|   | 
Details
   web
Records
Author Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J.
Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal J Geophys Res Oceans
Volume 124 Issue 12 Pages
Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling
Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Address Physical Oceanography Laboratory Ocean University of China, Qingdao China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']
Call Number COAPS @ user @ Serial 1097
Permanent link to this record
 

 
Author Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J.
Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal J Geophys Res Oceans
Volume 124 Issue 12 Pages 9658-9689
Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling
Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Address Physical Oceanography Laboratory Ocean University of China, Qingdao China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']
Call Number COAPS @ user @ Serial 1102
Permanent link to this record
 

 
Author Lu, J.; Hu, A.; Zeng, Z.
Title On the possible interaction between internal climate variability and forced climate change Type $loc['typeJournal Article']
Year 2014 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 41 Issue 8 Pages 2962-2970
Keywords climate variability; forced climate change; global warming hiatus; Atlantic Multidecadal Variability (AMV); Pacific Decadal Oscillation (PDO)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 138
Permanent link to this record
 

 
Author Li, H.; Kanamitsu, M.; Hong, S.-Y.
Title California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system Type $loc['typeJournal Article']
Year 2012 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res.
Volume 117 Issue D12 Pages
Keywords climate change; coupled model; reanalysis; upwelling; regional climate; regional ocean model
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 265
Permanent link to this record
 

 
Author Misra, V.; DiNapoli, S.M.
Title Understanding the wet season variations over Florida Type $loc['typeJournal Article']
Year 2013 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 40 Issue 5-6 Pages 1361-1372
Keywords ENSO; Wet season; AMO; PDO; Climate change
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 201
Permanent link to this record
 

 
Author Selman, C.; Misra, V.
Title The impact of an extreme case of irrigation on the southeastern United States climate Type $loc['typeJournal Article']
Year 2017 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 48 Issue 3-4 Pages 1309-1327
Keywords Regional climate modeling; Irrigation; Diurnal climatology; Diurnal; Southeast United States; Southeast US; Regional model; Agriculture; Anthropogenic influences; Anthropogenic; Climate; Climate change; Regional; Impact; Southeast; Model; Parametrization
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 22
Permanent link to this record
 

 
Author Mirhosseini, G.; Srivastava, P.; Stefanova, L.
Title The impact of climate change on rainfall Intensity-Duration-Frequency (IDF) curves in Alabama Type $loc['typeJournal Article']
Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 13 Issue S1 Pages 25-33
Keywords Climate change; Intensity–Duration–Frequency (IDF) curve; Temporal downscaling; General Circulation Models (GCMs)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 221
Permanent link to this record
 

 
Author Selman, C.; Misra, V.; Stefanova, L.; Dinapoli, S.; Smith III, T.J.
Title On the twenty-first-century wet season projections over the Southeastern United States Type $loc['typeJournal Article']
Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 13 Issue S1 Pages 153-164
Keywords Regional climate change; Southeast United States; Rainfall variability; Regional climate model; Global climate model; Precipitation variability
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 192
Permanent link to this record
 

 
Author Smith, R. A.
Title Trends in Maximum and Minimum Temperature Deciles in Select Regions of the United States Type $loc['typeManuscript']
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords Long term temperature trends, Climate change, Statistical analysis, Climatology
Abstract Daily maximum and minimum temperature data from 758 COOP stations in nineteen states are used to create temperature decile maps. All stations used contain records from 1948 through 2004 and could not be missing more than 5 consecutive years of data. Missing data are replaced using a multiple linear regression technique from surrounding stations. For each station, the maximum and minimum temperatures are first sorted in ascending order for every two years (to reduce annual variability) and divided into ten equal parts (or deciles). The first decile represents the coldest temperatures, and the last decile contains the warmest temperatures. Patterns and trends in these deciles can be examined for the 57-year period. A linear least-squares regression method is used to calculate best-fit lines for each decile to determine the long-term trends at each station. Significant warming or cooling is determined using the Student's t-test, and bootstrapping the decile data will further examine the validity of significance. Two stations are closely examined. Apalachicola, Florida shows significant warming in its maximum deciles and significant cooling in its minimum deciles. The maximum deciles seem to be affected by some localized change. The minimum deciles are discontinuous, and the trends are a result of a minor station move. Columbus, Georgia has experienced significant warming in its minimum deciles, and this appears to be the result of an urban heat-island effect. The discontinuities seen in the Apalachicola case study illustrate the need for a quality control method. This method will eliminate stations from the regional analysis that experience large changes in the ten-year standard deviations within their time series. The regional analysis shows that most of the region is dominated by significant cooling in the maximum deciles and significant warming in the minimum deciles, with more variability in the lower deciles. Field significance testing is performed on subregions (based on USGS 2000 land cover data) and supports the findings from the regional analysis; it also isolates regions, such as the Florida peninsula and the Maryland/Delaware region, that appear to be affected by more local forcings.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 612
Permanent link to this record
 

 
Author Seitz, C.
Title Estimating the Effects of Climate Change on Tropical Cyclone Activity Type $loc['typeManuscript']
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Climate Change, Tropical Cyclone
Abstract
Address Department of Earth, Ocean, and Atmospheric Scienc
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 168
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)