|   | 
Details
   web
Records
Author Nedbor-Gross, R.; Dukhovskoy, D.S.; Bourassa, M.A.; Morey, S.L.; Chassignet, E.P.
Title Investigation of the Relationship Between the Yucatan Channel Transport and the Loop Current Area in a Multidecadal Numerical Simulation Type $loc['typeJournal Article']
Year 2014 Publication Marine Technology Society Journal Abbreviated Journal Mar Technol Soc J
Volume 48 Issue 4 Pages 15-26
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-3324 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 145
Permanent link to this record
 

 
Author Griffies, S.M.; Danabasoglu, G.; Durack, P.J.; Adcroft, A.J.; Balaji, V.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Deshayes, J.; Drange, H.; Fox-Kemper, B.; Gleckler, P.J.; Gregory, J.M.; Haak, H.; Hallberg, R.W.; Heimbach, P.; Hewitt, H.T.; Holland, D.M.; Ilyina, T.; Jungclaus, J.H.; Komuro, Y.; Krasting, J.P.; Large, W.G.; Marsland, S.J.; Masina, S.; McDougall, T.J.; Nurser, A.J.G.; Orr, J.C.; Pirani, A.; Qiao, F.; Stouffer, R.J.; Taylor, K.E.; Treguier, A.M.; Tsujino, H.; Uotila, P.; Valdivieso, M.; Wang, Q.; Winton, M.; Yeager, S.G.
Title OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project Type $loc['typeJournal Article']
Year 2016 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.
Volume 9 Issue 9 Pages 3231-3296
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1991-9603 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 77
Permanent link to this record
 

 
Author Deremble, B.; Dewar, W.K.; Chassignet, E.P.
Title Vorticity dynamics near sharp topographic features Type $loc['typeJournal Article']
Year 2016 Publication Journal of Marine Research Abbreviated Journal J Mar Res
Volume 74 Issue 6 Pages 249-276
Keywords vorticity conservation; point vortex; vortex sheet; singularities
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2402 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 231
Permanent link to this record
 

 
Author Jones, C.S.; Cenedese, C.; Chassignet, E.P.; Linden, P. F.; Sutherland, B.R.
Title Gravity current propagation up a valley Type $loc['typeJournal Article']
Year 2015 Publication Journal of Fluid Mechanics Abbreviated Journal J. Fluid Mech.
Volume 762 Issue Pages 417-434
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1120 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 104
Permanent link to this record
 

 
Author Ji, F.; Wu, Z.; Huang, J.; Chassignet, E.P.
Title Evolution of land surface air temperature trend Type $loc['typeJournal Article']
Year 2014 Publication Nature Climate Change Abbreviated Journal Nature Climate change
Volume 4 Issue 6 Pages 462-466
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 131
Permanent link to this record
 

 
Author Wu, Z.; Chassignet, E.P.; Ji, F.; Huang, J.
Title Reply to 'Spatiotemporal patterns of warming' Type $loc['typeJournal Article']
Year 2014 Publication Nature Climate Change Abbreviated Journal Nature Climate change
Volume 4 Issue 10 Pages 846-848
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 151
Permanent link to this record
 

 
Author Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume Issue 8 Pages
Keywords
Abstract Observations show that the westward transport of the Iceland‐Scotland overflow water (ISOW) through the Charlie‐Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35‐year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large‐scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid‐Atlantic Ridge, suggesting an out‐of‐phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1023
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P., Wang, F.
Title On the variability of the Atlantic meridional overturning circulation transports in coupled CMIP5 simulations Type $loc['typeJournal Article']
Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn.
Volume 51 Issue 11 Pages 6511-6531
Keywords NAO-AMOC; CMIP5; NAO index; AMOC index; meridional pressure gradient; magnitude; structure change of the NAO.
Abstract The Atlantic meridional overturning circulation (AMOC) plays a fundamental role in the climate system, and long-term climate simulations are used to understand the AMOC variability and to assess its impact. This study examines the basic characteristics of the AMOC variability in 44 CMIP5 (Phase 5 of the Coupled Model Inter-comparison Project) simulations, using the 18 atmospherically-forced CORE-II (Phase 2 of the Coordinated Ocean-ice Reference Experiment) simulations as a reference. The analysis shows that on interannual and decadal timescales, the AMOC variability in the CMIP5 exhibits a similar magnitude and meridional coherence as in the CORE-II simulations, indicating that the modeled atmospheric variability responsible for AMOC variability in the CMIP5 is in reasonable agreement with the CORE-II forcing. On multidecadal timescales, however, the AMOC variability is weaker by a factor of more than 2 and meridionally less coherent in the CMIP5 than in the CORE-II simulations. The CMIP5 simulations also exhibit a weaker long-term atmospheric variability in the North Atlantic Oscillation (NAO). However, one cannot fully attribute the weaker AMOC variability to the weaker variability in NAO because, unlike the CORE-II simulations, the CMIP5 simulations do not exhibit a robust NAO-AMOC linkage. While the variability of the wintertime heat flux and mixed layer depth in the western subpolar North Atlantic is strongly linked to the AMOC variability, the NAO variability is not.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 981
Permanent link to this record
 

 
Author LaCasce, J.H.; Escartin, J.; Chassignet, E.P.; Xu, X.
Title Jet instability over smooth, corrugated and realistic bathymetry Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume Issue Pages
Keywords
Abstract The stability of a horizontally- and vertically-sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth which are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow anti-parallel to topographic wave propagation), and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer.

A ridge with a 1 km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echosounding reveal that such heights are common, beneath the Kuroshio, the Antarctic Circumpolar Current and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus lateral instability may be more common than previously thought, due to topography hindering vertical energy transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 998
Permanent link to this record
 

 
Author Rahaman, H.; Srinivasu, U.; Panickal, S.; Durgadoo, J.V.; Griffies, S.M.; Ravichandran, M.; Bozec, A.; Cherchi, A.; Voldoire, A.; Sidorenko, D..; Chassignet, E.P.; Danabasoglu, G.; Tsujino, H.; Getzlaff, K.; Ilicak, M.; Bentsen, M.; Long, M.C.; Fogli, P.G.; Farneti, R.; Danilov, S.; Marsland, S.J.; Valcke, S.; Yeager, S.G.; Wang, Q.
Title An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
Year 2020 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 145 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1087
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)