|   | 
Details
   web
Records
Author Arruda, W.Z.; Nof, D.; O'Brien, J.J.
Title Does the Ulleung eddy owe its existence to beta and nonlinearities? Type $loc['typeJournal Article']
Year 2004 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 51 Issue 12 Pages 2073-2090
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 454
Permanent link to this record
 

 
Author Samuelsen, A.; O'Brien, J.J.
Title Wind-induced cross-shelf flux of water masses and organic matter at the Gulf of Tehuantepec Type $loc['typeJournal Article']
Year 2008 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 55 Issue 3 Pages 221-246
Keywords shelf dynamics; physical-biological interactions; Gulf of Tehuantepec; marine ecology; meso-scale eddies; advection
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 414
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Leben, R.R.; Chassignet, E.P.; Hall, C.A.; Morey, S.L.; Nedbor-Gross, R.
Title Characterization of the uncertainty of loop current metrics using a multidecadal numerical simulation and altimeter observations Type $loc['typeJournal Article']
Year 2015 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 100 Issue Pages 140-158
Keywords Eddies and mesoscale processes; Gulf of Mexico; Loop Current; Satellite altimetry; Ocean modeling; Ocean front detection
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 100
Permanent link to this record
 

 
Author Zhao, X.; Zhou, C.; Zhao, W.; Tian, J.; Xu, X.
Title Deepwater overflow observed by three bottom-anchored moorings in the Bashi Channel Type $loc['typeJournal Article']
Year 2016 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 110 Issue Pages 65-74
Keywords Deepwater overflow; Bashi Channel; Volume transport; Spatial structure; Temporal variability
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 92
Permanent link to this record
 

 
Author Manghnani, V.; Morrison, J.M.; Xie, L.; Subrahmanyam, B.
Title Heat transports in the Indian Ocean estimated from TOPEX/POSEIDON altimetry and model simulations Type $loc['typeJournal Article']
Year 2002 Publication Deep Sea Research Part II: Topical Studies in Oceanography Abbreviated Journal Deep Sea Research Part II: Topical Studies in Oceanography
Volume 49 Issue 7-8 Pages 1459-1480
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0645 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 832
Permanent link to this record
 

 
Author Hiester, H.R.; Morey, S.L.; Dukhovskoy, D.S.; Chassignet, E.P.; Kourafalou, V.H.; Hu, C.
Title A topological approach for quantitative comparisons of ocean model fields to satellite ocean color data Type $loc['typeJournal Article']
Year 2016 Publication Methods in Oceanography Abbreviated Journal Methods in Oceanography
Volume 17 Issue Pages 232-250
Keywords Satellite data; Ocean model; Ocean color; Sea surface salinity; Shape comparison; Hausdorff distance
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-1220 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 78
Permanent link to this record
 

 
Author Brassington, G.B.; Martin, M.J.; Tolman, H.L.; Akella, S.; Balmeseda, M.; Chambers, C.R.S.; Chassignet, E.; Cummings, J.A.; Drillet, Y.; Jansen, P.A.E.M.; Laloyaux, P.; Lea, D.; Mehra, A.; Mirouze, I.; Ritchie, H.; Samson, G.; Sandery, P.A.; Smith, G.C.; Suarez, M.; Todling, R.
Title Progress and challenges in short- to medium-range coupled prediction Type $loc['typeJournal Article']
Year 2015 Publication Journal of Operational Oceanography Abbreviated Journal Journal of Operational Oceanography
Volume 8 Issue sup2 Pages s239-s258
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-876X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 96
Permanent link to this record
 

 
Author LaCasce, J.H.; Escartin, J.; Chassignet, E.P.; Xu, X.
Title Jet instability over smooth, corrugated and realistic bathymetry Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume Issue Pages
Keywords
Abstract The stability of a horizontally- and vertically-sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth which are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow anti-parallel to topographic wave propagation), and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer.

A ridge with a 1 km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echosounding reveal that such heights are common, beneath the Kuroshio, the Antarctic Circumpolar Current and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus lateral instability may be more common than previously thought, due to topography hindering vertical energy transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 998
Permanent link to this record
 

 
Author Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R.
Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 140 Issue Pages 52-62
Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system KeyWords Plus:ZOOPLANKTON FECAL PELLETS; NORTH PACIFIC-OCEAN; CURRENT SYSTEM; SOUTHERN CALIFORNIA; UNDERWATER GLIDERS; CARBON EXPORT; ZONE; CHLOROPHYLL; STABILITY; EQUATIONS
Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 983
Permanent link to this record
 

 
Author Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R.
Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume Issue Pages
Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system
Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014�2015) followed by an El Niño (2015�2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Niño 2016 � and three cruises during El Niño-neutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, mass-specific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention
Address Deep-Sea Research Part I
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 966
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)