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Abstract
In this study, we evaluate the relationship between the streamflow of several watersheds in
Central Florida and five environmental variables that were reforecasted for Florida by
dynamically downscaling seasonal forecasts from a global climate model. Global models
typically run at a resolution of 100 km, which is too coarse to adequately resolve the peninsular
structure of Florida and the small-scale features that play a significant role in Florida’s climate,
such as sea breeze and tropical cyclones. The study was undertaken with the goal of developing a
streamflow forecast for the winter season that will serve as an additional decision-making tool
for water managers, who must make important decisions concerning the water supply during the
winter in preparation for the dry spring season. The regression models presented here have
undergone several methods of cross-validation to assess their robustness and to account for
uncertainty. They generally show higher skill than climatology and persistence, particularly for

predicting streamflow events in the upper tercile.



1. Introduction

Florida has ample freshwater resources; however, managing those resources in a
sustainable way has proved to be a challenge. Although Florida is one of the wettest states in the
country and receives, on average, over 50 inches of rainfall per year, approximately 70% is lost
to evapotranspiration, and this percentage is expected to increase due to warming associated with
climate change (since higher temperatures increase the rate of evapotranspiration). Other
phenomena associated with climate change, such as sea level rise and increased intensity of
tropical cyclones, are also likely to affect the hydrologic balance of Florida. Additionally, Florida
is the third most populous state, and the population continues to increase. Thus, sustainable water
management is expected to become more crucial for Florida during the following decades.

Seasonal climate forecasts have proven useful in making water supply decisions on a 3—
12-month timescale (Misra et al., 2021). However, water managers do not often make use of
these forecasts for a number of reasons, including lack of awareness of the forecasts, institutional
inertia, and risk aversion to new methods (Bhardwaj et al. 2021; Misra et al. 2021). To combat
these phenomena, the Florida Water and Climate Alliance (FloridaWCA) was formed in 2010.
The FloridaWCA is a partnership between scientists and water utility stakeholders that aims to
foster the growth of sustainable water use practices throughout the state by means of the
consistent exchange of knowledge between its members. The formation of the FloridaWCA has
led to numerous research projects and tangible benefits for water management groups, such as
the Peace River Authority, which was able to develop a 10-variable Aquifer and Storage
Recovery (ASR) initiation index (to assist in the decision of when to initiate ASR recovery) as a

result of the NOAA grant that helped coalesce the FloridaWCA (Misra et al., 2021).



This project began with a focus on the Peace River, which is managed by The Peace
River Manasota Regional Water Supply Authority. As of 2013, the Authority provides 26
million gallons per day of potable water to approximately 300,000 citizens across Charlotte,
DeSoto, Manatee, and Sarasota counties (Morris 2013). The flow of the river varies significantly
over the course of a year, with flows exceeding 40,000 cubic feet per second (cfs) during the
rainy season and flows under 40 cfs during the dry season. When the river flow is high, water is
extracted directly from the river and excess flow is diverted to off-stream storage sites for later
use when river flow is low. Additionally, river flow is tidally influenced, and dry periods or
storms can push brackish water to the extraction location, so the use of directly extracted water
depends greatly on environmental conditions. Off-stream storage sites consist of 21 ASR wells,
and two reservoirs. The ASR wells are located between 600 and 1,000 feet below ground surface
and can store an estimated 6 billion gallons, and the reservoirs can store an estimated 6.5 billion
gallons. On occasion, river flow is sufficient year-round, and water does not need to be retrieved
from the ASR wells. However, most years call for ASR recovery during the dry period between
February and July. The question of when to start ASR recovery is essential. Customer demand
for water can exceed 30 million gallons per day (MGD), but water can be withdrawn from the
wells at a maximum rate of just 18 MGD (Morris 2013). Additionally, stored water mixes with
native water and minerals underground, where it can reach salinity levels of about 1100 mg/L,
more than twice the drinking water standard of 500 mg/L. Thus, even though water originally
enters the wells as potable water, it must be retreated upon its extraction. Water extracted from
ASR wells is diverted to the reservoirs and treated at the Peace River Facility.

There are consequences to starting ASR recovery too early or too late. Reservoir water

becomes more clear with the addition of the relatively colorless ASR water. Clearer water



enhances light transmittance and increases the risk of algal blooms, which can add an unpleasant
odor and flavor to the water that is difficult to remove. Thus, recovery should not be started too
early. When recovery is started too late, high pumping rates are required to keep up with
demand, resulting in less raw water available to mitigate the effects of high salinity and other
dissolved solids. High pumping rates can also lead to drawdown of the water table or higher
salinity water entering the well through cracks in the confining layer. Thus, starting recovery too
late can lead to increased costs due to the need to maintain water quality.

As shown above, the decision of when to initiate ASR recovery is a complex one with
many factors. Thus, the Authority has a strong interest in the creation of a streamflow forecast
that could serve as an additional decision-making tool.

Water utility managers across Florida must make crucial decisions concerning the water
supply during the winter, because the following spring season is the driest of Florida’s seasons.
Decisions concerning water supply in the spring are based heavily on winter water demand
(Bhardwaj et al., 2021). Occasionally, an anomalously dry winter season creates an acute
shortage of water in the spring, and water managers are forced to take costly remediation
measures. Thus, it is desirable to have a streamflow forecast for the winter months due to the
myriad of decisions that must be made during that time.

Due to its peninsular structure, Florida has a unique climate that is influenced heavily by
both local and global climate variations. Peninsular Florida displays a distinct rainy season
spanning from June to August. Much of the summer precipitation can be attributed to the sea
breeze phenomenon, in which the differing heat capacities of land and sea create pressure
gradients that allow convection to form. Additionally, tropical cyclones (which occur primarily

in the summer months) contribute 10-15% of Florida’s annual rainfall (Misra et al., 2017). The



winter season is consequently much drier due to the absence of these effects. Most winter
precipitation in Florida comes from passing frontal systems. Due to the small scale and high
variability of summer precipitation, climate models display low skill over Florida in the summer.
The models perform better for the winter months due to the predictability of large-scale
phenomena that influence Florida’s climate indirectly, such as the El Nifio Southern Oscillation
(ENSO) and the Pacific Decadal Oscillation (PDO). ENSO is characterized by 2- to 10-year
oscillations between cool, warm, and neutral sea surface temperature (SST) anomalies in the
Tropical Pacific. The shift in SSTs causes a shift in the location of tropical convection, which
leads to changes in the atmospheric circulation that have global effects on variables like
temperature, humidity, and more (Kirtman et al. 2017). These links between the Tropical Pacific
and other parts of the globe are known as “teleconnections”. An El Nifio event (the warm phase
of ENSO) generally leads to an increase in winter precipitation and colder winter temperatures
over Florida, while a La Nifia event (cool phase) decreases winter precipitation and warmer
winter temperatures. The PDO is similar to ENSO in that it is a cycling of SSTs, but different in
that it is stronger in the Northern Pacific and weaker in the Tropical Pacific, and it acts on time
scales of 10-20 years as opposed to the much shorter interannual scales of ENSO. The PDO can
interact with ENSO, constructively interfering when they are in phase (both warm or both cold)
and destructively interfering when they are out of phase (Kirtman et al., 2017). The link between
the PDO and Florida precipitation is weaker than that between ENSO and Florida precipitation;
however, the PDO still explains roughly 25% of interannual dry season rainfall variability
(Kirtman et al., 2017). PDO and ENSO events reach their mature stage during the winter and
thus the teleconnections with Florida’s climate are strongest at that time, leading to increased

predictability of precipitation and temperature over Florida.



2. Methodology
The regression models presented here were developed step-by-step using streamflow data
from the Peace River. After finding the optimal set of predictors in the regression equation to
predict streamflow of Peace River, we then used the same set of predictors to develop the final
regression model for the neighboring Hillsborough and Alafia Rivers. The flow of the project
generally followed these steps:
1. Perform simple linear regressions of streamflow (as the predictand) and each of the
environmental variables (as predictors) separately.
2. Perform a multiple linear regression with all of the environmental variables. Then
remove one variable and perform a regression with the 4 remaining variables. Repeat
for all combinations of 4.
3. Add in streamflow from the previous month as an additional predictor from step 2.
4. Add in environmental predictors from the previous month one at a time.
5. Determine which regression model is best, based primarily on r-squared and standard
error values in holdout cross-validation test and rolling cross validation tests.
6. Evaluate the skill of the selected model(s) by testing for deterministic and
probabilistic skill, and account for uncertainty by developing an ensemble of

streamflow forecasts.
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Fig. 1. Visual representation of project flow.

As mentioned previously, seasonal climate models have proven useful in making water
management decisions. However, while current weather prediction models are running at a
resolution of 10 km or finer, seasonal climate models are running at a much coarser resolution of
100 km or more. This resolution is too coarse to adequately resolve the coastlines and watersheds
of Florida (Figure 2). Thus, these climate models are not useful for streamflow prediction. For
this project, we used customized seasonal forecasts for Florida that were produced by
dynamically downscaling a global climate model to a resolution of 10 km (Bhardwaj et al. 2021).
These forecasts were developed specifically for the use of water managers in Florida and contain
30 ensemble members to account for uncertainty in initial and boundary conditions. They cover
the winter season due to the fact that models display more skill in winter, as well as the
operational need for forecasts in the winter. These forecasts will be discussed further in the next

chapter.
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Fig. 2. (a) The five water management districts and two water utilities of Florida, overlaid
on a 10-km grid. (b). Land-sea mask of the Community Climate System Model, version 4
(CCSM4), at 100-km resolution.

Regressions were developed separately for each month of the winter season: November,
December, January, and February; as well as two 3-month seasons: NDJ (November-December-
January) and DJF (December-January-February). Monthly streamflow averages for the Peace
River were computed, using daily streamflow data measured by the United States Geological
Survey. Then, values for the five environmental predictors (precipitation, evaporation, surface-
level soil moisture, root-level soil moisture, and surface temperature) were averaged over all 30
ensemble members and area averaged over these watersheds to give an ensemble monthly mean
for each predictor. For the holdout cross-validation tests, the first 16 years of data were used to
develop the linear regression model in each case (training data), and the following 5-6 years were
used as a testing period (testing data) to examine the skill of each model. The development of

each regression equation is outlined in the table below (Table 1).



Table 1: The performance of the regression equations.

Equation name Predictors Month/Season | r? SE
5C Precipitation, Nov 0.400 398.854
evaporation, soil Dec 0.225 891.213
moistures, and Jan 0.403 707.299
temperature, from the Feb 0.776 273.728
current month being NDJ 0.461 565.614
analyzed DJF 0.554 469.885
5C-T Current month’s Nov 0.342 398.363
precipitation, Dec 0.219 852.910
evaporation, and soil Jan 0.358 699.676
moistures Feb 0.601 347.796
NDJ 0.461 536.626
DJF 0.553 446.683
5C-E Current month’s Nov 0.179 444,960
precipitation, soil Dec 0.216 854.320
moistures, and Jan 0.392 680.695
temperature Feb 0.776 260.990
NDJ 0.285 617.775
DJF 0.401 516.845
5C-P Current month’s Nov 0.381 386.234
evaporation, soil Dec 0.222 851.149
moistures, and Jan 0.325 717.401
temperature Feb 0.776 260.998
NDJ 0.446 543.615
DJF 0.497 473.758
5C-Sml Current month’s Nov 0.229 431.213
precipitation, Dec 0.161 884.160
evaporation, root level | Jan 0.398 677.426
soil moisture, and Feb 0.774 262.116
temperature NDJ 0.407 562.700
DJF 0.549 448.617
5C-Sm2 Current month’s Nov 0.192 441.358
precipitation, Dec 0.142 893.623
evaporation, surface Jan 0.403 674.826
level soil moisture, and | Feb 0.767 265.997
temperature NDJ 0.370 580.009
DJF 0.339 543.155
5C+PSF Current month’s Nov 0.481 391.154
(Note that since PSF precipitation, Dec 0544 720.685
showed to be such a evaporation, soil ' '
strong predictor, it is moistures, temperature, | Jan 0.923 267.697
included in every and previous month’s Feb 0.813 263.512
regression hereafter and | streamflow
dropped from the NDJ 0.571 516.318
acronym.) DJF 0.736 383.356




5Pre Previous month’s Dec 0.777 503.465
precipitation,
evaporation, soil Jan 0.888 322.873
moistures, temperature, Feb 0.702 332.382
and streamflow
DJF 0.846 293.201
CPET+PreSm Current month’s Dec 0.799 478.463
precipitation,
evaporation, and Jan 0.925 264.394
temperature; previous  [Fap 0.799 273.276
month’s soil moistures
and streamflow DJF 0.855 284,585
5C+PreSm2 Current month’s precip, | Dec 0.616 701.156
evap, soil moistures,
temp, and previous Jan 0.924 282.869
mopth’s root level soil Feb 0.813 279.492
moisture
DJF 0.891 263.295
5C+PreSm Current month’s precip, | Dec 0.822 510.152
evap, soil moistures,
temp, and previous Jan 0.927 296.156
month’s soil moistures
(L and 2) Feb 0.816 296.192
DJF 0.915 251.726
5C+PreESm Current month’s precip, | Dec 0.825 546.097
evap, soil moistures,
temp, and previous Jan 0.938 294.033
month’s evaporation Feb 0.821 315.650
and soil moistures
DJF 0.918 271.022
5C+PrePESm Current month’s precip, | Dec 0.828 593.109
evap, soil moistures,
temp, and previous Jan 0.939 319.328
month’s precip, evap,  "Fepy 0.878 285.923
and soil moistures
DJF 0.953 228.887
5C+5P Current month’s precip, | Dec 0.835 650.035
evap, soil moistures,
temp, and previous Jan 0.939 356.433
month’s precip, evap,  "Fep 0.878 319.582
temp, and soil
moistures DJF 0.995 90.093




As shown, the regressions with individual predictors are not skillful. Using all 5
predictors in combination resulted in an improvement. But removing individual predictors with
relatively higher p-values (surface temperature and evaporation) did not improve it further.
Adding the previous month’s streamflow led to significant improvement and thus previous
streamflow became a parameter in all final regressions. Adding the previous month’s
environmental variables into the regression one at a time led to slight improvement each time. At
the end of this process, we settled on two final regression models. For December, January,
February, and DJF, 5C+5P showed to perform the best (Table 1). For November and NDJ,
5C+PSF preformed the best out of the available options—we could not run regressions involving
the previous month’s values since CLIFF is only produced for November through February. Both
of the final models were selected based on their high r? values and low standard error values
when compared to previous models. These two regression models also underwent rolling cross
validation (RCV) tests. As mentioned previously for holdout cross validation, each equation was
developed using the first 16 years of data and tested on the remaining 5-6 years. In RCV, an
equation is developed using the first 21 years, tested on the remaining year, and repeated for each
combination of 21 years to produce a total of 22 regressions. Then r? and standard error values,
as well as the coefficients of the predictors, were compared across all 22 regressions to check for
consistency and to ensure that no single year was introducing significant bias to the regressions.

To account for uncertainty in the input to the models, we developed an ensemble of
streamflow forecasts using input from each of CLIFF’s 30 ensemble members. We were thus
able to produce 30 reforecasted streamflow values for each month in the validation period. These
ensemble reforecasts will be discussed further in a subsequent section. The process of RCV

generated 22 different models, which in theory could each be used to generate 30 streamflow



predictions for a total of 660 predicted streamflow values for a given month. This endeavor was
not undertaken in this study, but could be used in the future if a fuller assessment of
environmental uncertainty is desired.

An issue that we ran into several times throughout the regression building process was
high p-values associated with the individual predictors. Generally, a p-value of 0.05 or less
indicates that the relationship between the predictor and predictand is statistically significant. A
few p-values that we observed met these criteria, but most did not, and many were 0.5 or greater.
This was a bit unexpected given that many of the models had r? values of 0.8 and above. A
possible cause is the noise that is commonly seen in environmental data such as temperature and
precipitation. To test this theory, we recalibrated the model using CLIFF data with the noise
filtered out. This had the expected result of lowering the p-values, confirming that the noise, and
not an issue inherent to the model, was causing the high p-values.

After adding previous month’s streamflow and observing significant improvement in the
skill of the models, a further examination of streamflow as a predictor was desired.
Autocorrelation is a measure of how correlated a dataset is with a time-lagged version of itself.
We plotted the autocorrelation of monthly streamflow over the full data set (shown in Figure 3).
At a lag of 0 months, the autocorrelation is always 1 because it is the relation of the dataset with
itself. Lines that extend beyond the shaded blue area represent statistical significance. From the
graphs we can conclude that for each river, the previous month’s streamflow is strongly related
to the current month’s streamflow. Streamflow from two months prior is significant as well, but
less so. Building regression models with previous month’s streamflow as the only predictor for
current streamflow confirmed these observations. Adding the second previous and third previous

month’s streamflow into the regression improved the models, but only slightly. Ultimately, we



decided not to add second and third previous month’s streamflow into our final models because
such a slight improvement is insignificant, and the model is likely to become redundant as more

variables are added.
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Autocorrelation of monthly streamflow for Alafia, Hillsborough, and Peace Rivers.

3. Datasets

As previously mentioned, the precipitation, evaporation, soil moisture, and temperature
datasets used in this project are high-resolution experimental winter seasonal climate reforecasts
for Florida (CLIFF). CLIFF was developed by using a regional atmospheric model to
dynamically downscale a global model to 10 km grid spacing, a resolution that has been shown
to work well for the operational needs of water managers in Florida (Bhardwaj et al., 2021). The
Atmospheric General Circulation Model (AGCM) was run with 5 ensemble members at 210 km
grid spacing. For three of the ensemble members, the initial conditions of the atmosphere were
perturbed. In the remaining two, the atmospheric convection parameterization was changed. For
each run of the AGCM, 6 ensemble members from a regional atmosphere model were run (at 10
km grid spacing) to give a total of 30 ensemble members, each predicting daily values for
precipitation, evaporation, soil moisture, and surface temperature, from November 1% through

February 28" of the following year, over a 20-year period. The purpose of the ensembles is to




thoroughly sample the uncertainties arising from the initial and boundary conditions, as well as
the uncertainties present in the model itself (Bhardwaj et al., 2021).

The verification of CLIFF’s skill is limited to surface temperature and precipitation—soil
moisture and evaporation are calculated values, meaning there are not real-world measurements
available against which to verify. However, precipitation is generally a good metric for
evaluating model performance, and precipitation and temperature have the most practical value
for stakeholders (Bhardwaj et al., 2021). CLIFF overestimates precipitation amounts, but
reasonably estimates the meridional gradient of precipitation, and to a lesser extent, the zonal
gradient as well. For surface temperature, CLIFF preserves the meridional and zonal gradients,
and displays a significant cold bias. CLIFF has slightly less skill in predicting temperature than
in predicting precipitation. However, for both precipitation and temperature, CLIFF generally
shows higher prediction skill (both deterministic and probabilistic) than persistence.

4. Results
Deterministic skill

Deterministic skill of the models is generally not too impressive. Using the ensemble
mean of CLIFF to reforecast streamflow sometimes resulted in a reasonable prediction but in
many instances resulted in a poor prediction that was an order of magnitude larger or smaller
than the observed value. These errors suggest model bias of CLIFF as well as the regression
model.

As previously mentioned, we developed an ensemble of streamflow forecasts using input
from each of CLIFF’s 30 ensemble members. We were thus able to produce 30 reforecasted
streamflow values for each month in the validation period. After removing ensemble members

that produce negative values for streamflow, we can plot the spread of the reforecasts and



(a)

compare the mean forecasted streamflow with observed, climatological, and persistence

streamflow (Figure 4). This process generally gave more promising results than using ensemble

mean alone. The average predictions of the ensemble members often vary somewhat from the

observed streamflow, but in many cases it is still a better prediction than either persistence or

climatology. The models are overestimating in many cases, so that is an issue that could be

further investigated in the future.
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Hillsborough River, February 2017-2021
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Fig 4. (b) Spread of ensemble reforecasts for streamflow for Hillsborough River.
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Fig 4. (c) Spread of ensemble reforecasts for streamflow for Peace River.

Probabilistic skill

Deterministic skill is one way to quantitatively assess a model. Here it is based on using
the ensemble mean values of CLIFF to reforecast streamflow. However, it is not a complete
picture of a model’s skill since it does not account for the forecast uncertainty. A probabilistic
forecast quantifies this uncertainty and is often more valuable to the end users of the forecasts. In
this study, we are using the area under the relative operating characteristic (ROC) curve (AUC)
following Narotsky & Misra (2021) to assess the probabilistic skill of the streamflow reforecasts.
ROC curves are created for each month and season by first splitting observed and reforecasted
streamflow into terciles, then using these thresholds to evaluate the models’ skill at predicting
low, moderate, or high streamflow. Then the AUC is computed for all ROC curves. An AUC

greater than 0.5 represents a skillful reforecast. (Figure 5).
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Fig. 5. AUCs for Alafia, Hillsborough, and Peace Rivers.

The models are generally unskillful at forecasting low streamflow events, but
occasionally show some skill for the later winter months such as January and February. One
factor that may be contributing to the poor skill of the models at predicting low streamflow is the
small dataset used—many testing periods were as short as five years and in several instances no
low streamflow events were observed during the testing period, making it difficult to evaluate
the model’s skill at predicting those events. The models are somewhat more skillful at predicting

moderate streamflow events, and generally skillful for high streamflow events.

5. Conclusions

The results of this study indicate that there is significant merit in using CLIFF to predict
streamflow in Central Florida. While it is unlikely that the models will be able to produce an
accurate deterministic forecast for streamflow, it shows promising results when predicting
whether or not streamflow will fall within a certain range. The hope is that this information will

prove useful to the planning processes of water utility managers.
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