|   | 
Details
   web
Records
Author (up) Ajayi, A.; Le Sommer, J.; Chassignet, E.; Molines, J.-M.; Xu, X.; Albert, A.; Cosme, E.
Title Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric-Resolution Ocean Models Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 5 Pages
Keywords submesoscales; fine‐ scales; enstrophy; eddies; SWOT
Abstract Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. Nevertheless, it is well established that oceanic flows (<50 km) generally exhibit strong seasonality. In this study, we present a basin&#8208;scale analysis of coherent structures down to 10&#8201;km in the North Atlantic Ocean using two submesoscale&#8208;permitting ocean models, a NEMO&#8208;based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM&#8208;based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100&#8201;km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wave number spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10&#65533;50&#8201;km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1104
Permanent link to this record
 

 
Author (up) Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M.
Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 76-97
Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth
Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1001
Permanent link to this record
 

 
Author (up) Aretxabaleta, A.; Blanton, B.O.; Seim, H.E.; Werner, F.E.; Nelson, J.R.; Chassignet, E.P.
Title Cold event in the South Atlantic Bight during summer of 2003: Model simulations and implications Type $loc['typeJournal Article']
Year 2007 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 112 Issue C5 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 427
Permanent link to this record
 

 
Author (up) Arruda, W.; Zharkov, V.; Deremble, B.; Nof, D.; Chassignet, E.
Title A New Model of Current Retroflection Applied to the Westward Protrusion of the Agulhas Current Type $loc['typeJournal Article']
Year 2014 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 44 Issue 12 Pages 3118-3138
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 122
Permanent link to this record
 

 
Author (up) Bozec, A.; Lozier, M.S.; Chassignet, E.P.; Halliwell, G.R.
Title On the variability of the Mediterranean Outflow Water in the North Atlantic from 1948 to 2006 Type $loc['typeJournal Article']
Year 2011 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 116 Issue C9 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 290
Permanent link to this record
 

 
Author (up) Brassington, G.B.; Martin, M.J.; Tolman, H.L.; Akella, S.; Balmeseda, M.; Chambers, C.R.S.; Chassignet, E.; Cummings, J.A.; Drillet, Y.; Jansen, P.A.E.M.; Laloyaux, P.; Lea, D.; Mehra, A.; Mirouze, I.; Ritchie, H.; Samson, G.; Sandery, P.A.; Smith, G.C.; Suarez, M.; Todling, R.
Title Progress and challenges in short- to medium-range coupled prediction Type $loc['typeJournal Article']
Year 2015 Publication Journal of Operational Oceanography Abbreviated Journal Journal of Operational Oceanography
Volume 8 Issue sup2 Pages s239-s258
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-876X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 96
Permanent link to this record
 

 
Author (up) Chassignet, E. P.; Marshall, D. P.
Title Gulf Stream Separation in Numerical Ocean Models Type $loc['typeBook Chapter']
Year 2008 Publication Ocean Modeling in an Eddying Regime Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher American Geophysical Union Place of Publication Washington, DC Editor Hecht, M. W.; Hasumi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 695
Permanent link to this record
 

 
Author (up) Chassignet, E.; Cenedese, E.; Verron, J.
Title Buoyancy-Drivenn Flows Type $loc['typeBook Whole']
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 264
Permanent link to this record
 

 
Author (up) Chassignet, E.; Hurlburt, H.; Metzger, E.J.; Smedstad, O.; Cummings, J.; Halliwell, G.; Bleck, R.; Baraille, R.; Wallcraft, A.; Lozano, C.; Tolman, H.; Srinivasan, A.; Hankin, S.; Cornillon, P.; Weisberg, R.; Barth, A.; He, R.; Werner, F.; Wilkin, J.
Title US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM) Type $loc['typeJournal Article']
Year 2009 Publication Oceanography Abbreviated Journal Oceanog.
Volume 22 Issue 2 Pages 64-75
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1042-8275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 390
Permanent link to this record
 

 
Author (up) Chassignet, E.P.; Xu, X.
Title Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability Type $loc['typeJournal Article']
Year 2017 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 47 Issue 8 Pages 1999-2021
Keywords Ocean; Boundary currents; Eddies; Mesoscale processes; Ocean circulation; Ocean dynamics
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 17
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)