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Abstract 

In this study, we evaluate the relationship between the streamflow of several watersheds in 

Central Florida and five environmental variables that were reforecasted for Florida by 

dynamically downscaling seasonal forecasts from a global climate model. Global models 

typically run at a resolution of 100 km, which is too coarse to adequately resolve the peninsular 

structure of Florida and  the small-scale features that play a significant role in Florida’s climate, 

such as sea breeze and tropical cyclones. The study was undertaken with the goal of developing a 

streamflow forecast for the winter season that will serve as an additional decision-making tool 

for water managers, who must make important decisions concerning the water supply during the 

winter in preparation for the dry spring season. The regression models presented here have 

undergone several methods of cross-validation to assess their robustness and to account for 

uncertainty. They generally show higher skill than climatology and persistence, particularly for 

predicting streamflow events in the upper tercile. 

  



1. Introduction  

Florida has ample freshwater resources; however, managing those resources in a 

sustainable way has proved to be a challenge. Although Florida is one of the wettest states in the 

country and receives, on average, over 50 inches of rainfall per year, approximately 70% is lost 

to evapotranspiration, and this percentage is expected to increase due to warming associated with 

climate change (since higher temperatures increase the rate of evapotranspiration).  Other 

phenomena associated with climate change, such as sea level rise and increased intensity of 

tropical cyclones, are also likely to affect the hydrologic balance of Florida. Additionally, Florida 

is the third most populous state, and the population continues to increase. Thus, sustainable water 

management is expected to become more crucial for Florida during the following decades.  

Seasonal climate forecasts have proven useful in making water supply decisions on a 3–

12-month timescale (Misra et al., 2021). However, water managers do not often make use of 

these forecasts for a number of reasons, including lack of awareness of the forecasts, institutional 

inertia, and risk aversion to new methods (Bhardwaj et al. 2021; Misra et al. 2021). To combat 

these phenomena, the Florida Water and Climate Alliance (FloridaWCA) was formed in 2010. 

The FloridaWCA is a partnership between scientists and water utility stakeholders that aims to 

foster the growth of sustainable water use practices throughout the state by means of the 

consistent exchange of knowledge between its members. The formation of the FloridaWCA has 

led to numerous research projects and tangible benefits for water management groups, such as 

the Peace River Authority, which was able to develop a 10-variable Aquifer and Storage 

Recovery (ASR) initiation index (to assist in the decision of when to initiate ASR recovery) as a 

result of the NOAA grant that helped coalesce the FloridaWCA (Misra et al., 2021).  

 



This project began with a focus on the Peace River, which is managed by The Peace 

River Manasota Regional Water Supply Authority. As of 2013, the Authority provides 26 

million gallons per day of potable water to approximately 300,000 citizens across Charlotte, 

DeSoto, Manatee, and Sarasota counties (Morris 2013). The flow of the river varies significantly 

over the course of a year, with flows exceeding 40,000 cubic feet per second (cfs) during the 

rainy season and flows under 40 cfs during the dry season. When the river flow is high, water is 

extracted directly from the river and excess flow is diverted to off-stream storage sites for later 

use when river flow is low. Additionally, river flow is tidally influenced, and dry periods or 

storms can push brackish water to the extraction location, so the use of directly extracted water 

depends greatly on environmental conditions. Off-stream storage sites consist of 21 ASR wells, 

and two reservoirs. The ASR wells are located between 600 and 1,000 feet below ground surface 

and can store an estimated 6 billion gallons, and the reservoirs can store an estimated 6.5 billion 

gallons. On occasion, river flow is sufficient year-round, and water does not need to be retrieved 

from the ASR wells. However, most years call for ASR recovery during the dry period between 

February and July. The question of when to start ASR recovery is essential. Customer demand 

for water can exceed 30 million gallons per day (MGD), but water can be withdrawn from the 

wells at a maximum rate of just 18 MGD (Morris 2013). Additionally, stored water mixes with 

native water and minerals underground, where it can reach salinity levels of about 1100 mg/L, 

more than twice the drinking water standard of 500 mg/L. Thus, even though water originally 

enters the wells as potable water, it must be retreated upon its extraction. Water extracted from 

ASR wells is diverted to the reservoirs and treated at the Peace River Facility.  

There are consequences to starting ASR recovery too early or too late. Reservoir water 

becomes more clear with the addition of the relatively colorless ASR water. Clearer water 



enhances light transmittance and increases the risk of algal blooms, which can add an unpleasant 

odor and flavor to the water that is difficult to remove. Thus, recovery should not be started too 

early. When recovery is started too late, high pumping rates are required to keep up with 

demand, resulting in less raw water available to mitigate the effects of high salinity and other 

dissolved solids. High pumping rates can also lead to drawdown of the water table or higher 

salinity water entering the well through cracks in the confining layer. Thus, starting recovery too 

late can lead to increased costs due to the need to maintain water quality.  

As shown above, the decision of when to initiate ASR recovery is a complex one with 

many factors. Thus, the Authority has a strong interest in the creation of a streamflow forecast 

that could serve as an additional decision-making tool.  

 Water utility managers across Florida must make crucial decisions concerning the water 

supply during the winter, because the following spring season is the driest of Florida’s seasons. 

Decisions concerning water supply in the spring are based heavily on winter water demand 

(Bhardwaj et al., 2021). Occasionally, an anomalously dry winter season creates an acute 

shortage of water in the spring, and water managers are forced to take costly remediation 

measures. Thus, it is desirable to have a streamflow forecast for the winter months due to the 

myriad of decisions that must be made during that time.  

Due to its peninsular structure, Florida has a unique climate that is influenced heavily by 

both local and global climate variations. Peninsular Florida displays a distinct rainy season 

spanning from June to August. Much of the summer precipitation can be attributed to the sea 

breeze phenomenon, in which the differing heat capacities of land and sea create pressure 

gradients that allow convection to form. Additionally, tropical cyclones (which occur primarily 

in the summer months) contribute 10-15% of Florida’s annual rainfall (Misra et al., 2017). The 



winter season is consequently much drier due to the absence of these effects. Most winter 

precipitation in Florida comes from passing frontal systems. Due to the small scale and high 

variability of summer precipitation, climate models display low skill over Florida in the summer. 

The models perform better for the winter months due to the predictability of large-scale 

phenomena that influence Florida’s climate indirectly, such as the El Niño Southern Oscillation 

(ENSO) and the Pacific Decadal Oscillation (PDO). ENSO is characterized by 2- to 10-year 

oscillations between cool, warm, and neutral sea surface temperature (SST) anomalies in the 

Tropical Pacific. The shift in SSTs causes a shift in the location of tropical convection, which 

leads to changes in the atmospheric circulation that have global effects on variables like 

temperature, humidity, and more (Kirtman et al. 2017). These links between the Tropical Pacific 

and other parts of the globe are known as “teleconnections”. An El Niño event (the warm phase 

of ENSO) generally leads to an increase in winter precipitation and colder winter temperatures 

over Florida, while a La Niña event (cool phase) decreases winter precipitation and warmer 

winter temperatures. The PDO is similar to ENSO in that it is a cycling of SSTs, but different in 

that it is stronger in the Northern Pacific and weaker in the Tropical Pacific, and it acts on time 

scales of 10-20 years as opposed to the much shorter interannual scales of  ENSO. The PDO can 

interact with ENSO, constructively interfering when they are in phase (both warm or both cold) 

and destructively interfering when they are out of phase (Kirtman et al., 2017). The link between 

the PDO and Florida precipitation is weaker than that between ENSO and Florida precipitation; 

however, the PDO still explains roughly 25% of interannual dry season rainfall variability 

(Kirtman et al., 2017). PDO and ENSO events reach their mature stage during the winter and 

thus the teleconnections with Florida’s climate are strongest at that time, leading to increased 

predictability of precipitation and temperature over Florida.  



2. Methodology 

The regression models presented here were developed step-by-step using streamflow data 

from the Peace River. After finding the optimal set of predictors in the regression equation to 

predict streamflow of Peace River, we then used the same set of predictors to develop the final 

regression model for the neighboring Hillsborough and Alafia Rivers. The flow of the project 

generally followed these steps: 

1. Perform simple linear regressions of streamflow (as the predictand) and each of the 

environmental variables (as predictors) separately.  

2. Perform a multiple linear regression with all of the environmental variables. Then 

remove one variable and perform a regression with the 4 remaining variables. Repeat 

for all combinations of 4.  

3. Add in streamflow from the previous month as an additional predictor from step 2. 

4. Add in environmental predictors from the previous month one at a time.  

5. Determine which regression model is best, based primarily on r-squared and standard 

error values in holdout cross-validation test and rolling cross validation tests.  

6. Evaluate the skill of the selected model(s) by testing for deterministic and 

probabilistic skill, and account for uncertainty by developing an ensemble of 

streamflow forecasts. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

As mentioned previously, seasonal climate models have proven useful in making water 

management decisions. However, while current weather prediction models are running at a 

resolution of 10 km or finer, seasonal climate models are running at a much coarser resolution of 

100 km or more. This resolution is too coarse to adequately resolve the coastlines and watersheds 

of Florida (Figure 2). Thus, these climate models are not useful for streamflow prediction. For 

this project, we used customized seasonal forecasts for Florida that were produced by 

dynamically downscaling a global climate model to a resolution of 10 km (Bhardwaj et al. 2021). 

These forecasts were developed specifically for the use of water managers in Florida and contain 

30 ensemble members to account for uncertainty in initial and boundary conditions. They cover 

the winter season due to the fact that models display more skill in winter, as well as the 

operational need for forecasts in the winter. These forecasts will be discussed further in the next 

chapter. 

 

Fig. 1. Visual representation of project flow.  

 



 

 

 

 

 

 

 

 

 

 

 

Regressions were developed separately for each month of the winter season: November, 

December, January, and February; as well as two 3-month seasons: NDJ (November-December-

January) and DJF (December-January-February). Monthly streamflow averages for the Peace 

River were computed, using daily streamflow data measured by the United States Geological 

Survey. Then, values for the five environmental predictors (precipitation, evaporation, surface-

level soil moisture, root-level soil moisture, and surface temperature) were averaged over all 30 

ensemble members and area averaged over these watersheds to give an ensemble monthly mean 

for each predictor. For the holdout cross-validation tests, the first 16 years of data were used to 

develop the linear regression model in each case (training data), and the following 5-6 years were 

used as a testing period (testing data) to examine the skill of each model. The development of 

each regression equation is outlined in the table below (Table 1). 

 

Fig. 2. (a) The five water management districts and two water utilities of Florida, overlaid 

on a 10-km grid. (b). Land-sea mask of the Community Climate System Model, version 4 

(CCSM4), at 100-km resolution. 



Table 1: The performance of the regression equations. 

Equation name Predictors Month/Season r2 SE 

5C Precipitation, 

evaporation, soil 

moistures, and 

temperature, from the 

current month being 

analyzed 

Nov 0.400 398.854 

Dec 0.225 891.213 

Jan 0.403 707.299 

Feb 0.776 273.728 

NDJ 0.461 565.614 

DJF 0.554 469.885 

5C-T Current month’s 

precipitation, 

evaporation, and soil 

moistures 

Nov 0.342 398.363 

Dec 0.219 852.910 

Jan 0.358 699.676 

Feb 0.601 347.796 

NDJ 0.461 536.626 

DJF 0.553 446.683 

5C-E Current month’s 

precipitation, soil 

moistures, and 

temperature 

Nov 0.179 444.960 

Dec 0.216 854.320 

Jan 0.392 680.695 

Feb 0.776 260.990 

NDJ 0.285 617.775 

DJF 0.401 516.845 

5C-P Current month’s 

evaporation, soil 

moistures, and 

temperature 

Nov 0.381 386.234 

Dec 0.222 851.149 

Jan 0.325 717.401 

Feb 0.776 260.998 

NDJ 0.446 543.615 

DJF 0.497 473.758 

5C-Sm1 Current month’s 

precipitation, 

evaporation, root level 

soil moisture, and 

temperature 

Nov 0.229 431.213 

Dec 0.161 884.160 

Jan 0.398 677.426 

Feb 0.774 262.116 

NDJ 0.407 562.700 

DJF 0.549 448.617 

5C-Sm2 Current month’s 

precipitation, 

evaporation, surface 

level soil moisture, and 

temperature 

Nov 0.192 441.358 

Dec 0.142 893.623 

Jan 0.403 674.826 

Feb 0.767 265.997 

NDJ 0.370 580.009 

DJF 0.339 543.155 

5C+PSF 

(Note that since PSF 

showed to be such a 

strong predictor, it is 

included in every 

regression hereafter and 

dropped from the 

acronym.) 

 

Current month’s 

precipitation, 

evaporation, soil 

moistures, temperature, 

and previous month’s 

streamflow  

 

 

Nov 0.481 391.154 

Dec 0.544 720.685 

Jan 0.923 267.697 

Feb 0.813 263.512 

NDJ 0.571 516.318 

DJF 0.736 383.356 

 



 
5Pre Previous month’s 

precipitation, 

evaporation, soil 

moistures, temperature, 

and streamflow  

Dec 0.777 503.465 

Jan 0.888 322.873 

Feb 0.702 332.382 

DJF 0.846 293.201 

CPET+PreSm Current month’s 

precipitation, 

evaporation, and 

temperature; previous 

month’s soil moistures 

and streamflow 

Dec 0.799 478.463 

Jan 0.925 264.394 

Feb 0.799 273.276 

 

DJF 0.855 284.585 

5C+PreSm2 Current month’s precip, 

evap, soil moistures, 

temp, and previous 

month’s root level soil 

moisture 

Dec 0.616 701.156 

Jan 0.924 282.869 

Feb 0.813 279.492 

 

DJF 0.891 263.295 

5C+PreSm Current month’s precip, 

evap, soil moistures, 

temp, and previous 

month’s soil moistures 

(1 and 2) 

Dec 0.822 510.152 

Jan 0.927 296.156 

Feb 0.816 296.192 

DJF 0.915 251.726 

5C+PreESm Current month’s precip, 

evap, soil moistures, 

temp, and previous 

month’s evaporation 

and soil moistures 

Dec 0.825 546.097 

Jan 0.938 294.033 

Feb 0.821 315.650 

DJF 0.918 271.022 

5C+PrePESm Current month’s precip, 

evap, soil moistures, 

temp, and previous 

month’s precip, evap, 

and soil moistures 

Dec 0.828 593.109 

Jan 0.939 319.328 

Feb 0.878 285.923 

DJF 0.953 228.887 

5C+5P Current month’s precip, 

evap, soil moistures, 

temp, and previous 

month’s precip, evap, 

temp, and soil 

moistures  

Dec 0.835 650.035 

Jan 0.939 356.433 

Feb 0.878 319.582 

DJF 0.995 90.093 

 



As shown, the regressions with individual predictors are not skillful. Using all 5 

predictors in combination resulted in an improvement. But removing individual predictors with 

relatively higher p-values (surface temperature and evaporation) did not improve it further. 

Adding the previous month’s streamflow led to significant improvement and thus previous 

streamflow became a parameter in all final regressions. Adding the previous month’s 

environmental variables into the regression one at a time led to slight improvement each time. At 

the end of this process, we settled on two final regression models. For December, January, 

February, and DJF, 5C+5P showed to perform the best (Table 1). For November and NDJ, 

5C+PSF preformed the best out of the available options—we could not run regressions involving 

the previous month’s values since CLIFF is only produced for November through February. Both 

of the final models were selected based on their high r2 values and low standard error values 

when compared to previous models. These two regression models also underwent rolling cross 

validation (RCV) tests. As mentioned previously for holdout cross validation, each equation was 

developed using the first 16 years of data and tested on the remaining 5-6 years. In RCV, an 

equation is developed using the first 21 years, tested on the remaining year, and repeated for each 

combination of 21 years to produce a total of 22 regressions. Then r2 and standard error values, 

as well as the coefficients of the predictors, were compared across all 22 regressions to check for 

consistency and to ensure that no single year was introducing significant bias to the regressions.  

To account for uncertainty in the input to the models, we developed an ensemble of 

streamflow forecasts using input from each of CLIFF’s 30 ensemble members. We were thus 

able to produce 30 reforecasted streamflow values for each month in the validation period. These 

ensemble reforecasts will be discussed further in a subsequent section. The process of RCV 

generated 22 different models, which in theory could each be used to generate 30 streamflow 



predictions for a total of 660 predicted streamflow values for a given month. This endeavor was 

not undertaken in this study, but could be used in the future if a fuller assessment of 

environmental uncertainty is desired.  

An issue that we ran into several times throughout the regression building process was 

high p-values associated with the individual predictors. Generally, a p-value of  0.05 or less 

indicates that the relationship between the predictor and predictand is statistically significant. A 

few p-values that we observed met these criteria, but most did not, and many were 0.5 or greater. 

This was a bit unexpected given that many of the models had r2  values of 0.8 and above. A 

possible cause is the noise that is commonly seen in environmental data such as temperature and 

precipitation. To test this theory, we recalibrated the model using CLIFF data with the noise 

filtered out. This had the expected result of lowering the p-values, confirming that the noise, and 

not an issue inherent to the model, was causing the high p-values.  

After adding previous month’s streamflow and observing significant improvement in the 

skill of the models, a further examination of streamflow as a predictor was desired. 

Autocorrelation is a measure of how correlated a dataset is with a time-lagged version of itself. 

We plotted the autocorrelation of monthly streamflow over the full data set (shown in Figure 3). 

At a lag of 0 months, the autocorrelation is always 1 because it is the relation of the dataset with 

itself. Lines that extend beyond the shaded blue area represent statistical significance. From the 

graphs we can conclude that for each river, the previous month’s streamflow is strongly related 

to the current month’s streamflow. Streamflow from two months prior is significant as well, but 

less so. Building regression models with previous month’s streamflow as the only predictor for 

current streamflow confirmed these observations. Adding the second previous and third previous 

month’s streamflow into the regression improved the models, but only slightly. Ultimately, we 



decided not to add second and third previous month’s streamflow into our final models because 

such a slight improvement is insignificant, and the model is likely to become redundant as more 

variables are added.  

 

 

 

 

 

 

 

3. Datasets 

As previously mentioned, the precipitation, evaporation, soil moisture, and temperature 

datasets used in this project are high-resolution experimental winter seasonal climate reforecasts 

for Florida (CLIFF). CLIFF was developed by using a regional atmospheric model to 

dynamically downscale a global model to 10 km grid spacing, a resolution that has been shown 

to work well for the operational needs of water managers in Florida (Bhardwaj et al., 2021).  The 

Atmospheric General Circulation Model (AGCM) was run with 5 ensemble members at 210 km 

grid spacing. For three of the ensemble members, the initial conditions of the atmosphere were 

perturbed. In the remaining two, the atmospheric convection parameterization was changed. For 

each run of the AGCM, 6 ensemble members from a regional atmosphere model were run (at 10 

km grid spacing) to give a total of 30 ensemble members, each predicting daily values for 

precipitation, evaporation, soil moisture, and surface temperature, from November 1st through 

February 28th of the following year, over a 20-year period. The purpose of the ensembles is to 

Fig. 3. Autocorrelation of monthly streamflow for Alafia, Hillsborough, and Peace Rivers. 



thoroughly sample the uncertainties arising from the initial and boundary conditions, as well as 

the uncertainties present in the model itself (Bhardwaj et al., 2021).  

The verification of CLIFF’s skill is limited to surface temperature and precipitation—soil 

moisture and evaporation are calculated values, meaning there are not real-world measurements 

available against which to verify. However, precipitation is generally a good metric for 

evaluating model performance, and precipitation and temperature have the most practical value 

for stakeholders (Bhardwaj et al., 2021). CLIFF overestimates precipitation amounts, but 

reasonably estimates the meridional gradient of precipitation, and to a lesser extent, the zonal 

gradient as well. For surface temperature, CLIFF preserves the meridional and zonal gradients, 

and displays a significant cold bias. CLIFF has slightly less skill in predicting temperature than 

in predicting precipitation. However, for both precipitation and temperature, CLIFF generally 

shows higher prediction skill (both deterministic and probabilistic) than persistence.  

4. Results 

Deterministic skill 

Deterministic skill of the models is generally not too impressive. Using the ensemble 

mean of CLIFF to reforecast streamflow sometimes resulted in a reasonable prediction but in 

many instances resulted in a poor prediction that was an order of magnitude larger or smaller 

than the observed value. These errors suggest model bias of CLIFF as well as the regression 

model.  

As previously mentioned, we developed an ensemble of streamflow forecasts using input 

from each of CLIFF’s 30 ensemble members. We were thus able to produce 30 reforecasted  

streamflow values for each month in the validation period. After removing ensemble members 

that produce negative values for streamflow, we can plot the spread of the reforecasts and 



compare the mean forecasted streamflow with observed, climatological, and persistence 

streamflow (Figure 4). This process generally gave more promising results than using ensemble 

mean alone. The average predictions of the ensemble members often vary somewhat from the 

observed streamflow, but in many cases it is still a better prediction than either persistence or 

climatology. The models are overestimating in many cases, so that is an issue that could be 

further investigated in the future. 
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Fig 4. (a) Spread of ensemble reforecasts for streamflow for Alafia River. The 

middle 50% of predictions are contained within the box, meaning that if observed 

streamflow falls within the box, the model is capturing the observed flow at least 

50% of the time.  

(b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. (b) Spread of ensemble reforecasts for streamflow for Hillsborough River.  

(c) 



 

 

 

 

 

 

 

 

Probabilistic skill 

Deterministic skill is one way to quantitatively assess a model. Here it is based on using 

the ensemble mean values of CLIFF to reforecast streamflow. However, it is not a complete 

picture of a model’s skill since it does not account for the forecast uncertainty. A probabilistic 

forecast quantifies this uncertainty and is often more valuable to the end users of the forecasts. In 

this study, we are using the area under the relative operating characteristic (ROC) curve (AUC) 

following Narotsky & Misra (2021) to assess the probabilistic skill of the streamflow reforecasts. 

ROC curves are created for each month and season by first splitting observed and reforecasted 

streamflow into terciles, then using these thresholds to evaluate the models’ skill at predicting 

low, moderate, or high streamflow. Then the AUC is computed for all ROC curves. An AUC 

greater than 0.5 represents a skillful reforecast. (Figure 5). 

 

 

 

 

Fig 4. (c) Spread of ensemble reforecasts for streamflow for Peace River.  



 

 

 

 

 

 

The models are generally unskillful at forecasting low streamflow events, but 

occasionally show some skill for the later winter months such as January and February. One 

factor that may be contributing to the poor skill of the models at predicting low streamflow is the 

small dataset used—many testing periods were as short as five years and in several instances no 

low streamflow events were observed during the testing period, making it difficult to evaluate 

the model’s skill at predicting those events. The models are somewhat more skillful at predicting 

moderate streamflow events, and generally skillful for high streamflow events.  

 

5. Conclusions 

 The results of this study indicate that there is significant merit in using CLIFF to predict 

streamflow in Central Florida. While it is unlikely that the models will be able to produce an 

accurate deterministic forecast for streamflow, it shows promising results when predicting 

whether or not streamflow will fall within a certain range. The hope is that this information will 

prove useful to the planning processes of water utility managers.  

 

 

 

Fig. 5. AUCs for Alafia, Hillsborough, and Peace Rivers.  
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