then it opens the possibility of adding to

the NMME effort at a comparatively lower encumbrance

with potentially high pay off. Fifth, the basic premise of

seasonal climate prediction of slowly varying boundary

conditions preconditioning the atmospheric anomalies will

always be valid and is worth revisiting periodically to at least

assess the progress made in the prediction of the SST

anomalies and other boundary conditions. In the next section

we explain the experiment design and provide a brief model

description. This is followed by the analysis of the results in

Sect. 3 followed by summary and conclusions in Sect. 4.

2 Experiment design

The Florida Climate Institute-Florida State University

Seasonal Hindcasts at 50 km grid resolution (FISH50) was

implemented to initiate forecasts starting in the boreal

winter and integrated through 6 months to end of May of

the subsequent year. FISH50 was conducted for the period

1982–2008. Further details of the FISH50 experiments are

provided in Table 1. FISH50 are two tiered hindcasts,

meaning that the Atmospheric General Circulation Model

(AGCM) was forced with forecasted SST from another

prediction system. The forecasted monthly mean SST

anomalies were averaged from two coupled ocean–atmo-

sphere models (CFSv2 [Saha et al. 2010]; CCSM3.0

[Kirtman and Min 2009]), which are part of the family of

the National Multi-Model Ensemble project (NMME

[Kirtman et al. 2013]). The other coupled ocean–atmo-

sphere models in the NMME project were not utilized as

they were not available at the time of conceiving the

FISH50 experiments. The multi-model average of the SST

anomalies is found to have overall higher prediction skill

than any single model (Kirtman and Min 2009). These

multi-model averaged SST anomalies are overlaid on

observed climatology that contains the seasonal cycle,

secular changes and decadal variations. This bias correc-

tion of SST anomalies becomes necessary as the systematic

errors in CFSv2 and CCSM3.0 in the equatorial Pacific and

in the subtropical eastern oceans are grave (Fig. 1). For

example, CCSM3.0 displays an equatorial central Pacific

cold bias of *1 �C in both DJF and MAM seasons. Sim-

ilarly CFSv2 shows a very large bias (of over 3 �C) in the

southeastern equatorial Pacific in the MAM season.

Obviously in a two-tiered system as FISH50, we have

greater flexibility of correcting these systematic errors.

However, unlike other flux or bias correction attempts

(LaRow 2013; Kirtman 2003; Kirtman et al. 2002; Dri-

jfhout and Walsteijn 1998), care was taken to exclude the

period of forecast (1982–2008) to develop this SST cli-

matology. The importance and difficulty to adhere to this

rule of excluding the FISH50 hindcast period to develop

the observed SST climatology is highlighted in Fig. 2,

which shows the differences in the SST climatology

Table 1 FISH50 experiment design

Seasonal hindcast feature Detail

Length of each seasonal hindcast

integration

6 months

Number of ensemble members for

each seasonal hindcast

6 (E1, E, E3, E4, E5, E6)

Seasonal hindcast period 1982–2008

Seasonal hindcast start date E1 E2 E3 E4 E5 E6

28 Nov,

0000 UTC

29 Nov,

0000 UTC

30 Nov,

0000 UTC

01 Dec,

0000 UTC

02 Dec,

0000 UTC

03 Dec,

0000 UTC

Atmospheric initial conditions Borrowed for subsequent days from 28 Nov to 03 Dec from the NCEP-DOE reanalysis (Kanamitsu et al.

2002a, b) for each ensemble member and interpolated to the FISH50 grid

Land initial conditions Interpolated from NCEP-DOE reanalysis and kept identical in all ensemble members for each season
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Fig. 1 The observed climatological SST for boreal a winter (DJF)

season and b spring (MAM) season. The bias of hindcasted SST at

zero lead for boreal winter season from c CFSv2, e CCSM3.

Similarly, the bias of hindcasted SST at one season lead for boreal

spring season from d CFSv2 and f CCSM3.0. The units are in �C
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computed in two adjacent 27 year periods of 1955–1981

and 1982–2008. In both the seasons of DJF and MAM, the

systematic difference between the two periods in the

equatorial oceans ranges from about 0.2 to 0.5 �C, which

could be regarded as substantial. In other words, we cannot

just use the previous 27 years of mean SST as the observed

climatology for the FISH50 hindcast period. As an alter-

native we adopted a novel approach following Wu et al.

2009 to compute a time varying climatology that includes

the secular change and decadal variations. Mathematically,

this may be written as:

SSTF ¼ SSTACYCLE þ SSTAMME þ SSTOLF ð1Þ

where, SSTF is the forecast SST used to force FISH50

AGCM. SSTACYCLE is the monthly climatology of ERS-

STv3 (Smith et al. 2008) anomaly from 1901 to 1981.

SSTAMME is the forecasted multi-model (CFSv2 and

CCSM3) monthly mean averaged SST anomalies. SSTOLF

is the observed low pass filtered SST obtained over the

time period beginning from January 1880 to the start of

seasonal hindcast. SSTOLF is updated at the start of each

season and persisted through the integration period of the

seasonal hindcast. To obtain SSTOLF we followed Misra

et al. (2013), which involved first conducting a Multi-

dimensional Ensemble Empirical Model Decomposition

(MEEMD) analysis (Wu et al. 2009). MEEMD is a multi-

dimensional (in space) data adaptive time series analysis of

Ensemble Empirical Mode Decomposition (EEMD; Wu

and Huang 2009). EEMD seeks to determine the intrinsic

modes of oscillations in the data on the principle of local

scale separation, which are called Intrinsic Mode Functions

(IMFs). Although the decomposition in MEEMD does not

make use of information on spatial coherence of the data-

set, the obtained evolution of SSTOLF are both temporally

and spatially coherent (true to its low frequency feature),

which exhibits large spatial scale features when the SSTOLF

is mapped on a global grid. The decomposition of the SST

using MEEMD enables us to isolate the low frequency

Fig. 2 The observed climatology SST computed over a period of 1955–1981 for a DJF season and b MAM season, and their corresponding

differences with climatology computed over the period 1982–2008 for c DJF and d MAM. The units are in �C
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modes (C *40 years) and include them exclusively as part

of SSTOLF. The monthly mean SSTF is interpolated to daily

value following Taylor et al. (2000).

The AGCM used in FISH50 essentially follows from the

formerly Experimental Climate Prediction Center’s AGCM

at Scripps Institute of Oceanography (Kanamitsu et al.

2002b; Shimpo et al. 2008) and now referred as the Florida

Climate Institute-Florida State University Global Spectral

Model (FGSM). A brief outline of the physics package

used in the FGSM is presented in Table 2. It has 28 vertical

(terrain following sigma) levels. We have however made

some subtle but important changes of increasing the reso-

lution to T248 spectral truncation (*50 km grid resolu-

tion) and replacing the convection scheme from Relaxed

Arakawa Schubert (RAS; Moorthi and Suarez 1992) to

Kain-Fritsch version 2 (KF2; Kain and Fritsch 1993; Kain

2004) scheme. The motivation for this change can easily be

seen in the improvement of the AGCM’s seasonal rainfall

climatology for DJF and MAM seasons relative to the

original version of the model (Fig. 3). For these test inte-

grations displayed in Fig. 3, we ran a single ensemble

member for 12 seasons (1982–1993) using the two differ-

ent convection schemes at T248 spectral truncation forced

with SSTF and compared the mean seasonal rainfall over

the 12 seasons. In Fig. 3, it is clearly seen that KF2

improves the structure of the ITCZ globally relative to

RAS. In the latter, the split ITCZ phenomenon is quite

apparent especially in the tropical Indian and Pacific

Oceans, which is greatly ameliorated in the KF2 version of

the FGSM integrations. However, KF2 has a tendency to

rain more relative to the RAS integration and observations.

Since we are going to be comparing FISH50 with the

two coupled ocean–atmosphere models namely, CCSM3

and CFSv2, we briefly outline their physics in Table 2. The

readers are referred to Collins et al. (2006a, b) and Saha

et al. (2013) for further details on CCSM3 and CFSv2

respectively. In FISH50 we have 6 ensemble members per

season (Table 1) and we therefore use as many from

CCSM3 and CFSv2. The generation of the ensemble

members in CCSM3 follows from Kirtman and Min (2009)

and for CFSv2 from Saha et al. (2013).

3 Results

Since the seasonal hindcasts are global we will compare

and validate the results on a larger scale (globally) and let

region specific details for subsequent papers. We will in

this paper hone in on surface air temperature and precipi-

tation forecasts from FISH50, CCSM3.0 and CFSv2 sea-

sonal hindcasts. The details of the validation datasets used

in this section are provided in Table 3.

3.1 SST forcing

The bias in the seasonal mean SSTF (from Eq. 1; Fig. 4)

for both DJF and MAM seasons is greatly reduced com-

pared to the SST bias displayed by either CFSv2 or

CCSM3.0 (Fig. 1). The bias in SSTF in Fig. 4 is uniformly

in the range -0.5 to 0.5 �C, which is comparably far less

than the large errors along the equatorial oceans, subtrop-

ical eastern oceans and in the higher latitude storm track

regions of both hemispheres in CCSM3.0 and CFSv2

(Fig. 1). Similarly the standard deviation of the mean DJF

SSTF (Fig. 5) shows that the variability along the equato-

rial Pacific Ocean and the Ecuadorian-Peruvian coast is

comparable to the other two models. All three show

slightly higher variability over the equatorial Pacific in the

DJF season, while the mean DJF SST variation in the

northern Pacific and in the northern Atlantic is marginally

improved in SSTF compared to coupled seasonal hindcasts.

In the MAM season, none of the SST forecast products

capture the strong variations along the Ecuadorian-Peru-

vian coast. All of these forecasts contrary to observations

exhibit strongest equatorial Pacific SST variations between

*90 and 160�W. The north Atlantic SST variations in

Table 2 A brief outline of the physics of the FISH50 AGCM, CFSv2 and CCSM3

Parameterization FGSM CFSv2 CCSM3

Cumulus

parameterization

Kain-Fritsch (Kain and Fritsch 1993; Kain

2004)

Simplified Arakawa-Schubert (Hong and

Pan 1998)

Zhang and McFarlane

(1995)

Shallow convection Tiektke scheme (Tiedtke 1983) Tiektke scheme (Tiedtke 1983) Hack (1994)

Boundary Layer Nonlocal scheme (Hong and Pan 1996) Nonlocal scheme (Hong and Pan 1996) Holtsalag and Boville

(1993)

Land surface NOAH (Ek et al. 2003) NOAH (Ek et al. 2003) CLM3 (Oleson et al. 2004)

Gravity wave drag Pierrehumbert (Alpert et al. 1988) Chun and Baik (1998) McFarlane (1987)

Shortwave radiation M.-D. Chou (Chou and Lee 1996) AER RRTM LW (Clough et al. 2005) Berger (1978)

Longwave radiation M.-D. Chou (Chou and Suarez 1994) AER RRTM SW (Mlawer et al. 1997) Ramanathan and Downey

(1986)

CO2 Time (annually) varying Time (seasonally) varying Fixed

Global seasonal climate predictability
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Fig. 3 The observed climatology of precipitation computed over a

period of 1982–1993 for a DJF and b MAM seasons. The

corresponding climatology of precipitation from a single member

seasonal hindcast for the period of 1982–1993 using the RAS

convection scheme for c DJF (at zero lead) and d MAM (one season

lean) season. Likewise the climatology of precipitation from a single

member seasonal hindcast for the period of 1982–1993 using the KF2

convection scheme for e DJF (at zero lead) and f MAM (one season

lead). The units are in mm/day
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SSTF are slightly improved over the corresponding varia-

tions in CFSv2 and CCSM3.0, while over north Pacific it is

not so apparent.

3.2 FISH50 climatology

Figure 6 shows the observed seasonal climatology of pre-

cipitation for DJF and MAM seasons along with the cor-

responding RMSE for each of the three models. It is quite

apparent that the RMSE of FISH50 is relatively much

higher (as a result of erroneously higher precipitation rates)

in the tropical latitudes than in either CCSM3.0 and CFSv2

hindcasts in both DJF and MAM seasons. In the DJF sea-

son, CCSM3.0 displays the least RMSE, while in FISH50

and in CFSv2 the RMSE are especially large over the

western Pacific warm pool region, where they tend to rain

more than the observations. In FISH50 the RMSE is also

large over southeastern Africa and southeastern Brazil. In

the MAM season the RSME are large in the southern tro-

pics in CCSM3 relative to CFSv2 while still significantly

less than that in FISH50. The RMSE in FISH50 in the

MAM season continues to be large both over the tropical

oceans and over land compared to either CFSv2 and

CCSM3.0. The larger tropical RMSE in FISH50 may be

highlighting the impact of the absence of the coupled air-

sea interactions that could dampen the tropical rainfall

activity.

The boreal winter and spring climatology of observed

surface temperature and the corresponding RMSE from the

three models are shown in Fig. 7. The RMSE over Sahara

in northern Africa is rather unique in FISH50. Similarly,

the errors in northern Russia and Canada are large in

FISH50 compared to that in CCSM3.0 and CFSv2. From

Fig. 7 it is seen that except for the semi-arid regions and

high altitude region (e.g. Tibetan Plateau) the RMSE in

FISH50 is comparatively small.

3.3 Deterministic predictability

Deterministic predictability in some ways is a fallacy of

climate prediction if it is not complimented with probabi-

listic assessment of skill (Palmer et al. 2000; Kirtman

2003). It is argued that both weather and climate prediction

are inherently non-deterministic because of uncertainty in

the initial conditions, imperfect and non-linear model that

result in chaotic evolution of the climate system. However

deterministic skill analysis does provide some (but not

complete) insight into the behavior of the forecast system

as will be apparent by the conclusion of this paper, when

we also compare the models for their probabilistic skill.

In Fig. 8 we show the correlation of the seasonal mean

precipitation anomalies (of the ensemble mean) from the

three model’s seasonal hindcasts with the corresponding

observed precipitation anomalies for both DJF (zero lead)

and MAM (one season lead). In the DJF season, FISH50

Table 3 Details of the validation datasets used

Global dataset name Variable Reference Resolution Period

available

Climate Prediction Center Merged Analysis of Precipitation

(CMAP)

Precipitation Xie and Arkin (1997) 2.5� 9 2.5� 1979-present

Climate Research Unit version 3 (CRUv3) Surface

temperature

Mitchell and Jones

(2005)

0.5� 9 0.5� 1900-present

Fig. 4 The climatological SST bias computed for a DJF season (at

zero lead) and b MAM season (at one season lead) from FISH50. The

observed SST climatology was computed over the period 1982–2008

as shown in Fig. 1a, b. The units are in �C

Global seasonal climate predictability

123



Fig. 5 The standard deviation of DJF seasonal mean SST from

a observations, and seasonal hindcasts at zero lead from b FISH50,

c CFSv2, and d CCSM3. Similarly the standard deviation of MAM

seasonal mean SST from e observations, and seasonal hindcasts at one

season lead from f FISH50, g CFSv2, and h CCSM3. The units are

in �C
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Fig. 6 The observed climatology of precipitation (1982–2008) in a DJF,

and b MAM. The root mean square error of the ensemble mean

precipitation for DJF (zero lead) for seasonal hindcasts from c FISH50,

e CFSv2, and g CCSM3. Likewise, the root mean square error of the

ensemble mean precipitation for MAM(one season lead) for seasonal

hindcasts from d FISH50, f CFSv2, and h CCSM3. The units are in mm/day
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Fig. 7 The observed climatology of surface temperature (1982–2008)

in a DJF, and b MAM. The root mean square error of the ensemble mean

T2 m for DJF (zero lead) for seasonal hindcasts from c FISH50,

e CFSv2, and g CCSM3. Likewise, the root mean square error of the

ensemble mean T2 m for MAM (one season lead) for seasonal hindcasts

from d FISH50, f CFSv2, and h CCSM3. The units are in �C
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displays a strong positive correlation over southwestern

and southeastern United States, eastern Africa, and over

northeastern South America, which are some well known

regions for ENSO teleconnections (Ropelewski and Hal-

pert 1986, 1987; AchutaRao and Sperber 2006). In the

CFSv2 and CCSM3 seasonal hindcasts, the DJF seasonal

precipitation anomalies displays similar but somewhat

weaker correlations over these continental regions. As

noted earlier, the MAM season comparatively shows

weaker correlations than in the DJF season in all three

models. In case of FISH50, the positive correlations are

shifted to northwestern US and northeast Brazil that are

well known again for ENSO teleconnections in the boreal

spring season (Ropelewski and Halpert 1986; Moura and

Hastenrath 2004). Similarly CFSv2 display positive cor-

relations, albeit weaker than FISH50 over both of these

continental regions. CCSM3.0 seasonal hindcasts, however

display the weakest positive correlations in the MAM

season compared to the other two models over northeast

Brazil and over northwestern US.

A similar correlation of seasonal mean surface temper-

ature anomalies from all three models with corresponding

observations is shown in Fig. 9. In the DJF season, FISH50

displays a more extensive positive correlation over Africa,

Australia, South America, and North America than either

CFSv2 and CCSM3.0. It could be argued in the DJF season

that CFSv2 exhibits a larger positive correlation than any

other model over equatorial Africa, Arabian Peninsula, and

tropical South America. The corresponding correlations in

CCSM3.0 display the least extensive and weakest positive

correlations over majority of the continental regions. This

could be an artifact of the concentration of CO2 being fixed

in the CCSM3.0 seasonal hindcasts unlike in the other two

models in which it is varied. In the MAM season, FISH50

displays a less extensive positive correlation over Africa

(with notable reduction over Sahara), reduction of corre-

lation over Australia and less extensive correlations over

United States (with notable positive correlations over

southwestern and northwestern United States). The corre-

sponding correlations in CFSv2 are nearly comparable to

that in FISH50. CCSM3.0 is able to maintain the correla-

tions from the previous season.

3.4 Probabilistic prediction skill

Following Mason and Graham (1999, 2002) we compute

the Area under the Relative Operating Characteristic Curve

(AROC) to assess the probabilistic skill of the seasonal

hindcasts. In Appendix we compare the seasonal hindcasts

of the three models (FISH50, CFSv2, and CCSM3) with

the rest of the National Multi-Model seasonal hindcasts.

We have analyzed these skills for the lower, middle and

upper terciles for both seasonal mean precipitation and

surface land temperature for both DJF and MAM seasons.

Unlike the deterministic skill that evaluates the ensemble

mean anomalies, AROC is a conditional probability metric

that provides the forecast probability for events defined by

the user (in this case terciles). The thresholds for the ter-

ciles were based on the respective model hindcasts and

observations separately. In an operational environment,

AROC serves as a useful way to assess a priori an optimal

strategy to issue warnings for specific events based on the

hindcast performance of the forecast system.

In Fig. 10 we show the AROC for FISH50 seasonal

precipitation anomalies in DJF and MAM seasons for

lower, middle, and upper terciles. In comparison to Fig. 8 it

is immediately apparent that more hindcast skill can be

harvested through this approach. In DJF season, FISH50

displays much higher skill than climatology for low and

upper tercile events over a vast transect of the global tropics

including both land and ocean points. Even higher latitude

regions display higher skill than climatology in the first

season (DJF) of the FISH50 hindcast, which does not seem

to be so obvious from Fig. 8. In the subsequent season of

MAM (one season lead) the AROC values diminish in their

magnitude, but are still sustained (higher than climatology)

from the previous season. It is interesting to note that in both

seasons, the middle tercile has lesser AROC values than

extreme terciles and are also less spatially coherent.

Figure 11 compares the AROC for seasonal precipita-

tion anomalies over global oceans, global tropical oceans,

global land, and global tropical land regions between the

three models. The following may be noted from Fig. 11:

All three models over all these four regions show a

reduction of AROC from going from DJF to MAM

season for all terciles.

All three models display a higher AROC for the extreme

terciles than the middle tercile.

All three models display higher skill over the oceans than

over land in both seasons and for the extreme tercile events.

Outside of the global tropics, FISH50 has marginally

higher AROC than either of the two models for the high

tercile events in the DJF and MAM seasons.

For the low tercile events outside of the global tropics,

the AROC’s are comparable between FISH50 and

CFSv2 with significantly lower values for CCSM3.0.

For extreme terciles in the global tropics for the DJF

season CFSv2 seems to have the highest AROC except

for high tercile events over the global tropical land

where FISH50 displays the highest values.

In the MAM season over global tropical oceans, the

AROC values in FISH50 and CFSv2 are comparable

while in CCSM3.0 it is significantly less but still

above climatology. However over global tropical land

Global seasonal climate predictability
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Fig. 8 The correlation of the ensemble mean precipitation for DJF (zero lead) from a FISH50, c CFSv2, and e CCSM3. Similarly, the correlation

of the ensemble mean precipitation for MAM (one season lead) from b FISH50, d CFSv2, and f CCSM3
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Fig. 9 The correlation of the ensemble mean T2 m for DJF (zero lead) from a FISH50, c CFSv2, and e CCSM3. Similarly, the correlation of the

ensemble mean precipitation for MAM (one season lead) from b FISH50, d CFSv2, and f CCSM3
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Fig. 10 The area under the relative operation characteristic curve

(AROC) for a lower, b middle, and c upper tercile for DJF (zero

season lead) from FISH50 precipitation, Similarly, the area under the

ROC for d lower, e middle, and f upper tercile for MAM (one season

lead) from FISH50 precipitation. Area over 0.5 is colored and

signifies higher skill than climatology

H. Li, V. Misra
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regions, all three models display comparable AROC

values, with notably less skill than climatology for the

middle tercile.

Figure 12 similar to Fig. 10 shows the spatial distribu-

tion of the AROC for seasonal mean surface land tem-

perature anomalies from FISH50 for the three terciles. In

contrast to Fig. 9, we again see evidence of more proba-

bilistic prediction skill that can be gleaned from FISH50.

However, unlike seasonal precipitation anomalies in

Fig. 10, the AROC for extreme terciles of surface tem-

perature are higher and more extensive over land especially

over Africa, South and North America in both DJF and

MAM seasons. Once again we notice that for middle tercile

events, the hindcast skill of FISH50 is relatively less than

that for the extreme tercile events. Comparing the AROC’s

across the three models for surface land temperature for

global land and tropical land areas (Fig. 13) we notice that

in the DJF season the high skills for the extreme tercile

events are comparable between CFSv2 and FISH50 with

CCSM3.0 showing slightly less skill. However in the

MAM season, CFSv2 shows its superiority over the other

two models both over global land and global tropical land

areas, while AROC in FISH50 remains higher than

CCSM3.0 especially outside of the global tropics.

4 Summary and conclusions

In part I of this paper we presented the results of the

seasonal hindcasts for boreal summer and fall seasons. In

this part II of the paper the analysis of seasonal hindcasts

for boreal winter and spring seasons are analyzed. At the

outset it seems that the two tiered system of FISH50

forced with the bias corrected forecasted SST from single

tiered system offers complementary seasonal prediction

skill to the coupled ocean–atmosphere forecast systems. A

systematic comparison of FISH50 winter and spring sea-

sonal hindcasts with corresponding hindcasts from single

tiered systems of CFSv2 and CCSM3.0 reveal the

following:

The RMSE of precipitation and surface land temperature

are higher in FISH50 and is least in CCSM3.0. In case of

precipitation, the RMSE are larger in the tropical

latitudes while for surface land temperature it appears

at higher latitudes.

Skillful boreal winter (spring) season rainfall anomalies

over southeastern and southwestern United States,

northeastern South America and eastern Africa (north-

western United States) appears to be a forced signal as

they appear in the deterministic skill analysis. It may be

noted that in all these regions FISH50 displays the

largest skill compared to either CFSv2 and CCSM3.0.

Similarly the correlations of the seasonal surface land

temperature anomalies from the seasonal hindcasts and

corresponding observations are most extensive over

Africa, South and North America in FISH50 relative to

the other two models in both boreal winter and spring

seasons.

The probabilistic skill analysis reveals that in all three

models there is more forecast skill to be gleaned for the

Fig. 11 Area under the ROC

averaged over a global oceans,

b tropical oceans, c global land,

and d tropical land for low,

middle, and upper terciles of

CFSv2, CCSM3, and FISH50

precipitation in DJF and MAM
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Fig. 12 The area under the relative operation characteristic curve

(ROC) for a lower, b middle, and c upper tercile for DJF (zero season

lead) from FISH50 T2 m, Similarly, the area under the ROC for

d lower, e middle, and f upper tercile for MAM (one season lead)

from FISH50 T2 m. Area over 0.5 is colored and signifies higher skill

than climatology
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extreme tercile events in both seasons (DJF and MAM)

and for both variables (precipitation and surface land

temperature), while for the middle tercile events CFSv2

and FISH50 (CCSM3.0) are marginally better (worse)

than climatology.

The changes made to the convection scheme, the

increase of resolution to T248 spectral truncation

(*50 km grid resolution), and use of the unique way of

bias correction of dynamically forecasted SST may all

have contributed to the displayed fidelity of FISH50. The

deterioration of the skill from DJF to MAM season across

all three models suggests some further investigation is

required to discern the role of increasing lead time and

the inherent seasonal nature of the climate system (e.g.

the spring predictability barrier). Nonetheless, this study

shows that coupled forecast systems may have reached a

stage, wherein the forced forecast systems like FISH50

could be used to exploit the superiority of the SST

forecasts to glean further seasonal prediction skill. The

advantage of stand alone AGCM’s is that it is computa-

tionally less demanding to raise their resolution to levels

that can then be more meaningful for application in other

fields (e.g. hydrology, agriculture etc.). FISH50 in this

study unlike in the boreal summer and fall seasons (in

part I of the paper) do not seem to show as much of a

benefit over the much coarser dynamical coupled ocean–

atmosphere seasonal forecasts. However, it should be

mentioned that all three models display hindcast skills,

which is better than climatology.
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Appendix: Comparison of FISH50 with the other

National Multi-Model Ensemble (NMME) models

The NMME project (Kirtman et al. 2013; http://www.cpc.

ncep.noaa.gov/products/ctb/nmme/) hosted by International

Research Institute for Climate and Society, Columbia

University and maintained in real time at the NCEP Climate

Prediction Center (http://www.cpc.ncep.noaa.gov/products/

NMME/) are eight single tiered coupled ocean–atmosphere

models, which have conducted extensive seasonal hindcasts

over the same time period as FISH50 and more. In fact

NMME models have completed seasonal hindcasts for

several lead times throughout the year and here we compare

the AROC for tercile events of seasonal mean surface land

temperature and precipitation from FISH50 at zero (one

season) lead time for JJA (SON) with the corresponding

hindcasts of the NMME. The horizontal and vertical reso-

lutions of the NMME models along with their references are

shown in the Table below.

National Multi-Model Ensemble (NMME) models

Model Horizontal

resolution

Vertical

resolution

References

CFSv1 T62 (*200 km) 64 sigma Saha et al. (2006)

CFSv2 T126 (*100 km) 64 sigma-

pressure

Saha et al. (2010)

CCSM3 T85 (*140 km) 26 sigma-

pressure

Kirtman and Min (2009)

ECHAM-

Anom

T42 (*250 km) 19 sigma-

pressure

DeWitt (2005)

ECHAM-

Dir

T42 (*250 km) 19 sigma-

pressure

DeWitt (2005)

GFDL 2 9 2.5 degrees 24 Layers Zhang et al. (2007)

GFDL-

aer04

2 9 2.5 degrees 24 Layers Zhang et al. (2007)

GMAO 2 9 2.5 degrees 34 Layers Bacmeister et al. (2000)

Fig. 13 Area under the ROC

averaged over a global land and

b tropical land for low, middle,

and upper terciles of CFSv2,

CCSM3, and FISH50

temperatures in DJF and MAM
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See Figs. 14, 15, 16.

Fig. 15 AROC averaged over global land for a DJF, b MAM, over tropical land for c DJF, and d MAM for low, middle, and upper terciles of

NMME and FISH50 precipitation

Fig. 14 AROC averaged over global oceans for a DJF, b MAM, over tropical oceans for c DJF, and d MAM for low, middle, and upper terciles

of NMME and FISH50 precipitation

H. Li, V. Misra

123



References

AchutaRao KM, Sperber KR (2006) ENSO simulation in coupled

ocean-atmosphere models: are the current models better? Clim

Dyn. doi:10.1007/s00382-006-0119-7

Oleson KW et al (2004) Technical description of the Community

Land Model (CLM). Tech. Rep. NCAR/TN-461 ? STR, NCAR,

Boulder, CO, 174 p

Kirtman BP et al (2013) The North American multi-model ensemble

(NMME) for intra-seasonal to interannual prediction. Bull Am

Met Soc (Submitted)

Saha S et al (2013) The NCEP climate forecast system version 2.

J Climate (Submitted) Available from http://cfs.ncep.noaa.gov/

cfsv2.info/CFSv2_paper.pdf

Alpert JC, Kanamitsu M, Caplan PM, Sela JG, White GH, Kalnay E (1988)

Mountain induced gravity wave drag parameterization in the NMC

medium-range model. Preprints, Eighth conference on numerical

weather prediction, Baltimore, MD. Am Meteor Soc 726–733

Bacmeister J, Pegion PJ, Schubert SD, Suarez MJ (2000) An atlas of

seasonal means simulated by the NSIPP 1 atmospheric GCM.

Vol. 17. NASA Tech. Memo. 104606, Goddard Space Flight

Center, Greenbelt, MD, 194 p

Barnston AG et al (1994) Long lead seasonal forecasts-where do we

stand? Bull Am Meteorol Soc 75:2097–2114

Bengtsson L, Schlese U, Roeckner E (1993) A two-tiered approach to

long-range climate forecasting. Science 261:1026–1029

Berger AL (1978) Long-term variations of daily insolation and

quaternary climate changes. J Atmos Sci 25:2362–2367

Bohn TJ, Sonessa MY, Lettenmaier DP (2010) Seasonal hydrologic

forecasting: do multi-model ensemble averages always yield

improvements in forecast skill? J Hydrometeorol 11:1358–1372

Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation

parameterization for use in general circulation models. In:

NASA Technical report series on global modeling and data

assimilation, NASA/TM-1994-104606, vol 3. Goddard Space

Flight Center, Greenbelt, USA

Chou M-D, Lee K-T (1996) Parameterizations for the absorption of

solar radiation by water vapor and ozone. J Atmos Sci

53:1203–1208

Chun H, Baik J (1998) Momentum flux by thermally induced interval

gravity wave and its approximation for large-scale models.

J Atmos Sci 55:3299–3310

Clark MP, Hay LE (2004) Use of medium-range numerical weather

prediction model output to produce forecasts of stream-flow.

J Hydrometeor 5:15–32

Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ,

Cady-Pereira K, Boaukabara S, Brown PD (2005) Atmospheric

radiative transfter modeling: a summary of the AER codes.

J Quant Spectrosc Radiat Transfer 91:233–244

Collins WD et al (2006a) The formulation and atmospheric simula-

tion of the community atmosphere model version 3 (CAM3).

J Climate 19:2144–2161

Collins WD et al (2006b) The community climate system model

version 3 (CCSM3). J Climate 19:2122–2143

DelSole T, Shukla J (2012) Climate models produce skillful

predictions of Indian summer monsoon rainfall. Geophys Res

Lett 39. doi:10.1029/2012GL051279

DeWitt DG (2005) Retrospective forecasts of interannual sea surface

temperature anomalies from 1982 to present using a directly

coupled atmosphere–ocean general circulation model. Mon Wea

Rev 133:2972–2995

Drijfhout SS, Walsteijn FH (1998) Eddy-induced heat transport in a

coupled ocean–atmospheric anomaly model. J Phys Oceanogr

28:250–265

Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno

G, Tarpley JD (2003) Implementation of Noah land surface

model advances in the National Centers for Environmental

Prediction operational mesoscale 437 Eta model. J Geophys Res

108:8851. doi:10.1029/2002JD003296

Goddard L, Mason SJ, Zebiak SE, Ropelewsky CF, Basher R, Cane

MA (2001) Current approaches to seasonal-to-interannual

climate predictions. Int J Climatol 21:1111–1152

Fig. 16 AROC averaged over global land for a DJF, b MAM, over tropical land for c DJF, and d MAM for low, middle, and upper terciles of

NMME and FISH50 surface land temperature

Global seasonal climate predictability

123



Hack JJ (1994) Parameterization of moist convection in the National

Center for Atmospheric Research Community Climate Model

(CCM2). J Geophys Res 99:5551–5568

Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent

north Atlantic climate change. Science 292:90–92

Holtsalag AAM, Boville BA (1993) Local versus nonlocal boundary-

layer diffusion in a global climate model. J Climate 6:1825–1842

Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion

in a medium-range forecast model. Mon Wea Rev 122:3–26

Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-

flux cumulus parameterization scheme. Mon Wea Rev

126:2599–2620

Kain JS (2004) The Kain-Fritsch convective parameterization: an

update. J Appl Meteor 43:170–181

Kain JS, Fritsch JM (1993) Convective parameterization for meso-

scale models: the Kain-Fritsch scheme. The representation of

cumulus convection in numerical models. Meteor. Monogr. No.

46. Am Meteor Soc 165–170

Kanamitsu M et al (2002a) NCEP dynamical seasonal forecast system

2000. Bull Am Meteor Soc 83:1019–1037

Kanamitsu M, Ebisuzaki W, Wollen J, Yang S-K, Hnilo JJ, Fiorino

M, Potter GL (2002b) NCEP-DOE AMIP-II reanalysis. Bull Am

Meteor Soc 83:1631–1643

Kirtman BP (2003) The COLA anomaly coupled model: ensemble

ENSO prediction. Mon Wea Rev 131:2324–2341

Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction

with CCSM and CFS. Mon Wea Rev 137:2908–2930

Kirtman BP, Fan Y, Schneider EK (2002) The COLA global coupled

and anomaly coupled ocean-atmosphere GCM. J Climate

15:2301–2320

Koster RD, Suarez MJ, Heiser M (2000) Variance and predictability

of precipitation at seasonal-to-interannual time scales. J Hydro-

meteorol 1:26–64

Kumar A, Hoerling MP (1995) Prospects and limitations of seasonal

atmospheric GCM predictions. Bull Am Meteorol Soc 76:335–345

LaRow TE (2013) The impact of SST bias correction in north Atlantic

hurricane retrospective forecasts. Mon Wea Rev 141:490–498

Mason SJ, Graham NE (1999) Conditional probabilities, relative

operating characteristics, and relative operating levels. Weather

Forecast 14:713–725

Mason SJ, Graham NE (2002) Areas beneath the relative operating

characteristics (ROC) and levels (RROL) curves: statistical

significance and interpretations. Quart J R Meteorol Soc

128:2145–2166

McFarlane NA (1987) The effects of orographically excited gravity

wave drag on the general circulation of the lower stratosphere

and troposphere. J Atmos Sci 44:1775–1800

Misra V, Li H, Wu Z, Dinapoli S (2013) Global seasonal climate

predictability in a two tiered forecast system: part I : boreal summer

and fall seasons. Clim Dyn. doi:10.1007/s00382-013-1812-y

Mitchell TD, Jones PD (2005) An improved method of constructing a

database of monthly climate observations and associated high-

resolution grids. Int J Climatol 25:693–712

Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997)

Radiative transfer for inhomogeneous atmosphere: RRTM, a

validated correlated-k model for the longwave. J Geophys Res

102(D14):16663–16682

Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A param-

eterization of moist convection for general circulation models.

Mon Wea Rev 120:978–1002

Moura AD, Hastenrath S (2004) Climate prediction for Brazil’s

Nordeste: performance of empirical and numerical modeling

methods. J Climate 17:2667–2672

Palmer TN, Brankovi CC, Richardson DS (2000) A probability and

decision-model analysis of PROVOST seasonal multi-model

ensemble integrations. Quart J R Meteorol Soc 126:2013–2034

Ramanathan V, Downey P (1986) A nonisothermal emissivity and

absorptivity formulation for water vapor. J Geophys Res

91:8649–8666

Ropelewski CF, Halpert MS (1986) North American precipitation and

temperature patterns associated with the El Nino/Southern

Oscillation (ENSO). Mon Wea Rev 114:2352–2362

Ropelewski CF, Halpert MS (1987) Global and regional scale

precipitation patterns associated with the El Niño/Southern

Oscillation. Mon Wea Rev 115:1606–1626

Saha S et al (2006) The NCEP climate forecast system. J Climate

19:3483–3517

Saha S et al (2010) The NCEP climate forecast system reanalysis.

Bull Am Meteor Soc 91:1015–1057

Shimpo A, Kanamitsu M, Iacobellis SF, Hong S-Y (2008) Compar-

ison of four cloud schemes in simulating the seasonal mean field

forced by the observed sea surface temperature. Mon Wea Rev

136:2557–2575

Shukla J (1998) Predictability in the midst of chaos: a scientific basis

for climate forecasting. Science 282:728–731

Shukla J, Anderson J, Baumhefner D, Brankovic C, Chang Y, Kalnay

E, Marx L, Palmer T, Paolino DA, Ploshay J, Schubert S, Straus

DM, Suarez M, Tribbia J (2000) Dynamical seasonal prediction.

Bull Am Meteor Soc 81:2593–2606

Shukla J, Palmer TN, Hagedorn R, Hoskins B, Kinter J, Marotzke J,

Miller M, Slingo J (2010) Towards a new generation of world

climate research and computing facilities. Bull Am Meteor Soc

91:1407–1412

Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008)

Improvements to NOAA’s historical merged land-ocean surface

temperature analysis (1880–2006). J Climate 21:2283–2296

Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998)

Global seasonal rainfall forecasts using a coupled ocean-

atmosphere model. Nature 392:370–373

Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ,

Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011)

ECMWF seasonal forecast system 3 and its prediction of sea

surface temperature. Clim Dyn. doi:10.1007/s00382-010-0947-3

Taylor KE, William D, Zwiers F (2000) The SST and seaice

boundary conditions for AMIPII simulation. PCMDI report 60.

http://www-pcmdi.llnl.gov/publications/ab60.html

Tiedtke M (1983) The sensitivity of the time-mean large-scale flow o

cumulus convection in the ECMWF model. In: Proceedings

ECMWF Workshop on Convection in Large-Scale Models.

European Centre for Medium-Range Weather Forecasts, Shin-

field Park, Reading, United Kingdom, pp 297–316

Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a

noise-assisted data analysis method. Adv Adapt Data Anal

1:1–41

Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble
empirical model decomposition method. Adv Adapt Data Anal

1:272–339

Xie and Arkin (1997) Global precipitation: a 17-year monthly

analysis based on gauge observations, satellite estimates, and

numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to

the parameterization of cumulus convection in the Canadian

Climate Centre general circulation model. Atmos Ocean

33:407–446

Zhang S, Harrison MJ. Rosati A, Wittenberg AT (2007) System

design and evaluation of coupled ensemble data assimilation for

global oceanic climate studies. Mon Wea Rev 135(10). doi:

10.1175/MWR3466.1

Zhu J, Huang B, Marx L, Kinter JL III, Balmaseda MA, Zhang R-H,

Hu Z-Z (2012) Ensemble ENSO hindcasts initialized from

multiple ocean analyses. Geophys Res Lett 39:L09602. doi:

10.1029/2012GL051503

H. Li, V. Misra

123


